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Abstract. The neighbor connectivity of a graph G is the least number of vertices such that
removing their closed neighborhoods from G results in a graph that is disconnected, complete

or empty. If a graph is used to model the topology of an interconnection network, this means
that the failure of a network node causes failures of all its neighbors. We completely determine

the neighbor connectivity of k-ary n-cubes for all n ≥ 1 and k ≥ 2.

1. Introduction

The design and analysis of interconnection networks, originally incited by applications in
telecommunication and computer networks, has become quite a pervasive topic in both theo-
retical and applied research. Among the problems arising in the course of network design, special
attention has been paid to the aspect of fault-tolerance: Can the network preserve its functionality
even if certain nodes become overloaded or faulty?

The topology of an interconnection network is usually modeled by an undirected graph whose
vertices and edges represent network nodes and communication links between them, respectively.
As the simplest measure of fault-tolerance we can use the graph-theoretic concept of connectivity
κ(G) of the underlying graph G: the least number of vertices of G whose removal leaves the
resulting graph disconnected or trivial. There are, however, further refinements to this concept
that better grasp the vulnerability or robustness of the network.

The neighbor connectivity of a graph G, denoted by κNB(G), is defined as the least number of
vertices such that removing their closed neighborhoods from G results in a graph that is discon-
nected, complete or empty. If a graph is used to model an interconnection network, this means
that the failure of a network node causes failures of all its neighbors. The concept was introduced
by Gunther and Hartnell [8] in the context of modeling spy networks; with Nowakowski [10] they
proved that κNB(G) ≤ κ(G) for every graph G. Doty showed that the problem to decide whether
κNB(G) ≤ k for a given graph G and integer k is NP-complete [6]. She also characterized Cay-
ley graphs of neighbor connectivity one in terms of algebraic properties of the generating set [6],
sharpened the upper bound for abelian Cayley graphs and formulated an open problem [4]: Is it
true that κNB(G) ≤ d δ2e for all δ-regular abelian Cayley graphs except cycles? Our main result
shows that this bound is tight for a class of abelian Cayley graphs formed by the k-ary n-cubes.

The concept of neighbor connectivity was generalized to its edge version by Cozzens and Wu
[2]: the minimum number of edges such that the removal of their closed neighborhoods results
in an empty, trivial, or disconnected graph is called the edge neighbor connectivity, denoted by
λNB(G). Up to now, the exact values of κNB(G) or λNB(G) are known only for a few classes
of graphs. Shang et al. [15] determined the (edge) neighbor connectivity of alternating group
networks ANn, star graphs Sn and Cayley graphs generated by transposition trees Γn, showing
that κNB(ANn) = n − 1 for n ≥ 4 while λNB(ANn) = n − 2 and κNB(Sn) = λNB(Γn) = n − 1
for n ≥ 3. Zhao et al [16] obtained the exact values of edge neighbor connectivity for the class of
hypercubes Qn and Cartesian product of complete graphs Kn�K2, namely λNB(Qn) = n−1 and
λNB(Kn�K2) = dn2 e for n ≥ 3. Gunther and Hartnell [9] showed that κNB(Kn�Kn) = n− 1.

In this paper we focus on a class of Cayley graphs formed by the k-ary n-cubes. Properties such
as vertex-transitivity or hierarchical structure predetermine these graphs to serve as a prospective
candidate for the interconnection network design, and they have been widely studied from this
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point of view, see e.g. [3, 7, 11, 12]. Here we add another piece to the puzzle and completely
determine the neighbor connectivity of k-ary n-cubes for all n ≥ 1 and k ≥ 2.

The rest of the paper is laid out as follows. The next section introduces notation, terminology
and surveys auxiliary results that shall be needed later. Section 3 provides lower bounds on the
neighbor connectivity of hypercubes while Section 4 settles the general case of k-ary n-cubes with
k ≥ 3. Finally, Section 5 completes the picture by adding an upper bound applicable to all abelian
Cayley graphs whose generating set satisfies certain minimal condition. The previous results are
then summarized into the main theorem showing that the upper bound is tight for the class of
k-ary n-cubes, up to some trivial exceptions. The paper is concluded with brief suggestions for
future research.

2. Preliminaries

In this section we introduce the terminology and notations used throughout the paper. The
graph-theoretic concepts undefined below may be found e.g. in [1]. In the rest of this text, n always
denotes a positive integer while [n] stands for the set {0, 1, . . . , n− 1}. As usual, we use V (G) and
E(G) for the vertex and edge sets of a graph G. Given a set S ⊆ V (G), an open neighborhood
N(S) of S is the set of all neighbors of vertices of S in G, a closed neighborhood N [S] of S is the
set S ∪ N(S), and G − S stands for the subgraph of G induced by V (G) \ S. If G is a regular
graph, we use δ(G) to denote the degree of vertices of G.

2.1. Paths. A sequence (x1,x2,. . . , xn) of pairwise distinct vertices such that any two consecutive
vertices are adjacent is a path of length n− 1 with endvertices x1 and xn, also called an (x1, xn)-
path. We denote the vertex set {x1, x2, . . . , xn} of such a path P by V (P ). Note that in the case
that n = 1, P is just a path of length 0 consisting of a single vertex. We say that (x, y)-paths
{Pi}ni=1 are internally disjoint if V (Pi)∩V (Pj) = {x, y} for all 1 ≤ i < j ≤ n. Paths (x1,x2,. . . , xi)
and (xi,xi+1,. . . , xn),1 ≤ i ≤ n, are called a prefix and a suffix of the path (x1,x2,. . . , xn).

Given sets X,Y ⊆ V (G), a path whose endvertices belong to X and Y , respectively, is called
an (X,Y )-path. If X = {x} or Y = {y}, we simply speak about an (x, Y )-path or (X, y)-path.
Given x ∈ V (G) and Y ⊆ V (G), an (x, Y )-fan (or (Y, x)-fan) is a set of |Y | (x, Y )-paths (or
(Y, x)-paths) any two of which have exactly the vertex x in common.

2.2. Connectivity. Recall that the connectivity κ(G) of a graph G is the least number of vertices
of G whose removal leaves the resulting graph disconnected or trivial (i.e., consisting of a single
vertex). G is called k-connected if κ(G) ≥ k. Menger’s Theorem states that a nontrivial graph G
is k-connected iff for any two distinct vertices x, y ∈ V (G) there are at least k internally disjoint
(x, y)-paths.

The following simple property of k-connected graphs may be found e.g. in [1, Lemma 9.3].

Proposition 1. If G is a k-connected graph, then the graph obtained from G by adding a new
vertex and joining it to at least k vertices of G is also k-connected.

The next lemma recalls two useful consequences of Menger’s Theorem ([1, Propositions 9.4-9.5],
the latter known as the Fan Lemma). As we need a slightly extended version for graphs with faulty
vertices, both statements are provided with proofs.

Lemma 1. Let f ≥ 0 and k ≥ 1 be integers, G be an (f + k)-connected graph, F ⊆ V (G) with
|F | = f and Y ⊆ V (G− F ) with |Y | = k. Then

(i) for any X ⊆ V (G−F ) such that |X| = k, there is a family of k pairwise disjoint (X,Y )-paths
in G− F ;

(ii) for any x ∈ V (G− F ) there is an (x, Y )-fan in G− F .

Proof. To prove part (ii), obtain a new graph H from G by adding a new vertex y and joining it
to each vertex of F ∪ Y . By Proposition 1, H is also (f + k)-connected. Therefore, by Menger’s
Theorem, there are f + k internally disjoint (x, y)-paths in H. Deleting y from each of these
paths, we obtain (f + k) internally disjoint (x, F ∪ Y )-paths. It remains to consider only the
(x, Y )-paths, observe that no vertex in any of them falls into F , and conclude that they form the
desired (x, Y )-fan in G− F .
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Figure 1. Illustration of 3-ary n-cubes Q3
1, Q3

2 and Q3
3

Part (i) is now an easy corollary of (ii): Indeed, let H be a new graph obtained from G by joining
a new vertex x to each vertex of X. Then H is (f + k)-connected by Proposition 1 and therefore,
by part (ii), there is an (x, Y )-fan in H −F formed by k internally disjoint (x, Y )-paths. Deleting
x from each of these paths, we obtain the desired family of k pairwise disjoint (X,Y )-paths in
G− F . �

Given a graph G and a set U ⊆ V (G) of faults, the survival subgraph of G for U , denoted by
G 	 U , is the subgraph of G induced by the set V (G) \ N [U ]. In this context, we refer to the
vertices of N [U ] as faulty while the vertices of G 	 U are called healthy. If U = {u} we simply
write G	 u.

Neighbor connectivity of a graph G, denoted by κNB(G), is defined as the minimum cardinality
of a set U ⊆ V (G) such that the survival subgraph G 	 U is disconnected, complete or empty.
The exact values of the neighbor connectivity for the complete graphs Kn and cycles Cn are
straightforward from the definition, namely κNB(Kn) = 0 for n ≥ 1 while

κNB(Cn) =


0 for n = 3

1 for 4 ≤ n ≤ 5

2 for n ≥ 6 .

2.3. K-ary n-cubes. The Cayley graph of a finite group (Γ, ·) with respect to its generating set
S, denoted by Cay(Γ, S), is defined as the graph with vertex set Γ and edge set {{g, g · s} | g ∈
Γ, s ∈ S}. Following [4], we assume that for each generator s ∈ S, its inverse s−1 also falls into
S, and that the identity element e is not included in S. If the group Γ is abelian, Cay(Γ, S) is
referred to as an abelian Cayley graph.

Given integers k ≥ 2 and n ≥ 1, the k-ary n-cube Qkn may be defined as the Cayley graph
Cay(Znk , {ei, e

−1
i }ni=1) on the group (Znk ,⊕) where Znk stands for the n-th Cartesian power of

Zk = [k] while ⊕ represents coordinatewise addition mod k. The generators ei and e−1
i have one

and k − 1, respectively, in the i-th coordinate and zeroes elsewhere. From a less abstract point of
view, Qkn is just the graph whose vertices are strings of the form un−1un−2 · · ·u0 where ui ∈ [k]
for all i ∈ [n]. Two vertices un−1un−2 · · ·u0 and vn−1vn−2 · · · v0 are adjacent whenever there is
a j ∈ [n] such that |uj − vj | ∈ {1, k − 1} while ui = vi for every i ∈ [n] \ {j}.

Note that Qkn is a δ-regular graph where δ = n for k = 2 while δ = 2n for k ≥ 3. Moreover, as Qkn
is a connected edge-transitive graph, we have κ(Qkn) = δ(Qkn) [13, Problem 12.15]. Consequently,
Qkn is n-connected for k = 2 and 2n-connected for k ≥ 3 [3].

Regarding the special cases n = 1, k = 2 and n = 2: Qk1 is a cycle of length k, Q2
n is an

n-dimensional hypercube and Qk2 is a k × k wrap-around mesh. The graphs Q3
1, Q3

2 and Q3
3 are

shown in Fig. 1.
Now fix a d ∈ [n] and note that for any i ∈ [k], the subgraph of Qkn induced by the set

{un−1un−2 · · ·u0 ∈ V (Qkn) | ud = i} is isomorphic to Qkn−1. We call this subgraph a subcube

of Qkn and denote it by Q[i]. Given a vertex u = un−1un−2 · · ·u0 of Q[i] and j ∈ [k], we
use uj to denote the vertex obtained from u by changing the value of ud to j, i.e., the vertex
un−1 · · ·ud+1 j ud−1 . . . u0. If i, j ∈ [k] such that |i − j| ∈ {1, k − 1}, Q[i] and Q[j] are called
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adjacent subcubes. Each vertex u of Q[i] has a unique neighbor uj in Q[j], called an outer neighbor
of u.

Note that any two vertices of a hypercube have either two neighbors in common or none at
all. This condition, known as the (0, 2)-property, can be even used to characterize hypercubes [14,
Section 2.2]. The following lemma [7, 11] explains that k-ary n-cubes inherit this property only
for k ∈ {2, 4} (simply because Q2

n = Qn and Q4
n
∼= Q2n) while in the other cases there are also

vertices with only one common neighbor.

Lemma 2. For any two distinct vertices x, y ∈ V (Qkn) we have

|N(x) ∩N(y)| ∈
{
{0, 2} if k ∈ {2, 4}
{0, 1, 2} otherwise .

Moreover, if k = 3, then |N(x) ∩N(y)| = 1 iff x and y are adjacent.

The last lemma of this section applies a counting argument to impose a lower bound on the
number of healthy pairs of neighbors in adjacent subcubes. Although rather technical, this result
provides a useful tool to be used later in our constructions of internally disjoint paths.

Lemma 3. Let n, k ≥ 3, U be a set of ` ∈ [n] faults in Qkn, Q[i] and Q[j] be adjacent subcubes
of Qkn and x be a healthy vertex of Q[i]. Put ui = |U ∩ V (Q[i])|, uj = |U ∩ V (Q[j])| and h =
2n− 2− `− ui − uj. Then we have

|{v ∈ V (Q[i]) | both v and vj are healthy}| > h

and, moreover, at least h of these vertices are neighbors of x.

Proof. Put Ui = U ∩ V (Q[i]), Uj = U ∩ V (Q[j]) and H = {v ∈ V (Q[i]) | v, vj 6∈ N [U ]}. First we
show that H contains at least h neighbors of x. To that end, observe that the vertex x has 2n− 2
neighbors in Q[i] and, by Lemma 2, at most 2ui of them may fall into N [Ui]. Similarly, at most
2uj neighbors of xj in Q[j] may fall into N [Uj ]. Moreover, if a vertex of Q[i] falls into N [Uj ], then
its outer neighbor in Q[j] falls into Uj , and an analogous statement holds for the vertices of Q[j].
Finally, the number of vertices v of Q[i] such that v or vj falls into N(U \ (Ui ∪ Uj)) does not
exceed `− ui − uj . It follows that there are at least

2n− 2− 2ui − 2uj − (`− ui − uj) = h

healthy neighbors of x in Q[i] such that their outer neighbors in Q[j] are healthy as well, i.e., H
contains at least h neighbors of x.

It remains to prove that |H| > h. Put F = V (Q[i]) \H and note that as |F |+ |H| = |V (Q[i])|,
it suffices to show that |F | + h < |V (Q[i])|. Recall that Q[i], Q[j] are regular graphs of degree
2n− 2 and therefore |F | ≤ `+ (ui + uj)(2n− 2). It follows that

|F |+h ≤ (ui+uj+1)(2n−3)+1 ≤

{
n(2n− 3) + 1 < kn−1 = |V (Q[i])| for k ≥ 3, n ≥ 4

7 < 9 = |V (Q[i])| for k = n = 3, ui + uj ≤ 1,

using ui + uj ≤ ` ≤ n − 1 to obtain the second inequality. Regarding the case that k = n = 3
and ui + uj = 2, note that then Q[i] is isomorphic to Q3

2, see Fig. 1. But then Lemma 2 implies
that |N [x] ∩ N [y]| ≥ 2 for any two distinct vertices x, y ∈ F , which means that actually |F | ≤
`+ (ui + uj)(2n− 2)− 2. Hence in this case we have

|F |+ h ≤ (ui + uj + 1)(2n− 3)− 1 = 8 < 9 = |V (Q[i])|.

It follows that |H| > h for all n, k ≥ 3 and the proof is complete. �

3. Hypercubes

In order to determine κNB(Qkn), we need to find the smallest set U ⊆ V (Qn) such that Qkn	U
becomes disconnected. To that end, we derive a more general statement, providing lower bounds
to the connectivity of Qkn 	U for all subsets U whose cardinality does not exceed dδ(Qkn)/2e. We
first deal with the class of hypercubes.
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Theorem 1. Let n ≥ 2 and 0 ≤ ` ≤ dn/2e. Then for every set U ⊆ V (Qn) of ` faults we have

κ(Qn 	 U) ≥ max{n− 2`, 0}.

Proof. First note that as Q2 is a 4-cycle, κ(C4) = 2 and κ(K1) = 0, the theorem holds for n = 2.
Hence we can assume that n ≥ 3.

We argue by induction on n. Note that it suffices to settle the case that 0 < ` < n/2, for
otherwise the statement of the theorem is either trivial (if ` ≥ n/2) or follows from κ(Qn) = n
(if ` = 0). Assume that n ≥ 3 and that the statement holds for every set U ⊆ V (Qn−1),
0 ≤ |U | ≤ d(n− 1)/2e.

Let U ⊆ V (Qn) be a set of ` faults, 0 < ` < n/2. To prove that κ(Qn 	 U) ≥ n − 2`, by
Menger’s Theorem it suffices to show that for any distinct x, y ∈ V (Qn 	 U) there are at least
n−2` internally disjoint (x, y)-paths in Qn	U . Note that Qn can be partitioned into two subcubes
Q[0] and Q[1] such that x and y are in distinct subcubes. Put Ui = U ∩ V (Q[i]) and ui = |Ui| for
both i ∈ [2]. Without loss of generality assume that x ∈ V (Q[0]), y ∈ V (Q[1]) and u0 ≥ u1.

Recall that as x ∈ V (Qn 	 U), no neighbor of x belongs to U , but some of them may fall into
N(U). Observe that x has n − 1 neighbors in Q[0] and, by the (0, 2)-property (Lemma 2), at
most 2u0 of them may belong to N(U0). Hence there are neighbors x1, x2, . . . , xn−1−2u0

of x in
Q[0]	U0. Consider the outer neighbors x1, x1

1, x
1
2, . . . , x

1
n−1−2u0

of x, x1, x2, . . . , xn−1−2u0 in Q[1]
and distinguish two cases.

First settle the case that x1 6∈ N [U1]. Using the (0, 2)-property, observe that at most 2u1

neighbors of x1 in Q[1] may fall into N [U1]. We can therefore without loss of generality assume
that x1

1, x
1
2, . . . , x

1
n−1−2` belong to Q[1] 	 U1 − N(U0). Note that then their outer neighbors

x1, x2, . . . , xn−1−2` belong to Q[0]	 U0 −N(U1), i.e., all these vertices are healthy.
Put Y = {x1, x1

1, x
1
2, . . . , x

1
n−1−2`} and note that the only faulty vertices in Q[1] 	 U1 are the

outer neighbors of U0 and there are at most u0 of them. As Q[1]	 U1 is (n− 1− 2u1)-connected
by the induction hypothesis and

|Y |+ u0 = n− u0 − 2u1 ≤ n− 1− 2u1,

using u0 ≥ d`/2e ≥ 1 to obtain the last inequality, by Lemma 1 there exists a (Y, y)-fan in
Q[1]	U1 −N(U0), i.e., a family of n− 2` internally vertex-disjoint (Y, y)-paths Px1y, Px1

1y
, Px1

2y
,

. . . , Px1
n−1−2`y

. Then P0 = (x, Px1y) and Pi = (x, xi, Px1
i y

) for 1 ≤ i ≤ n− 1− 2` form the required

family of n− 2` internally disjoint (x, y)-paths in Qn 	 U .
It remains to settle the case that x1 ∈ N [U1] which means that u1 ≥ 1 and some neighbor of x1 in

Q[1] belongs to U1. Then at most 2u1−1 neighbors of x1 in Q[1] may fall into N [U1], which means
that we can without loss of generality assume that x1

1, x
1
2, . . . , x

1
n−2` belong to Q[1]	U1−N(U0).

By the same argument as in the previous case, there is a family of n−2` internally disjoint (x1
i , y)-

paths Px1
i y

, 1 ≤ i ≤ n− 2`, in Q[1] avoiding N [U ]. Then Pi = (x, xi, Px1
i y

) for 1 ≤ i ≤ n− 2` form

the required family of n− 2` internally disjoint (x, y)-paths in Qn 	 U . �

Note that the proof above may be viewed as a sketch of the proof for the case of Qkn with k ≥ 3,
which is based on similar ideas, only operates in a more general setting and the constructions are
therefore more involved. The details are provided in the next section.

4. K-ary n-cubes with k ≥ 3

We start with a lemma that constructs paths between endvertices in adjacent subcubes. It will
be useful in the general case to compose paths between endvertices at an arbitrary position.

Lemma 4. Let n, k ≥ 3, U ⊆ V (Qkn) be a set of ` faults, 0 < ` < n, and Q[j], Q[j′] be adjacent
subcubes of Qkn such that κ(Q[i]	Ui) ≥ 2n−2−2ui where Ui = U ∩V (Q[i]) and ui = |Ui| for both
i ∈ {j, j′}. Then for arbitrary healthy vertices x and y of Q[j] and Q[j′], respectively, there are
at least m internally disjoint (x, y)-paths passing only through healthy vertices of Q[j] and Q[j′],
where

m =

{
2n− 2` if uj + uj′ < `

2n− 2`− 1 if uj + uj′ = ` .
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Proof. Suppose that Qkn is partitioned into subcubes Q[0], Q[1], . . . , Q[k − 1]. We can without
loss of generality assume that j = 0, j′ = 1 and u0 ≥ u1. Observe that by Lemma 3 there
are h = 2n − 2 − u0 − u1 − ` healthy neighbors x1, x2, . . . , xh of x in Q[0] such that their outer
neighbors x1

1, x
1
2, . . . , x

1
h in Q[1] are healthy as well. Put Ui = U ∩ V (Q[i]) and ui = |Ui| for all

i ∈ [k], X = {xi}hi=1, Y = {x1
i }hi=1 and consider three cases.

Case 1. u0 = ` = n− 1.
Note that in this case we have ui = 0 for all i ∈ [k] \ {0} while m = 1. As x 6∈ U0 = U , its outer

neighbor x1 in Q[1] must be healthy. Moreover, the only faulty vertices in Q[1] are the n−1 outer
neighbors of U0. As Q[1] is (2n − 2)-connected and 2n − 2 − (n − 1) > 0, by Lemma 1 there is
an (x1, y)-path Px1y in Q[1] avoiding N [U ]. Then P = (x, Px1y) is the desired (x, y)-path passing
only through healthy vertices of Q[0] and Q[1].

Case 2. 1 ≤ u0 ≤ n− 2.
By Lemma 3, Q[0] contains a healthy vertex z 6∈ X such that its outer neighbor z1 in Q[1] is

healthy as well. We claim that then Q[0] contains an (x, z)-path Pxz avoiding both faulty vertices
and all vertices of X.

To prove the claim, note that if x1 is healthy, it suffices to set z := x, which means that
Pxz = Pxx = (x). On the other hand, the case that x1 is faulty requires more attention. Then we
have z 6= x and u1 + u2 ≥ 1. Note that the only faulty vertices that may fall into Q[0] 	 U0 are
at most u1 + uk−1 outer neighbors of U1 ∪ Uk−1 and

|X|+ 1 + u1 + uk−1 = 2n− 1− 2u0 −
k−2∑
i=1

ui ≤ 2n− 2− 2u0

(using u1 + u2 ≥ 1 to obtain the last inequality). As we assume that Q[0]	 U0 is (2n− 2− 2u0)-
connected and 2n − 2 − 2u0 > 0, by Lemma 1 there is an (x, z)-path Pxz in Q[0] 	 U0 avoiding
both N(U1 ∪ Uk−1) and X. This completes the verification of the claim.

Further, put Y ′ = Y ∪ {z1} and note that all vertices of Y ′ are healthy. Moreover, the only
faulty vertices that may fall into Q[1] 	 U1 are outer neighbors of U0 and U2 and therefore their
number does not exceed u0 + u2. Since Q[1]	U1 is (2n− 2− 2u1)-connected by our assumption,

|Y ′|+ u0 + u2 = 2n− 1− u0 − 2u1 −
k−1∑
i=3

ui ≤ 2n− 2− 2u1

(using u0 ≥ 1 for the last inequality) and and 2n− 2− 2u1 > 0, by Lemma 1 there is a (Y ′, y)-fan
in Q[1]	U1−N(U0∪U2), i.e., a family of h+1 internally disjoint paths Px1

1y
, Px1

2y
, . . . , Px1

hy
, Pz1y,

passing only through healthy vertices of Q[1]. It remains to set Pi = (x, xi, Px1
i y

) for 1 ≤ i ≤ h,

Ph+1 = (Pxz, Pz1y) and observe that then {Pi}h+1
i=1 form a family of h + 1 internally disjoint

(x, y)-paths passing only through healthy vertices of Q[0] and Q[1]. As

h+ 1 = 2n− u0 − u1 − `− 1

{
≥ 2n− 2` if u0 + u1 < `

= 2n− 2`− 1 if u0 + u1 = ` ,

it follows that h+ 1 ≥ m and we are done in this case.
Case 3. u0 = 0.
Note that in this case we have u0 = u1 = 0 < ` and therefore m = 2n− 2`. Moreover, the only

faulty vertices in Q[1] are at most l outer neighbors of U2. Since Q[1] is (2n− 2)-connected and

|Y |+ ` = 2n− 2,

by Lemma 1 there is a (Y, y)-fan in Q[1]−N(U2) consisting of h paths Px1
1y

, Px1
2y

, . . . , Px1
hy

. Set

Pi = (x, xi, Px1
i y

) for 1 ≤ i ≤ h and observe that then {Pi}hi=1 form a family of

h = 2n− 2− `
internally disjoint (x, y)-paths passing only through healthy vertices of Q[0] and Q[1]. If ` ≥ 2,
then h ≥ 2n− 2` and we are done.

It remains to settle the case ` = 1. First assume that k ≥ 4. Then either U2 or Uk−1 must be
empty and we can without loss of generality assume the former, i.e. u2 = 0 while uk−1 ≤ 1. Note
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that then all vertices of Q[1] must be healthy. Further, put Y ′ = Y ∪ {x1} and note that as Q[1]
is (2n− 2)-connected and

|Y ′| = h+ 1 = 2n− 2,

by Lemma 1 there is a (Y ′, y)-fan in Q[1] consisting of h+ 1 paths Px1
1y
, Px1

2y
, . . . , Px1

hy
, Px1y. Put

Pi = (x, xi, Px1
i y

) for 1 ≤ i ≤ h, Ph+1 = (x, Px1y) and observe that then {Pi}h+1
i=1 form the desired

family of h+ 1 = 2n− 2` internally disjoint (x, y)-paths passing only through healthy vertices of
Q[0] and Q[1].

If ` = 1 and k = 3, then u2 = 1 while both x1 and y0 are healthy. Moreover, if y0 ∈ X, we
can without loss of generality assume that y0 = xh. Put X ′ = X \ {xh} and observe that as
|X| = h = 2n− 3 > 0, we have |X ′| = h− 1. Recall that the only faulty vertex in Q[0] is the outer
neighbor of U2,

|X ′|+ 2 = 2n− 2 ,

Q[0] is (2n−2)-connected and y0 6∈ N [U ]∪X ′. Consequently, by Lemma 1 there is an (x, y0)-path
Pxy0 in Q[0] avoiding both N [U ] and X ′.

Further, put Y ′ = (Y \ {x1
h}) ∪ {x1} and recall that the only faulty vertex in Q[1] is the outer

neighbor of U2. Since Q[1] is (2n− 2)-connected and

|Y ′|+ 1 = 2n− 2,

by Lemma 1 there is a (Y ′, y)-fan in Q[1]−N(U2) consisting of h paths Px1
1y
, Px1

2y
, . . . , Px1

h−1y
, Px1y.

Set Pi = (x, xi, Px1
i y

) for 1 ≤ i ≤ h − 1, Ph = (x, Px1y), Ph+1 = (Pxy0 , y), and observe that then

{Pi}h+1
i=1 form the desired family of

h+ 1 = 2n− 2 = 2n− 2`

internally disjoint (x, y)-paths passing only through healthy vertices of Q[0] and Q[1]. �

Now we are ready to state an analogy of Theorem 1 for k-ary n-cubes with k ≥ 3.

Theorem 2. Let n ≥ 2, k ≥3 and 0 ≤ ` ≤ n. Then for every set U ⊆ V (Qkn) of ` faults we have

κ(Qkn 	 U) ≥ 2n− 2`.

Proof. First note that it suffices to verify only the case that 0 < ` < n, for otherwise the statement
of the theorem is either trivial (if ` = n) or follows from κ(Qkn) = 2n (if ` = 0).

We argue by induction on n. To settle the case n = 2, recall that Qk2 is a k × k wrap-around
mesh. If we delete an arbitrary vertex v and its neighbors, the resulting graph Qk2 	 v contains
a spanning subgraph, consisting of a (k− 1)× (k− 1) mesh M and (if k > 3) two paths of length
k − 2 whose endvertices are identified with vertices of M . Such a spanning subgraph is clearly
2-connected, which means that κ(Qk2 	 v) ≥ 2 as claimed by the theorem. Assume that n ≥ 3 and
that the statement of the theorem holds for every set U ⊆ V (Qkn−1), 0 ≤ |U | ≤ n− 1.

Let U ⊆ V (Qkn) be a set faults of size `. To prove that κ(Qkn	U) ≥ 2n−2`, we only need to show
that for any distinct x, y ∈ V (Qkn	U) there are at least 2n− 2` internally disjoint (x, y)-paths in
Qkn	U . Note that Qkn can be partitioned into k subcubes Q[0], Q[1], . . . , Q[k− 1] such that x and
y are in distinct subcubes. Put Ui = U ∩ V (Q[i]) and ui = |Ui| for all i ∈ [k]. Recall that by the
induction hypothesis, κ(Q[i]	Ui) ≥ 2n−2−2ui for all i ∈ [k], which means that the assumptions
of Lemma 4 are satisfied and the lemma is applicable to any pair of adjacent subcubes. Without
loss of generality assume that x ∈ V (Q[0]) and distinguish two cases depending on whether x and
y are in adjacent subcubes or not.

Case 1. Vertices x and y are in adjacent subcubes. We can without loss of generality assume
that y ∈ V (Q[1]) and u0 ≥ u1.

By Lemma 4 there are m internally disjoint (x, y)-paths P1, P2, . . . , Pm, passing only through
healthy vertices of Q[0] and Q[1]. If u0 +u1 < `, then m = 2n−2` and we are done. If u0 +u1 = `,
which means that m = 2n − 2` − 1, we need to construct an additional (x, y)-path in Qkn 	 U ,
internally disjoint with P1, P2, . . . , Pm.

Note that our assumption that u0 +u1 = ` implies ui = 0 for all 1 < i ≤ k−1. As y is a healthy
vertex of Q[1], it follows that y0 6∈ U0 and therefore the outer neighbor y2 of y in Q[2] is also
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healthy. Similarly, as x is a healthy vertex of Q[0], all of x1, x2, . . . , xk−1 must be healthy as well.
Further, as Q[2] is (2n−2)-connected, it contains at most ` faulty vertices and ` ≤ n−1 < 2n−2,
by Lemma 1 there is an (x2, y2)-path Px2y2 in Q[2] avoiding N [U ]. It remains to construct an
additional path

Pm+1 =

{
(x, Px2y2 , y) if k = 3

(x, xk−1, xk−2, . . . , x3, Px2y2 , y) if k ≥ 4

and observe that then {Pi}m+1
i=1 form the desired family of m + 1 = 2n − 2` internally disjoint

(x, y)-paths in Qkn 	 U .
Case 2. Vertices x and y belong to non-adjacent subcubes.
Note that then k ≥ 4. Without loss of generality assume that y ∈ V (Q[t]), 2 ≤ t ≤ k − 2, and

u0 ≥ ut. Further, note that Lemma 3 implies that each of the subcubes Q[i] contains a healthy
vertex vi for 1 ≤ i ≤ t− 1. Put v0 := x, vt := y, apply Lemma 4 to each pair of vertices vi, vi+1 in
adjacent subcubes Q[i], Q[i+1], i ∈ [t] and from the resulting (vi, vi+1)-paths {P jvivi+1

}mj=0 extract

(1) prefixes of maximum length fully contained in Q[0] (for i = 0), i.e., prefixes {Pv0v0j}mj=0 of

{P jv0v1}
m
j=0, respectively, such that v0j is the first vertex of P jv0v1 whose successor in P jv0v1

belongs to Q[1];
(2) suffixes of maximum length fully contained in Q[t] (for i = t − 1), i.e., suffixes {Putjvt}mj=0

of {P jvt−1vt}
m
j=0, respectively, such that utj is the last vertex of P jvt−1vt whose predecessor in

P jvt−1vt belongs to Q[t− 1];

(3) edges between Q[i] and Q[i+1] (for 1 ≤ i ≤ t−2), i.e., edges {vijui+1j}m−1
j=0 formed by consec-

utive vertices of {P jvivi+1
}mj=0, respectively, such that vij ∈ V (Q[i]) while ui+1j ∈ V (Q[i+ 1]).

Consequently, it follows that there are

(1) internally disjoint (x, v0j)-paths Pxv0j for j ∈ [m] passing only through healthy vertices of Q[0]

such that the outer neighbors {u1j}m−1
j=0 of {v0j}m−1

j=0 in Q[1] are healthy as well;

(2) internally disjoint (utj , y)-paths Putjy for j ∈ [m] passing only through healthy vertices of Q[t]

such that such that the outer neighbors {vt−1j}m−1
j=0 of {utj}m−1

j=0 in Q[t − 1] are healthy as
well;

(3) healthy vertices {vij}m−1
j=0 in Q[i] for each 1 ≤ i ≤ t − 2 such that their outer neighbors

{ui+1j}m−1
j=0 in Q[i+ 1] are healthy as well,

where m is defined in the following way: If there is an i ∈ [t] such that ui + ui+1 = `, then
m := 2n− 2`− 1, otherwise m := 2n− 2`.

Subcase 2.1. u0 < `.
Recall that this assumption means that ut ≤ u0 < ` as well. Hence we can assume that

ui−1 + ui + ui+1 < ` for all 0 < i < t, for otherwise the sequence Q[0], Q[1], . . . , Q[t] of adjacent
subcubes may be replaced with Q[0], Q[k − 1], Q[k − 2], . . . , Q[t]. Note that then m = 2n− 2`.

Now fix an 0 < i < t and put Xi = {uij}m−1
j=0 , Yi = {vij}m−1

j=0 . Observe that Q[i] 	 Ui is

(2n − 2 − 2ui)-connected by the induction hypothesis, it contains at most ui−1 + ui+1 < ` − ui
faulty vertices, and

2n− 2− 2ui − (`− ui − 1) ≥ 2n− 2`,

using our assumption that ui < `. Hence by Lemma 1 there is a family of m = 2n − 2` pairwise
disjoint (Xi, Yi)-paths passing only through healthy vertices of Q[i] 	 Ui. Concatenating these
paths for all 0 < i < t with {Pxv0j}m−1

j=0 and {Pvtjy}m−1
j=0 over the respective endvertices, we obtain

the desired family of m = 2n− 2` internally disjoint (x, y)-paths in Qkn 	 U .
Subcase 2.2. u0 = `.
Similarly as in the previous subcase, use (1)-(3) and Lemma 1 to set up a family ofm = 2n−2`−1

internally disjoint paths. However, this time construct only (x, vt−1j)-paths, j ∈ [m], passing only

through healthy vertices of Q[0], Q[1], . . . , Q[t−1], where {vt−1j}m−1
j=0 are healthy vertices of Q[t−1]

such that their outer neighbors {utj}m−1
j=0 in Q[t] are healthy as well. Next, note that by Lemma 3

there are at least 2n− 1− `− ut− ut+1 = 2n− `− 1 healthy vertices in Q[t] such that their outer
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neighbors in Q[t+ 1] are also healthy. Since

2n− `− 1 > 2n− 2`− 1 = m,

it follows that there is a z ∈ V (Q[t]) \ {utj}m−1
j=0 such that both z and zt+1 are healthy.

Next, note that the only faulty vertices in Q[t+ 1] may be ` outer neighbors of U0. As Q[t+ 1]
is (2n−2)-connected and 2n−2−` ≥ n−1 > 0, by Lemma 1 there is a (xt+1, zt+1)-path Pxt+1zt+1

passing only through healthy vertices of Q[t+ 1].
Finally, as Q[t] contains no faulty vertices, it is (2n − 2)-connected and m + 1 = 2n − 2` ≤

2n − 2, by Lemma 1 there is a ({utj}m−1
j=0 ∪ {z}, y)-fan in Q[t], consisting of (utj , y)-paths Putjy

for j ∈ [m] and a (z, y)-path Pzy. It remains to set Pj = (Pxvt−1j
, Putjy) for j ∈ [m], Pm =

(x, xk−1, xk−2, . . . , xt+2, Pxt+1zt+1 , Pzy) and conclude that P0, P1, . . . , Pm form the desired family
of m+ 1 = 2n− 2` internally disjoint (x, y)-paths in Qkn 	 U . The proof is complete. �

5. Main results

Theorem 3. Let G = Cay(Γ, S) be an abelian Cayley graph of degree δ. If there is an ordering
s1, s2, . . . , sδ of all generators in S such that s2i−1 · s2i 6∈ S ∪ {e} for all 1 ≤ i ≤ bδ/2c, then

κNB(G) ≤ dδ/2e .

Proof. Select the vertex e of G (where e is the identity element of Γ) and note that then N(e) =
{s1, s2, . . . , sδ}. Let T denote the set of all vertices of G at distance two from e. Note that for
every i ∈ {1, 2, . . . , bδ/2c} there is a vertex vi = s2i−1 · s2i, which, by our assumption, does not
belong to N [e], and therefore it must fall into T . Moreover, as the group Γ is abelian, we have
vi = s2i−1 · s2i = s2i · s2i−1, which means that vi is adjacent to both s2i−1 and s2i. Let U ′ be the
set of all these (not necessarily distinct) vertices v1, v2, . . . , vbδ/2c. If δ is odd and N(sδ) ∩ T 6= ∅,
let v be an arbitrary neighbor of sδ in T . Put

U =

{
U ′ ∪ {v} if δ is odd and N(sδ) ∩ T 6= ∅
U ′ otherwise.

Note that then we have N [e]\N [U ] = {e} in the former case while N [{e, sδ}]\N [U ] ∈ {{e}, {e, sδ}}
in the latter. It follows that G	U contains either an isolated vertex e, or a component consisting
of e and sδ joined by an edge. Hence G 	 U is either disconnected or complete, and therefore
κNB(G) ≤ |U | ≤ dδ/2e. �

Theorem 4. Let n ≥ 1 and k ≥ 2. Then

κNB(Qkn) =


0 for n = 1 and 2 ≤ k ≤ 3

2 for n = 1 and k ≥ 6

dn/2e for n ≥ 2 and k = 2

n otherwise.

Proof. Recall that

Qk1 =

{
K2 for k = 2

Ck for k ≥ 3

and therefore the values of κNB(Qk1) follow directly from the definition. Hence we can assume that
n ≥ 2. Put δ = δ(Qkn), i.e., δ = n for k = 2 while δ = 2n for k ≥ 3. Recall that Qkn is an abelian
Cayley graph Cay(Znk , S) and we claim that it satisfies the assumption of Theorem 3. Indeed, if

k = 2, then S = {ei}ni=1 (because ei = e−1
i for all 1 ≤ i ≤ n in this case), and an arbitrary ordering

of the generators in S satisfies the assumption of Theorem 3. If k ≥ 3, then S = {ei, e−1
i }ni=1 and

any ordering such that ei and e−1
i are not next to each other satisfies the assumption of Theorem 3.

Hence by this theorem, κNB(Qkn) ≤ dδ/2e for n ≥ 2.
On the other hand, if U is a subset of V (Qkn) is size ` < dδ/2e, then by Theorems 1 and 2

Qkn 	 U remains connected. Moreover, as Qkn is a δ-regular graph, for ` < dδ/2e we have

|V (Qkn 	 U)| ≥ kn − (δ + 1)` ≥ kn − (δ + 1)(dδ/2e − 1) > 3
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provided that n ≥ 2 and k ≥ 2. As k-ary n-cubes are K4-free graphs, it follows that Qkn 	 U can
never be a complete graph or empty in this case. Hence κNB(Qkn) ≥ dδ/2e for n ≥ 2 and the
statement of the theorem follows. �

Corollary 1. Let n ≥ 1, k ≥ 2 and δ = δ(Qkn). Then κNB(Qkn) = dδ/2e unless

• Qkn is a cycle of length at least 6, then n = 1, k ≥ 6 and κNB(Qkn) = δ/2 + 1, or
• Qkn is a complete graph, then n = 1, 2 ≤ k ≤ 3 and κNB(Qkn) = 0.

6. Concluding remarks

Doty in [4] showed that the neighbor connectivity of abelian Cayley graphs of degree δ is
bounded above by dδ/2e + 2, conjectured that the actual upper bound is dδ/2e for all δ-regular
abelian Cayley graphs except cycles, and asked about Cayley graphs that achieve the maximum
predicted neighbor connectivity. In this paper we partially answered the latter question by showing
that a nontrivial class of abelian Cayley graphs, formed by the k-ary n-cubes, reaches the maximum
predicted value except for some trivial cases (Corollary 1).

It should be noted that there are abelian Cayley graphs whose neighbor connectivity is much
lower than half of their degree [5]. This limits possible generalizations of Theorems 1 and 2. On
the other hand, the only abelian Cayley graphs known with larger neighbor connectivity are cycles,
κNB(Cn) = δ(Cn)/2 + 1 for n ≥ 6. It is therefore still possible that the upper bound provided by
Theorem 3 may be extended to all abelian Cayley graphs, thus providing a full solution to Doty’s
problem.
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Dvořák), the China Postdoctoral Science Foundation Grant 2018M631322 (Mei-Mei Gu) and OP
RDE project CZ.02.2.69/0.0/0.0/16 027/0008495 International Mobility of Researchers at Charles
University (Mei-Mei Gu).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.

[2] M.B. Cozzens, S.Y. Wu, Extreme values of the edge-neighbor-connectivity, Ars Combin. 39 (1995),

199–210.

[3] K. Day, A.E. Ai-Ayyoub, Fault diameter of k-ary n-cube networks, IEEE Trans. Parallel Distrib.

Syst. 8:9 (1997), 903–907, doi:10.1109/71.615436.

[4] L.L. Doty, A new bound for neighbor-connectivity of abelian Cayley graphs, Discrete Math. 306

(2006), 1301–1316, doi:10.1016/j.disc.2005.09.018.

[5] L.L. Doty, Bounding neighbor-connectivity of abelian Cayley graphs, Discuss. Math. Graph Theory

31 (2011), 475–491, doi:10.7151/dmgt.1559.

[6] L.L. Doty, R.J. Goldstone, C.L. Suffel, Cayley graphs with neighbor connectivity one, SIAM J. Dis-

crete Math. 9 (1996), 625–642, doi:10.1137/S0895480194265751.

[7] M.-M. Gu, R.-X Hao, 3-extra connectivity of 3-ary n-cube networks, Inform. Process. Lett. 114

(2014), 486–491, doi:10.1016/j.ipl.2014.04.003.

[8] G. Gunther, B. Hartnell, On minimizing the effects of betrayals in a resistance movement, in: Proc.

8th Manitoba Conf. Numer. Math. Comp. (1978), pp. 285–306.

[9] G. Gunther, B. Hartnell, On m-connected and k-neighbour-connected graphs, in: Proceedings of the

Sixth Quadrennial International Conference on the Theory and Applications of Graphs, 1991, pp.

585–596.

[10] G. Gunther, B. Hartnell, R. Nowakowski, Neighbor-connected graphs and projective planes, Networks

17 (1987), 241–247, doi:10.1002/net.3230170208.

[11] S.-Y. Hsieh, Y.-H. Chang, Extraconnectivity of k-ary n-cube networks, Theor. Comput. Sci. 443

(2012), 63–69, doi:10.1016/j.tcs.2012.03.030.

[12] A. Liu, S. Wang, J. Yuan, X. Ma, The h-extra connectivity of k-ary n-cubes, Theor. Comput. Sci.

784 (2019), 21–45, doi:10.1016/j.tcs.2019.03.030.

http://dx.doi.org/10.1109/71.615436
http://dx.doi.org/10.1016/j.disc.2005.09.018
http://dx.doi.org/10.7151/dmgt.1559
http://dx.doi.org/10.1137/S0895480194265751
http://dx.doi.org/10.1016/j.ipl.2014.04.003
http://dx.doi.org/10.1002/net.3230170208
http://dx.doi.org/10.1016/j.tcs.2012.03.030
http://dx.doi.org/10.1016/j.tcs.2019.03.030


NEIGHBOR CONNECTIVITY OF K-ARY N-CUBES 11

[13] L. Lovász, Combinatorial Problems and Exercises, North Holland, Amsterdam, 1993.

[14] H.M. Mulder, The interval function of a graph, Mathematical Centre Tracts 132, Mathematisch

Centrum, Amsterdam, 1980.

[15] Y.-J. Shang, R.-X. Hao, M.-M. Gu, Neighbor connectivity of two kinds of Cayley graphs, Acta Math.

Appl. Sin., Engl. Ser. 34 (2018), 386–397, doi:10.1007/s10255-018-0739-9.

[16] X.-B. Zhao, Z. Zhang, Q. Ren, Edge neighbor connectivity of Cartesian product graph G×K2, Appl.

Math. Comput. 217 (2011), 5508–5511, doi:10.1016/j.amc.2010.12.022.

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
E-mail address: dvorak@ksvi.mff.cuni.cz, mei@kam.mff.cuni.cz

http://dx.doi.org/10.1007/s10255-018-0739-9
http://dx.doi.org/10.1016/j.amc.2010.12.022

	1. Introduction
	2. Preliminaries
	2.1. Paths
	2.2. Connectivity
	2.3. K-ary n-cubes

	3. Hypercubes
	4. K-ary n-cubes with k3
	5. Main results
	6. Concluding remarks
	Acknowledgments
	References

