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Abstract

In this paper, we give explicit exponential estimates |x(t)| ≤ Me−γ(t−t0), where t ≥ t0, M > 0, for
solutions of a linear scalar delay differential equation

ẋ(t) +

m
∑

k=1

bk(t)x(hk(t)) = f(t), t ≥ t0, x(t) = φ(t), t ≤ t0.

We consider two different cases: when γ > 0 (corresponding to exponential stability) and the case
of γ < 0 when the solution is, generally, growing.

In the first case, together with the exponential estimate, we also obtain an exponential stability
test, in the second case we get estimation for solution growth. Here both the coefficients and the
delays are measurable, not necessarily continuous.

Keywords: linear delay differential equations, explicit solution estimates, variable delays and
coefficients, exponential stability
AMS subject classification: 34K20, 34K25, 34K06

1. Introduction

Exponential or asymptotic stability of solutions is one of the most important properties of a
functional differential equation (FDE). There are many publications on stability of a FDE. We
cite here the papers [6, 7, 8, 9, 16, 17, 18, 22, 26, 28] and the monographs [4, 13, 14, 15, 21]
fully or partially devoted to asymptotic stability of this class of equations. Asymptotic stability
describes long time behavior of solutions. But in applications of FDEs, usually it is necessary to
know estimates of solutions on finite intervals. The following well-known topics are close to one
considered in the paper: Lyapunov exponents, asymptotic integration, and growth rates [2, 3, 5,
10, 11, 12, 19, 20, 23, 24, 25, 27].

In this paper, we propose exponential estimates for solutions of a scalar delay differential equa-
tion (DDE) with variable coefficients and delays

ẋ(t) +

m
∑

k=1

bk(t)x(hk(t)) = 0, t ≥ t0, hk(t) ≤ t, k = 1, . . . ,m. (1.1)

Estimates for non-homogeneous equations are also considered. We investigate two different cases,
one when the equation is exponentially stable and the second when it is not, or when asymptotic
behaviour of solutions is unknown.
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For the equation with one delay

ẋ(t) + a(t)x(h(t)) = 0,

for example, the first case occurs when a(t) ≥ a0 > 0 and the equation is exponentially stable, the
second case is for a(t) ≥ 0 but the equation is not exponentially stable, or for a(t) being non-positive
or oscillatory.

All our conditions can be applied to a wide class of scalar linear differential equations with
variable coefficients and delays, without the assumption that these parameters are continuous
functions, leading to solution estimates. For equations with variable coefficients and delays, such
solution estimates are obtained for the first time, and for ordinary differential equations are sharp.

The paper is organized as follows. After some definitions and auxiliary results in Section 2,
Section 3 contains an estimate for the fundamental function of an equation with a non-delay term.
Section 4 is the main part of the paper. Here we consider solution estimates in the two above
mentioned cases. Section 5 presents illustrating examples. Section 6 contains a discussion and
suggests some projects for future research.

2. Preliminaries

We consider equation (1.1) under the following conditions:
(a1) bk : [0,∞) → R are Lebesgue measurable essentially bounded functions;
(a2) the functions hk are Lebesgue measurable on [0,∞), and for some finite constants δk ≤ τk,

0 ≤ δk ≤ t− hk(t) ≤ τk, k = 1, . . . ,m, t ≥ t0 ≥ 0, τ = maxk τk.
Together with equation (1.1), we consider for any t0 ≥ 0 an initial value problem for the non-

homogeneous equation

ẋ(t) +

m
∑

k=1

bk(t)x(hk(t)) = f(t), t ≥ t0; x(t) = φ(t), t ≤ t0, (2.1)

where
(a3) f : [t0,∞) → R is a Lebesgue measurable locally essentially bounded function, the initial
function φ : [t0 − τ, t0] → R is bounded and Borel measurable.

By the solution of problem (2.1) we mean a locally absolutely continuous function x :
[t0,∞) → R satisfying almost everywhere the equation, whenever t ≥ t0, and the initial conditions
if t ≤ t0.

For any fixed s, the solution X(t, s) of the problem with the zero initial function and the initial
value being equal to one

∂X(t, s)

∂t
+

m
∑

k=1

bk(t)X(hk(t), s) = 0, t ≥ s; X(t, s) = 0, t < s, X(s, s) = 1

is called the fundamental function.
According to [4, Theorem 4.3.1], the solution of (2.1) exists and is unique. Also, the solution

has the representation

x(t) = X(t, t0)x(t0)−
m
∑

k=1

∫ t0+τk

t0

X(t, s)bk(s)φ(hk(s))ds +

∫ t

t0

X(t, s)f(s)ds. (2.2)
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In (2.2), we assume φ(t) = 0, t > t0.
We call equation (1.1) uniformly exponentially stable if, for some positive numbers M and

γ, not depending on t0 and φ, a solution of homogeneous (2.1), where f ≡ 0, satisfies

|x(t)| ≤ Me−γ(t−t0) sup
t∈[t0−τ,t0]

|φ(t)|, t ≥ t0. (2.3)

We will say that the fundamental function X(t, s) of (1.1) has an exponential estimate if
there exist M0 > 0 and γ0 > 0 such that

|X(t, s)| ≤ M0e
−γ0(t−s), for any t ≥ s ≥ 0. (2.4)

We will further apply the Bohl-Perron theorem stated below.

Lemma 1. [4, Theorem 4.7.1] Assume that (a1)-(a2) hold. If the solution of the problem

ẋ(t) +
m
∑

k=1

bk(t)x(hk(t)) = f(t), x(t) = 0, t ≤ t0 (2.5)

is bounded on [t0,∞) for any essentially bounded function f : [t0,∞) → R, equation (1.1) is
uniformly exponentially stable.

The main objective of the present paper is to obtain explicit estimates (2.3)-(2.4) and their
generalizations for homogeneous equation (1.1). We consider the case when the equation is expo-
nentially stable and when it is unstable, or asymptotic behaviour is unknown. In the former case
γ > 0, while in the latter case γ < 0. We also get estimates for non-homogeneous equations (2.1).

3. Estimates for an Auxiliary Equation

In this section, for the fundamental function Y (t, s) of the equation involving both delay terms
and a non-delay term

ẏ(t) = c(t)y(t)−

m
∑

k=1

dk(t)y(hk(t)), t ≥ t0 (3.1)

we deduce a uniform estimate
|Y (t, s)| ≤ K for t ≥ s ≥ t0. (3.2)

We assume that for c, dk, assumption (a1) holds, while the delay functions hk satisfy (a2).

Denote ‖f‖J = ess supt∈J |f(t)|, where J = [t0, t1] or J = [t0,∞), d(t) :=

m
∑

k=1

dk(t).

Lemma 2. If there is an α0 > 0 such that

d(t)− c(t) ≥ α0, K0 :=

(

‖c‖[t0,∞) +

m
∑

k=1

‖dk‖[t0,∞)

)

m
∑

k=1

τk

∥

∥

∥

∥

dk
d− c

∥

∥

∥

∥

[t0,∞)

< 1 (3.3)

then (3.1) is uniformly exponentially stable. Moreover, the fundamental function Y (t, s) of (3.1)
satisfies (3.2) with K = (1−K0)

−1.
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Proof. For brevity of notations, we set y(t) = Y (t, t0). Then, y satisfies (3.1), where the initial
value is y(t0) = 1, with the zero initial function. Let J = [t0, t1], where t1 > t0 is arbitrary. Equality
(3.1) implies the estimate

‖ẏ‖J ≤

(

‖c‖[t0,∞) +

m
∑

k=1

‖dk‖[t0,∞)

)

‖y‖J . (3.4)

Equation (3.1) can be written as

ẏ(t) = −[d(t)− c(t)]y(t) +
m
∑

k=1

dk(t)

∫ t

hk(t)
ẏ(ξ)dξ.

Integrating, we get for y

y(t) = e
−

∫
t

t0
[d(ξ)−c(ξ)]dξ

+

∫ t

t0

e−
∫
t

s
[d(ξ)−c(ξ)]dξ[d(s)− c(s)]

[

m
∑

k=1

dk(s)

d(s)− c(s)

∫ s

hk(s)
ẏ(ξ)dξ

]

ds.

Then, by the above equality, (3.4) and the definition of K0 in (3.3),

‖y‖J ≤ 1 +

m
∑

k=1

τk

∥

∥

∥

∥

dk
d− c

∥

∥

∥

∥

[t0,∞)

‖ẏ‖J ≤ 1 +K0‖y‖J .

Then ‖Y (t, t0)‖J ≤ (1−K0)
−1, and the expression in the right-hand side does not depend on t1.

Hence ‖Y (t, t0)‖[t0,∞) ≤ (1−K0)
−1. Again, the number in the right-hand side does not depend

on t0. Thus estimate (3.2) holds.
To prove exponential stability, we apply the Bohl-Perron theorem. Let f : [t0,∞) → R be

globally essentially bounded, and y be a solution of

ẏ(t) = c(t)y(t)−

m
∑

k=1

dk(t)y(hk(t)) + f(t), t ≥ t0, y(t) = 0, t ≤ t0. (3.5)

Equality (3.5) implies

‖ẏ‖J ≤

(

‖c‖[t0,∞) +
m
∑

k=1

‖dk‖[t0,∞)

)

‖y‖J + ‖f‖[t0,∞). (3.6)

Similarly to the above argument, equation (3.5) can be rewritten and integrated:

ẏ(t) =− [d(t) − c(t)]y(t) +
m
∑

k=1

dk(t)

∫ t

hk(t)
ẏ(ξ)dξ + f(t),

y(t) =

∫ t

t0

e−
∫
t

s
[d(ξ)−c(ξ)]dξ[d(s)− c(s)]

[

m
∑

k=1

dk(s)

d(s)− c(s)

∫ s

hk(s)
ẏ(ξ)dξ

]

ds

+

∫ t

t0

e−
∫
t

s
[d(ξ)−c(ξ)]dξ[d(s)− c(s)]

f(s)

d(s) − c(s)
ds.
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Since d(s)− c(s) ≥ α0 > 0 and ‖f‖[t0,∞) < ∞, we have ‖ f
d−c‖[t0,∞) < ∞. Then, by (3.6),

‖y‖J ≤

m
∑

k=1

τk

∥

∥

∥

∥

dk
d− c

∥

∥

∥

∥

[t0,∞)

‖ẏ‖J +

∥

∥

∥

∥

f

d− c

∥

∥

∥

∥

[t0,∞)

≤ K0‖y‖J +M0,

where

M0 =
m
∑

k=1

τk

∥

∥

∥

∥

dk
d− c

∥

∥

∥

∥

[t0,∞)

‖f‖[t0,∞) +

∥

∥

∥

∥

f

d− c

∥

∥

∥

∥

[t0,∞)

.

Hence for the constant M = (1−K0)
−1M0 > 0, we have ‖y‖J ≤ M , where M does not depend on

the interval J . Therefore ‖x‖[t0,∞) < ∞. Appliing Lemma 1, we conclude that (3.1) is uniformly
exponentially stable.

Remark 1. In Lemma 2, instead of K0, we can take any number K1 ∈ (K0, 1).

Remark 2. Equation (3.1) is uniformly exponentially stable under the assumptions of the lemma.
In contrast to a known result on exponential stability of an equation ẏ + c(t)y(t) + d(t)y(h(t)) = 0
with a dominating non-delay term c(t) > |d(t)| ≥ 0, we consider the case c(t) ≤ 0, d(t) > c(t). In
this sense, the delay term is dominating over the non-delay term.

4. Main Results

4.1. Exponentially stable equations

We start with an exponential estimate for an exponentially stable equation.

Theorem 1. Assume that there are constants λ > 0 and α > 0 such that the following inequalities
hold:

a(t) :=
m
∑

k=1

eλ(t−hk(t))bk(t)− λ ≥ α, t ≥ t0, (4.1)

M1 :=

(

λ+
m
∑

k=1

eλτk‖bk‖[t0,∞)

)

m
∑

k=1

τk

∥

∥

∥

ak
a

∥

∥

∥

[t0,∞)
< 1, (4.2)

where ak(t) = eλ(t−hk(t))bk(t).
Then for the solution of problem (2.1), the following estimate is valid

|x(t)| ≤ M0e
−λ(t−t0)

[

|x(t0)|+

m
∑

k=1

eλτk − 1

λ
‖bk‖[t0,∞)‖φ‖[t0−τ,t0]

]

+
M0

λ
‖f‖[t0,t], (4.3)

where M0 := (1−M1)
−1.

Proof. Consider first the case f ≡ 0. After the substitution x(t) = e−λ(t−t0)z(t) into (2.1), we get

ż(t) = λz(t)−

m
∑

k=1

eλ(t−hk(t))bk(t)z(hk(t)). (4.4)
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Equation (4.4) has the form of (3.1) with

c(t) = λ, dk(t) = eλ(t−hk(t))bk(t), d(t) =
m
∑

k=1

eλ(t−hk(t))bk(t).

Then in (4.1), a(t) corresponds to d(t) − c(t). Let Z(t, s) be the fundamental function of (4.4).
Inequalities (4.1) and (4.2) imply (3.3). By Lemma 2, |Z(t, s)| ≤ M0. Let X(t, s) be a fundamental
function of (2.1). Then, for X(t, s) we have the exponential equality X(t, s) = e−λ(t−s)Z(t, s).
Hence |X(t, s)| ≤ M0e

−λ(t−s). By (2.2), for the solution x of problem (2.1) we have

|x(t)| ≤ |X(t, t0)||x(t0)|+
m
∑

k=1

∫ t0+τk

t0

|X(t, s)||bk(s)||φ(hk(s))|ds

≤ M0e
−λ(t−t0)|x(t0)|+

M0

λ

m
∑

k=1

‖bk‖[t0,∞)

(

e−λ(t−t0−τk) − e−λ(t−t0)
)

‖φ‖[t0−τ,t0],

which implies (4.3) with f ≡ 0.
For the general case we apply (2.2), the estimate for X(t, s) and the inequalities

∣

∣

∣

∣

∫ t

t0

X(t, s)f(s) ds

∣

∣

∣

∣

≤ M0‖f‖[t0,t]

∫ t

t0

e−λ(t−t0)ds ≤
M0

λ
‖f‖[t0,t].

Remark 3. Note that if the conditions of Theorem 1 hold, (1.1) is uniformly exponentially stable.

Remark 4. Let us apply Theorem 1 to a non-delay equation

ẋ(t) + b(t)x(t) = f(t), t ≥ t0, x(t0) = x0, (4.5)

where b(t) ≥ b0 > 0. If we take λ = b0, conditions (4.1) and (4.2) hold, M0 = 1. Estimate (4.3)
becomes

|x(t)| ≤ e−b0(t−t0)|x0|+
1

b0
‖f‖[t0,t],

where for constant positive b and f the equality holds. Hence estimate (4.3) in some sense is sharp.

The continuity of the functions u(λ) = eλτk which tend to one as λ → 0+ implies the following
result.

Corollary 1. Assume that for some λ0 > 0, α > 0,

m
∑

k=1

eλ0(t−hk(t))bk(t)− λ0 ≥ α,
m
∑

k=1

‖bk‖[t0,∞)

m
∑

k=1

τk‖bk‖[t0,∞) < α.

Then equation (1.1) is uniformly exponentially stable, and for some λ ∈ (0, λ0], the solution of
problem (2.1) satisfies estimate (4.3).

Theorem 1 and its corollary give only implicit conditions for the estimation of solutions of
equation (1.1). The following theorem contains explicit conditions for the estimates.
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Theorem 2. Assume that

bk(t) ≥ 0, b0 := lim inf
t→∞

m
∑

k=1

bk(t) > 0,
m
∑

k=1

‖bk‖[t0,∞)

m
∑

k=1

τk

∥

∥

∥

∥

bk
∑m

i=1 bi

∥

∥

∥

∥

[t0,∞)

< 1. (4.6)

Then there exists a unique solution λ0 ∈ (0, b0) of the equation

(

λ+

m
∑

k=1

eλτk‖bk‖[t0,∞)

)

m
∑

k=1

τke
λτk

∥

∥

∥

∥

bk
∑m

k=1 bk − λ

∥

∥

∥

∥

[t0,∞)

= 1. (4.7)

If 0 < λ < λ0, the solution of problem (2.1) satisfies (4.3).

Proof. For 0 < λ < b0, where b0 is defined in (4.6), denote

g(λ) :=

(

λ+
m
∑

k=1

eλτk‖bk‖[t0,∞)

)

m
∑

k=1

τke
λτk

∥

∥

∥

∥

bk
∑m

k=1 bk − λ

∥

∥

∥

∥

[t0,∞)

.

This function is well defined as
∑m

k=1 bk − λ > 0 for λ ∈ (0, b0), the terms eλτk increase in λ,
while

∑m
k=1 bk − λ in the denominator is positive and decreasing, leading to the increase in the

fraction, thus g is monotone increasing in λ. Since by (4.6), g(0) < 1, g(b0) = ∞ and g is monotone
increasing, the equation g(λ) = 1 has a unique solution λ ∈ (0, b0), which is denoted by λ0. By the

definition of g,

∣

∣

∣

∣

∣

m
∑

k=1

bk(t)− λ0

∣

∣

∣

∣

∣

≥ εbk(t) for k = 1, . . . ,m and some ε > 0. Let λ ∈ (0, λ0). Then

∣

∣

∣

∣

bk(t)
∑m

k=1 e
λ(t−hk(t))bk(t)− λ

∣

∣

∣

∣

=
bk(t)

∑m
k=1 e

λ(t−hk(t))bk(t)− λ
<

∥

∥

∥

∥

bk(t)
∑m

k=1 bk(t)− λ0

∥

∥

∥

∥

[t0,∞)

.

Hence
(

λ+

m
∑

k=1

eλτk‖bk‖[t0,∞)

)

m
∑

k=1

τke
λτk

∥

∥

∥

∥

bk
a

∥

∥

∥

∥

[t0,∞)

< g(λ0) = 1.

By Theorem 1, the solution of problem (2.1) satisfies (4.3).

Corollary 2. Assume that bk(t) ≡ bk > 0, k = 1, . . . ,m, b0 :=

m
∑

k=1

bk and

m
∑

k=1

τkbk < 1. Then there

is a unique solution λ0 ∈ (0, b0) of

(

λ+
m
∑

k=1

eλτkbk

)

m
∑

k=1

τke
λτk

bk
∑m

k=1 bk − λ
= 1.

If 0 < λ < λ0, the solution of problem (2.1) satisfies (4.3), , where ‖bk‖ is replaced by bk.

4.2. The equation is not exponentially stable

We proceed to the case when the equation in (2.1) is not exponentially stable, or its asymptotic
behaviour is unknown.
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Theorem 3. Let there exist λ > 0 and α > 0 such that

a(t) :=

m
∑

k=1

e−λ(t−hk(t))bk(t) + λ ≥ α, (4.8)

M2 :=

(

λ+

m
∑

k=1

e−λδk‖bk‖[t0,∞)

)

m
∑

k=1

τk

∥

∥

∥

ak
a

∥

∥

∥

[t0,∞)
< 1, (4.9)

where ak(t) = e−λ(t−hk(t))bk(t). Then the solution of problem (2.1) satisfies

|x(t)| ≤ M0e
λ(t−t0)

[

|x(t0)|+

m
∑

k=1

1− e−λτk

λ
‖bk‖[t0,∞)‖φ‖[t0−τ,t0] +

‖f‖[t0,t]

λ

]

, (4.10)

where M0 := (1−M2)
−1.

Proof. First, let f ≡ 0. After substituting x(t) = eλ(t−t0)z(t) into (2.1), we get

ż(t) = −λz(t)−

m
∑

k=1

e−λ(t−hk(t))bk(t)z(hk(t)). (4.11)

Equation (4.11) has the form of (3.1), where

c(t) = −λ, dk(t) = e−λ(t−hk(t))bk(t), d(t) =

m
∑

k=1

e−λ(t−hk(t))bk(t), a(t) := d(t)− c(t).

Let Z(t, s) be the fundamental function of equation (4.11). By (4.8), d(t)− c(t) ≥ α.
Inequality (4.9) implies

K0 =

(

‖c‖[t0,∞) +
m
∑

k=1

‖dk‖[t0,∞)

)

m
∑

k=1

τk

∥

∥

∥

∥

dk
d− c

∥

∥

∥

∥

[t0,∞)

≤ M2 < 1.

By Lemma 2 and Remark 1, |Z(t, s)| ≤ M0. For the fundamental function of (2.1) we have
X(t, s) = eλ(t−s)Z(t, s). Hence |X(t, s)| ≤ M0e

λ(t−s). By (2.2), the solution x of problem (2.1)
satisfies

|x(t)| ≤ |X(t, t0)| |x(t0)|+
m
∑

k=1

∫ t0+τk

t0

|X(t, s)| |bk(s)| |φ(hk(s))| ds

≤ M0e
λ(t−t0)|x(t0)| −

M0

λ

m
∑

k=1

‖bk‖[t0,∞)

(

eλ(t−t0−τk) − eλ(t−t0)
)

‖φ‖[t0−τ,t0],

which implies (4.10) with f ≡ 0. For the general case, we apply

∣

∣

∣

∣

∫ t

t0

X(t, s)f(s) ds

∣

∣

∣

∣

≤ ‖f‖[t0,t]

∫ t

t0

M0e
λ(t−s)ds ≤

M0

λ
eλ(t−t0)‖f‖[t0,t].
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Remark 5. Note that for m = 1, h1(t) ≡ t, f ≡ 0, −b0 ≤ b1(t) ≤ 0 almost everywhere, where
b0 > 0, for a solution x of (2.1) the inequality

x(t) = x(t0) exp

{

−

∫ t

t0

b1(s) ds

}

≤ |x(t0)|e
b0(t−t0)

holds. For λ = −b0 > 0, Theorem 3 implies this estimate which is sharp for b1 ≡ −b0.

Remark 6. By [1, Corollary B.1], for X(t, s), which is a fundamental function of (1.1), the
inequality

|X(t, s)| ≤ exp

{

∫ t

s

m
∑

k=1

|bk(ξ)|dξ

}

holds. Hence

m
∑

k=1

|bk(t)| ≤ λ0 implies inequality (4.10) for the solution of problem (2.1), where

M0 = 1, λ = λ0. Theorem 3 allows to obtain estimates for solutions of problem (2.1) with smaller
than λ0 exponents, see Examples 2 and 3.

Corollary 3. Assume that there are constants λ > 0 and α > 0 such that

a(t) :=

m
∑

k=1

e−λ(t−hk(t))bk(t) + λ ≥ α (4.12)

and

M3 :=

(

λ+
m
∑

k=1

e−λδk‖bk‖[t0,∞)

)

m
∑

k=1

τke
−λδk‖bk‖[t0,∞) < α. (4.13)

Then for the solution of problem (2.1), estimate (4.10) holds, where M0 :=
α

α−M3
.

5. Examples

In this section, we illustrate Theorems 1, 2 and 3 with examples. In Example 1, we construct an
exponential estimate with a negative exponent using explicit conditions of Theorem 2. Examples 2
and 3 apply Theorem 3 to an unstable equation. In Example 4, we consider a delay equation
with oscillating coefficients and two terms. We apply Theorem 1 to establish uniform exponential
stability of this equation, and construct an exponential estimate for solutions of the equation.

Example 1. For the non-homogeneous equation with one delay

ẋ(t) + 0.2(2 − sin t)x

(

t−
2− sin t

12

)

= f(t), t ≥ 0, (5.1)

we calculate

τ =
1

12
max

t
(2− sin t) = 0.25, ‖b‖[0,∞) = 0.2max

t
(2− sin t) = 0.6.

We will apply here Theorem 2.
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To find λ0 we first consider the function w(t) = b(t)
b(t)−λ = 0.2(2−sin t)

0.2(2−sin t)−λ , where 0 < λ < 0.2. The

critical values of this function are solutions of the equation cos t = 0. Hence ‖w‖[t0,∞) = w(π2 ) =
1

1−5λ .
Equation (4.7) for (5.1) has the form

(

λ+ 0.6eλ/4
) 1

4
eλ/4

1

1− 5λ
= 1.

Numerically we compute the solution of this equation λ0 ≈ 0.159229, the assumptions of Theorem 2
hold for λ < 0.159229, say, for λ = 0.15 < λ0. It is possible to check numerically that for
λ = 0.15 < λ0,

a(t) := 0.2(2 − sin t)e(2−sin t)λ/12 − λ ≥ α > 0.05,
∥

∥

∥

∥

b

a

∥

∥

∥

∥

[0,∞)

=

∥

∥

∥

∥

0.2(2 − sin t)

0.2(2 − sin t)e(2−sin t)λ/12 − λ

∥

∥

∥

∥

[0,∞)

< 3.85 < 4.

Since M1 =
(

λ+ eλτ‖b‖[0,∞)

)

τeλτ
∥

∥

∥

∥

b

a

∥

∥

∥

∥

[0,∞)

≤
(

0.15 + 0.6e0.15·0.25
)

0.25e0.15·0.25 · 4 < 0.803 < 1,

the assumptions of Theorem 1 are also satisfied, M0 < 1/(1 − 0.803) < 5.1, and exponential
estimates imply. We have ‖b‖[0,∞)(e

λτ − 1)/λ < 0.153, thus the solution of (5.1) with x(0) = 1,
φ(t) = sin(20t)− 1, ‖φ‖[−0.25,0] = 2, f ≡ 0 satisfies

|x(t)| ≤ 5.1e−0.15t
[

|x(0)| + 0.153‖φ‖[−0.25,0]

]

≤ 5.1 · 1.306e−0.15t ≤ 6.67e−0.15t.

For f(t) ≡ 0, the comparison with the numerical solution is illustrated in Fig. 1, left.
Next, apply Theorem 1, where the right-hand side is f(t) = 0.05(1 + sin(2t)), ‖f‖[0,∞) = 0.1,

M0/λ‖f‖[0,∞) ≤ 0.1 5.1/0.15 = 3.4, and we get |x(t)| ≤ 6.67e−0.15t + 3.4. See Fig. 1, right, for the
comparison with numerical results.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0  10  20  30  40  50

t

numerical solution
6.67*exp(-0.15*x)

 0.01

 0.1

 1

 10

 100

 0  10  20  30  40  50

t

numerical solution
6.67*exp(-0.15*x)+3.4

Figure 1: The absolute value of the numerical solution of (5.1) with x(0) = 1, φ(t) = sin(20t) − 1
compared to the theoretical estimate from Theorem 1 for (left) f ≡ 0; (right) f(t) = 0.05(1 +
sin(2t)). The scale in x is logarithmic.

Example 2. As it is well known, the autonomous equation

ẋ(t) + 2x(t− 1) = 0 (5.2)

is unstable. Let a(t) = λ+ 2e−λ = α. The assumptions of Corollary 3 are satisfied whenever

M2

α
=
(

λ+ 2e−λ
)

e−λ 2

λ+ 2e−λ
= 2e−λ < 1,
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or λ > ln 2 ≈ 0.693147. Take λ = 0.8 > ln 2, then α = 2e−λ + λ > 1.6986, M2 = 2(λ+2e−λ)e−λ <
1.527 < α, M0 = α/(α−M2) < 10. In particular, |x(t)| ≤ 10e0.8t|x(0)| for the zero initial function.
By Remark 6, we can get |x(t)| ≤ e2t, which is a less sharp estimate for any t ≥ 1.92.

Example 3. Further, consider the problem

ẋ(t) + 0.2(2 − sin t)x (t− 15 + sin t) = 0, t ≥ 0, x(t) = 0, t < 0, x(0) = 1. (5.3)

Here ‖b‖[0,∞) = 0.6, τ = 16, δ = 14, take λ = 0.2. Then a(t) = e−0.2(15−sin t)0.2(2 − sin t) + 0.2 >
0.2 = α, we evaluate numerically ‖b/a‖[0,∞) < 2.6735. Thus

M2 = 16e−2.8

∥

∥

∥

∥

b

a

∥

∥

∥

∥

[0,∞)

(

0.2 + 0.6e−0.2·14
)

≈ 0.61515 < 1.

Then M0 < 2.6, and we get the estimate |x(t)| < 2.6e0.2t for the solution of (5.3), see Fig. 2 for
the comparison with the absolute value of the numerical solution.

By Remark 6, we get |x(t)| < e0.6t, which is less sharp for t ≥ 2.389.
For the chosen initial conditions, the exponential estimate computed numerically has λ ≈ 0.09.

However, higher growth rates are possible for the same or even smaller delays and the same coeffi-
cient. Let ⌊t⌋ be the maximal integer not exceeding t. In the problem

ẋ(t) + 0.2(2 − sin t)x(h(t)) = 0, t ≥ 0, x(t) = 0, t < 0, x(0) = 1, h(t) = 4π

⌊

t

4π

⌋

, (5.4)

the maximal delay of 4π is less than 14. Direct computation implies

x(t) = 1−

∫ t

0
0.2(2 − sin s) ds, s ∈ [0, 4π], x(4π) = 1− 0.2

∫ 4π

0
(2− sin s) ds = 1− 1.6π < 0.

Next, x(8π) = (1 − 1.6π) − (1 − 1.6π)1.6π = (1 − 1.6π)2, x(4πk) = (1 − 1.6π)k. Here the growth
coefficient λ = ln(1.6π − 1)/(4π) ≈ 0.11.

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e+35

 1e+40

 0  50  100  150  200  250  300  350  400

t

numerical solution
2.6*exp(0.2*x)

Figure 2: The absolute value of the solution of (5.3) with x(0) = 1, φ(t) = 0 compared to the
theoretical estimate from Theorem 3. The scale in x is logarithmic.

For both (5.2) and (5.3), Theorem 3 gives an estimate with a lower exponent than Remark 6.
Finally, consider an example with oscillating coefficients.
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Example 4. For the equation

ẋ(t) + 0.2(0.5 − sin(t))x

(

t−
2− sin t

6

)

+ 0.2(0.5 + sin(t))x

(

t−
2− sin t

12

)

= 0, t ≥ 0, (5.5)

we have τ1 = 0.5, τ2 = 0.25, ‖b1‖[0,∞) = ‖b2‖[0,∞) = 0.3. Take λ = 0.02, then we estimate
numerically that

a(t) ≥ α ≈ 0.18, ‖b1/a‖[0,∞) < 1.691, ‖b2/a‖[0,∞) < 1.669,

in (4.2) we have

M1 <
(

0.02 + 0.3e0.01 + 0.3e0.005
) (

0.5e0.01 · 1.691 + 0.25e0.005 · 1.669
)

< 0.7953,

and M0 < 4.89, thus for x(0) = 1, φ(t) ≡ 0, the solution of (5.5) satisfies

|x(t)| ≤ 4.89e−0.02t. (5.6)

Remark 7. Inequality (5.6) implies that equation (5.5) with two oscillating coefficients is uniformly
exponentially stable. We do not know other stability tests for this class of equations.

6. Conclusions and Discussion

As we mentioned in Introduction, there are several related topics, in particular, asymptotic
integration or obtaining asymptotic formulas for solutions of a given equation. Such asymptotic
expressions of the form x(t) = (C+o(1))eαt have been constructed for various classes of differential
equations: scalar and vector, linear and nonlinear, equations with concentrated and distributed
delays, including integro-differential equations. The review paper [3] includes a detailed outline of
these results with historical notes. Asymptotic formulas give a good approximation for long time
behavior of solutions, but are useless for finite intervals. Estimates obtained in the present paper
apply to finite intervals, and constitute a natural addition to asymptotic formulas. Most papers on
asymptotic integration consider specific classes of equations, such as equations with a dominating
non-delay term, autonomous equations, equations with a single delay. We have considered scalar
equations with several variable delays and measurable coefficients. Another advantage of our results
is an explicit form for these estimates, which we illustrated by examples of different types.

When investigating asymptotic stability, most authors considered equations with positive co-
efficients. If both positive and negative coefficients were involved, it was usually assumed that a
positive part dominates over the negative one, see, for example, [4, 6, 7, 9, 16, 18, 22]. In Theo-
rem 1, we got uniform exponential stability conditions, when the equation contains several delays,
and all the coefficients may be oscillatory, see Example 5.5. We suggest that in this case, not only
the estimate, but also the stability test is new.

Assume that bk in Theorem 2 are proportional. Then (4.6) leads to the following uniform
exponential stability condition

0 ≤ bk(t) ≤ βk, lim inf
t→∞

m
∑

k=1

bk(t) > 0, t− τk ≤ hk(t) ≤ t, k = 1, . . . ,m,

m
∑

k=1

bkτk < 1 (6.1)

for (2.1), and to a relevant estimate of solutions. Note that for (2.1) with several variable delays
and coefficients, one in the right-hand side of (6.1) is the best possible constant [22].

Let us state possible extensions of the results of the present paper.
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1. Obtain explicit estimates of solutions for nonlinear equations in general, and for specific
cases, for example, models of population dynamics. These include, but not limited to, the
Hutchinson, the Mackey-Glass and the Nicholson blowflies equations.

2. Extend the estimates to a vector DDE. Consider other types of delay, such as distributed, as
well as equations of the second and higher order, and stochastic differential equations.

3. In this paper, we presented pointwise estimates. It would be interesting to obtain estimates
in an integral form.

4. For the case of a single delay

ẋ(t) + b(t)x(h(t)) = f(t), b(t) ≥ b0 > 0, t− h(t) ≤ τ,

we obtain estimates for ‖b‖τ < 1. Relax this condition, replacing 1 with either 3
2 or a sharp

constant in (1, 1.5).
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