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Abstract

Decision-making in the presence of intangible elements must be based on a robust, but subtle,
balance between expert know-how and judgment consistency when eliciting that know-how. This
balance is frequently achieved as a trade-off reached after a feedback process softens the tension
frequently found between one force steadily pulling towards (full) consistency, and another force
driven by expert feeling and opinion. The linearization method, developed by the authors in the
framework of the analytic hierarchy process, is a pull-towards-consistency mechanism that shows
the path from an inconsistent body of judgment elicited from an expert towards consistency, by
suggesting optimal changes to the expert opinions. However, experts may be reluctant to alter
some of their issued opinions, and may wish to impose constraints on the adjustments suggested
by the consistency-enforcement mechanism. In this paper, using the classical Riesz representa-
tion theorem, the linearization method is accommodated to consider various types of constraints
imposed by experts during the abovementioned feedback process.
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1 Introduction and literature review

Making sound and effective decisions is crucial in real-world optimization processes involving difficult
to quantify variables. In this case, decision-making (DM) is commonly driven by the personal experi-
ence of a single stakeholder, or often by the consensual involvement of a group of decision makers
[1]. It is a fact that individuals and enterprises rely on multi-criteria decision-making (MCDM) meth-
ods to achieve wise and effective solutions [2] for many of their problems. The existing literature
offers many examples [3, 4, 5, 6] that demonstrate the successful application – also under hybrid ar-
rangements [7] – of MCDM methods to resolve a wide variety of multi-criteria optimization problems
[8, 9, 10, 11].

However, far from being straightforward, DM is plagued with difficulties for a number of reasons.

After having briefly introduced the role of MCDM methods and their usage in the literature, Erdo-
gan et al. [12] report the steps necessary to use these techniques. Starting from a clear definition
of the sets of options (usually called alternatives) and criteria, a mechanism to evaluate those ele-
ments should be established to calculate (quantify) their relative and mutual importance in terms of
weights. Such a mechanism should cope with various delicate features.

Subjectivity. Ability to make sensible use of the subjective perception of experts is crucial.

Uncertainty. Contexts characterized by uncertainty [13, 14] need techniques tailored to cope with
it.

Incompleteness. Lack of information is also frequent in elucidation [15] and must be suitably han-
dled.
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Consensus. When various decision makers participate in the evaluations, consensus within the
group is central. Kozierkiewicz-Hetmańska [16] develops a set of new theorems focusing on
the enhancement of consensus quality when dealing with collective knowledge.

Disagreement. Dror et al. [17] refers to the reliability of DM processes and recognizes disagree-
ment among experts in a DM group as cause for concern. The authors underline the importance
of collecting contextual information and assert that even the same expert, when examining the
same data on different occasions, may reach different conclusions. In fact, as asserted by
Rekha and Muccini [18], involving groups can increase both the level of complexity and the
opportunities for DM methods. Montani et al. [19] develop a framework aimed at handling sce-
narios in which opinions given by two experts with similar backgrounds diverge, and attempts
at reconciliation to obtain a final result.

Negotiation. Exchanging feedback with experts [20] to ensure that acceptable and consistent val-
ues are in line with the real perception of phenomena by experts is essential. Pérez et al. [21]
discuss a consensus-reaching process as a negotiation problem, in which discussion and delib-
eration among the group members are facilitated for sharing opinions and agreeing on a final
decision.

Hard constraints. During negotiation, however, cases may occur in which one or more experts do
not wish to modify part of their judgments, or anchor specific constraints to be satisfied. To the
best of our knowledge, the consideration of hard constraints during feedback processes is an
aspect not yet considered from a mathematical perspective.

Integrating these kinds of aspects in MCDM models is paramount for DM actions to be structured
and supported by reliable tools that can cope with the above issues. In particular, a structured tool
would facilitate the finding of a good trade-off among diverse options in a consistent way, and should
include expert hard-constraints. This is the main subject of this paper, and which we approach within
the analytic hierarchy process (AHP) framework.

The AHP, first developed by Thomas Saaty [22], is one of the easiest and most flexible MCDM
methods [23]. Based on pairwise comparisons between the elements under consideration, it en-
ables synthetizing judgments, even if issued by multiple actors, to make a good assessment of the
alternatives [24] under variously weighted criteria [25]. A crucial point within the AHP framework is
the measurement of the expert consistency [26] when elucidating comparisons of pairs of elements.
These comparisons are translated into numbers using a numerical scale [27], and then collected in a
matrix.

In this way, a body of knowledge is compiled in a pairwise comparison matrix (PCM), whose entries
express the numerical evaluations that embody expert opinions about the relative importance of ele-
ments [28]. As highlighted by [29], PCMs are a popular tool for weighting criteria and, consequently,
evaluating alternatives in relation to a given DM process. However, experts may produce inconsis-
tent judgments [30], especially when comparing a large number of elements [31], due to a natural
lack of consistency in human thinking [32]. To help solve this problem, in a previous work [33], the
authors developed a linearization process to calculate the closest (synthetic) fully consistent matrix
to a given PCM. However, fully consistent values may (significantly) differ from expert evaluations,
and from what is the real (and most practical) expert perspective. To bridge this gap between the
mentioned linearization process outcome and reality, the importance of exchanging feedback with
the experts was underlined [34]. The consequent trade-off process aims to achieve a final matrix
with an “acceptable” level of consistency [35], while still reflecting expert personal experience as
well as possible.

Regarding the present work, we were initially interested in exploring the case in which an ex-
pert rejects a change suggested by the consistency-enforcement method. In other terms, our first
research question was: how can we achieve the closest consistent matrix to a PCM under the con-
straint that an expert wants to keep one of the original entries unchanged. This simple but important
problem is here solved in a more general context, in which an expert or group of experts impose cer-
tain (hard) constraint(s) affecting the suggested modifications of their judgments, while not objecting
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to changing the remaining judgements. This generalization makes use of the classical Riesz repre-
sentation theorem [36, Section 3.7]. The proposed approach simultaneously guarantees adherence
to the expert opinions, and is consistent in dealing with evaluations when carrying out AHP decisions
in the soundest manner.

This article is structured as follows. After this introduction and literature review, in Section 2
we present the necessary background. Section 3 motivates and clearly states the problem, and
Section 4 (as the central section) develops the solution proposed through several technical lemmas
and theorems, and presents several illustrative numerical examples. The codes used in the examples
are given in the Appendix. Finally, the sections of conclusions and references close the paper.

2 Background and used notation

Two types of matrices arise in AHP theory. A reciprocal matrix A= (ai j) is a square n× n matrix that
satisfies ai j > 0 and ai ja ji = 1 for all 1≤ i, j ≤ n. A consistent matrix A= (ai j) is a square n×n matrix
that satisfies ai j > 0 and ai ja jk = aik for all 1 ≤ i, j, k ≤ n. It is trivial to prove that any consistent
matrix is reciprocal. Also, it can be easily proved that the rank of any consistent matrix is 1 [37,
Theorem 1].

The set of n×m real matrices will be denoted by Mn,m. We write M +
n,m = {(ai j) ∈Mn,m : ai j >

0 for all i, j}. If A is a matrix, then tr(A) and AT will denote the trace and the transpose of A, re-
spectively. Any vector of Rn will be considered a column. We denote by e1, . . . ,en the vectors of the
standard basis ofRn. If x1, . . . ,xk ∈ Rn, we denote by span{x1, . . . ,xk} the subspace spanned by these
vectors. The vector [1 · · · 1]T ∈ Rn will be denoted by 1n.

We will use the mappings L : M +
n,m →Mn,m and E : Mn,m →M +

n,m given by (L(A))i j = (log(ai j))
and (E(A))i j = (exp(ai j)), respectively, where A = (ai j). Evidently, for A ∈M +

n,m, one has that A is
reciprocal if and only if L(A) is skew-symmetric.

For two positive matrices A, B ∈Mn,m, we define

d(A, B) = ‖L(A)− L(B)‖F , (1)

where ‖·‖F is the Frobenius norm. It is well known that ‖A‖F = tr(AAT )1/2 holds for any matrix A. Also,
it is well known that the rule

〈A, B〉= tr(ABT ) (2)

defines an inner product in Mn,m.

For a reciprocal matrix A∈Mn,n, it is proved in [33, Theorem 2.3] that there is a unique consistent
matrix, denoted by XA, such that

d(A, XA) =min{d(A, X ) : X ∈Mn,n, X is consistent}.

This matrix XA is obtained by means of the linearisation process:

Reciprocal matrices → Sn → Ln → Consistent matrices
A 7→ L(A) 7→ pn(L(A)) 7→ XA = E(pn(L(A)))

(3)

Here, Sn is the set of n× n skew-symmetric matrices, Ln = {L(M) : M ∈Mn,n, M is consistent}, and
pn : Mn,n → Ln is the orthogonal projection assuming that Mn,n is endowed with the inner product
defined in (2).

It can be proved (see [33, Theorem 2.2]) that Ln is a linear subspace with dimLn = n−1. In fact,
if we define the linear mapping φn : Rn→Mn,n given by

φn(x) = x1T
n − 1nxT , (4)

it is seen that kerφn is the subspace spanned by 1n, and Imφn =Ln.

3



Fact 1 If v = [v1 · · · vn]T ∈ Rn, then, by the previous considerations, φn(v) ∈ Ln, and therefore,
E(φn(v)) is consistent. But the (i, j) entry of E(φn(v)) is exp(vi − v j) = exp(vi)/exp(v j). Thus, the
vector E(v) is a priority vector of E(φn(v)). Recall that if w is a priority vector of a consistent matrix,
then Kw is also a priority vector for any K > 0.

The matrix obtained in the linearisation process (3) can be computed by means of the following
expression (see [38, Theorem 3]) of pn(M) for an arbitrary M ∈Sn:

pn(M) =
1
n

�

(MUn)− (MUn)
T
�

, (5)

where Un = 1n1
T
n ∈Mn,n is the matrix all of whose components are ones.

3 Motivation and general setting of the problem

To motivate and get a better understanding of the main results of the paper, we begin by setting a
previous problem and providing an example.

Problem 1 Let A ∈ Mn,n be a reciprocal matrix. Find a consistent matrix which is the closest to
A such that the entries (1, 2) of A and this consistent matrix are equal. It is considered the distance
defined in (1).

Evidently, we can assume that n> 2, since otherwise, the whole matrix A would be fixed.

Example 2 Let A be the following reciprocal matrix:

A=





1 2 2
1/2 1 3
1/2 1/3 1



 .

The consistent matrix closest to A in the sense of the distance (1) can be computed by using (5):

XA =





1 1.387 2.885
0.721 1 2.080
0.347 0.481 1



 .

It is clear that all the entries of A have changed. It is feasible that the expert having produced
matrix A does not want to see a certain entry of A altered. For example, if x = [x1 x2 x3]T ∈ R3 is
the normalised priority vector, the expert wants that x1 = 2x2. In this case, the expert wants that
a12 = x1/x2 = 2 is unchangeable. �

The previous Problem 1 can be generalised as follows:

Problem 2 Let B = (bi j) ∈Mn,n be a skew-symmetric matrix and c ∈ R. Find Y = (yi j) ∈Ln such
that

‖B − Y ‖F ≤ ‖B − Y ′‖F and y12 = c

for all Y ′ ∈Ln such that the entry (1,2) of Y ′ is c.

Observe that if c = b12, then Problem 2 is exactly Problem 1.

We will generalise Problem 2 in two ways. One way is evident: to increase the number of fixed
entries of the skew-symmetric matrix B. The other direction will be explained in the next paragraph.

Observe that the mapping Ψ : Mn,n→ R given by Ψ(M) = m12 is linear, and fixing the entry (1,2)
in a matrix M is equivalent to fix the value Ψ(M). Therefore, another way to generalise Problem 2 is
fixing Ψ(M) for a given linear mapping Ψ : Mn,n → R. Instead of working with linear mappings from
Mn,n to R we will deal with more familiar objects, as we will show in next paragraph.

Let us note that if Ψ : Mn,n → R is a linear mapping, then there exists a unique matrix R ∈Mn,n
such that Ψ(M) = 〈M , R〉 for any M ∈ Mn,n (this is part of the well-known Riesz representation
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theorem, see e.g. [36, Section 3.7]). Of course, we assume that Mn,n is endowed with the inner
product defined in (2). Therefore, we can avoid the use of linear mapping from Mn,n to R. Let us see
a simple but useful lemma that permits translating linear operators to matrices. In the proof of this
lemma we will use the equality tr(AB) = tr(BA) valid for any pair of matrices A, B such that AB and
BA are meaningful.

Lemma 1 If R= (ri j) ∈Mn,n, then
¬

eie
T
j , R

¶

= ri j .

Proof: It follows from
¬

eie
T
j , R

¶

= tr
�

(eie
T
j )

T R
�

= tr(e je
T
i R) = tr(eT

i Re j) = ri j . �

This expression is useful to find the matrix R such that Ψ(M) = 〈M , R〉 for any M ∈Mn,n, where
Ψ : Mn,n→ R is a linear mapping, as we show in the next example.

Example 3 Let Ψ : M3,3 → R given by Ψ(M) = m12 +m23 −m13. We shall find the matrix R such
that Ψ(M) = 〈M , R〉 for any M ∈M3,3. By using 〈M , R〉= m12 +m23 −m13 for matrices M = eie

T
j and

Lemma 1 we get

R=





0 1 −1
0 0 1
0 0 0



 . �

Now, we extend Problem 2. To this end, we introduce the following notation: for R1, . . . , Rk ∈Mn,n
and c1, . . . , ck ∈ R, we define

A (R1, . . . , Rk, c1, . . . , ck) = {M ∈Ln : 〈M , Ri〉= ci , i = 1, . . . , k}. (6)

When there is no danger of confusion, we simply write A instead of A (R1, . . . , Rk, c1, . . . , ck). Recall
that the set Ln is composed of n× n matrices of the form L(X ), where X ∈Mn,n is consistent. Since
Imφn = Ln, where the linear mapping φn : Rn → Mn,n is defined in (4), the above set A can be
rewritten as

A (R1, . . . , Rk, c1, . . . , ck) = {φn(v) : v ∈ Rn, 〈φn(v), Ri〉= ci , i = 1, . . . , k}. (7)

The generalisation of Problem 2 is the following one:

Problem 3 Let B ∈Mn,n be skew-symmetric, R1, . . . , Rk ∈Mn,n, and c1, . . . , ck ∈ R. Find Y ∈A such
that

‖B − Y ‖F ≤ ‖B − Y ′‖F for all Y ′ ∈A .

Where the set A is defined in (6).

Let B ∈Mn,n be a skew-symmetric matrix. Notice that if R= (ri j) ∈Mn,n is defined as r12 = 1 and
ri j = 0 for (i, j) 6= (1, 2), then Problem 3 for A (R, c) reduces to Problem 2. Evidently, for this matrix R
we have 〈M , R〉= m12 for any matrix M = (mi j) ∈Mn,n.

4 The solution to Problem 3

First of all, observe that if the set A (R1, . . . , Rk, c1, . . . , ck) is empty, Problem 3 is meaningless. For
example, let us consider the matrix R of Example 3 (or the linear mapping Ψ : M3,3 → R given by
Ψ(M) = m12 +m23 −m13). Evidently, for any v = [v1 v2 v3]T ∈ R3, one has Ψ(φn(v)) = (φn(v))12 +
(φn(v))23−(φn(v))13 = (v1− v2)+(v2− v3)−(v1− v3) = 0. Therefore, for this example, the set A (R, c)
is empty for any c 6= 0. In the next Theorem 2 we shall characterise this “anomalous” behaviour. First,
we see a useful result.
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Theorem 1 Let R ∈Mn,n and v ∈ Rn. Then 〈φn(v), R〉= vT (R1n − RT
1n).

Proof: According to the definition of φn given in (4), one has

〈φn(v), R〉= tr
�

φn(v)
T R
�

= tr
�

(1nvT − v1T
n )R

�

= tr(1nvT R)− tr(v1T
n R).

We use that tr(AB) = tr(BA) for any pair of matrices such that AB and BA are meaningful, and also
tr(C) = tr(C T ) for any square matrix C .

〈φn(v), R〉= tr(vT R1n)− tr
�

(v1T
n R)T

�

= tr(vT R1n)− tr
�

RT
1nvT

�

= tr(vT R1n)− tr
�

vT RT
1n

�

.

Having in mind that vT R1n and vT RT
1n are scalars, one obtains that

〈φn(v), R〉= vT R1n − vT RT
1n = vT (R− RT )1n. �

Incidentally, Theorem 1 tells that the adjoint of φn : Rn → Mn,n is given by φ∗n : Mn,n → R
n,

φ∗n(R) = R1n − RT
1n. This theorem has the following consequence.

Theorem 2 Let R ∈Mn,n. The following affirmations are equivalent.

a) 〈R,φn(v)〉= 0 for all v ∈ Rn.

b) R1n = RT
1n.

Example 4 Let R be the matrix of Example 3. Since R13 = RT
13, by Theorem 2, we have 〈R,φ3(v)〉=

0 for all v ∈ R3 (we already knew this fact from the previous paragraph to Theorem 1). �

By Theorem 1, the the set A (R1, . . . , Rk, c1, . . . , ck) defined in (7) can be described in a simpler
way:

A (R1, . . . , Rk, c1, . . . , ck) =
�

φn(v) : v ∈ Rn,vT (Ri1n − RT
i 1n) = ci , i = 1, . . . , k

	

. (8)

A technical result is given in the next lemma.

Lemma 2 If M ∈Mn,n is any matrix, then 1T
n (M −M T )1n = 0.

Proof: Let θ = 1T
n (M −M T )1n. Since θ is a scalar, we get

θ = θ T =
�

1
T
n (M −M T )1n

�T
= 1T

n (M
T −M)1n = −θ .

Therefore, θ = 0. �
The following result explains the algebraic structure of A written in (8). If G is any matrix, we will

denote by N (G) and R(G) the null space and the range space, respectively, of G.

Theorem 3 Let R1, . . . , Rk ∈Mn,n and c1, . . . , ck ∈ R. Let us define

xi = (Ri − RT
i )1n, i = 1, . . . , k, G = [x1 · · · xk]. (9)

a) If {w ∈ Rn : wT xi = ci , i = 1, . . . , n}=∅, then A (R1, . . . , Rk, c1, . . . , ck) =∅.

b) If there exists w0 ∈ Rn such that wT
0 xi = ci for i = 1, . . . , k, then A (R1, . . . , Rk, c1, . . . , ck) is a linear

manifold whose dimension is n− 1− rk(G).

Proof: Part a) is trivial to prove in view of (8). We will prove b) in the next paragraph (we will write A
instead of A (R1, . . . , Rk, c1, . . . , ck) for the sake of simplicity).

Since {w ∈ Rn : wT xi = ci , i = 1, . . . , k} is a non empty linear manifold in Rn and φn is a linear
mapping, it is clear that A is a linear manifold in view of (8). Also, if X = {w ∈ Rn : wT xi = 0, i =
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1, . . . , k}, then (8) yields dimA = dim (Imφn|X ), where φn|X : X →Mn,n denotes the restriction
of φn to X . Therefore, dimX = dim (kerφn|X ) + dimA . It is evident that X =N (GT ); hence by
recalling that GT ∈Mk,n, one has dimX = dimN (GT ) = n− rk(GT ) = n− rk(G). To finish the proof
of this theorem, it is enough to prove dim kerφn|X = 1. In fact, evidently, kerφn|X = kerφn ∩X =
span{1n} ∩X , but Lemma 2 leads to 1T

n xi = 1T
n (Ri − RT

i )1 = 0 for i = 1, . . . , k, hence 1n ∈X , and
thus, kerφn|X = span{1n}. �

Remark 1 A key condition in Theorem 3 is the existence of w0 ∈ Rn such that

wT
0 xi = ci ∀ i = 1, . . . , k. (10)

If we define c = [c1 · · · ck]T , then (10) is equivalent to GT w0 = c, where the matrix G has been
defined in (9). Hence, the existence of such w0 is equivalent to the consistency of the linear system
GT w= c. By using the Moore-Penrose of GT , denoted by (GT )†, the following useful characterization
may be obtained:

The system GT w= c is consistent ⇔ GT (GT )†c= c. (11)

In addition, if the system GT w= c is consistent, then (GT )†c is a particular solution.

Let us observe that the proof of Thorem 3 distils dim
�

φn(N (GT ))
�

= n − 1 − rk(G). The next
result gives the (theoretical) solution to Problem 3.

Theorem 4 Let B ∈ Mn,n be skew-symmetric, R1, . . . , Rk ∈ Mn,n and c1, . . . , ck ∈ R. Let us define
x1, . . . ,xk and G as in (9). If there exists w0 ∈ Rn such that wT

0 xi = ci for i = 1, . . . , k, then the solution
to Problem 3 is Y = φn(w0)+Z , where Z is the orthogonal projection onto φn(N (GT )) of B−φn(w0).

Proof: By (8), it is clear that A (R1, . . . , Rk, c1, . . . , ck) = φn(w0) + φn(N (GT )). Therefore, find the
minimum of ‖B − Y ‖F for Y ∈ A is equivalent to find the minimum of ‖B − (φn(w0) + Z)‖F for
Z ∈ φn(N (GT )). The conclusion of the theorem is clear. �

Since we must project (orthogonally) onto φn(N (GT )), we will find a basis for this subspace.

Theorem 5 Let R1, . . . , Rk ∈Mn,n and c1, . . . , ck ∈ R. Let us define xi and G as in (8). Assume that
there exists w0 ∈ Rn such that wT

0 xi = ci for i = 1, . . . , k. Let r denote the rank of G.

a) There exists u ∈N (GT ) such that uT
1n 6= 0.

b) If {u1, . . . ,un−r−1,u} is an orthogonal basis of N (GT ), then {φn(u1), . . . ,φn(un−r−1)} is a basis of
φn(N (GT )).

Proof: a) If N (GT ) ⊂ (span{1n})
⊥, then span{1n} ⊂ N (GT )⊥ = R(G). By the definition of matrix

G and vectors xi , we have that there exist λ1, . . . ,λk ∈ R such that 1n =
∑k

i=1λi(Ri − RT
i )1n. By

Lemma 2, we get n= 1T
n1n =

∑k
i=1λi1

T
n (Ri − RT

i )1n = 0, which is a contradiction. Hence a) follows.

b) Let {u1, . . . ,un−r−1,u} be an orthogonal basis of N (GT ) (recall that r is the rank of G). We
will prove that {φn(u1), . . . ,φn(un−r−1)} is a basis of φn(N (GT )). By Theorem 3, it is enough to
prove that the vectors {φn(u1), . . . ,φn(un−r−1)} are linearly independent. To this end, let us consider
∑n−r−1

s=1 λsφn(us) = 0, where λ1, . . . ,λn−r−1 ∈ R. It follows that
∑n−r−1

s=1 λsus ∈ kerφn = span{1n}.
Therefore, there exists β ∈ R such that

∑n−r−1
s=1 λsus = β1n. Since uT us = 0 for s = 1, . . . , n− r − 1

(because {u1, . . . ,un−r−1,u} is an orthogonal system), we get βuT
1n = 0, hence β = 0 by item a),

which leads to
∑n−r−1

s=1 λsus = 0. We conclude that λ1 = · · ·= λn−r−1 = 0. �

Remark 2 Octave provides the command null to find an orthonormal basis of the null space of any
matrix by means of the singular value decomposition of this matrix (one can write type null in the
Octave prompt to see the code). However, it cannot be assured that if null(G') is executed (to find
the null space of N (GT )), the last vector of this subspace, u, satisfies uT

1n 6= 0.

Now comes another technical lemma useful in next Theorem 6.
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Lemma 3 Let v,w ∈ Rn. Then 〈φn(v),φn(w)〉= 2nvT w− 2(vT
1n)(wT

1n).

Proof: We will use Theorem 1 and Definition 4.

〈φn(v),φn(w)〉= vT
�

φn(w)−φn(w)
T
�

1n

= vT
�

(w1T
n − 1nwT )− (w1T

n − 1nwT )T
�

1n

= 2vT
�

w1T
n − 1nwT

�

1n

= 2(vT w)(1T
n1n)− 2(vT

1n)(w
T
1n)

= 2nvT w− 2(vT
1n)(w

T
1n).

The proof is finished. �
Now we give an explicit solution to Problem 3. As is customary, X † denotes the Moore-Penrose

inverse of the matrix X .

Theorem 6 Let B ∈Mn,n be skew-symmetric, R1, . . . , Rk ∈Mn,n and c1, . . . , ck ∈ R. Let us define xi ,
G as in (9), and r = rk(G). Assume that there exists w0 ∈ Rn such that wT

0 xi = ci for i = 1, . . . , k.

a) The solution to Problem 3 is Y = φn(w0 +Hµ), where

(i) {u1, . . . ,un−r−1,u} is an orthonormal basis of N (GT ), uT
1n 6= 0, and H = [u1 · · · un−r−1].

(ii) The vector µ ∈ Rn−r−1 is given by

µ=
1
n
β +

1
n (n− ‖HT1n‖2)

HT
1n1

T
n Hβ , β = HT

�

B1n − nw0 + (w
T
01n)1n

�

. (12)

b) A priority vector of E(Y ) is E(w0 +Hµ).

c) If we define c = [c1 c2 · · · ck]T , the vector w0 = (GT )†c satisfies wT
0 xi = ci for i = 1, . . . , k and the

expression of β appearing in (12) reduces to β = HT B1n.

Proof: We apply Theorem 4 to get that the solution to Problem 3 is given by Y = φn(w0) + Z , where
Z is the orthogonal projection onto φn(N (GT )) of B − φn(w0). By Theorem 5, we can write Z =
∑n−r−1

s=1 µsφn(us) for some real numbers µs. Since Z is the orthogonal projection onto φn(N (GT )) of
B −φn(w0) and {φn(u1), . . . ,φn(un−r−1)} is a basis of φn(N (GT )), we obtain

〈Z − (B −φn(w0)),φn(ui)〉= 0 i = 1, . . . , n− r − 1.

We shall simplify 〈Z ,φn(u1)〉 by using Lemma 3 and the orthonormality of {u,u1, . . . ,un−r−1}.

〈Z ,φn(u1)〉=
n−r−1
∑

i=1

µi 〈φn(ui),φn(u1)〉= µ1 〈φn(u1),φn(u1)〉+
n−r−1
∑

i=2

µi 〈φn(ui),φn(u1)〉

=
�

2n− 2(uT
11n)

2
�

µ1 − 2
n−r−1
∑

i=2

(uT
i 1n)(u

T
11n)µi .

Analogous computations can be done for 〈Z ,φn(ui)〉, i = 2, . . . , n− r − 1. We define

γi = 〈B −φn(w0),φn(ui)〉= 〈B,φn(ui)〉 −
�

2nwT
0 ui − 2(wT

01n)(u
T
i 1n)

�

for i = 1, . . . , n− r − 1. We obtain the linear system Cµ= γ, where

C =













2n− 2(uT
11n)2 −2(uT

11n)(uT
21n) · · · −2(uT

11n)(uT
n−r−11n)

−2(uT
21n)(uT

11n) 2n− 2(uT
21n)2 · · · −2(uT

21n)(uT
n−r−11n)

...
...

. . .
...

−2(uT
n−r−11n)(uT

11n) −2(uT
n−r−11n)(uT

21n) · · · 2n− 2(uT
n−r−11n)2













,
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µ= [µ1 µ2 · · · µn−r−1]
T , and γ= [γ1 γ2 · · · γn−r−1]

T .

Since B is skew-symmetric, by Theorem 1, one has 〈B,φn(ui)〉= uT
i (B− BT )1n = 2uT

i B1n. There-
fore,

γi = 2
�

uT
i B1n − nuT

i w0 + (w
T
01n)(u

T
i 1n)

�

, i = 1, . . . , n− r − 1.

We can get a condensed way to write the vector γ if we define H = [u1 · · · un−r−1] ∈Mn,n−r−1:

γ= 2
�

HT B1n − nHT w0 + (w
T
01n)H

T
1n

�

.

Set β = γ/2 and let M be the matrix such that C = 2nIn−r−1 − 2M . The system Cµ = γ is equivalent
to the system (nIn−r−1 −M)µ = β . In the next paragraphs we will prove that the matrix nIn−r−1 −M
is non-singular and we will find an explicit expresion of (nIn−r−1 −M)−1.

Observe that by using uT
i 1n = 1T

n ui we have

M =





(uT
11n)2 · · · (uT

11n)(uT
n−r−11n)

...
. . .

...
(uT

n−r−11n)(uT
11n) · · · (uT

n−r−11n)2



=





uT
11n
...

uT
n−r−11n





�

uT
11n · · · uT

n−r−11n

�

=





uT
1
...

uT
n−r−1



1n1
T
n

�

u1 · · · un−r−1

�

= HT
1n1

T
n H.

If we define α= 1T
n HHT

1n = ‖HT
1n‖2, then M2 = HT

1n1
T
n HHT

1n1
T
n H = HT

1nα1
T
n H = αM .

In this paragraph we will prove that α 6= n. If α = n, then, by the Cauchy-Schwarz inequal-
ity, n = 1

T
n HHT

1n = 1
T
n (HHT

1n) ≤ ‖1n‖‖HHT
1n‖. But, since the system {u1, . . . ,un−r−1} is or-

thonormal, it is easy to see that the matrix HHT is the matrix of the orthogonal projection onto
span{u1, . . . ,un−r−1}, hence ‖HHT

1n‖ ≤ ‖1n‖, and so n ≤ ‖1n‖‖HHT
1n‖ ≤ ‖1n‖2 = n. Since the

Cauchy-Scwharz inequality becomes an equality, the vectors 1n and HHT
1n are linearly dependent,

and so, there exists ξ ∈ R such that HHT
1n = ξ1n. By inserting this last equality into n = 1T

n HHT
1n

we have n= 1T
n (ξ1) = ξ1

T
n1= ξn, and so, ξ= 1, thus, 1n = HHT

1n, in other words, 1n is equal to its
orthogonal projection onto span{u1, . . . ,un−r−1}, and therefore, 1n ∈ span{u1, . . . ,un−r−1}. By having
in mind the orthogonality of the system {u,u1, . . . ,un−r−1}, we get uT

1n = 0, which is avoided by the
hypotheses.

Now,

(nIn−r−1 −M) [(n−α)In−r−1 +M] = n(n−α)In−r−1 + nM − (n−α)M −M2 = n(n−α)In−r−1,

which proves

(nIn−r−1 −M)−1 =
1

n(n−α)
[(n−α)In−r−1 +M] .

Hence, (nIn−r−1−M)µ= β leads to µ= (nIn−r−1−M)−1β . Therefore, by recalling that M = HT
1n1

T
n H

and α = ‖HT
1n‖2, the vector µ can be written as in (12). Now, observe that the solution Y to

Problem 3 is

Y = φn(w0) + Z = φn(w0) +
n−r−1
∑

s=1

µsφn(us) = φn

�

w0 +
n−r−1
∑

s=1

µsus

�

= φn(w0 +Hµ).

Item b) follows from Fact 1.

Let us prove c). Let w∗ be any vector satisfying xT
i w∗ = ci for i = 1, . . . , k. Since GT w∗ = c, we

have GT
�

(GT )†c
�

= GT (GT )†GT w∗ = GT w∗ = c. Therefore, we can choose w0 = (GT )†c. With this

choice, wT
01n = ((GT )†c)T1n = ((G†)T c)T1n = cT G†

1n. By using Lemma 2, we get

GT
1n =





xT
1
...

xT
k



1n =





xT
11n
...

xT
k 1n



=





1
T
n x1
...

1
T
n xk



=





1
T
n (R1 − RT

1 )1n
...

1
T
n (Rk − RT

k )1n



= 0.
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By recalling that N (GT ) =N (G†), we have that G†
1n = 0, hence wT

01n = 0.

Since ui ∈ N (GT ) = N (G†) for i = 1, . . . , n − r − 1, we obtain, G†H = G†[u1 · · · un−r−1] = 0,
which implies that HT w0 = HT (G†)T c = (G†H)T c = 0. Thus, the expression of β appearing in (12)
reduces to β = HT B1n. �

Example 5 Let A be the following reciprocal matrix

A=







1 2 2 1
1/2 1 3 1
1/2 1/3 1 4
1 1 1/4 1






.

We want to find the nearest consistent matrix to A, say X = (x i j), such that x12 = x13 and x13 = 2x24.

Let Y = L(X ) = (yi j) be the solution to Problem 3. Since x12 = x13 and x13 = 2x24 one has
y12 − y13 = 0 and y13 − y24 = log2. These constraints lead to consider the following linear mappings
Φ1,Φ2 : M4,4 → R given by Φ1(mi j) = m12 − m13 and Φ2(mi j) = m13 − m24. To apply Theorem 6,
set c1 = 0 and c2 = log 2. The matrices R1, R2 such that Ψi(M) = 〈M , Ri〉 for all M ∈ M4,4 can be
computed via Lemma 1:

R1 =







0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0






, R2 =







0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0






.

The vectors x1,x2 ∈ R4 and matrix G ∈M4,2 can be easily found by using (9). The following compu-
tations can be easily performed by Octave, as is shown in the Appendix. Since GT (GT )†c = c, where
c= [c1 c2]T , by the criterion given in (11), the system GT w= c is consistent and a particular solution
is w0 = (GT )†c. Now, it is simple to finish this example by using Theorem 6. Observe that in this
example, β and µ are scalars. The solution to Problem 3 is the matrix

X =







1 2 2 2
1/2 1 1 1
1/2 1 1 1
1/2 1 1 1






.

Obviously, this matrix satisfies x12 = x13 and x13 = 2x24. �

Remark 3 If we have only one relationship to be fixed (i.e., in Theorem 6, one has k = 1), an explicit
expression for w0 (if it exists) can be given without using the Moore-Penrose inverse.

With the notation of Theorem 6 and under the assumption x 6= 0 (otherwise, the setA defined in
(7) is non empty if and only if c = 0; if c = 0, thenA is the whole subset of n× n consistent matrices
and Problem 3 was solved in [33, Theorem 2.3]), then (GT )† = x/‖x‖2. The consistency criterion
given in (11) holds because

GT (GT )† = xT x
‖x‖2

= 1.

Hence we can choose the vector w0 appearing in Theorem 6 (see item c) of this same theorem) as

w0 =
c
‖x‖2

x.

Example 6 Let us see how Theorem 6 and the previous remark work with a rather artificial example.
Let A be the following reciprocal matrix:

A=







1 2 4 1
1/2 1 3 5
1/4 1/3 1 4
1 1/5 1/4 1






.
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We want to find the consistent matrix nearest to A, say X = (x i j), such that 2x12 x34 = x2
13.

To apply Theorem 6, we must consider B = L(A). If the solution to Problem 3 is Y = L(X ) = (yi j),
since 2x12 x34 = x2

13, then y12 − 2y13 + y34 = − log2, which leads to consider the linear mapping
Ψ : M4,4 → R given by Ψ(M) = m12 − 2m13 + m34. The matrix R such that Ψ(M) = 〈M , R〉 for all
M ∈M4,4 can be computed by using Lemma 1:

R=







0 1 −2 0
0 0 0 0
0 0 0 1
0 0 0 0






.

The vector x defined in (9) is x= (R−RT )14 = [−1, −1, 3, −1]T 6= 0, and in this example, the matrix
G defined in (9) is G = x. To apply Theorem 6 and Remark 3, we set c = − log 2 and w0 = cx/‖x‖2.
Therefore, the solution to Problem 3 is Y = φ4(w0 +Hµ), where H = [u1 u2], the set {u1,u2,u} is an
orthonormal basis of N (GT ), uT

14 6= 0, and µ is given in item b) of Theorem 6.

Finally , we compute the vector β appearing in item a) of Theorem 6 by using item c), the vector
µ given in (12), Y = φ4(w0 +Hµ), and X = E(Y ) is the solution given here.

X =







1.00000 1.01627 1.93355 3.55656
0.98399 1.00000 1.90260 3.49964
0.51718 0.52560 1.00000 1.83939
0.28117 0.28574 0.54366 1.00000






.

We can easily check that this matrix X satisfies 2x12 x34 = x2
13. To get a priority vector, it is enough to

pick the normalised first row of X or apply item b) of Theorem 6. Further details can be found in the
Appendix. �

We research now a particular, but important, case: when just one entry (and the one on its
symmetrical position) of a reciprocal matrix A= (ai j) ∈Mn,n is fixed. Evidently, we can assume n> 2
(if n = 2, the whole matrix would be fixed) and the fixed entries are a12 and a21. Recall that we use
{e1, . . . ,en} for the standard basis of Rn.

Theorem 7 Let B ∈Mn,n be skew-symmetric and n> 2. Let A =
�

M = (mi j) ∈Ln : m12 = b12

	

.

a) A 6=∅ and A is a linear manifold whose dimension is n− 2.

b) There exists a unique Y ∈ A such that ‖B − Y ‖F = min{‖B − Z‖F : Z ∈ A } and is given by
Y = φn(w0 + θ ), where

w0 =
b12

2
(e1 − e2), θ =

1
2n

�

0 0
0 2In−2 + 1n−21

T
n−2

�

B1n.

Proof: To apply Theorem 3, let R = (ri j) ∈ Mn,n be the matrix such that r12 = 1 and ri j = 0 for
(i, j) 6= (1, 2); and c = b12. It is simple to see that the definition (9) yields x= (R−RT )1n = e1−e2 6= 0
and G = x. By Theorem 3, we get item a). Also, we have by Remark 3

w0 =
c
‖x‖2

x=
b12

2
(e1 − e2).

The first assertion of item b) follows from Theorem 4. To apply Theorem 6 we need to find an
orthonormal basis of N (GT ). It is evident that v = [v1 · · · vn]T ∈N (GT ) = (span{e1 − e2})⊥ if and
only if v1 = v2, i.e., we can choose {e3, . . . ,en, (e1 + e2)/

p
2} as an orthonormal basis of N (GT ). By

employing the notation of Theorem 6, we set ui = ei+2 for i = 1, . . . , n − 2, u = (e1 + e2)/
p

2, and
H = [u1 · · · un−2]. Observe that uT

1n 6= 0.
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It is simple to see that HT
1n = 1n−2 and ‖HT

1n‖2 = ‖1n−2‖2 = n− 2. Therefore, by items a) and
c) of Theorem 6,

µ=
1
n
β +

1
n (n− ‖HT1n‖2)

HT
1n1

T
n Hβ =

1
n
β +

1
2n
1n−21

T
n−2β =

1
n

HT B1n +
1

2n
1n−21

T
n−2HT B1n.

Since Y = φn(w0 +Hµ), we will compute Hµ. It is simple to see that

HHT =
�

0 0
0 In−2

�

, H1n−2 =
�

0
1n−2

�

, and H1n−21
T
n−2HT =

�

0 0
0 1n−21

T
n−2

�

.

Hence

Hµ= H
�

1
n

HT B1n +
1

2n
1n−21

T
n−2HT B1n

�

=
1
n

�

0 0
0 In−2

�

B1n +
1

2n

�

0 0
0 1n−21

T
n−2

�

B1n

=
1

2n

�

0 0
0 2In−2 + 1n−21

T
n−2

�

B1n. �

The function theorem7.m given in the Appendix can be used to find the solution to the problem
solved in Theorem 7 (provided one has written the function phi.m given at the beginning of the
Appendix).

5 Conclusions

Multi-criteria decision-making methods are used by individuals and enterprises to achieve effective
solutions to many of their problems, since they usually include subjective, intangible, and not easily
quantifiable aspects. Given the delicate features associated with DM in this context, the integration
of as many tools as possible within MCDM methods to help the DM process is vital. In particular, a
structured tool should consistently pave the way towards a good trade-off among diverse options. In
this paper, we have considered the possibility of including expert hard-constraints in the feedback
process for accommodating personal experience with the need to achieve acceptable consistency.
We have specifically addressed this idea within the AHP framework.

Specifically, motivated by this fact – and tested by the authors in previous experience as facili-
tators in several DM processes – we considered the case in which an expert is unwilling to change
one or more judgments when urged to do so by a synthetic consistency-enforcement method (such
as the linearization method). Consequently, we solved the problem of achieving the closest consis-
tent matrix to a given PCM, subject to the constraint of keeping one or more of the original entries
unchanged. However, this practical and simple problem was extended to a more general context,
namely that of imposing other constraints in conflict with some of the suggested modifications sug-
gested by the consistency-enforcement tool. The classical Riesz representation theorem enables an
ample generalization. Various lemmas and theorems give a solid and rigorous foundation for this
approach. Using several examples, we have shown the effectiveness of the mechanism, which can
be easily implemented in Octave. As a result, the developed tool can be directly applied to specific
problems to achieve simultaneously, in a straightforward and effective way, consistency in a body of
judgment within an AHP decision process and ad hoc adherence to expert opinion.
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Appendix. Octave codes

In this appendix we list useful Octave codes, that with minor changes, can be used to solve Problem 3
for concrete matrices. The first function computes φn(v) for v ∈ Rn (recall that v is always a column)
by using the definition (4).

function M = phi(v)
[n m] = size(v);
uno = ones(n,1); % This column vector is (1,...,1) and belongs to R^n
M = v*uno'-uno*v';

The following function was used to compute the solution to Problem 3 in Example 5.

function example5
A = [1 2 2 1; 1/2 1 3 1; 1/2 1/3 1 4; 1 1 1/4 1];
B = log(A);
R1 = [0 1 -1 0; 0 0 0 0; 0 0 0 0; 0 0 0 0];
R2 = [0 0 1 0; 0 0 0 -1; 0 0 0 0; 0 0 0 0];
uno = ones(4,1);
x1 = (R1-R1')*uno; x2 = (R2-R2')*uno;
G = [x1 x2];
c=[0; log(2)];
% norm(G'*pinv(G')*c-c) -- It should be negligible (see Remark 1)
w0 = pinv(G')*c; % pinv(S) is the Moore-Penrose inverse of S
U = null(G'); % The columns of U form an orthonormal basis of N(x')
% uno'*U(:,2) -- It should be distinct from 0 to use item a.i of Theorem 6
u1 = U(:,1); H = [u1];
beta = H'*B*uno;
alfa = norm(H'*uno)^2;
mu = beta/4 + (H'*uno*uno'*H*beta)/(4*(4-alfa));
Y = phi(w0+H*mu);
X = exp(Y);

The following function was used in Example 6.

function example6
A = [1 2 4 1; 1/2 1 3 5; 1/4 1/3 1 4; 1 1/5 1/4 1];
B = log(A);
R = [0 1 -2 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
uno = ones(4,1);
x = (R-R')*uno;
c = -log(2);
w0 = c*x/norm(x)^2;
U = null(x'); % The columns of U form an orthonormal basis of N(x')
% uno'*U(:,3) -- It should be distinct from 0 to use item a.i of Theorem 6
u1 = U(:,1); u2 = U(:,2); H = [u1 u2];
beta = H'*B*uno;
alfa = norm(H'*uno)^2;
mu = beta/4 + (H'*uno*uno'*H*beta)/(4*(4-alfa));
Y = phi(w0+H*mu);
X = exp(Y)
% 2*X(1,2)*X(3,4)/X(1,3)^2 -- It should be 1 for this example.

The following function implements Theorem 7.
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function X = theorem7(A)
B = log(A);
[n m] = size(A);
w0 = B(1,2)*[1;-1;zeros(n-2,1)]/2;
aux = 2*eye(n-2)+ones(n-2,n-2);
theta = [zeros(2,2) zeros(2,n-2); zeros(n-2,2) aux]*B*ones(n,1)/(2*n);
Y = phi(w0+theta);
X = exp(Y);
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