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Abstract

This paper considers two types of coupled reaction-diffusion complex-valued memristive neural networks (CRD-
CVMNNSs). The nodes of the first type CRDCVMNN are coupled through their state and the second one is coupled
by spatial diffusion coupling term. For the former, some novel criteria for the passivity and synchronization are
derived by constructing an appropriate controller and utilizing some inequality techniques as well as Lyapunov func-
tional method. For the latter, we establish some sufficient conditions which guarantee that this type of CRDCVMNNs
can realize passivity and synchronization. Finally, the effectiveness and correctness of the acquired theoretical results
are verified by two numerical examples.
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1. Introduction

In recent decades, coupled neural networks (CNNs) have been widely concerned because of their broad application
prospects in brain science, secure communication, chaos generator design, harmonic oscillation generation and other
fields. It is well known that these applications heavily depend on the dynamic behaviors of CNNs, especially the
synchronization and passivity of CNNs [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15]. In [1], the authors devoted
themselves to studying the synchronization for CNNs with discontinuous activations. Several synchronization criteria
for CNNs with time-varying coupling were obtained in [3]. Lin et al. [4] investigated the passivity of CNNs with
different dimensional nodes by designing appropriate controllers. The authors in [14] addressed the passivity-based
synchronization problem of coupled chaotic neural networks.

In 1971, Chua [16] firstly proposed the concept of memristor. Unlike resistor, the memristor can remember
its past dynamic history because the memristance depends on the amount of charge passing through it. Therefore,
the memristor is widely used in device modeling and signal processing, especially in simulating synaptic behavior
[17, 19, 18, 20, 21]. In addition, by replacing the resistor with the memristor in neural networks, memristive neural
networks (MNNS5s) can better present the neural processes in the human brain [22]. Recently, coupled memristive
neural networks (CMNNSs) have provoked considerable attention and a large number of interesting results on CMNNs
have been reported [23, 25, 24, 26, 27, 28, 29]. In [24], the global exponential synchronization of CMNNs with
time-varying delay was studied. Chen et al. [29] discussed the passivity of CMNNs with different dimensional input
and output.

As we all know, complex-valued neural networks (CVNNs) are extensions of real-valued neural networks. In
CVNN:g, the states, connection weights and activation functions are complex-valued. Some practical problems in real
world cannot be solved by real-valued neural networks but can be better solved with CVNNs. Moreover, CVNNs have
a wide range of applications, including optoelectronics, emotion analysis, analogy amplification, computer version,
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imaging and so on. Therefore, a great deal of significant papers have been published on the dynamic behaviors of
CVNNs [30, 31, 32, 33]. Moreover, complex-valued MNNs (CVMNNSs) can be built by replacing resistors with
memristor in VLSI circuits of CVNNs as described in [34], which have a variety of different applications in image
processing, engineering optimization, pattern recognition, etc. Since the actual applications of CVMNNs depend on
their dynamic characteristics, it is very necessary to study the passivity and synchronization of CVMRNNSs [34, 35,
36, 37, 38]. The synchronization of uncertain fractional-order CVMNNs with multiple time delays was analyzed in
[36]. In [38], the passivity problem for CVMNNSs with time-varying delays was investigated. To our best knowledge,
there are no studies on the passivity and synchronization for coupled CVMNN:S.

It should be pointed out that the effect of reaction diffusion phenomena on neural networks has been neglected
in the above literatures. Generally speaking, reaction diffusion phenomena in CNNs is inevitable when electrons
travel in non-uniform electromagnetic fields. For example, the overall structure and dynamic behavior of cellular
neural networks depend not only heavily on the evolutionary time and location (space) of each variable, but also
strongly on the interaction between them, which in turn derives from the spatial distribution structure of the entire
network. Therefore, taking the reaction-diffusion terms into account in CNNSs is necessary, and a large number of
interesting results on the synchronization and passivity of coupled reaction-diffusion neural networks (CRDNN5)
have been derived [39, 40, 41, 42, 43, 44]. The synchronization and passivity problems for CRDNNs with and
without parametric uncertainties were addressed in [39]. The authors put forward some conditions for guaranteeing
the synchronization and passivity of CRDNNs in [40]. Nevertheless, the results on passivity and synchronization of
coupled reaction-diffusion complex-valued memristive neural networks (CRDCVMNNSs) have not been reported until
to now. Hence, the study on synchronization and passivity of CRDCVMNN:Ss is absolutely challenging and appealing.

It is noteworthy that great majority literatures in [39, 40, 41, 42, 43] only consider the case that the network models
are coupled with state. However, as far as we know, the different diffusion of each node likely have a great influence
on other nodes in CRDNNSs. Accordingly, the real-world networks are represented more precisely by CRDNNs with
spatial diffusion coupling [45, 46, 47, 48]. In [45], the synchronization and passivity problems for CRDNNs with state
and spatial diffusion couplings were addressed. Chen et al. [48] came up with several criteria for the synchronization
and passivity of CRDNNs with spatial diffusion coupling and state coupling. Thus, the further study on passivity and
synchronization of CRDCVMNNSs with spatial diffusion coupling is worthy. It is pity that these problems have not
been considered until now.

In view of the aforementioned statement, we respectively investigate the passivity and synchronization problems
for CRDCVMNNSs with spatial diffusion coupling and state coupling in this paper. Firstly, several criteria for ensur-
ing synchronization and passivity of CRDCVMNNs with state coupling are established by constructing appropriate
controller and employing Lyapunov functional method. Secondly, we also put forward some conditions for guaran-
teeing synchronization and passivity for CRDCVMNNSs with spatial diffusion coupling. Finally, two examples with
numerical simulations are given to verify the correctness of the results.

Accordingly, the principal goal in the present study is to investigate the passivity and synchronization of CRD-
CVMNNSs with spatial diffusion coupling and state coupling. The main contributions of this study are as follows.

(1) The new concept of passivity for CRDCVMNNSs is presented by extending the definition of the traditional
passivity.

(2) The passivity and synchronization for CRDCVMNNs with state coupling are discussed, and several criteria are
established by designing a state feedback controller and constructing an appropriate Lyapunov functional.

(3) Some passivity and synchronization conditions are also derived for CRDCVMNNSs with spatial diffusion cou-
pling.

The rest of this paper is organized as follows. Some notations and a lemma needed to be used throughout this paper
are provided in Section 2. In Section 3, the network model of CRDCVMNNSs with state coupling is presented, and then
the passivity and synchronization of this kind of CRDCVMNNSs are investigated. Section 4 is devoted to analyzing
passivity and synchronization for CRDCVMNNs with spatial diffusion coupling. Several simulation examples are
presented in Section 5 to verify the effectiveness of the obtained passivity and synchronization results. Finally, this
paper is concluded in Section 6.



2. Preliminaries

Notations: Let RY and CV be the N-dimensional real vector space and the N-dimensional complex vector space,
respectively. A,,(-), Ay (-) signify the minimal and the maximal eigenvalue of the corresponding matrix. Let e = e® +ie’
be a complex number, where i symbols the imaginary unit, which satisfies i = V-1 and e, ¢! € R are the real and

imaginary part of e. The norm in CV is denoted as || - ||. For any vector e(o,t) € CV, |le(-, 1)|| = \/fg el (o, Ne(o, Hdo
where H denotes the conjugate transposition. Let e®(o, 1), e/ (0, ) € R be the real part and imaginary part of e(o, f) €

CV, then one has |le(-, )| = \/fQ(eR(Q, D) ek (o, do + [, (e!(0,0) el (0, Ndo, where Q = {0 = (01,02, 00 | log] <
&, 9=1,2,--- k) CR*and (0,1) € QX R.

Lemma 2.1. (see [49]) Let Q be a cube |04 < &,(q = 1,2,--- , k) and let (o) be a real-valued function belonging to

C'(Q) which satisfies x(0)laq = 0. Then
o 2
fxz(g)dg <& f (6—)() do,
Q Q \0Qq

where 0 = (01,02, ,0¢)" -

3. Passivity and synchronization of CRDCVMNNs with state coupling

3.1. Network model
According to the physical characteristics of memristor, a single RDCVMNN model can be described as follows:

dy.(0,1)

2 =avdo. )~ ble.) + ) ey 0801 = THON) + 3 di e D). ), (1)

= j=1

where ¢t = 1,2,---,n, y,(0,1) is the complex-valued state variable of t(th neuron; a, > 0 denotes the transmission

diffusion coefficient along the (th neuron; A = 2;:1 6‘9—; signifies the Laplace diffusion operator on Q; b, > 0 symbols
q

the self-inhibition; ¢, j(y,(0, 1)) and d, j(y.(0, 1)) stand for complex-valued memristors synaptic connection weights; g ;(-)

and f;(-) present complex-valued activation functions for the delayed configuration and non-delayed one of the jth

neuron; the time-varying delay 7;(¢) satisfies 0 < 7;(f) < 7, < 7= r]nzax {rj}, T;() <y; < L
J=1.2,n

Let y(0, 1), ¢,j(y.(0,1)), d,j(y.(0,1)), g;(-) and f;(-) be the following with real and imaginary parts:

yio, 1) = yX(o. 1) + iyl (0,1, cj(vlo, 1) = R0, 0) + ic] (vl (0. 1), dij(y.o, 1) = dfsyF (o, 1) + id] (3] (0, 1),
fi0ie. 0) = fFON 0 0) +if] (e, ), givile. t = Ti(t)) = g5 (o, 1 = 7,(0)) + igh(¥(o, 1 = 7j(0)),

where yX(o, 1), cﬁ.(yf(g, ), df].(yf(g, 1), f]R(yf(Q, D), g_’f(y_’;(g, t—7(1))) are the real parts of y, (0, 1), ¢,j(y.(0, 1)), d,j(y.(0, D),

i(vi(0, 1), gi(v (o, t—T (1)), respectively; i is the imaginary unit which satisfies i = V—-1;y/(0, 1), ¢/.(%! (0, 1)), d*.()' (0, 1)),
FAYD 8V J p y ginary p a0 A
F10h0, 1), g5 (0, 1—7,(1))) are the imaginary parts of y,(0,1), ¢,j(v.(0, 1), d.j(v.(0, 1), fi(vj(0, 1)) 8V (0, 1= 7;(1)),
respectively.

In accordance with the voltage-current characteristic of memristor, one has

AR
CR'(yR(Q t)) — Clj’ b/f(ga t)| < rz,
o &, W0l > T,
{% bR, 0l < T,

i, ie.nl > T,

Al 1

¢ Iyl <,
I I tj L
c(y (1) =1
v & e nl> T,

d, Iye.n<T,

d®0Re, ) = 5
/ d;, Iyle.nl>T,

%M@m>={

. AR Al ¥R I 4R 41 R
where, j € {1,2,---,n}; i G G G d[j, d;j? d[j,
R

* = max{|ef], [¢f)), € = max{le] | 1¢L 1), ¥ = max{|d}] 1df), d!; = max{ld] |, |d] |}, ef = 1ef - &f), ¢ = 18, - &,

Lj
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c?f jare all constants; I', > 0 symbols the threshold level. Denote
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df = |dR - ciR| d, = d!; - d!), C¥ = @)pen, C' = @ s CF = _ciiag<z;j=1<af/>2,zj=1<é§i,.2 27,<~R)2) ¢l =
dlag(z @) 2] (cz,)2 ,:(n,)z),DR (d{i)m, = (d})uxns DX = diag(_ (dF ), 2, (d5)%, -+

dlag(z 1(d j:l( 2j)27 Y 7:1(67,,[])2)
Accordmg to the above description, the network (1) can be separated into real and imaginary parts as follows:

IR i n n
PELD sfio.n - bofte.n+ ) B0femeohe - T + D dhof e Aok, n)
=

J=1

=3 a0l 0.0 e.0) = Y 0! 0. gl e. - 7,0,
J=1

=1

0 , n n
Y, ;f ) =a,Ay}(0,1) — byl (0. 1) + Z R0 )8 0.t — 7)) + ; d* (0, D) 10, 1)

N ACACN AN Zq,(yt (0. R (0.t = 7(1))).
J=1

In this section, we consider the following CRDCVMNNS consisting of N RDCVMNNSs (1):

(0.
# CAAY,(0,1) - BY:(0,1) + C(Ys(0, 0)g(T3@.1) + (0, 1) + D(¥s(0 D) f(Ys(0s 1))

+h )" HyMY(0,0) + x,(0, 1), @)

k=1

where s = 1,2,---,N, Ys(o,1) = (Y51(0,1), Y2(0,1),- -+, Ysn(0,1)) € C" represents the complex-valued state vari-
able of the sth node; A = diag(ay, as,- - ,a,) € R™”" > 0,0 < B = diag(by, bs, -, by) € R™"; Y(o0,1) = (Ys1(0, 1 —
71(2)), Ys2(Q7 =12(1)), -+, st(Q» t_Tn(t)))T eCy g(Ys(Q7 ) = (gl (Y51 (Q7 —711(1))), gZ(YSZ(Q7 =12())), -+ s gn(ysn(gv =
TN € C"; f(Xs(o. 1) = (fi(Ys1(0,0), o(Ys2(0. D).+, fu(Ysu(o. )" € C*; M € R™" stands for the inner cou-
pling matrix; C(Ys(0, 1) = (,;(Y5(0: ) € C™", D(Y,(0,1) = (dyj(Y5i(0, 1)) € C™", where 1, j = 1,2,-++ ,m;
us(o, 1) = ul(o, 1) + iul(o, 1) = (us(o, 1), u2(0, ), -+ - , usn(o, 1))’ € C" is the controller to be designed for obtaining a
certain control objective; x,(0,1) = x%(o, 1) + ixl(0,1) = (x51(0,1), X2(0, 1), -+ , Xxsn(0, )T € C" denotes the external
input of the network; i > 0 is the overall coupling strength; H = (H)nxy expresses coupling weight between nodes,
where Hy, = H,; > 0 if and only if there exists a connection between node s and node «; if not, Hy, = H,; = 0(s # «);

and
N
_ZHSK7 §= 1’27”' ’N
pos

For network (2),

Ys(0,1) = ¢5(0,0) € C",  (0,1) € Qx[-7,0],
Yi(0,H) =0, (0,1 € 0Q X [T, +00),

where ¢4(0, 1) = (¢51(0, 1), d2(0, 1), - , Psul0, )T e C" is bounded and continuous on Q X [, 0].
Then, the network (2) can be separated into real and imaginary parts as follows:

YR (o, N .
—Sa(tg L =AAY(0.1) — BYR(0. 1) + CR (Y (0. )" (YR (0. 1)) + uf (0. )~ C' (Y (0. 1)g" (Y!(0. 1))
N
+ DR (YRG0, 0) R (YR (0, 0)+ (0,0 = D' (Yi(o, 0D (Y1, 1) + h ) HyMYE (o, 1), 3)
k=1
G =AnY! (0, 1) — BY (0, 1) + CR(YR(0, )¢ (Y1 (0, 1)) + ul(0, ) +C (Y. (0, 1))g" (YR (0, 1)
at - s Q’ Ky Q’ K Q» g( S(Qv )) Ms(Q7 ) ( s(Q7 ))g ( S(Q7 ))
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N

+D" (V0. 0)f (Vi 0)+xi(0.1) + D (Y{(@. DA (Y (0.) + h ) HocM Y (o.1), @)
k=1
where
CR() = (€ DFC) = @ Dmns C'C) = (€ (Dxns D) = (@Dns
" (YRG0, 1) = (F(YR (0.t = 11(1)), g5 (Y (0,1 = Ta(1), -+ , @R (YE (0,1 = Ta(0)))),
¢'(Yi(o.0) = (§1(¥} (0.t = 11(0)), 83}y 1 =120, g1(Vin(ont = 7))
A& 0) = R e.0). . ). - £ (YR 0. 0),
1Yo 0) = (F{ (Y0, 0), (Y0, D), -+, f1 (Y, (0, D)),
Y. 1) =(YK (0.0, Y (0.1, -+, Y (0. 1),
Yi(o.t) =(Y) (0.0, Y] (0.0), -+, Y, (0.1),
(0, 1) =(uk (0. 0, uby(0. 1), - -+ u (0. 1),
(0. 1) =(uly (0. 1), uly(0. 1), - -+ b, (0. 1)
xX (0, 1) =(xF (0,1, X0, 1), -+, X% (0, ),
xl(o, 1) =(x, (0, 1), xLy(0, 1), -+, XL (0. D).
For network (3),

Yie.0 = ¢ eR",  (0,1) € QX [-7,0],
Yie,n =0, (0.0)€dAx[~1,+),
where ¢%(0, 1) = (¢%,(0, ), #%,(0, 1), - - , % (0, )T € R" is bounded and continuous on Q X [-7,0].
For network (4),
Yile.n = den eR", (o.1) € Qx[-7,0],
Y@ =0, (0,1 €dQX[~T,+0),

where ¢! (0, 1) = (¢! ,(0.1),¢'5(0, 1), -+ , #%,(0, )" € R" is continuous and bounded on Q x [, 0].

Assumption 1. (see [29]) Throughout this paper, we assume that the real part fX(-) and the imaginary part f!(-) of
function f,(-) and the real part g% (-) and the imaginary part g'(-) of function g(-) satisfy the following inequalities for
any ay,a; € R:

OIS FE IR OIS F 18501 < G g0l < Gy,

IfR (1) = fRa)l < Blan = aal, |fl (1) = fl(ao)]l < Ll - aal,

R R R I I I
g5 (@1) — g (@)| < 1islar — azl, |g5(ar) — gs(@2)l < nilay — aal,
where FR, FI, GR, GL, IR, IL, nR, n! are positive constants.
s S S s T]b p

s> Y52 TS

Suppose Yo(o, 1) = (Yo1(0, 1), Yoa(0, 1), - - -, Yon(o, )T e C"is an arbitrary solution of the network (2), then

9Yo(0, 1)

o =AAYo(o, 1) = BYy(0, 1) + C(Yo(o, ))g(Yo(o, 1) + D(Yo(o, 1) f(Yo(e, 1)), &)

where Yy(o,1) = Yg (0,1 + iYé(Q, t). Then, we can separate (5) into real and imaginary parts as follows:

3Y(’f (0,0
ot

=AnY(o, 1) = BYg(0, 1) + C* (Y5 (0, 0)g" (Y5 (0, 1)) — C'(Yg(o, D)8 (Yy (0, 1) + DR(Yg (0, ) (Y 0, 1))

5



- D'(Y}(0, 1) 1 (Y0, 1)),
IY{(0,1)
ot

=AAY((o.1) — BYj(0.1) + CR (Y (0. 08" (Yi(0. 1)) + C'(¥{(0, 0)g"(Y{ (0. 1)) + D (Y (0. 1) f1 (Y{ (0. 1))
+ D' (Yj(0, )R (Y (0, 1)

Let es(o, 1) = Ys(o, 1) — Yo(0, 1), then

dey(o, -
¢ ;f 2 =Aney(0,1) — Bes(o, 1) + C(Ys(0,))8(Ys(0, 1)) + x5(0, H—C(Yo(0, 1)g(Yo(0, ) +D(Ys(0, D) f(¥s(0, 1))
N
+us(0,1) — D(Yo(o, 1) f(Yo(o, D)) + h Z HgyMe(o,1), (6)
k=1

where s = 1,2,---, N and e5(0, 1) = (e51(0, 1), e2(0: 1), -+ s esnl0, D).
By separating (6) into real and imaginary parts, we have

def(o, 1)

Ey =Anef(0,1) — Bef(o, 1) + DX (Y (0, ) PH(ef (0, 1) + x5 (0, =D (Yi(0, )P (€} (0, 1) +CR (Y (0, 1) Q% (eR (0, 1))

N
+ug(0,1) =C'(Y{(0, Q' (ek(0, 1)) +h Z HyMeg(0,0+(DR(Y{ (0, 0)=D*(Yg (0, 0)) f* (Y5 (0, D)~ (D' (Y (0, 1))

k=1
D' (Y0, ) f' (Yi(0, 1) + (CR(YE (0, ) - CR(YE (0, ) 8" (¥ (0. 1)) — (C'(Y.(0, 1)) — C'(Y{(0, )))g" (¥} (0, 1)),

del(o, 1)

o =Anel(o,1) — Bel(o, 1) + D*(YX(0,D)P'(ek(0, 1)) + xk(0, 1)+ D' (Y1 (0, ))P*(e(0, 1))+ CR(YE (0, 1) Q' (el (0, 1))

N
+ul(o, n+C(Y!(0,0)0"(eF(o, 1)+ ) HyMel(o, )+ (DX (YR (0, 1)~ DR (Y (0, o)) ' (Y (0, 1)) + (D' (Yi(o, )
k=1

= D'(Yi0, 0 R (Y (0, 1)) + (CR(YE(0, 1)) = CR (Y (0, 0))g' (Yi(0, 1)) + (C'(YL(0, 1) — C'(Yi(0, 0))g" (Y (0. 1),

where ef(o,1) = (ef (0.0, ¢%(0, 1), ,eR (0.0, el(0.1) = (! (0, 1), ely(0.1), -+ el (0.0, eR(o,1) = (R (ovt —
71(1), €8 (0, 1-12(1)), - - -, €F (0, =14 (D)), el(0, 1) = (¢! (0, 1-T1(1)), €', (0, 1=T2(1)), - - - , €}, (0, t=Tu(D))T, PR(eR(0, 1)) =
RYR. 1) = fR(YE (0, 1), Pl(el(o.0) = fI(Yi(0.1) — f1(Y(o. 1), QR(eR(o.0) = gR(YR(0,1) — gR(YE(0.1)) and
0'(el(o. 1) = g'(Y1(0, 1) - g' (Y} (0, 1)).

Definition 3.1. (see [44]) If there exists a constant p > 0 satisfying the following inequality:

f ' fg [0, ) <RG0, 1) + (20, 0) ¥ (0, D]dadt > V(1) - V(1) - p f ' fﬂ [0, 1) x (0. 1) + (<0, 1) (0, D]dodt

for any t,,t; € R* and t; > t1, where V(t) : Rt — R* is the storage function, then the network (6) is said to be
passive.

Definition 3.2. (see [48]) The network (2) is synchronized if
lim [V, 1) = Yo(, )l = 0, 5= 1,2, N,
=00

under the condition x,(0,t) =0, s =1,2,---,N.

3.2. Passivity control
For the network (2), we design the state feedback controller as follows:

{ uk (0, 1) =—1ReR (0, 1)—sign(ef (0, ))(DRFR + D' F! + CRGR + C' G, -

ul(o, 1) ==Y"el (o, H)—sign(el(o, D)(DRF'+ D' FR +CRG' +C'G"),
6



where s = 1,2,--- N, TR = diag(®, %, --- ,vf) e R™" and Y’ = dlag(v] , U2, -+, ul) € R™" are the positive definite
controller gain matrices, R* 3 v® > 0 and R* 5 v/ > 0; F® = (FR FK,... . FOYT F! = (FI,F!,..- ,F))T, G® =
(G}, Gy, -+, G )T and G’. = (GG -G sign(ef(o, 1) = diag(sign(ef, (0. 1)), sign(efy(0.1). - . sign(ef; (0.1))
and Slgn(eé(Q’ t)) = dlag(51gn(e£1(9» t))7 Slgn(eiz(g7 t))» Tt Slgn(ein(g7 t)))

The output vector z,(o, t) € C" of the system (6) is described as follows:

z5(0,1) = Kies(o, 1) + K x4(0, 1),

where K; € R™" and K, € R™",
For convenience, we denote

L® = diag((1F)*, (1), - -+ . (D), L' = diag((1)*, (B)*, -+, (1)),
{8 = diag((), (5%, -+ . (), ¢ = diag((m})>, (7)) -+ . (1)),
e*(0.0) = (e (0. 0)", (5 (0. ), -+ L (el (0. )T,
(0.1 = (e} (0. ). (eh(o. ).+ . (ep(o. D),
R0, 1) = (R0, )T, (0, 0)T, -+ , (R0, )T,
el 1) = (el ), (b, ).+, (el (o )T,
x(o, 1) = (x{'(0, 1), X (0. 1), -+ , x}y (0. )",

20, 1) = (2 (0,0, (0, ), -+ , 2 (0, 1),
1 1 1
I' =diag( s S, ).
-y 1-v 1 -7y,

Theorem 3.1. If there exists a constant p > 0 such that

pR =R o=
<Oand| ' ] )]

[(ER)T ‘P’f] @EH" ¥,
where ¥X = Iy® (- Pl fz —2B+DR+ 218+ D+ CR+ C1 = YR+ 2{RT) + hHO (M + M"), ER = ! = Iy® (1, - 1K),
¥ = Ive(- 3. 13;; —2B+2L+ DR+ D'+ C1+ CR=Y1+2{'T) + hH®(M+M"), W8 = ¥ = Iy®(—3(KI + K>)—pl,),

then the network (6) is said to be passive under the controller (7).

Proof. Choose the following Lyapunov functional:

f (rjei(0,9)° f,(g, )

Vo = f (e®(0, 1) (0, ndo + zz f dods
s=1 j=1 T;(1)
’6 2
+2 Z f f (’ljebj(Q )) d dd + Z f(e§(97 t))Tei(Q, t)dQ
s=1 j=1 t=7;(t) po o

Then,

70! <2Zf( (o, (Q’ B8 o +2Zf( ‘o, (Q’ &2 Do +2Zf(e (0. 1) TR (0, do

—zz fg (ef(o, )" {"ek(o, r)dg+zz fg (e(0. 0" {'Tey(e, r)dg—zz fg (ef(0.0)"¢"el(o, do
s=1 s=1 s=1

N
=2y f (€(0. 1) (Ane{(0,1) = Bef(o. 1) + D (Y (0, )P (ef (0. ) = D'(Y (0. 0)P'(ef(0. 1) + x{ (2. )
=1 Y&

7



N
+ CR(¥F (0, 10" (e, 1) - C'(Y](0.0)Q'(€llo,0) + h ), HyMef (0, 1) = TRef(0,1) + (DR (¥} (0, 1)

k=1

- DR(Y& (0, ) R (Y (0, 1)) — sign(e® (0, D) DRFR+ D' F' + CRGR + C'G"— (D' (YX(0, 1))~ D' (Y} (0, 1))
x f1(Yi(o, 1) + (CR(Y(0, ) — CR(Y§(0, )))g" (Y& (0, 1)) — (C'(Y.(0, 1)) — C'(Yi(0,0)))8" (Y (0, )))do

N
2y f (e5(0. 1) (Aneg(o, )= Be(o, 0+ D (Y (0. )P (€50, 1)+ D'(Y{(0. )P (ef (0. 1) + xy(0. D)
s=1 V¢

N
+ CH (Y0, 10" (eh(o, ) + C(Y{(0,0) Q" (eR (o, 1)+ Z HyMey(0,0+(D"(Y{ (0, 1) ~D*(Yg (0, 1))

k=1

x f1(Y{(0, D) + (D'(Y(0, 1) — D" (¥ (0. DN R (Y (0, 1)) + (CR (YR (0, 1) — CR(YE(0, 1)))g" (Yi(0. 1)
—Y'el(o, 1) — sign(el(o, D(DRF' + D' FX + CRG' + C'G®) + (C'(Y!(0, 1)) — C' (Y} (0, 1))

x g8 (Y0, 1))do +2 fﬂ (®(0, )" (Iy ® (£*T))eR (0, H)do — 2 fﬂ (eR(0, )" (Iy ® {™)eR (0, )do
+2 f (€' (0,0 Iy ® ({'T))e (o, )do—2 f (e'(o, )" (Iy ® {Nel (o, t)do.
Q Q

From the Green’s formula, we have

66‘5 0, t)
Stonaeliondo == [ (==
[rmtamer - [
where j=1,2,---,n, s=1,2,---,N. Let 7%(0, 1) = (Iy ® VA)eR(o, 7). According to Lemma 2.1, then
N
) [ e asehio.nde
N
Zajfe”(g I)AC‘U(Q tdo

s=1 j=1

k N n 665.]‘(9’ l) 5
i _qzl s=1 jz;ajL( doq ) do
_ N\ [(9Fen oc0.1)

- ;L( 004 ) Uve4) Ao, de
__y [ (e ot

B Z jg; ( 904 ) 004

Z f (7 (0. )" (0. ndo
=

51
=) = f (" (0. 0)" (Iy ® A)e® (0, do.
= 4 &
Similarly,
N K 1
> f (el(o.0) Anel(o,ndo < - 3" f (€ (0.0 (Iy ® A)é' (0, 1)do.
—iJa = & Ja

8

€)

(10)

(1)



Furthermore,

=

ZZ f (e5(0, )" D (Y} (0, 0P (el (0, D)do

s=1

=z

=23 ZZ f el(o, Dd3 (Y0 D (Y0, 0) = (Y (0, D)o

s=1 =1

=z
3

<ZZZZ f €8 (0. DI R (Y (0. 1) = FR(YE (0 D)lde

s=1 =1

=

n

> Z f (R (e, t))2<dR)2dg+ZZ f (5 (ef (0, ) do

s=1 =1 j=1 s=1 j=1

<

/

= f(eR<g, 1) (Iy ® D)e® (o, Do+ f (" (0.1) Iy ® L)e® (0, do.
Q Q
Similarly,
N
-2y fg (€ (0. 0)" D' (Y{(e, 0)P'(e}(0. D)o
s=1
< f(e’*(g, 0)'(Iy ® D"e" (0, n)do+ f ('(0, 1)y ® L)e! (0, Ndo,
Q Q
N
2> fg (el(o, )" DR (¥§ (0, 1)P' (€}, 1)do
s=1
< f(e’@, 1)y ® DX)e! (0, Do+ f (€' (0.0 Iy ® L"e! (0, )do,
Q Q
N
2y fg (e4(0.0)" D' (Y;(0. D)P" (€ (0. 1)do
s=1

< f(e’(g, ) (Iy ® D' (0, H)do+ f (®(0, 1) Iy ® L*)e® (0, Hdo.
Q Q

Moreover,

N
2 Z (R (0. 1) CR(YR (0, 1) 0" (eF (0. )do
— Q

N n n
3P fg ef (0, e (YR, 0)(Ef (VR (0, — 7,0) g (¥ (0, o

s=1 =1 j=1
N n
< f 1R (0, DRI’ (YR (0, 1 = (1)) - gX(YE (0, )Ido

S:LI

N n
<, f (eR (0, 1)*(@R)?do + Z Z f @) (e 0,1 = 7,(0))do

s=1 =1 j=1 s=1 j=1

= fée’*@, ) Iy ® C*)e" (0, do+ fg (eR(0. 1) Iy ® {F)eR(o, Ddo.
Similarly,
N —
-2 [ e, C'(Viie.0)Q' P e
s=1

9

12)

13)

(14)

5)

(16)



< f(eR(Q, )y ® C"ef (0, ndo+ f (0, 10)(Iy ® {)el (0, H)do,
Q Q

N
2 Z (e3(0, D) CF (Y (0, 1)Q' (el(o, )do
s=1 Y

< f(e’@, ) (Iy ® CMYe' (o, tydo+ f (el(o, 1) (Iy ® {el (0, Do,
Q Q

N
237 | (el )" C'(Yi(e, 1) Q" (R (o, D)do
s=1 Q

< f(e’@, ) '(Iy ® Ce' (0, Hdo+ f (eR(0, 1) (Iy ® ek (o, t)do.
Q Q

In addition,

ZhZZ f (ef(0. 1)) HyMe[ (0, 1ydo = h f (*(0, 1)) (H & (M + M"))e" (0, ndo.

s=1 k=1

Similarly,

M)

s=1 k=1

5

(el(0, ) HyMe (0, 1)do = h f (' (0,0 (H& (M + M"))é' (0, Ddo.
Q
‘What’s more,

2 (€50, D) (DR (Y (0, ) = DR(Yg (0, ) .fF (Y (0, D)do

©
1]

M=
=h

=2 ZZ fg R (0.0(d (YR (0,1) = d¥ (Y5 (0. D) fR (Y (0. 1))do

K =1

M= 1DV

N

2

n

ZZ['EW(Q Ol - d8|FRdo

=1

©
1l

2

M=

f (0. )T IDF FRd.
Q

s=

Similarly,

=z

N
2> f (eR(0, 0) (D' (Yy(o, 1) = D' (Y!(0, 0))f (Yj0. 1)do < 2 ) | f (e (0. 0)" D' Fdo,
s=1 vQ s=1

=

Q

N
2) | (el )" (D (¥ie.1) — DAY (0, o) f (Yo 0)do < 2 )
s=1 Y s=1

=z

N
2y fg (el )" (D' (Y!(0. 1) = D' (Y}, oD FF (Y (0. 0o < 2 ) fg (el (o, 1) 1D' FRdo.
s=1 s=1
In addition, we have
N
23" [ (elie.n) (¥, 0) - CHHfte. 0 (¥ ou e
s=1

10

f (€0, )" ID" Fdo,

A7)

(18)

19)

(20)

1)

(22)

(23)

(24)

(25)



=

n

=23 Z f R 0.0k (YR (0.1) - cF(YE (0. 0)R (Y (0. 1)do

s=1 =1 j=1
N n n
=59 f 1% (0. DI — EK1GPdg
s=1 =1 j=
N
=2 R0, 1) 1CRGR do. 26
;fgmes(g ) IC*Grd 6)
Similarly,
N N
2> fQ (e¥(0. 0" (C'(Yy(e, 1) = C'(¥l(0, )8! (Yo, )do < 2 ) fQ l(es (o, )" IC'G' do, 27)
s=1 s=1
N N
23] fg (el(o, 0 (CR(¥F (0, 1) = CR (¥ (0. g (Yio, 1)do < 2 ) fﬂ I(ex(o, ) IC* G do, (28)
s=1 s=1
N N o
2> fQ (el(o. 0 (C'(¥l(e, 1) = C' (Vi (0, 0" (Y (0. 0)do < 2 ) fg l(es(o, 1) IC"GRdo. (29)
s=1 s=1

From (9) to (29), we have

V() < f 0, ) Iy ® (- Z o 2B+ DR 4208 + D' + CR + C" = (R + 28T + hH © (M + M"))eR(0, Hdo
Q =1 &

+ fg 0.0 (@ (- Z
=1

x (0. do+2 fﬂ (0.1 (0. 1)do +2 fg (0. 0)" X (0. D)o

— 2B+2L'+ DR+ D'+ C + CR =Y + 2/'T) + hkH® (M + MT))
61

Furthermore,

V(n) - f (", ) (0, 1) + ( (0.1 ¥ (0, Dldo ~ p f [ (0, )T ¥ (0, 1) + (' (0, 1) ¥ (0, D)do

f(eR(Q N Iy ® (- Zf——ZB+DR+2LR+DI+CR+CI TR+ 280) + hH © (M
g=1 q
T R 1 T o 2A 1 R v ~1 ~R 1
+ M)k (o, Hdo+ | (€'(0,)) (IN®(—Z§—2—ZB+2L +DR+ D' + T+ CR -
Q
qg=1 ~4

+20'T) + hH ® (M + M"))e' (0, do + f R, 0) Iy ® (—%(K{ + K2)—pl))x* (0, do
Q
1 1
+2 Q(e’%g, N (In®I,— EKT DR (o, do+ féx'@, t))TuN@(—E(KZ +K2)— pl))x' (0, do

+2 f .t (Iy® I, — 1K{))x’<g, ndo

:! l{/l ':I
f(so (@, 1) [(_R )90 (0, t)d9+f(90 (0.0 [(_,) )90 (o, do,

where <pR(Q, 1) = ((eR(Q, t))T, (XR(Q, t))T)T and ¢ (Q, H= ((e'(g, t))T, (x'(g, t))T)T. From (8), we can easily obtain

V() < fﬂ [Z*(0, ) x"(0, 1) + (' (0, 1)) %' (0, Ddo + p fg [(x®(0, ) x"(0, ) + (X (0, )" %' (0, D1do.  (30)
11



By integrating (30) about  over the time period from #; to #,, one has
15}
V() = V(n) < f f [ (0. 0)" x"(0.1) + (&' (0. 1)" ' (0. ))dod
n Ja

+p f f [(x®(0, ) xR (0, 1) + (X' (0, )" ¥ (0, D)dodt, b > 1,
n Q

Namely,

f ' fg [0, ) x"(0, D) + (Z'(0, 1) X' (0, Ddodt > V() = V(1) - p f ' fg [(x®(0, D) xR (0, 1) + (X' (0, )" ¥ (0, ) dodt

for any t,,#; € R* and 1, > t;.
According to Definition 3.1, we can obtain that the network (6) is passive under the controller (7). O

3.3. Synchronization control

Theorem 3.2. The network (2) is said to be synchronized under the controller (7) if
PR <0and ¥ <0, 31)

—2B+DR+2IR+ D'+ CR+ C' = YR+ 20°T) + hHQ (M + MT), ¥ = Iy ® (- Yk 24

where‘P =Iy®(- Zq ! f§ g=1 fz

2B4+2L + DR+ D + CT+ CR =Y + 2T+ hH® (M + M").
Proof. The same Lyapunov functional in this subsection is defined as in Theorem 3.1. Then, one has

V(@) < f R0, )T (Iy ® (- Z Z 2B+ DR+ 208 + D'+ CR + CT — TR + 208T) + hH ® (M + M7))eR (0, t)do
g=1 "4

f 0,0 (Iy® (- Z o 2B+2L' + DR+ D'+ C1 + CR — vl + 27T + hH @ (M + MT))é (o, t)do
g=1 4

<alleC, I, (32)
where @ = max{A, (), 1 (¥))}.
According to (32) and the definition of V(f), we can obtain V(r) is non-increasing and bounded. Therefore,

lim,_, ;. V() exists and satisfies lim,, V() > 0. Moreover, from (32), we can get

Vv
eGP < YO (33)
o

From (33), we can easily derive that lim,_, ;e fot lle(-, &)|ds exists and is nonnegative real number. Moreover,

, 2(75ef (0, 0))
0< 11m f f —————  dopd$
t—>+oc 1-75(0) 1- Vi

s=1 j=1

<,E£‘;ZZI f2(nj U(Q»(S))z dods

s=1 j=1

= lim f f (€*(0,0)" Iy ® 2L"T))e" (0, 6)dods
-1 JQ

t—+00
¢
<Au(ly ® 2£°T) lim f le® -, OIPds
—+00 -1
=0. (34)

12



Similarly,

, - 2(n§eu(9, %
0< 11m f f dodé = 0. 35)
t=7;(t)

t—>+oo

s=1 j=
From (34) and (35), it is easy to know that tl_i)inm >N, fQ[(ef(Q, ek (o, 1) + (el (o, 1)) el(o, t)]do exists and is a non-
negative real number. Suppose that
N
tim Y [ (6007 efe. 0+ Elte.) e nldo = > 0.
Q

—+00
s=1

Then, there exists a real number € > 0 satisfying

N
Y, [k " efe. 0+ (elie. ' el tide > 5 for > e
s=1 Q

Then, one has

e 01 > 5, 1> e (36)
Combined (32) with (36), we have
V() < %B t>e 37)

By (37), we can acquire

ap

—V(e) < V(+00) = V(e) = fm V(t)dt < fm Tdt = —00, (38)

which is unreasonable. Therefore,

t—+00

N
lim " fg [(€{ (0. 0" e (e, 1) + (ex(e. ) e(e, D1do = 0.
=1

Then, we can obtain
lim [le(-, 0|l =0
—+00

Consequently, the network (2) achieves synchronization. O

Remark 1. In recent years, the study of CMNNs has become a hotspot and a large number of interesting results on
CMNNSs have been reported [23, 25, 24, 26, 27, 28, 29]. However, the CMNN models considered in these existing
works [23, 25, 24, 26, 27, 28, 29] are real-valued. In fact, complex variables exist in many applications such as pattern
recognition, associative memory, nonlinear filtering and image reconstruction. Compared with real-valued neural net-
works, CVNNs have more complex characteristics and more extensive practical applications. For example, the XOR
and symmetry detection problems that cannot be solved by real-valued neural networks but can be easily solved by
CVNNs [32]. Additionally, the models of CVNNs are more general, because the real-valued neural networks are only
some special cases of them when there are no imaginary parts of complex variables. Thus, it is of great significance
to study CVNNs. Moreover, CVMNNs can be built by replacing resistors with memristor in VLSI circuits of CVNNs
as described in [34], which have a variety of different applications in image processing, engineering optimization,
pattern recognition, etc. In addition, it is also necessary to take the reaction-diffusion term into consideration when
studying CVMNNSs. In more details, the CRDCVMNNS are described by complex-valued partial differential equation
with memristive characteristics. Unfortunately, there is no work reported on passivity and synchronization of CRD-
CVMNN:G. To the best of our knowledge, this paper is the first step towards investigating the dynamical behaviors of
CRDCVMNNE.
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4. Passivity and synchronization of CRDCVMNNs with spatial diffusion coupling

4.1. Network model
A CRDCVMNN with spatial diffusion coupling in this section is shown as follows:

9Y(0,1)

o =AAY (o, 1) — BY(0,1) + C(Ys(0,0))8(Ys(0, 1) + us(0, 1) + D(Ys(0, D) f(¥s(0, 1)

N
+h Y HaMAY (0,0 + x(0,0), s=1,2,---,N, (39)

k=1

where Y;(0,1), A, A, B, C(-), g(-), us(o,t), D(-), f(-), x5(0,1t) are defined in the same way as those in Section 3.
h, H,., M have the similar definitions as h, H,,, M in Section 3.
For network (39),

Yi(o,1) = p5(0,1) € C", (o0,1) € QX [-T1,0],
Yi(0,0 =0, (0,1) €0QX[~T,+00),

where ¢,(0,1) = (ps51(0, 1), 952(0, 1), psn(0, 1)) € C" is bounded and continuous on Q X [-7, 0].
Then, the network (39) can be separated into real and imaginary parts as follows:

aYX(o, - -
—Sa(tg & =AAYR(0,1) — BYX(0,1) + CR(YR(0, 18" (YR(0, 1) + ul (0, )= C'(Y!(0,1)g' (YI(0, 1))+ D*(YX(0, ) f* (YR (0, 1))
N
+x80,0 = D' (Yo, 0)f' V(0. 0) + h ) Ay MaYi(o, 1), (40)
k=1
Y (o, - -
7(;? & =AAY{(0.1) - BY!(0,1) + CR (YR (0, 0)g" (YI(0, 1)) + ul(0, D+C (Y1 (0, 1)g" (YR (0, 1)+ D (Y (0, D) (Yi(0, 1))
N
+x)(0,0) + D' (Yl ) f* (Y0, 0) +h ) Ay MaY (o, 1), @1
k=1
For network (40),

YR0,t) = R0, 0 € R", (0,1 € Qx[-7,0],
YR, =0, (0,1 €dQx [T, +c0),

where ¢%(0,1) = (¢¥,(0, 1), &% (0. 1), - - , R (0,1))" € R" is bounded and continuous on Q x [, 0].
For network (41),

Yio,0) = ¢l0,n) eR",  (0,1) € QX [-17,0],
Y0, =0, (0.1) € 0Q X [-T,+c0),

where ¢!(0,1) = (¢!, (0, 1), ¢!, (0, 1), -+, ¢L,(0,1))" € R" is bounded and continuous on Q x [, 0].
Let es(0,1) = Y5(0,1) — Yo(0, 1), then

des(0, 1)

5 Ades(o.1) — Bes(o. 1) + C(Ys(0, D)g(Yslo. 1) + us(e, )= C(Yolo. )8 (Yo(e, )+ DY (e, D) f(¥s(0, D))

N
+35(0,1) = D(Yo(o, )F Yole,0) + h Y Aol ne(o, 1), 42)

k=1

where s = 1,2,--+, N and e5(0, 1) = (e51(0, 1), €2(0, 1), - -+ , esn(0, 1)) .

14



By separating (42) into real and imaginary parts, we have

R —
w =Anef(o, 1) — BeR(0, 1) + D*(YX(0, 1)) PR (eX(0, 1)) + uf (0, ) D' (Y. (0, 1)) P'(el(0, 1)+ C* (Y (0. 1) Q" (eR (0, 1))
+x5(0,1) =C'(Y{(0, 1) Q' (¢l (o, r))+hZHMMAe (0. 0+ (DY (0, 1) = D (Y5 (0. ) (Vg (0.1))
— (D' (Y!(0,) - D' (Yo, D) f (Y’(g, 1) + (CR (Y0, 1) — CR(YE(0, 08" (Y (0. 1)
—(C'(Y(0, 1)) = C'(Y}(0,0))8" (Vi (0, 1)),
1
W =Anel(o,1) - Bel(o, ) + DX(YR(0, ))P' (e (0, 1)) + ul(0, )+ D' (Y1 (0, D) PR(eX(0, 1))+ CR (YR (0, 1) Q' (el (0, 1))

N
+al(o.0) +C'(Y!(0, )0 (eFlo. 0)+h Y AsM nel(o. 0+ (DR(Y(0,1) - DR(YE (0. 00)f (Yi(e. 1)

k=1
+(D'(Y!(0,0) — D' (Y(0, D) [R(YE (0, 1)) + (CR(YR(0, 1)) — CR (¥ (0. )8 (Vi (0. 1))
+(C'(Y(0, 1) - C'(Y(0, D))" (Y (0, 1)).

Remark 2. In Section 3, we established passivity and synchronization criteria for CRDCVMNNSs with state coupling.
As is known, different diffusion of node may affect the states of surrounding nodes in some realistic reaction-diffusion
networks. Therefore, it is very interesting to consider spatial diffusion coupling when modeling CRDCVMNNS.
Moreover, CRDCVMNNs with spatial diffusion couplings can reflect more realistically characteristics of some com-
plex networks to some extent. Therefore, we further study the dynamical behaviors of spatial diffusion CRDCVMNNs
in this section, which is also one of contributions of our work.

4.2. Passivity control
The output vector z,4(o, t) € C" of the system (42) is described as follows:

z5(0. 1) = Kies(o, 1) + Kax,(o, 1),

where K; € R and K, € R™". Moreover, the controller designed for the network (39) in this section is the same as
in Section 3.

Theorem 4.1. If there exists a constant p > 0 such that

2N@A+hHS (M +MT) >0, (43)
(\iﬂf éR]<O and (A{ éI]<O 44)
ERT @RI EHT L)
where Wf = Iy ® (= £ 2 = 2B+ DR + 2IR + D' + C* + C' — 1R + 2£°T) - 21$H®(M+MT),éR=é’=
Iy ® (I, — 1KD), P = 1N®( P ~2B+2L' + DR+ D' + C' + CR — v + 2{'T) - P §2H®(M+MT)

\Pg = ‘Pé =Iy® (_E(KzT +Ky) - pIn), then the network (42) is said to be passive under the controller (7).

Proof. Choose the same Lyapunov functional V() for network (42) as in Theorem 3.1, then we have

N
Vi <2y fﬂ (€(0. 1) (Anef(0.1) = Bef(o, 1) + D (Y (0, )P (ef (0, 1) = D'(Y{(0. )P (e5(0. 1)
s=1

=

+ CR (Yo, )0 (R (o, 1) + xE(0, 1) = C'(Y(0,0)Q' (el(0, 1) + h Z Hy Maef(o.1)
k=1
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+ (DR(YR(0, 1)) = DR (YR (0, ) fR (YR (0, 1)) — TReR (0, 1) — sign(ef (o, n))(DRFR
+D'F'+CRGR+C'G")— (D' (Y!(0, 1) - D' (Y{(0, D) f' (Y{(0, 1))
+(C*(Y¥ 0, 0) - C*(Y§ (0, )" (¥ (0, 1) — (C(Yi(0, 1)

N
— (v (0. 008 (Yj(o. 0))do +2 ) | fg (el(o.0) (Anel(o.0)
s=1

—Bel(o, )+ DR(YR(0, 1)) P! (el (0, )+ D' (Y. (0, 1)) PR(eR(0, 1))
+ CR(YR(0, )0/ (el(0, 1)) + xL(0, 1) + C' (Y (0, 1)) Q% (eR (0, 1))

N
+h ) Ay M nel(o.n+(D* (¥} (0, 1)~ D*(Y§ (0, D) f' (Yy(o, 1))
=1

+(D'(Yl(o, 1) = D' (Y0, D) (Y (0, 1) + (CR (Y (0, 1)
- CR(Y§ (0. )" (Yi(o, 1) — (" el(o, 1) — sign(el(o, YD F'
+ D'FR + CRG' + C'GR) + (C'(Y! (0. 1)) - C'(Yi(0. 1))

x g" (Y& (o, 1)))do + 2 fg (®(0. )" (Iy ® (" T))eR (0, do
-2 f (R0, )" (Iy ® {MYeR(o, )do +2 f €', 0"
Q Q

x(Iy ® ({'T))e! (o, )do—2 fg (e (o, 1) (Iy ® {el (o, t)do.

On the basis of the boundary condition as well as Green’s formula, one has

hZZ f (ef(0, )" AuM nel(o, 1do

s=1 «k=1
=h f (®(0, D) (H & (M + M"))ae(o, Hdo
Q
k
7 aeR(Q’t) T/13 > T 66R(Q’t)
—h —)'(H M+ M')————=d
;L< o) (A ® U + 1) =5 “=do

Similarly,

N , el
2h Zf(e (0.0 HyMael(o, H)do = — Zf e (o, t)) (He O+ M) 66(9 t) do

k
s=1 k=1 g=1 Qq

Then, we can easily obtain that

N
22 f (R0, 1) AneR(o, Hdo + 2h Z

s=1 k=1

N
f (X0, 1) M ek (o0, 1o
Q

R R
__Zf ae (o, t) (21N®A +hH®(M+MT))6e @14
aQq Qq

< —Z; f_g fg (0,0 2Iy @ A+ hA @ (M + M"))eR (o, Hdo.

Similarly,

=

N N
22 f (e}, 1) Anel(o, do + 2h ZZ f (eh(o, )" HuM nel(o, 1)do

s=1 k=1
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(46)



K !
- I(M) OIveA + e (1 + )20 g,
| JQ 0oy 0oy

<
I

K

<=, L [0 @iy oA + b e (61 + MT)e (0. ndo. “7)
p & Ja

From (12)-(19), (22)-(29), (46) and (47), we have

V(t)<f(e 0. (Iy® (- Z§——23+DR+2LR+D’+CR+C’ YR 4+ 208 -
qg=1 ~4 g=1

H® M+ M"))eR(o, do

gm =

f(e (0. (Iy ® (— Z 2 _oB+2L + DR+ D' + &+ CR -+ 20'T)) - Z ,;%ﬁ@ (M + M"))é (o, )do
g=1 q

+2 fg (®(0, )" x" (0, )do +2 fﬂ (e’ (0, 1)" x' (0, do.
Furthermore,

V(t) - f[(ZR(Q, ) x*(0, 1) + (0, 0) X' (0,)]do - p f[(xR(Q, N x*0, 1) + (' (0,0 x' (0, n]do
Sho.o

f(eR(Q N (Iy ® (- ; z " 2B+ DR + 2LF + D' + CR + €7 — R + 20°T) - ; %H®(M

+ MT))eR (o, Hdo + f e, ) (Iy® (- Z = —2B+2L'+ DR+ D'+ C' + CR -

‘1

K

h
2= 5 2 = H® (M+M")e' (0, n\do+ f ", 1) (1N®<——(KT+K2> —pl))x" (0, n)do

q=1 ~4

+ fg o, ) Iy ® (—5<f<§ + K2) = pl,))x' (0, H)do + 2 fQ (0,0 Iy ® U,

1, 1,
- 3 KD (e, ndo +2 f (e (0, 1)" (Iy ® (I, = 5K (0, nde

li’R =R li,l =1
f(so (0. 1) [(_R)T AR)‘P (0, t)d9+f(90 (@0 [(_,)T A,)so (0, )do,

where <pR(Q, 1) = ((eR(Q, N7, (XR(Q, NHHT and @ (g, 1 = ((e'(g, N7, (x'(g, )T, From (43) and (44), we can easily
obtain

V(n) < fg [0, ) (0, + (' (0.1 ¥ (0, Dldo + p fQ [0, ) x" (0, 1) + (¥ (0, D) ¥ (0,D1do.  (48)

By integrating (48) about # over the time period from ¢ to #,, one has
5]
Vi - v < [ [ 1@ o0 + o0 ¢ 0. ldodr
n Ja

+p f f [(x*(0, ) x"(0, ) + (X' (0, 1) ¥ (0, D)dodt, t, > 1,
n Q

Namely,

f fg (", )" (0, ) + (' (0, 1) (0, Ddodt = V(12) = V(1) ~ p f fﬂ [(*(0, 1) x*(0, 1) + (' (0, 1) ' (0, )]dd1

for any fp, 11 € R* and th > t.
According to Definition 3.1, we can obtain that the network (42) is passive under the controller (7). O
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4.3. Synchronization control
Theorem 4.2. The network (39) is said to be synchronized under the controller (7) if

2y @A+hAS (M +M") >0, ¥ <0 and ¥! <0, (49)
where P8 = Iy ® (- qugz 2B + DR + 2LR + D' + CR + C! — R + 27RT) — ;152H®(M+MT) Pl =
Iy® (- qufz —2B+2L' + DR+ D'+ CT + CR — v +27'T) - ;1§H®(M+MT)

Proof. Define the same Lyapunov functional for network (42) as in Theorem 3.1. Then, one has

V() < f(eR(Q, N (Iy® (- Z = _2B+DR+2[R+ D'+ CR+ (T -

K

h
+2£°T) - Zf He M + M) e, t)d@+f<e<g,t>> (Iv® (- Zfz
q=1

P, Ao .
—2B+2LI+DR+D’+CI+CR—T’+2§IF)—Z—2H®(M

g=1
+M"))é! (0, 1)do
<alleC, 0,
where & = max{Ay (), 1 (P)).
Similar to the proof of Theorem 3.2, we can easily obtain lim |le(:,7)|| = 0. Therefore, the network (39) is
—+00
synchronized. 0

5. Numerical Examples

Example 5.1. Consider the following CRDCVMNN:

6YS s ETIVEPN
# CAAY,(0,1) - BY:(0,1) + C(¥s(0, 0)g(T@.1) + tts(0s 1) + D(¥s(0 D) f(Ys(0s 1))
N
+h ) HyMY,(0,1) + x,(0, 1), (50)
k=1

where s = 1,2,--+.6, ff(w) = f/(w) = gf(w) = glw) = = (i = 1,2,3),Q = {Ql “l<o<lhA=
diag(0.6,0.8,0.7), B = diag(0.8,0.9,0.8), M = diag(0.6,0.5,0.3), s = 0.1, 7;(1) = 1 - 5e”, 7 = 1,9, = 51
J=1,2,3, and the matrices C(¥,(g, 1)), D(¥,(0,1), H = (HyJexs are selected as follows:
035, R0l < 11 035, banl<1l
025, b .0l> 1.1, -045, ienl> 11,

bRl < 11 043, (o0l < 1.1
& 08 (0.1 = 0% ) =
0 {o 33, PRee.nl> L1, 20l 0.25,  Iygple.nl> L1,

0.12
C.R b
;05(0.1) = {011

0% (e.0) = { 0% 0. 0) = {

bR, 0l < 1.1
&0l > 1.1,
0.33, b0 nl< 11
';2()753(@, n) = R
0.25, &0l > 1.1,

~0.15, (el < 1.1
-027, lyy(enl> 1.1,

e 0l < 1.1
(e, 0l > 1.1,
-0.15, R0l <11
-0.25, R ol> 1.1,
0.15, PRl < 1.1
021, PRe.nl> 1.1,

-0.24,
K 0% 0) = {

KR 0, 0) = { e, 00, 0) = {
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. 0.25,
012()’51(9» n) = {015’
;o 0.42,

621(yS2(Q, n) = {025,

0.22,

653())22(9» n) = { —011

0.34,
(00, 0) = 0.25.

e | 0%
@ IEN 0 0s,

bl

0.
d® ok (0, 1) = {

0.13,
B (R (0, 1)) = 02
e 0.15,

~0.15,

d® %0, 0) = { 026
o) = 0.15,

43500, -0.24,

0.24,
0.15,
0.32,
0.25,

d{g()’{](Q» n) = {

dy, (V!5 (0, 1) = {

;o 0.12,
d23(y52(Q7 n) = ~ 011
L 0.24,
dy(ys(0,1) = 0.12

(0,0l < 1.1

i (e. 0l > 1.1,
V(e 0l < 1.1
(e, 0l > 1.1,
(o0l < 1.1

(o, 0l > 1.1,

s, < 1.1

50,0l > 1.1,
@l < 1.1
bR e, 0l > 11,

R (0,0l < 1.1

¥ e 0l > 1.1,
S0l < 1.1
. 0l > 1.1,

e, 0l < 1.1
(e, 0l > 1.1,
&0l < 1.1

& 0l > 1.1,

(e, nl < 1.1

i (o. 0 > 1.1,
yiy(o, 0l < 1.1
(e, 0l > 1.1,
(oDl < 1.1
a0, 0l > 1.1,
yis(o, Dl < 1.1
5. 0l > 1.1,

-0.6 03
03 -0.7
0.1 02

0 0 0.1
01 01 05
01 01 0.1

b, (v (0. 1) = {

déz()’éz(@» n) = {

0.1
0.2

0.32,

0.13,
-0.14,

0.12,

i (e. 0l < 1.1
(e, 0l > 1.1,
yiy(o. 0l < 1.1
(o, 0l > 1.1,

013(){](9» n) = {

0.15, lyl(e. 0l < 1.1
el 050, 1) = >
-0.23, |y, nl>1.1,
031, V(o0 < 1.1
9t = ‘
a0l = {o 25, o0l > 11,
R (@) = 0.25, @l <11
o ~0.15, hR@nl> 11,
K 0 (o.1) = 043, R0l <1.1
D@, 045, A0l > L1,
-0.12, .0l < 1,
dB.(O" (0. 1) = ?
0 13’ |y52(g7 t)' > 1'1’

0.13,
0.11,
-0.15,
-0.25,
0.31,
0.13,
—-0.34,
0.16,

.0l < 1.1
.0l > 1.1,
i (o0l < 1.1
e, 0l > 1.1,
b0l < 1.1
vl (0, 0l > 1.1,
(o0l < 1.1
(0, 0l > 1.1,

d¥ 0% 0. 0) = {
4, (0, 0) = {

di (' (0. 1) = {

21 L (0,0 <
dgl(yg(g,t)):{o ’ |y‘Y3(€’ s
-0.16, [|y;(o, 0l > 1.1,
-0.35, [Ya(o,0 < 1.1
dh (50, 1) = { ,lyﬁ(g /)
0.25, 50,0l > 1.1,
0 0.1 0.1
0 0.1 0.1
-1.0 0.1 05 0.1
-04 02 0.1
02 -10 0.1
0.1 01 =05

Apparently, IR, f16), gR¢) and gl ()i = 1,2,3) satisfy Assumption 1 with Ff = F/ = G® = G/ = 0.5 and
R =10 = = 5l = 0.5. The input x4 (0,1) = 0.5sVtcos(mp) + i0.4s Vtcos(mo), xx2(0,1) = 0.1sVtcos(mo) +
zO 2s \/icos(ng) X300, 1) = 0.3sVrcos(mo) + i0.2s Vicos(mp). The parameters in the controller (7) are chosen as
follows: IR = diag(0.8,0.9,0.7), T’ = diag(0.7, 1.1,0.9). Take K; and K, as follows:

0 03 0 -0.1 03 02
02 -05 01 |, K= 0 -04 01 }|.
04 0 -03 02 03 -03
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Figure 1: The norms of e,(:, 1), z5(:, 1), xs(-, 1), s =1,2,--- ,6.

By exploiting the MATLAB, we can easily obtain that p = 4.9466 which satisfies the condition (8). According
to Theorem 3.1, the system (50) is passive under controller (7). Figure 1 respectively shows the evolutions of error,
output and input of six nodes when the system (50) is passive. Similarly, through a simple operation based on the
above parameters by using MATLAB, we have

A(PR) =(-2.2689, -2.2144,-2.1928, -2.1777,-2.1549, -2.1177, -1.8193, —1.7866, —1.7736, —1.7646, —1.7509,
—1.7286, —1.4458, —1.3804, —1.3545, —1.3364, —1.3090, —1.2644},

A(PY) ={-2.4689, —2.4144,-2.3928, —2.3777,-2.3549, —2.3177,-2.0193, —1.9866, —1.9736,
—1.9286, —1.3458, —1.2804, —1.2545, —1.2364, —1.2090, —1.1644},

—-1.9646, -1.9509,

which satisfy the condition (31). On the basis of Theorem 3.2, the system (50) realizes synchronization. Figure 2
depicts the simulation result of synchronization.
Example 5.2. Consider the following CRDCVMNN with spatial diffusion coupling:

9Ys(0,1)

=AAY. -
o AY(o,1)

BY (0, 1) + C(Y(0,1)g(Ys(0, 1)) + us(0, 1) + D(Y(0, ) f(Ys(0, 1))
N
+h
k=1
where s = 1,2,--,6, ff(w) = f/(@) = giw) = gw) = lorldosll G = 1,2,3),Q = fol -1 <0 < 1}, A =
diag(0.7,0.6,0.7), B = diag(0.8,0.9,0.8), M = diag(0.7,0.6, 0.4), h =02, Ti() = 1- 3je", T=11v9 = 3ij
j=1,2,3, and the matrices C(Y,(0, 1)), D(Y (0, 1)), H = (Hy)exs are selected as follows:

AY(0,1) + x5(0, 1), (51)

045, bhR@ <13 -035, bRl <13
R O (0.0) = e RO (0.0) = !
-0.35, |yg0, 0> 1.3, -0.25, |yg0, 0> 1.3,
0.12, R, nl < 1.3 -023, 0l <13
R R (0,1) = ! R R (0,1) = e
0.35, |yg(e. 0> 1.3, 0.25, |yn(e, 0> 1.3,
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Figure 2: Time evolutions of es(-, 1), s =1,2,---,6.

-022, R <13
0.11, %0l > 1.3,
023, X 0I<1.3
0.25, %, 0l > 1.3,
-0.15, |yl(e.nl <13
-0.26, |y (0,0 > 1.3,
-0.12, Iienl <13
0.13, Iy (o.5) > 1.3,

0.14, R0l < 1.3
0.26, Y50, 6> 1.3,
0.13, X< 1.3
0.25, %G, 0l > 1.3,
0.16, %@, < 1.3
-0.11, R0l > 1.3,
024, Iyl (0,nl < 1.3
031, Iy (o0 > 13,

0% 0.1) = { 0% 0.10) = {

C§1(Y§3(Q» n) = { C§2(Y§3(Q» n) = {
oo - h0en |

Lot (0, 0) = el 0,0, 1) = {

032, o0l <13 + Dalenl <13
c 1) = ’
el = { 0.25,  lyyle.nl> 1.3, 20%(e.0)= 012, Iyple.nl> 1.3,
026, ale.nl <13 015, Iise.nl <13
c 1) = D)=
L0h.0) = { 011 booos s GOR@D=1o s
034, Dyl <13 -022, hslenl <13
50,1 = 500 0) =
2 {026 Vel > 13, B -0.25, ie.nl>13,

044, e nl< 13
-0.15, Phe.nl>13,

4 R <1
R (5 (0,1) = 043, R0 <13
s 015, |y§2(Q, t)| > 13’
0
023

36, DRe.nl <13

d® F (0, 1) =
-0.25, R nl> 13, 12051 0)

d® % (0, 1) = {
034, .0l <13

dR , N

BOn@0) = {013 Ve (0.0l > 1.3,

-0.25, |yHie,nl <13
% (R (0. 1) = o
=015, |y, 0l > 1.3,

12, i< 13

0o ) = 0.0l > 1.3
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0.23, R0l < 1.3,
0.13, %G, 0l > 1.3,
0.15, |yl (.0l < 1.3,
-0.25, 0> 13,
041, Iy,nl <13,
023, Iy, (0,0l > 1.3,
-035, |y 0l <13,
0.16, y'5(0, 0l > 1.3,
0.27, yls(e.0l < 1.3,
-0.16, |y5(0,0 > 1.3,

-0.18, |yl <13,
-0.26, YR, 0l> 1.3,
-0.15, R0l < 1.3,
-0.24, R0l > 1.3,
0.38, |y, (0,0 < 1.3,

-0.15, |y (0,0 > 1.3,
035, lynle,nl < 1.3,
025, Iy,0. 0> 1.3,
-022, |yhe.nl <13,
-0.11, L0, 0> 1.3,
0.26, |y'5(0,01 < 1.3, 0.36, [y5(0,0 < 1.3,
0.12, |y5(0,0] > 1.3, 0.25, Iy'5(0,01 > 1.3,

-0.6 03 0 0.1 0.1 0.1
03 -09 03 0 0.1 02
0 03 -1.1 01 05 02
0.1 0 01 -05 02 01
01 01 05 02 -10 01
01 02 02 01 01 =07

d5 (0. 0) = { d¥(R (0.1) = {

A (vs(0. 1) = { i, (v, (0, 1) = {

d{z(yil(ﬁh ) = { d{';(yil(gv n) = {

dél(yiz(Q’ n) = { déz()’éz(gv n) = {

d§3(Y§2(Q, n) = { dé](yig(g, n) = {

d&()&(@» n) = { d§3(y£3(19’ n) = {

H=

Apparently, fR(), f7(-), gf(-) and g/(-)(i = 1,2,3) satisfy Assumption 1 with FR = F/ = G® = G/ = 0.25 and
R =1 =y =yl =025 The input x,(0,) = 0.35Vtcos(mo) + i0.25 Vtcos(mo), xx(0,1) = 0.4sVtcos(mo) +
i0.7s Vtcos(mo), xs3(0,1) = 0.55Vtcos(mo) + i0.2s Vicos(mo). The parameters in the controller (7) are chosen as
follows: T* = diag(0.8,0.7,0.6), ! = diag(0.6, 1.2,0.8). Take K; and K, as follows:

0.1 03 0
K=l 02 -06 01 |, K=

04 0 -02

0 -04 0.1

-02 01 03
05 03 -0.6

By exploiting the MATLAB, we can easily obtain p = 4.9684 which satisfies the condition (44). And

ARIy ® A+ hH & (M + M")) = {0.8125,0.9246,0.9479, 0.9957, 1.0426, 1.0726, 1.0787, 1.1417, 1.1617, 1.2000,
1.2163,1.2164, 1.2514,1.2638, 1.2950, 1.3151, 1.4000, 1.4000},

which satisfies the condition (43). According to Theorem 4.1, the system (51) is passive under controller (7). Figure
3 respectively shows the evolutions of error, output and input of six nodes when the system (51) is passive. Similarly,
through a simple operation based on the above parameters by using MATLAB, we have

AP = {-2.5350, —2.4603, —2.4500, —2.4300, —2.3988, —2.3514, —2.3329, —2.3029, —2.2767, —2.2560, —2.1849,
—2.0728,-2.0456,-1.8970, -1.8619, -1.8073, —1.7243, —1.5935},

A(PY) = {-2.9603, —2.8329, —2.8029, —2.7560, —2.7350, —2.6849, —2.6500, —2.6300, —2.5988, —2.5728, —2.5514,
—-2.4767,-1.8456,-1.6970, -1.6619, -1.6073, —1.5243, —1.3935},

A2Iy® A+ hH ® (M + M7)) = {0.8125,0.9246,0.9479,0.9957, 1.0426, 1.0726, 1.0787, 1.1417, 1.1617, 1.2000,
1.2163,1.2164,1.2514,1.2638,1.2950, 1.3151, 1.4000, 1.4000},

which satisfy the condition (49). On the basis of Theorem 4.2, the system (51) is synchronized. Figure 4 depicts the
simulation result of synchronization.

22



10 T T T T

........ ey (I — — 1z, (-l ——lix, (0l
T el DIzl DIl ]
oL o Tl — — lizgl Il —— lixg- Dl /
eyl — — Nzt lx, ¢l
7h gl Il — — lzgl- DIl —— lixghe ]
e lleg I — — izl M /

Figure 3: The norms of e,(:, 1), z5(-, O),x5(-, 1), s = 1,2, ,6.

6. Conclusion

This paper has concerned with two types of CRDCVMNN:S, one is with state coupling and the other is with spatial
diffusion coupling. By exploiting some inequality techniques, Lyapunov functional approach as well as the con-
struction of suitable controller, some novel criterion for ensuring passivity of these two networks have been derived.
Similarly, we also have carried out some discussion on the synchronization of CRDCVMNNs with state coupling
as well as spatial diffusion coupling respectively. Several simulation examples have been presented to confirm the
correctness of our results at the end.
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