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Universitat Politècnica de València
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Abstract

This paper deals with autonomous linear systems and the sharp partial order.
Given an autonomous linear system, we find another system, which is related
to the first one by means of the sharp partial order. This relation can be
interpreted in different ways: as a perturbation or as a projection of the initial
system. Both points of view allow us to work with a new system with some
previously selected behaviour. The solutions of the two systems are related via
a matrix that gives the gap between them. We design some algorithms and
analize their performance with numerical examples.
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1. Introduction

Autonomous linear systems are a very important class of (ordinary) differen-
tial equations and difference equations. They are used as mathematical models
representing real processes in order to analyze their behaviour. It is well known
that the investigation of the crucial characteristic of a system of being stable
requires some background of linear algebra and matrix theory [15]. Another
feature of linear autonomous systems is their behaviour under certain perturba-
tions [13]. Under these circumstances, the new system differs by a small amount
from the original autonomous system and is called the perturbed system. The
important question to answer in this case is how close is the solution of a per-
turbed system to the solution of the original one as J. Cronin pointed out in
[6]. Some results related to perturbations of linear systems and matrices were
given by J.Y. Vélez-Cerrada, J. Robles, N. Castro-González, and Y. Wei and
they can be found in [20, 21].

On the other hand, in the last decades matrix partial orders are receiv-
ing an increasing attention because of their usefulness in different areas. The
excellent monograph published by S.K. Mitra, P. Bhimasankaram, S.B. Malik
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(see [17]) gave rise to a great impulse to the research in this topic. For instance,
mathematics morphology is a powerful tool to study geometrical structures with
applications to image processing as J. Angulo shows in [1]. Moreover, in Statis-
tics, two Gauss-Markov linear systems can be compared in the sense that one of
them is as good as the other provided that some covariance matrices are related
under a matrix partial order as G.P.H. Styan stated in [19]. Some results related
to partial orders were given by D.S. Cvetković-Ilić, D. Mosić, and Y. Wei and
can be found in [7, 16].

The novelty of our contribution in this paper consists in the combination of
these two areas (autonomous linear systems and matrix partial orders) produc-
ing a new outlook at autonomous systems. For that, perturbation and projec-
tion matrices will be considered in order to relate the solutions of two special
autonomous linear systems with coefficient matrices ordered under the sharp
partial order.

The main aim of this paper is to present two approaches for the comparison
of two autonomous systems ordered under the sharp partial order. A similar
relationship to that considered in this paper was given in [5] although solution
vectors in both systems could not be compared. However, using sharp partial
order we can carry out this comparison, which shows that the consideration
of sharp partial order (instead of minus partial order) represents an important
advantage since much more information can be obtained.

Throughout this paper we will use the following notation. Let A be a real
square matrix. The spectrum of A is defined as the set of all its eigenvalues and
denoted by σ(A). The spectral radius of A is defined as ρ(A) = max{|λ| : λ ∈
σ(A)}.

A square matrix A is said to be an index 1 matrix if A and A2 have the
same rank. We recall that for a given n × n matrix A of index 1, the symbol
A# denotes the group inverse of A which satisfies AA#A = A, A#AA# = A#,
and AA# = A#A (see [3]). The index 1 condition of A ensures the existence of
its group inverse.

For two index 1 given matrices A1, A2 ∈ Rn×n, it is well known that A2 is
a successor of A1 under the sharp partial order if A1A

#
1 = A2A

#
1 and A#

1 A1 =

A#
1 A2. This binary relation will be denoted by A1

#

≤ A2 (see [17]).
Given a matrix A ∈ Rn×n, we will need the Frobenius norm defined by

‖A‖F = trace(ATA) where AT denotes the transpose of A, and the P−matrix
norm defined by ‖A‖P = ‖P−1AP‖F .

The representation of a discrete-time (linear) autonomous system is given
by

x(k + 1) = Ax(k), k = 0, 1, . . . , (1)

where x(k) ∈ Rn, k = 0, 1, . . . , and A ∈ Rn×n is the state coefficient matrix. It
is well known that the solution of system (1) is given by the expression

x(k) = Akx(0), (2)

where x(0) is an admissible initial condition.
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An important concept related to autonomous systems is Stability. It is said
that system (1) is asymptotically stable if ρ(A) < 1.

It is well known that important applications of systems like (1) appear in
Markov chains [8] as well as in Leslie models [4], among others.

This paper is organized as follows. Section 2 introduces the concept of
ordered autonomous linear system under the sharp partial order. This binary
relation can be interpreted as a perturbation of the predecessor system. Unlike
the comparison done under the minus partial order used in [5], the important
fact in this paper is that the solutions of both systems are related by means
of the perturbation matrix. Moreover, the gap between both solutions is upper
bounded in terms of the Frobenius norm of the perturbation matrix. In addition,
an algorithm has been designed and a numerical example shows its performance.
Section 3 gives a different approach where the predecessor matrix is obtained as
a projection of the successor matrix. Even more, the same projection relation
is valid for the solution vectors. The structure of Section 3 continues similarly
to that of Section 2 by providing an upper bound, an algorithm, and numerical
examples to illustrate this second approach. Finally, in Section 4 we derive a
new tool by introducing a third point of view for understanding two related
systems where all the projectors we can choose are explicitly found.

2. Partially ordered perturbed system

In this section we are going to consider autonomous systems and introduce
an order relation between two given systems in order to compare them.

For that, throughout this section, we will consider the following systems:

x(k + 1) = A1x(k), and x̄(k + 1) = A2x̄(k), k = 0, 1, . . . (3)

where A1, A2 ∈ Rn×n have index 1.
We remark that (singular) diagonalizable matrices give rise to a wide class

of matrices that may appear in (3) because all of them have index 1. Since the
set of diagonalizable matrices is dense in the set of all matrices [9], we conclude
that it is quite common in practice to find situations where index 1 matrices
do appear. For instance, in Biology, autonomous systems are used to represent
the population growth of a certain species. The matrix appearing in this kind
of models is known as Leslie matrix and has the form [11, 12]

L =


a1 a2 · · · an−1 an
b1 0 · · · 0 0
0 b2 · · · 0 0
...

...
...

...
...

0 0 · · · bn−1 0

 ,

where ai ≥ 0, i = 1, . . . , n and 0 < bi ≤ 1, i = 1, . . . , n − 1, depend on the
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natality, mortality, and age of the population. For instance,

L =

 2 0.3 0
0.8 0 0
0 0.1 0


is a Leslie matrix, it has index 1 and is diagonalizable.

Definition 1. The autonomous linear systems given by (3) are said to be or-

dered under the sharp partial order if A1

#

≤ A2.

Now, we establish the relationship between the solutions of two given au-
tonomous systems related by the sharp partial order. To do that, we recall the
following characterization of the sharp partial order.

Proposition 1. [2] Let A1 ∈ Rn×n be a matrix written as

A1 = P

 C
O

O

P−1 (4)

with C ∈ Rr×r and P ∈ Rn×n being nonsingular. Then, the following assertions
are equivalent:

(a) There exists A2 ∈ Rn×n such that A1

#

≤ A2.

(b) There exists a nonsingular matrix Y ∈ R`×` such that

A2 = P

 C
Y

O

P−1. (5)

The expression (4) is known as the core-nilpotent decomposition of A1 [3].
The missing blocks in the middle matrix in (4) are null matrices of adequate
sizes. This notation will be used in what follows.

This characterization allows us to write the following result.

Theorem 2. Let A1, A2 ∈ Rn×n be the state matrices of two autonomous sys-
tems given by (3) ordered under the sharp partial order. Then, there exists a
matrix Γ ∈ Rn×n such that the solutions of both systems are related by

x̄(k) = x(k) + Γkx(0) (6)

provided that both initial conditions are equal, that is x̄(0) = x(0).

Proof. Assume that A1

#

≤ A2. By Proposition 1, there exists a nonsingular
matrix P ∈ Rn×n such that

A2 = A1 + P

 O
Y

O

P−1. (7)
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Set

Γ = P

 O
Y

O

P−1. (8)

Since A1Γ = ΓA1 = O, Newton’s binomial formula gives

Ak
2 =

k∑
j=0

(
k

j

)
Aj

1Γk−j = Ak
1 + Γk.

Then, the solution of the second system is

x̄(k) = Ak
2 x̄(0) = (Ak

1 + Γk)x(0) = x(k) + Γkx(0).

�

Remark 1. An interesting observation is that the vector x̄(k) in solution (6)
can be interpreted as a perturbation of the vector x(k). Therefore, the solution
of the successor system is obtained as a perturbation of the solution of the
predecessor system under the sharp partial order.

The previous result allows us to give an upper bound for the difference
between both solutions.

Corollary 3. Let x(k) and x̄(k) be the solutions of the systems given in (3). If
both systems are ordered under the sharp partial order then

‖x̄(k)− x(k)‖ ≤ ‖Y ‖kF ‖x(0)‖,

where the vector norm ‖ · ‖ is a compatible norm with the P -matrix norm.

Proof. By Theorem 2, we have x̄(k) = x(k) + Γkx(0). For a vector norm ‖.‖
compatible with the P -matrix norm, we can write

‖x̄(k)− x(k)‖ = ‖Γkx(0)‖ ≤ ‖Γk‖P ‖x(0)‖ ≤ ‖Γ‖kP ‖x(0)‖.

By using the relation (8), we get

‖Γ‖P = ‖P−1ΓP‖F =

∥∥∥∥∥∥
 O

Y
O

∥∥∥∥∥∥
F

= ‖Y ‖F .

Hence, the result holds. �

Notice that if the system given by A2 is constructed with a “small” matrix
Y , we can assure that the difference between the two solutions is also small and
an upper bound for this difference is given in terms of the norm of Y .
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Remark 2. We can observe that the system defined by A2 can be seen as a
perturbation of the system given by A1. In this case, Corollary 3 guarantees
that the solution x̄(k) is as close to the solution x(k) as the magnitude of the
perturbation matrix Y is. For instance, if we choose Y = diag(ε1, . . . , ε`) with
0 < εi << 1 for i = 1, . . . , `, we obtain that σ(A2) = σ(C) ∪ σ(Y ). This
fact implies that the stability of the system defined by A1 is preserved in the
perturbed system given by A2. However, starting from a stable system given
by A1, if we perturb it with a unstable Y , the obtained system given by A2 is
always unstable.

2.1. Algorithm and example
For a given matrix A1, the algorithm below constructs the solution of the

systems x(k + 1) = A1x(k) and x̄(k + 1) = A2x̄(k) satisfying that A1 is below
A2 under the sharp partial order.

Algorithm 1. Inputs: The matrix A1 of index at most 1, the initial condition
x0, and the nonzero perturbation numbers ε1, . . . , ε`.
Outputs: The matrix A2 and the solutions x(k) and x̄(k).

Step 1. Compute the core-nilpotent decomposition of A1, i.e.,

A1 = P

 C
O

O

P−1.
Step 2. Select Y = diag(ε1, . . . , ε`).

Step 3. Construct A2 as in (5).

Step 4. Compute the perturbation matrix Γ = P

 O
Y

O

P−1.

Step 5. The solutions are: x(k) = Ak
1x0 and x̄(k) = x(k) + Γkx0.

Notice that in the algorithm we have ‖Y ‖F =
∑`

i=1 ε
2
i , which allows us to

obtain the upper bound ‖Y ‖kF ‖x(0)‖ of the gap ‖x̄(k)− x(k)‖.
This algorithm and the others appearing in the following sections can be

easily implemented on a computer. We have used the Wolfram Mathematica
11.3 (2018) package. For each algorithm we present some numerical examples
in order to show the performance and demonstrate the applicability.

Example 4. Consider the autonomous system x(k + 1) = A1x(k) given by the
matrix

A1 =


0.1739 −0.0607 −0.0662 0.0763 0.0596 −0.0400
0.4338 −0.0725 −0.1948 0.2847 0.1164 −0.0720
−0.8839 0.3844 0.3080 −0.2966 −0.3343 0.2302
−0.0239 0.1583 −0.0471 0.1691 −0.0697 0.0584

0.1986 −0.1166 −0.0579 0.0304 0.0875 −0.0624
−0.5959 0.2936 0.1947 −0.1587 −0.2395 0.1674

 .
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This matrix has index 1 and can be decomposed as in (4) where

P =


0.5377 −0.4336 0.7254 1.4090 0.4889 0.8884
1.8339 0.3426 −0.0631 1.4172 1.0347 −1.1471
−2.2588 3.5784 0.7147 0.6715 0.7269 −1.0689

0.8622 2.7694 −0.2050 −1.2075 −0.3034 −0.8095
0.3188 −1.3499 −0.1241 0.7172 0.2939 −2.9443
−1.3077 3.0349 1.4897 1.6302 −0.7873 1.4384

 (9)

and

C =

[
0.5000 −0.3333

0 0.3333

]
.

If we perturb the previous system considering A2 as in (5) where

Y =

[
0.5000 0

0 0.5000

]
,

we get the matrix

A2 =


0.3748 −0.0548 −0.1024 0.0447 0.2241 0.1326
−0.2717 0.4732 −0.2945 −0.1694 0.0093 0.2499
−0.3656 0.1359 0.3203 −0.1150 −0.1290 0.2435

0.2810 −0.1305 0.0172 0.4182 −0.0674 −0.1675
−0.2640 0.2224 −0.1157 −0.2485 0.0016 0.1178

0.3813 −0.1425 0.2049 0.1514 0.1744 0.2454


which satisfies A1

#

≤ A2. This matrix defines a new system x̄(k + 1) = A2x̄(k).
Choosing the above matrix Y , Corollary 3 ensures that the solutions of both

systems will be as close as indicated by ‖Y ‖F = 0.7071.

Taking the initial conditions x(0) = x̄(0) =
[

1 1 1 1 1 1
]T

, by
Theorem 2 their solutions are related by means of the expression (6) as it is
shown in Figure 1. In this figure, we can observe the evolution of the 15th first
iterations of the solutions xi(k) and x̄i(k). Obviously, the bigger the value of k
is, the closer the solutions xi(k) and x̄i(k) are.

3. Partially ordered projected system

In this section, we point out another interpretation for two ordered systems
under the sharp partial order. In order to do this, let us consider the Hartwig-
Spindelböck decomposition of a given nonzero matrix A2 of rank r [10]. There
exist an orthogonal matrix U ∈ Rn×n, a diagonal positive definite matrix Σ ∈
Rr×r, and matrices K ∈ Rr×r and L ∈ Rr×(n−r) such that

A2 = U

[
ΣK ΣL
O O

]
UT (10)

with KKT + LLT = Ir. If K is nonsingular then A2 has index at most 1.
We quote the following result.
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Proposition 5. [14] Let A2 ∈ Rn×n be a nonzero matrix written as in (10)
with K nonsingular. Then, the following assertions are equivalent

(a) There exists A1 ∈ Rn×n having index 1 such that A1

#

≤ A2.

(b) There exists an idempotent matrix T ∈ Rr×r that commutes with ΣK such
that

A1 = U

[
TΣK TΣL
O O

]
UT . (11)

Theorem 6. Let A1, A2 ∈ Rn×n be the state matrices of two autonomous sys-
tems given by (3) ordered under the sharp partial order. Then, there exists a

matrix Γ̃ ∈ Rn×n such that the solutions of both systems are related by

x(k) = Γ̃x̄(k) (12)

provided that both initial conditions are equal, that is x̄(0) = x(0).

Proof. Assume that A1

#

≤ A2. Consider the Hartwig-Spindelböck decompo-
sition of A2 as in (10). By Proposition 5, there exists an idempotent matrix
T ∈ Rr×r that commutes with ΣK such that A1 can be expressed as in (11). It
is easy to see that

Ak
1 = U

[
(TΣK)k (TΣK)k−1ΣL

O O

]
UT

and

Ak
2 = U

[
(ΣK)k (ΣK)k−1ΣL
O O

]
UT .

Then, the solution of the first system is

x(k) = Ak
1x(0) = U

[
T O
O In−r

]
UTU

[
(ΣK)k (ΣK)k−1ΣL
O O

]
UTx(0).

Setting

Γ̃ = U

[
T O
O In−r

]
UT (13)

we obtain x(k) = Γ̃x̄(k). �

From (??) and (13) we notice that A1 can be written as a projection of A2,

namely A1 = Γ̃A2.

Remark 3. An interesting observation is that expression (12) represents the
vector x(k) as a projection of the vector x̄(k). Therefore, the solution of the
predecessor system is obtained as a projection of the solution of the successor
system under the sharp partial order. That is, unlike Theorem 2 (where system
defined by A2 was constructed as a perturbation of system defined by A1), in
the current approach, Theorem 6 allows us to construct the system defined by
A1 from the system given by A2 by means of an adequate projection.
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This result allows us to obtain the distance between both solutions.

Corollary 7. Let x(k) and x̄(k) be the solutions of the systems given in (3). If
both systems are ordered under the sharp partial order then

‖x(k)− x̄(k)‖ ≤ ‖T − I‖F ‖Σ‖kF ‖x(0)‖ (14)

where I represents the identity matrix of suitable size and x(0) is an admissible
initial condition.

Proof. By Theorem 6, we have x(k) = Γ̃x̄(k). For a vector norm ‖.‖ compat-
ible with the Frobenius matrix norm, we can write

‖x(k)− x̄(k)‖ = ‖(Γ̃− I)x̄(k)‖ ≤ ‖Γ̃− I‖F ‖x̄(k)‖ = ‖T − I‖F ‖x̄(k)‖,

where we have used the expression (13) of the matrix Γ̃. Now, taking into
account that x̄(k) = Ak

2x(0) for an admissible initial condition x(0), we have
that

‖x(k)− x̄(k)‖ ≤ ‖T − I‖F ‖Ak
2x(0)‖ ≤ ‖T − I‖F ‖A2‖kF ‖x(0)‖.

By using the definition of the Frobenius norm and the decomposition of the
matrix A2 given in (10) we have that

‖A2‖2F = trace(A2A
T
2 ) = trace

([
ΣK ΣL
O O

] [
KT Σ O
LT Σ O

])
= trace

([
Σ(KKT + LLT )Σ O

O O

])
= ‖Σ‖2F

Hence, the result holds. �

Remark 4. Corollary 7 guarantees that the solution x(k) is as close to the
solution x̄(k) as the magnitude of the singular value matrix Σ is; if ‖Σ‖F < 1
then x(k) and x̄(k) will be close for large values of k. Table 1 shows all the
possible situations that we can have when asymptotic stability is compared with
the singular values of the state matrix. Obviously, the interesting cases are those
for which matrix A2 is singular, the remaining cases are ommited. The property
|det(A2)| =

∏n
i=1 |λi| =

∏n
i=1 σi is used to complete Table 1. For example, the

first row in Table 1 means that the matrix A2 in Example 9 satisfies ρ(A2) < 1,
the system given by A2 is asymptotically stable, all the eigenvalues of A2 have
modulus less than 1, and the sequence ‖Σ‖kF tends to zero as k tends to infinity.
A similar interpretation is valid for the other rows. Note that Examples 9 and
10 mentioned in the Table are located after it. Moreover, while the symbol ∃
means it exists, the symbol @ means it does not exist.
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Proposition 8. Let A1, A2 ∈ Rn×n be the state matrices of two autonomous
systems given by (3) ordered under the sharp partial order. Then, the stability of
the system given by A2 implies the stability of the system given by A1. Moreover,
if A1 and A2 are written as in (11) and (10), respectively, then

σ(TΣK) ⊆ σ(ΣK).

Proof. Since A1

#

≤ A2, by Proposition 1 we can assure that σ(A1) ⊆ σ(A2).
Thus, the stability property follows directly. Now, assuming that A1 and A2

are respectively written as in (11) and (10), we have σ(A1) = σ(TΣK) and
σ(A2) = σ(ΣK). This ends the proof. �

An interesting observation derives from this proposition. It allows us to ensure
that the stability of the system defined by A1 is independent of the idempotent
matrix T .

3.1. Algorithm and example

For a given matrix A2, the algorithm below constructs the solution of the
systems x̄(k + 1) = A2x̄(k) and x(k + 1) = A1x(k) satisfying that A1 is below
A2 under the sharp partial order.

Algorithm 2. Inputs: The matrix A2 of index at most 1 and the initial condi-
tion x0.
Outputs: The matrix A1 and the solutions x̄(k) and x(k).

Step 1. Compute the singular value decomposition of A2, that is A2 = USV T

and r = rank(A2).

Step 2. Assign to Σ the first r rows and the first r columns of S.

Step 3. Compute M = SV TU .

Step 4. Assign to M̃ the first r rows and the first r columns of M .

Step 5. Compute R = Σ−1M̃ .

Step 6. Assign to K the first r rows and the first r columns of R.

Step 7. Assign to L the first r rows and the last n− r columns of R.

Step 8. Find a matrix T such that ΣKT = TΣK and T 2 = T .

Step 9. Construct

A1 = U

[
TΣK TΣL
O O

]
UT and Γ̃ = U

[
T O
O I

]
UT .

Step 10. The solutions are: x̄(k) = Ak
2x0 and x(k) = Γ̃x̄(k).
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Example 9. Consider the autonomous system x̄(k + 1) = A2x̄(k) given by the
matrix

A2 =


0.1825 0.0776 −0.1392 −0.0791 0.1889 0.1878
0.1054 0.2135 −0.2223 0.0736 0.0783 0.1416
−0.1096 −0.0404 0.3692 0.0499 −0.0821 0.1700
−0.0265 0.0813 −0.0417 0.2201 −0.1237 −0.0791

0.0225 0.0251 −0.0609 −0.0639 0.0540 0.0355
0.1198 0.0376 0.1548 −0.0170 0.1265 0.3205


Following the steps in the Algorithm we have that

Σ =


0.5784 0 0 0

0 0.5255 0 0
0 0 0.3085 0
0 0 0 0.0.0819


and we can choose the matrix T as

T =


0.5183 0.1327 0.0672 0.6801
1.5347 0.6353 −1.0228 0.1730
0.2380 −0.0320 0.4990 1.0177
0.0442 −0.0268 0.1978 0.3475


such that A1 is

A1 =


0.0597 −0.0225 −0.0867 0.0702 0.0404 0.0611
0.0711 −0.0270 −0.1448 0.0167 0.1921 0.0437
0.1184 −0.0441 −0.0694 0.3043 −0.2750 0.1931
0.0935 −0.0354 −0.1763 0.0446 0.2037 0.0673
−0.0390 0.0147 0.0525 −0.0524 −0.0122 −0.0428

0.1833 −0.0687 −0.1864 0.3441 −0.1522 0.2437


and

Γ̃ =


0.5828 −0.1593 0.2395 0.3979 −0.1762 −0.1974
0.3924 0.0523 −0.6095 0.2635 −0.4731 0.3986
−0.5095 −0.2376 1.2773 0.5109 −0.2402 −0.2327

0.6286 −0.1836 −0.5091 0.6467 0.0189 0.3796
−0.0308 −0.1939 −0.0461 0.1352 0.8810 0.0208
−0.8719 −0.1909 0.5502 0.7490 −0.2855 0.5600

 .

Then, the magnitude of the difference between the solutions computed by the
Algorithm is indicated in Table 2.

Example 10. Consider the autonomous system x̄(k+1) = A2x̄(k) given by the
matrix A2 obtained in Example 4. Following the steps in the Algorithm we get

Σ =


1.0819 0 0 0

0 0.5784 0 0
0 0 0.5256 0
0 0 0 0.3085


11



and we can choose the matrix T as

T =


−0.1860 −0.1428 0.0821 0.2657

0.6177 0.5894 −0.3608 −0.0162
−1.0127 −0.9133 0.5509 0.4261
−0.1855 −0.0384 0.0021 1.0455


such that A1 is exactly the matrix given in Example 4. In this case,

Γ̃ =


0.6351 −0.1026 0.0854 0.1837 −0.0565 −0.3339
0.1969 0.3503 −0.4963 0.3695 −0.3905 0.1753
−0.4365 0.2055 1.3115 0.0016 0.1284 −0.3973

0.0163 0.3753 0.2328 0.7454 0.2239 0.0174
0.1652 −0.3924 −0.3188 0.2085 0.7636 0.1482
−0.8850 0.3298 0.5763 0.0609 0.2084 0.1941

 .

Then, the solutions computed by the Algorithm coincide with those drawn in
Figure 1.

3.2. A solution of Step 8 in the Algorithm 2

The goal of this subsection is to provide a method to construct a nontrivial
idempotent matrix T satisfying ΣKT = TΣK.

Proposition 11. Consider the matrices Σ and K of decomposition (10) of the
matrix A2 ∈ Rn×n. There exists a nontrivial idempotent matrix T such that
ΣKT = TΣK if and only if there exists a nonsingular matrix S ∈ Rr×r such
that

ΣK = S

[
S1 O
O S2

]
S−1, (15)

with S1 ∈ Ra×a, S2 ∈ R(r−a)×(r−a) nonsingular matrices, and 1 ≤ a < r.

Proof. Assume that T is a nontrivial idempotent matrix, that is O 6= T 6= Ir.
It is well known that there exists a nonsingular matrix S ∈ Rr×r such that

T = S

[
Ia O
O O

]
S−1, (16)

with 1 ≤ a < r. We partition

ΣK = S

[
S1 S3

S4 S2

]
S−1,

according to the size of the blocks of S−1TS. From ΣKT = TΣK we get S3 = O
and S4 = O. The nonsingularity of S1 and S2 follows from the nonsingularity
of ΣK.

Conversely, assuming that ΣK is partitioned as in (15) and setting T as in
(16), it is easy to see that T is idempotent and commute with ΣK. �

12



We observe that such a matrix T can always be constructed since ΣK can
always be partitioned as in (15) by using its Jordan canonical form. In partic-
ular, when ΣK is diagonalizable, this issue can easily be done. Even more, in
this case, we can construct several matrices T with different rank by choosing
adequate blocks in ΣK. An alternative approach to select such a matrix T is to
use the Schur decomposition of ΣK provided that it yields to a block diagonal
matrix.

4. A new approach to compute the projector

In this section, we are going to give a new way of calculating the projector
matrix that relates the solutions of two autonomous systems ordered under the
sharp partial order. In order to do that we consider the following result by D.S.
Rakiĉ, D.S. Djordjević [18, Theorem 2.6].

Proposition 12. Let A1, A2 ∈ Rn×n be matrices having index 1. Then, the
following assertions are equivalent

(a) A1

#

≤ A2.

(b) There exists an idempotent matrix Q ∈ Rn×n that commutes with A2 and
satisfies A1 = QA2.

Next, we give the following result where the link between the solutions of
two ordered systems is specified.

Theorem 13. Let A1, A2 ∈ Rn×n be the state matrices of two autonomous
systems given by (3) ordered under the sharp partial order. Then, there exists
an idempotent matrix Q ∈ Rn×n such that the solutions of both systems are
related by

x(k) = Qx̄(k)

provided that both initial conditions are equal, that is x̄(0) = x(0).

Proof. Assume that A1

#

≤ A2. By Proposition 12, there exists an idempotent
matrix Q ∈ Rn×n such that A1 = QA2 = A2Q. Since Qk = Q for any positive
integer k and from x̄(k) = Ak

2x(0), we get

x(k) = Ak
1x(0) = (QA2)kx(0) = QkAk

2x(0) = Qx̄(k).

�

Assume that A1

#

≤ A2. From Proposition 1,

A1 = P

 C
O

O

P−1 and A2 = P

 C
Y

O

P−1,

13



for nonsingular matrices C ∈ Rr×r and Y ∈ R`×`. By Theorem 12, A1 =
QA2 = A2Q for some idempotent matrix Q. Now, QA1 = QA2 = A1. Similarly,
A1Q = A1. Then, from

P

 C
O

O

P−1 = QP

 C
O

O

P−1.
and denoting

P−1QP =

 M N T
R
V

W


we have M = Ir, R = O, and V = O. Similarly, from A1 = A1Q we get N = O,
T = O. Since Q is idempotent, it then follows W 2 = W . Now, using that
A1 = QA2 = A2Q we arrive at

W

[
Y O
O O

]
= O and

[
Y O
O O

]
W = O. (17)

The nonsingularity of Y leads to W =

[
O

Z

]
. Hence, we have obtained the

following result, which gives the set of all the idempotent matrices appearing in
Proposition 12.

Lemma 14. Let A1, A2 ∈ Rn×n be matrices having index 1 such that A1

#

≤ A2

and written as in (4) and (5). Then the set of all idempotent matrices QZ ∈
Rn×n such that A1 = QZA2 = A2QZ is given by

QZ = P

 Ir
O

Z

P−1,
where Z ∈ R(n−r−`)×(n−r−`) satisfies Z2 = Z.

Notice that the particular case Z = O leads to the easiest situation QO =
A1A

#
1 = A#

1 A1.

Remark 5. For two systems (given by the matrices A1 and A2) ordered under
the sharp partial order, we highlight that the solutions are independent of the
choice of Z since A1 = QZA2 = A2QZ .

Example 15. Consider the matrices A1, A2, and P given in Example 4. By
Lemma 14, the solutions of the autonomous systems given by (3) can be obtained

14



by the idempotent matrix QO, computed as

QO = P

 I2
O2

O2

P−1

=


0.2915 −0.0739 −0.1214 0.1612 0.0886 −0.0573
0.5174 0.1507 −0.3213 0.6237 0.0415 −0.0021
−1.6856 0.6995 0.6000 −0.6059 −0.6236 0.4272
−0.4404 0.6480 −0.0178 0.3990 −0.3538 0.2759

0.4596 −0.2859 −0.1279 0.0512 0.2091 −0.1501
−1.2284 0.6181 0.3966 −0.3117 −0.4990 0.3496


by means of the relation 

x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)

 = QO


x̄1(k)
x̄2(k)
x̄3(k)
x̄4(k)
x̄5(k)
x̄6(k)


and their trajectories are shown in Figure 1.

5. Conclusions

This paper presents a new technique to tackle problems in two areas: Matrix
Partial Orders and Autonomous Linear Systems. Specifically, we have intro-
duced the idea of ordered autonomous systems under the sharp partial order
and we have compared the solutions of two ordered systems obtaining upper
bounds of the gap between them. This comparison allows us to see the re-
lationship between the solutions from different points of view: perturbations,
projections.
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Figure 1: Evolution of the 15th first iterations of the solutions xi(k) and x̄i(k)
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A2 ρ(A2)
Asymptotic Singular ‖Σ‖kF −−−−→

k→∞
0

stability values

Example 9 < 1 yes σi < 1,∀i yes[
0.8071 0.8071

0 0

]
< 1 yes

∃i : σi < 1,
yes/no∃j 6= i : σj ≥ 1

Example 10 < 1 yes ∃i : σi ≥ 1 no
@ ≥ 1 − σi < 1,∀i −[
0 0
2 2

]
≥ 1 no

∃i : σi < 1,
yes/no∃j 6= i : σj ≥ 1

diag(2, 1, 0) ≥ 1 no ∃i : σi ≥ 1 no

Table 1: Relationship between eigenvalues and singular values of the matrix A2 to understand
the upper bound in (14).
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k ‖xk − x̄k‖ ‖T − I‖F ‖Σ‖kF ‖x(0)‖
5 0.0626958 0.0876378
10 0.00188192 1.11167
15 0.00005876 0.476665
20 1.83613× 10−6 0.204387
25 5.73668× 10−8 0.0876378
100 1.51336× 10−30 2.66857× 10−7

200 1.18846× 10−60 1.17777× 10−14

Table 2: Difference between the solutions of both systems and the upper bound.
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