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Abstract

A dominating set in a graph G is a set S of vertices of G such that every vertex
outside S is adjacent to a vertex in S. A connected dominating set in G is a dominating
set S such that the subgraph G[S] induced by S is connected. The connected domination
number of G, γc(G), is the minimum cardinality of a connected dominating set of G. A
graph G is said to be k-γc-critical if the connected domination number γc(G) is equal to
k and γc(G+ uv) < k for every pair of non-adjacent vertices u and v of G. Let ζ be the
number of cut-vertices of G. It is known that if G is a k-γc-critical graph, then G has at
most k − 2 cut-vertices, that is ζ ≤ k − 2. In this paper, for k ≥ 4 and 0 ≤ ζ ≤ k − 2,
we show that every k-γc-critical graph with ζ cut-vertices has a hamiltonian path if and
only if k − 3 ≤ ζ ≤ k − 2.
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1 Introduction

A dominating set in a graph G is a set S of vertices of G such that every vertex in V (G) \ S
is adjacent to at least one vertex in D. The domination number of G, denoted by γ(G), is
the minimum cardinality of a dominating set of G. A graph G is said to be k-γ-critical if
γ(G) = k and γ(G + uv) < k for every pair of non-adjacent vertices u and v of G. Such a
graph G is called a domination critical graph. If S is a dominating set of G, we write S ≻ G,
and if X = {v}, we also write v ≻ G rather than {v} ≻ G. The concept of domination and
its variations have been widely studied in the literature; a rough estimate says that it occurs
in more than 6,000 papers to date. A thorough treatment of the fundamentals of domination
theory in graphs can be found in the books [15, 16].

A connected dominating set, abbreviated a CD-set, of a connected graph G is a dominating
set S of G such that the subgraph G[S] induced by S is connected. The connected domination
number of G, denoted by γc(G), is the minimum cardinality of a CD-set of G. A CD-set of G
of cardinality γc(G) is called a γc-set of G. A graph G is said to be k-γc-critical if γc(G) = k
and γc(G + uv) < k for every pair of non-adjacent vertices u and v of G. Such a graph G
is called a connected domination critical graph. If S is a CD-set of G, we write S ≻c G,
and if X = {v}, we also write v ≻c G rather than {v} ≻c G. The concept of connected
domination was studied at least in the early 1970s, although it was first formally defined by
Sampathkumar and Walikar in their 1979 paper [27]. Subsequently over the past forty years,
the connected domination number has been extensively studied in the literature; a rough
estimate says that it occurs in more than 400 papers to date. For a small sample of papers
on the connected domination we refer the reader to [4, 9, 10, 25, 26, 28].

We remark that the concept of connected domination in graphs is application driven,
as evidenced by the earlier papers on the concept. For example, Wu and Li [32] show
that connected dominating sets are useful in the computation of routing for mobile ad hoc
networks. In this application, a minimum connected dominating set is used as a backbone
for communications, and vertices that are not in this set communicate by passing messages
through neighbors that are in the set.

We also remark that finding connected dominating sets and Steiner trees in a graph are
closely related [7, 8]. Moreover, determining the connected domination number of a connected
graph G is equivalent to finding the largest possible number of leaves among all spanning
trees of G. A maximum leaf spanning tree of G is a spanning tree that has the largest
possible number of leaves among all spanning trees of G, and the max leaf number, denoted
ℓmax(G), of G is the number of leaves in a maximum leaf spanning tree of G. Since n(G) =
ℓmax(G) + γc(G), the problems of a connected dominating set and a maximum leaf spanning
tree are closely connected. The maximum leaf spanning tree problem is MAX-SNP hard,
implying that no polynomial time approximation scheme is likely [14]. We remark, however,
that both the minimum connected dominating set problem and the maximum leaf spanning
tree problem are fixed-parameter tractable [3]. The connected dominating set problem is
polynomially solvable for distance-hereditary graphs [8].
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1.1 Terminology and Notation

For notation and graph theory terminology, we in general follow [17]. Specifically, let G =
(V,E) be a graph with vertex set V = V (G) and edge set E = E(G), and let v be a vertex
in V . A neighbor of a vertex is a vertex adjacent to it. The open neighborhood of v is the set
NG(v) of all neighbors of v, and so NG(v) = {u ∈ V |uv ∈ E} and the closed neighborhood
of v is NG[v] = {v} ∪ NG(v). A vertex v is said to dominate a vertex u in G if u = v or if
u is a neighbor of v. The degree of a vertex v is |NG(v)| and is denoted by dG(v). An end
vertex is a vertex of degree 1 and a support vertex is a vertex adjacent to an end vertex. For
a set S of vertices in G, the subgraph induced by S in G is denoted by G[S]. If G is a graph,
the complement of G, denoted by G, is formed by taking the vertex set of G and joining
two vertices by an edge whenever they are not joined in G. If the graph G is clear from the
context, we omit it in the above expressions. For example, we write N(v) and N [v] rather
than NG(v) and NG[v], respectively. We use the standard notation [k] = {1, . . . , k}.

Two vertices u and v in a graph G are connected if there exists a (u, v)-path in G. A
graph G is connected if every two vertices in G are connected. We denote the number of
components in a graph G by ω(G). The distance dG(u, v) between two vertices u and v
in a connected graph G is the length of a shortest (u, v)-path in G. A hamiltonian cycle
(respectively, hamiltonian path) of a graph is a cycle (path) passing through all vertices of
the graph. A graph G is traceable if it contains a hamiltonian path. Moreover, a graph G is
hamiltonian if it contains a hamiltonian cycle. For any subgraph F of G and distinct vertices
a and b of G, aPF b denotes an (a, b)-path in G all of whose internal vertices are in V (F ). We
note that a and b need not be in V (F ). If P is an (a, b)-path in G, we sometimes write the
path P by aPb to indicate the start and end vertices of the path P .

We denote the path, cycle, and complete graph on n vertices by Pn, Cn, andKn, respectively,
and we denote the complete bipartite graph with partite sets of cardinality n and m by Kn,m.
A star is the graph K1,k, where k ≥ 1. The graph K1,3 is called a claw. A graph G is
claw -free if it does not contain a claw as an induced subgraph. A tree is a connected graph
with no cycle.

For vertex subsets X,Y ⊆ V (G), we let NY (X) be the set of all vertices in Y that have a
neighbor that belongs to X in G, that is, NY (X) = {y ∈ Y | y ∈ NG(x) for some x ∈ X}.
For a subgraph H of G, we use NY (H) instead of NY (V (H)) and we use NH(X) instead
of NV (H)(X). If X = {x}, we use NY (x) instead of NY ({x}). The open neighborhood of a
set S of vertices in G is the set NG(S) =

⋃

v∈S NG(v) and its closed neighborhood is the set
NG[S] = NG(S) ∪ S.

A subset S ⊆ V (G) is a vertex cut set of G if the number of components of G − S is
more than the number of components of G; that is, of ω(G − S) > ω(G). In particular, if
S = {v}, then v is called a cut-vertex of G. We let ζ(G) be the number of cut-vertices of
G. When no ambiguity can occur, we write ζ instead of ζ(G). A block of a graph G is a
maximal connected subgraph of G has no cut-vertex of its own. Thus, a block is a maximal
2-connected subgraph of G. Any two blocks of a graph have at most one vertex in common,
namely a cut-vertex. A block of G containing exactly one cut-vertex of G is called an end
block. If a connected graph contains a single block, we call the graph itself a block.
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For ℓ ≥ 2 and a finite sequence G1, . . . , Gℓ of vertex disjoint graphs, we let the join
G1 ∨ · · · ∨ Gℓ be the graph obtained from the disjoint union of G1, . . . , Gℓ by joining each
vertex in Gi to all vertices in Gi+1 for i ∈ [ℓ− 1]. If V (Gi) = {x}, then we write G1 ∨ · · · ∨
Gi−1∨x∨Gi+1∨· · ·∨Gℓ. Moreover, for vertex disjoint graphs G1 and G2 and for a subgraph
H of G2, the join G1 ∨ HG2 is the graph obtained from the disjoint union of G1 and G2 by
joining each vertex in G1 to each vertex in H.

1.2 Domination Critical Graphs

A study of properties of domination critical graphs was initiated by Sumner and Blitch in
their classical 1983 paper [29]. Among other results, they showed that every connected 3-γ-
critical graph of even order contains a perfect matching. Wojcicka [31] subsequently studied
hamiltonian properties of domination critical graphs and showed every connected 3-γ-critical
graph on at least seven vertices is traceable. Favaron et al. [11], Flandrin et al. [13] and
Tian et al. [30] proved further that all connected 3-γ-critical graphs with minimum degree at
least 2 are hamiltonian. Motivated in part by these results, Sumner and Wojcicka (Chapter 16
in [15]) conjectured in 1998 that all (k−1)-connected k-γ-critical graphs are hamiltonian for all
k ≥ 4. However, their conjecture was disproved seven years later by Yuansheng et al. [33] who
constructed a 3-connected 4-γ-critical non-hamiltonian graph containing 13 vertices. On the
positive side, Kaemawichanurat and Caccetta [22] proved the Sumner-Wojcicka Conjecture
is true if k = 4 and the graphs are claw-free.

1.3 Connected Domination Critical Graphs

Kaemawichanurat [18] initiated a study of connected domination critical graphs. Hamiltonian
properties of connected domination critical graphs were subsequently studied by Kaemawicha-
nurat, Caccetta and Ananchuen [23] who showed that every 2-connected k-γc-critical graph
is hamiltonian for all k ∈ [3]. Further, they constructed k-γc-critical graphs that are non-
hamiltonian for all k ≥ 4. Recently, Kaemawichanurat and Caccetta [22] proved that every
2-connected 4-γc-critical claw-free graph is hamiltonian, and they constructed 2-connected
k-γc-critical claw-free graphs that are non-hamiltonian for all k ≥ 5. For 5 ≤ k ≤ 6, they
proved that every 3-connected k-γc-critical claw-free graph is hamiltonian. Recall that ζ(G)
denotes the number of cut-vertices of G, and that if the graph G is clear from the context,
we simply write ζ instead of ζ(G). Kaemawichanurat and Ananchuen [21] showed that a
connected domination critical graph cannot have too many cut-vertices.

Theorem 1 ([21]) For k ≥ 2, every k-γc-critical graph has at most k − 2 cut-vertices, that
is, ζ ≤ k − 2.
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2 Main Result

Our aim in this paper is to determine a connection between the traceability of a k-γc-critical
graph and the number of cut-vertices in the graph. More precisely, we shall prove the following
result.

Theorem 2 For k ≥ 4 and 0 ≤ ζ ≤ k − 2, every k-γc-critical graph with ζ cut-vertices has
a hamiltonian path if and only if k − 3 ≤ ζ ≤ k − 2.

3 Preliminary Results

In this section, we present some preliminary results that we will need to prove our main
theorem, namely Theorem 2. The following result is a simple exercise in most graph theory
textbooks.

Observation 1 Let G be a graph and let S be a nonempty proper subset of V (G). If G is
traceable, then ω(G− S) ≤ |S|+ 1.

By Observation 1, if S is a vertex cut set of a graph G satisfying |S|+1 < ω(G− S), then
G is non-traceable. Kaemawichanurat, Caccetta and Ananchuen [23] showed that connected
domination critical graphs with small connected domination number are hamiltonian.

Theorem 3 ([23]) Every k-γc-critical graph is hamiltonian for all k ∈ [3].

Chen, Sun, and Ma [5] characterized all k-γc-critical graphs for k ∈ [2].

Theorem 4 ([5]) A graph G is 1-γc-critical if and only if G is a complete graph. Moreover,
a graph G is 2-γc-critical if and only if G = ∪k

i=1K1,ni
where k ≥ 2 and ni ≥ 1 for all i ∈ [k].

Chen et al. [5] also established fundamental properties of k-γc-critical graphs for k ≥ 2.

Lemma 1 ([5]) Let G be a k-γc-critical graph, and let x and y be a pair of non-adjacent
vertices of G. If Dxy is a γc-set of G+ xy, then the following holds.

(a) k − 2 ≤ |Dxy| ≤ k − 1.
(b) Dxy ∩ {x, y} 6= ∅.
(c) If {x} = {x, y} ∩Dxy, then NG(y) ∩Dxy = ∅.

Ananchuen [1] established the following properties and structural results of k-γc-critical
graphs that possess cut-vertices.
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Lemma 2 ([1]) For k ≥ 3, if G is a k-γc-critical graph with a cut-vertex c and if D is a
CD-set of G, then the following holds.

(a) G− c contains exactly two components.
(b) If C1 and C2 are the components of G− c, then G[NC1(c)] and G[NC2(c)] are complete.
(c) c ∈ D.

As remarked earlier, Kaemawichanurat and Ananchuen [21] showed in Theorem 5 that for
k ≥ 2, every k-γc-critical graph has at most k−2 cut-vertices, that is, ζ ≤ k−2. Further, they
also characterized the k-γc-critical graph with exactly k−2 cut-vertices. To state their results,
let S be a set of stars G1, G2, . . . , G|S| where |S| ≥ 2, Gi

∼= K1,ni
and V (Gi) = {si0, s

i
1, . . . , s

i
ni
}

where si0 is the center of the star Gi for i ∈ [ |S| ]. Let

S =

|S|
⋃

i=1

{si0} and S′ =

|S|
⋃

i=1

{si1, s
i
2, ..., s

i
ni
}.

Moreover, let S′′ be a (possibly empty) set of isolated vertices. We note that |S| = |S| ≥ 2.
Let T be the vertex disjoint union of these stars G1, G2, . . . , G|S|. Thus, the complement T
of T is a complete graph obtained by removing the edges from the stars in S. We are now in
a position to describe the following classes of graphs.

The class B1. A graph G in the class B1 is constructed from the complement T of T by
adding a new vertex b and joining it to every vertex of S′. The vertex b of G is called the
head of G. A graph in the class B1 is illustrated in Figure 1.
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Figure 1: A graph G in the class B1

The class U(k). Let B be a graph in the class B1 defined earlier. A graph G in the class
U(k) is constructed from the graph B and a path Pk−2 : c0c1 . . . ck−3 of order k−2 by joining
ck−3 to b. A graph G in the class U(k) is illustrated by Figure 2.

We are now in a position to state the characterization of k-γc-critical graphs with k − 2
cut-vertices.

Theorem 5 ([21]) For k ≥ 2, if G is a k-γc-critical graph, then ζ ≤ k − 2. Moreover,
ζ = k − 2 if and only if G ∈ U(k).
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Figure 2: A graph G in the class U(k)

In order to present the characterization due to Kaemawichanurat [19] of k-γc-critical graphs
with ζ = k − 3 cut-vertices, we describe next some additional classes of graphs. Let i =
(i1, i2, . . . , ik−3) be a (k − 3)-tuple such that i1, i2, . . . , ik−3 ∈ {0, 1} and

∑k−3
j=1 ij = 1. Thus,

there is exactly one ℓ ∈ [k − 3] such that iℓ = 1 and iℓ′ = 0 for all ℓ′ ∈ [k − 3] \ {ℓ}.

The class G1(i1, i2, . . . , ik−3). For a (k − 3)-tuple i = (0, 0, . . . , iℓ, . . . , 0) where iℓ = 1 and
iℓ′ = 0 for 1 ≤ ℓ ≤ k − 4 and 1 ≤ ℓ′ ≤ k − 3 where ℓ 6= ℓ′, a graph G in the class G1i

can be constructed from the vertex disjoint paths c0c1 . . . cℓ−1 and cℓcℓ+1 . . . ck−4, a copy of
a complete graph Knℓ

and a block B ∈ B1 by adding edges according the join operations

cℓ−1 ∨Knℓ
∨ cℓ and ck−4 ∨ b

where b is the head of B. Thus, the vertices cℓ−1 and cℓ are joined to every vertex in the
complete graph Knℓ

, and the vertices ck−4 and b are joined. Two examples of graphs in this
case when 1 ≤ ℓ ≤ k − 4 are illustrated by Figure 3 and Figure 4.
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Figure 3: A graph G in the class G1(i1 = 1, 0, 0, . . . , 0)
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Figure 4: A graph G in the class G1(0, 0, . . . , iℓ = 1, 0, . . . , 0)

Further, for a (k − 3)-tuple i = (0, 0, . . . , 1) where ik−3 = 1 and iℓ′ = 0 for ℓ′ ∈ [k − 4], a
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graph G in the class G1i can be constructed from a path c0c1 . . . ck−4, a copy of a complete
graphKnk−3

and a block B ∈ B1 by adding edges according the join operation ck−4∨Knk−3
∨b,

where b is the head of B. Thus, the vertices ck−4 and b are joined to every vertex in the
complete graph Knk−3

. An example of a graph in this case is illustrated in Figure 5.
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Figure 5: A graph G in the class G1(0, 0, . . . , 1)

We proceed further by defining a special class of end blocks.

The class B2. Let H be a block graph, and so H is a connected graph that contains a single
block. The block H belongs to the family B2 if γc(H) = 3 and H has the following properties.

(a) The block H contains a vertex b such that NH(b) is a complete graph.
(b) Every vertex v of H different from b belongs to some γc-set of H of size 3.
(c) For every pair of non-adjacent vertices x and y in H − b, there exists a γc-set of H +xy

of size 2 that contains a neighbor of b in H and contains at least one of x and y.

The vertex b is called the head of the block H ∈ B2. We note that in property (b) defined
above, the γc-set of H that contains the vertex v ∈ V (H) \ {b} must contain a neighbor of b
in H in order to dominate the vertex b.

The class G2(k) for k ≥ 5. A graph G belongs to the class G2(k) for k ≥ 5 if it can be
constructed from the vertex disjoint union of a path c0c1 . . . ck−4 and a block graph H ∈ G2

with head b by adding the edge bck−4.

We are now in a position to state the characterization of k-γc-critical graphs with ζ = k−3
cut-vertices due to Kaemawichanurat [19].

Theorem 6 ([19]) For k ≥ 4, if G is a k-γc-critical graph with k − 3 cut-vertices, then
G ∈ G1(i1, i2, . . . , ik−3) ∪ G2(k).

4 Traceability of k-γc-Critical Graphs

In this section, we show that, for k ≥ 4 and k− 3 ≤ ζ ≤ k− 2, every k-γc-critical graph with
ζ cut-vertices contains a hamiltonian path. We first prove basic properties of k-γc-critical
graphs.

In what follows, let B be a graph in the class B1 of order n0 and let the vertex b be the
head of B. For notational convenience, we sometimes rename the vertex b as the vertex ck−2.
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We show first that there exists a hamiltonian path in B that contains the vertex b as one of
its ends.

Lemma 3 If B ∈ B1 with the vertex b as its head, then there exists a hamiltonian path PB

of B having b as one of its ends.

Proof. By the construction of the graph B ∈ B1, we have S′ = NB(b) and S ∪ S′′ =
V (B)\NB [b]. Further, we note that B[S′∪{b}] and B[S∪S′′] are complete subgraphs. Since
|S| ≥ 2, every vertex in S′ has at least one neighbor in S. Let uv be an arbitrary edge in G
where u ∈ S′ and v ∈ S. Further, let u′ be an arbitrary vertex in S′ different from u. Let Pu

be a hamiltonian path in G[S′] that starts at the vertex u′ and ends at the vertex u. Let Pv be
a hamiltonian path in G[S ∪S′′] that starts at the vertex v. Let PB be the hamiltonian path
of B that starts at the vertex b, proceeds along the edge bu′ to u′, follows the hamiltonian
path Pu from u′ to u, proceeds along the edge uv to v, and then follows the hamiltonian path
Pv starting at the vertex v. By construction, the hamiltonian path PB of B has the vertex v
as one of its ends. ✷

By Lemma 3, there exists a hamiltonian path PB of B having b as one of its ends. Let b′

be the other end of the path PB . As a consequence of Theorem 5 and Lemma 3, we obtain
the following lemma.

Lemma 4 If G is a k-γc-critical graph with k − 2 cut-vertices, then G is traceable.

Proof. Let G be a k-γc-critical graph with k − 2 cut-vertices. By Theorem 5, the graph
G ∈ U(k). Therefore, G is constructed from a graph B ∈ B1 with head b and a path
Pk−2 : c0c1 . . . ck−3 by joining ck−3 to b. The path c0c1 . . . ck−3 can therefore be extended to a
hamiltonian path of G by proceeding along the edge ck−3b from ck−3 to b, and then following
the hamiltonian path PB from b to b′ to yield the hamiltonian path c0c1 . . . ck−3bPBb

′ of G. ✷

We show next that every graph in the class G1(i1, i2, . . . , ik−3) has a hamiltonian path.

Lemma 5 If G ∈ G1(i1, i2, . . . , ik−3), then G is traceable.

Proof. Suppose that G ∈ G1(i1, i2, . . . , ik−3), where iℓ = 1 and iℓ′ = 0 for ℓ, ℓ′ ∈ [k − 4] and
ℓ 6= ℓ′. Let Q be a hamiltonian path in the copy of Knℓ

used in the construction of G, and
let w1 and wnℓ

be the start and final vertex of the path Q.

We first consider the case when ℓ = 1, and so G ∈ G1(1, 0, 0, . . . , 0). The path that starts
at the vertex c0, proceeds along the edge c0w1 to w1, follows the hamiltonian path Q from w1

to wn1 , proceeds along the edge wn1c1 to c1, follows the path c1c2 . . . ck−4, proceeds along the
edge ck−4b to b, and then follows the hamiltonian path PB from b to b′ yield the hamiltonian
path c0P

′c1 . . . ck−4bPBb
′ of G.

Secondly we consider the case when 2 ≤ ℓ ≤ k−3. We note that cℓ−1 ≻ Knℓ
and cℓ ≻ Knℓ

.
Starting with the path c0c1 . . . cℓ−1 from c0 to cℓ−1, we proceed along the edge cℓ−1w1 from

9



cℓ−1 to w1, follow the hamiltonian path Q from w1 to wnℓ
, proceed along the edge wnℓ

cℓ from
wnℓ

to cℓ, follow the path cℓ . . . ck−4b from cℓ to b, and follow the hamiltonian path PB from
b to b′ to yield the hamiltonian path c0c1 . . . cℓ−1Qcℓ . . . bPBb

′ of G.

Thirdly we consider the case when ℓ = k − 3, and so G ∈ G1(0, 0, . . . , 1). In this case,
ck−4 ≻ Knk−3

and b ≻ Knk−3
. Starting with the path c0c1 . . . ck−4 from c0 to ck−4, we

proceed along the edge ck−4w1 from ck−4 to w1, follow the hamiltonian path Q from w1 to
wnk−3

, proceed along the edge wnk−3
b from wnk−3

to b, and follow the hamiltonian path PB

from b to b′ to yield the hamiltonian path c0c1 . . . ck−4QbPBb
′ of G. This completes the proof

of Lemma 5. ✷

We are now in a position to prove that all k-γc-critical graphs with ζ cut-vertices are
traceable when ζ ∈ {k − 3, k − 2}.

Theorem 7 For k ≥ 4 and ζ ∈ {k−3, k−2}, if G is a k-γc-critical graph with ζ cut-vertices,
then G is traceable.

Proof. For k ≥ 4 and ζ ∈ {k− 3, k− 2}, let G be a k-γc-critical graph with ζ cut-vertices. If
ζ = k− 2, then by Lemma 4, the graph G is traceable. Hence we may assume that ζ = k− 3,
for otherwise the desired result follows. By Theorem 6, G ∈ G1(i1, i2, . . . , ik−3) ∪ G2(k). If
G ∈ G1(i1, i2, . . . , ik−3), then, by Lemma 5, the graph G is traceable. Hence we may assume
that G ∈ G2(k), for otherwise the desired result follows. Thus, k ≥ 5 and G can be constructed
from the vertex disjoint union of a path P : c0c1 . . . ck−4 and a block graph H ∈ G2 with head
b by adding the edge bck−4. Let

A = NH(b) and A = V (H) \NH [b].

By construction of the graph H ∈ G2, we note that G[A] is a complete subgraph. We
now consider G[A ]. Let P 1 : x11x

1
2 . . . x

1
n1

be a longest path in G[A ]. We note that P 1 is
a subgraph of G[A ] and thus, x1j and x1j′ may be adjacent for 1 ≤ j ≤ j′ + 2 ≤ n1. If

A1 = V (P 1) and A \ A1 6= ∅, then we let P 2 : x21x
2
2 . . . x

2
n2

be a longest path in G[A \ A1].
Continuing in this way, for i ≥ 1 if the paths P 1, P 2, . . . , P i are defined and A\Ai 6= ∅ where

Ai =

i
⋃

j=1

V (P j),

then we let P i+1 : xi+1
1 xi+1

2 . . . xi+1
n1

be a longest path in G[A \ Ai]. Continuing in this way,
let z ≥ 1 be the smallest integer such that A \ Az = ∅. Thus either z = 1, in which case
A = V (P 1), or z ≥ 2, in which case (V (P 1), V (P 2), . . . , V (P z)) is a partition of A where
each set V (P i) is nonempty for all i ∈ [z]. By definition of the paths P i for i ∈ [z], we note
that

|V (P 1)| ≥ |V (P 2)| ≥ · · · ≥ |V (P z)|.

The structure of G[A ] is illustrated in Figure 6.

We proceed further with the following series of claims.
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Figure 6: The structure of G[A ] in the proof of Theorem 7

Claim 1 The set {x1j1 , x
2
j2
, . . . , xzjz} is an independent set for all ji ∈ {1, ni} and i ∈ [z].

Proof. Suppose, to the contrary, that xijix
i′

ji′
∈ E(G) for some i and i′ where 1 ≤ i < i′ ≤ z

where ji ∈ {1, ni} and ji′ ∈ {1, ni′}. Renaming the vertices on the path P i and P i′ if
necessary, we may assume without loss of generality that ji = ni and ji′ = 1. We now
consider the path P ∗ obtained from P i by proceeding along the edge xini

xi
′

1 from xini
to xi

′

1 ,

and then following the path P i′ from xi
′

1 to xi
′

ni′
. If i = 1, then P ∗ is a longer path in G[A ]

that P 1, contradicting the maximality of P 1. If i ≥ 2, then P ∗ is a longer path in G[A\Ai−1]
that P i, contradicting the maximality of P i. ✷

In what follows, we adopt the following notation. If x and y are two non-adjacent vertices
of G, then we let Dxy denote a γc-set of G+ xy.

Claim 2 If x and y are two non-adjacent vertices of G[A ], then |Dxy∩(A∪A)| = 2, implying
that |Dxy ∩ {x, y}| = 1 and |Dxy ∩A| = 1.

Proof. Let x, y and Dxy be as defined in the statement of the claim. We now consider the
graph G + xy. Since G is a k-γc-critical graph, By Lemma 1(a) implies that |Dxy| ≤ k − 1.
Further, Lemma 1(b) implies that Dxy ∩ {x, y} = 1. Renaming x and y if necessary, we
may assume that x ∈ Dxy. If c0 /∈ Dxy, then c1 ∈ Dxy to dominate c0. If c0 ∈ Dxy,
then, since the subgraph, (G + xy)[Dxy], of G + xy induced by the set Dxy is connected
and since c1 is the only neighbor of c0 in G + xy, we must have c1 ∈ Dxy. Hence, in both
cases, c1 ∈ Dxy. Recall that x ∈ Dxy ∩ A. Since (G + xy)[Dxy] is a connected graph that
contains both c1 and x, the structure of the graph G implies that Dxy contains all vertices
of the path P : c0c1 . . . ck−4 except possibly for the vertex c0, the vertex b, at least one
neighbor of b in A, and at least one vertex in A, namely the vertex x. Thus, Dxy contains
at least (|V (P )| − 1) + 3 = (k − 4) + 3 = k − 1 vertices, and so |Dxy| ≥ k − 1. As observed
earlier, by Lemma 1(a) we have |Dxy| ≤ k − 1. Consequently, |Dxy| = k − 1, implying
that Dxy = (V (P ) \ {c0}) ∪ {b, u, x}, where u ∈ A and ux ∈ E(G). In particular, we note
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that |Dxy ∩ V (H − b)| = |Dxy ∩ (A ∪ A)| = |{u, x}| = 2, and so |Dxy ∩ {x, y}| = 1 and
|Dxy ∩A| = 1. ✷

In what follows, for notational convenience we let A0 = V (P ) ∪ {b} ∪ A, and so A0 =
V (G) \A.

Claim 3 If R is a proper subset of vertices of A, where possibly R = ∅, and v is an arbitrary
vertex in A \R, then there exists a path PR,v from c0 to v containing every vertex in A0 \R.

Proof. Recall that A = NB(H) and G[A] is a complete graph. Since R ⊂ A, we note
therefore that G[A −R] is a complete subgraph. Let Pv be a hamiltonian path in G[A −R]
that ends at the vertex v, and let v′ be the start vertex of Pv (possibly, v = v′). The path
PR,v that starts at the vertex c0, follows the path P to ck−4, proceeds along the edge ck−4b
from ck−4 to b, along the edge bv′ from b to v′, and then follows the path Pv is a path from
c0 to v containing every vertex in A0 \R. ✷

Claim 4 If z = 1, then G is traceable.

Proof. Suppose that z = 1, and so A = V (P 1). Suppose that x11 or x1n1
is adjacent to some

vertex y of A. Renaming vertices if necessary, we may assume that y is adjacent to x11. By
Claim 3 with R = ∅, there exists a path PR,y from c0 to y containing every vertex in A0.
The path PR,y can be extended to a hamiltonian path of G by proceeding along the edge yx11
from y to x11, and then following the path P 1 from x11 to x1n1

. Thus, we may assume that
neither x11 nor x1n1

is adjacent to any vertex of A, for otherwise G is traceable as desired.
Since H ∈ B2 is a connected graph, this implies that |V (P 1)| ≥ 3.

We show next that x11x
1
n1

∈ E(G). Suppose, to the contrary, that x11x
1
n1

/∈ E(G). In this
case, we consider G+x11x

1
n1
. For notational simplicity, let D∗ = Dx1

1x
1
n1
. By Claim 2, we have

|D∗ ∩ A| = |D∗ ∩ A| = 1. Further, |D∗ ∩ {x11, x
1
n1
}| = 1. Renaming x11 and x1n1

if necessary,
we may assume that D∗ ∩ {x11, x

1
n1
} = {x11}. Let D∗ ∩ A = {u}. By the connectedness of

(G+ x11x
1
n1
)[D∗], this implies that x11u ∈ E(G), contradicting our earlier assumption that x11

is not adjacent to any vertex in A. Hence, x11x
1
n1

∈ E(G).

Since x11x
1
n1

∈ E(G), we note that C : P 1 + x11x
1
n1

is a hamiltonian cycle of G[A ]. Since G
is a connected graph, there exists a vertex v in A which is adjacent to a vertex of P 1, say to
x1j for some j where 1 < j < n1. By Claim 3 with R = ∅, there exists a path PR,v from c0 to
v containing every vertex in A0. The path PR,y can be extended to a hamiltonian path of G
by proceeding along the edge vx1j from v to x1j , and then following a hamiltonian path in the

cycle C starting at the vertex x1j . Thus, G is traceable. ✷
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Claim 5 If z = 2, then G is traceable.

Proof. Suppose that z = 2, and so A = V (P 1) ∪ V (P 2). Recall that |V (P 1)| ≥ |V (P 2)|.
By Claim 1, the vertex x11 (respectively, x1n1

) is adjacent to neither x21 nor x2n2
. In particular,

x11x
2
1 /∈ E(G). We now consider the graph G + x11x

2
1. For notational simplicity, let D1,2 =

Dx1
1x

2
1
. By Claim 2, we have |D1,2 ∩ A| = |D1,2 ∩A| = 1. Further, |D1,2 ∩ {x11, x

2
1}| = 1. Let

D1,2 ∩A = {y}. We consider the cases x11 ∈ D1,2 and x21 ∈ D1,2 separately.

Claim 5.1 If x11 ∈ D1,2, then G is traceable.

Proof. Suppose that x11 ∈ D1,2. Thus in this case, D1,2 ∩ (A ∪ A) = {x11, y}. Since
(G+ x11x

2
1)[D1,2] is a connected graph, x11y ∈ E(G). Moreover by Lemma 1(c), yx21 /∈ E(G).

Claim 5.1.1 If |V (P 1)| ≤ 2, then G is traceable.

Proof. Suppose that |V (P 1)| ≤ 2. Suppose that |V (P 1)| = 1. Since |V (P 1)| ≥ |V (P 2)|,
we therefore have |V (P 2)| = 1, and so P 1 and P 2 consists of the single vertices x11 and x21,
respectively. But then {y1, y2} is a CD-set of H, where yi is an arbitrary neighbor of xi1 that
belongs to A for i ∈ [2], and so γc(H) ≤ 2, contradicting the fact that γc(H) = 3. Hence,
|V (P 1)| = 2, and so n1 = 2 and P 1 is the path x11x

1
2. As observed earlier, |V (P 2)| ≤ 2.

Suppose firstly that |V (P 2)| = 1. Thus, P 2 consists of the single vertex x21, and A =
{x11, x

1
2, x

2
1}. By Claim 1, the vertex x21 is adjacent to neither x11 nor x

1
2. Let u be an arbitrary

neighbor of x21 in the connected graph G. We note that u ∈ A. If u = y, then {y, x11} ≻c H,
implying that γc(H) ≤ 2, a contradiction. Thus, u 6= y. Since H is a 2-connected graph, the
vertex x12 has a neighbor, w say, different from x11. We note that w ∈ A. If w ∈ {u, y}, then
{u, y} ≻c H, a contradiction. Hence, the vertices u, w and y are distinct vertices in A. By
Claim 3 with R = {u,w}, there exists a path PR,y from c0 to y containing every vertex in
A0 \ {u,w}. The path PR,y can be extended to a hamiltonian path of G by proceeding along
the edge yx11 from y to x11, and then following the path x11x

1
2wux

2
1 from x11 to x12; that is, the

path
c0PR,yy, x

1
1x

1
2wux

2
1

is a hamiltonian path in G. Hence we may assume that |V (P 2)| = 2, for otherwise G is
traceable, as desired. Thus, A = {x11, x

1
2, x

2
1, x

2
2}. Recall that D1,2 ∩ (A ∪ A) = {x11, y} and

that the vertex x11 is adjacent to neither x21 nor x22. Further, yx
2
1 /∈ E(G). These observations

imply that yx22 ∈ E(G) in order for D1,2 to dominate the vertex x22 in G+x11x
2
1. By Claim 1,

the vertex x12 is adjacent to neither x21 nor x22. Since H is a 2-connected graph, the vertex x12
has a neighbor, u say, different from x11. We note that u ∈ A. If u = y, then {y, x22} ≻c H, a
contradiction. Hence, u 6= y. By Claim 3 with R = {y}, there exists a path PR,u from c0 to
u containing every vertex in A0 \ {y}. The path PR,u can be extended to a hamiltonian path
of G by proceeding along the edge ux12 from u to x12, and then following the path x12x

1
1yx

2
2x

2
1

from x12 to x21; that is, the path
c0PR,uu, x

1
2x

1
1yx

2
2x

2
1

13



is a hamiltonian path in G. This completes the proof of Claim 5.1.1. (✷)

By Claim 5.1.1, we may assume that |V (P 1)| ≥ 3, for otherwise G is traceable and the
desired result holds.

Claim 5.1.2 If x11x
1
n1

/∈ E(G), then G is traceable.

Proof. Suppose that x11x
1
n1

/∈ E(G). This implies that |V (P 1)| ≥ 3. In order to dominate
the vertex x1n1

in G + x11x
2
1, we must have that yx1n1

∈ E(G). We now consider the graph
G+ x11x

1
n1
. For notational simplicity, let D1,n1 = Dx1

1x
1
n1
. By Claim 2, we have |D1,n1 ∩A| =

|D1,n1∩A| = 1. Further, |D1,n1∩{x
1
1, x

1
n1
}| = 1. Let {u} = D1,n1∩A. As observed earlier, the

vertex x21 is adjacent to neither x11 nor x1n1
. In order to dominate the vertex x21 in G+x11x

1
n1
,

we must have that ux21 ∈ E(G).

By Claim 3 with R = {u}, there exists a path PR,y from c0 to y containing every vertex
in A0 \ {u}. By the connectedness of (G + x11x

1
n1
)[D1,n1 ], the vertex u is adjacent to the

vertex in D1,n1 ∩ {x11, x
1
n1
}. Renaming the vertices x11 and x1n1

if necessary, we may assume
without loss of generality that x1n1

∈ D1,n1 . With this assumption, ux1n1
∈ E(G). The path

PR,y can be extended to a hamiltonian path of G by proceeding along the edge yx11 from y
to x11, following the path P 1 from x11 to x1n1

, proceeding along the edge x1n1
u from x1n1

to u,
proceeding along the edge ux21 from u to x21, and then following the path P 2 from x21 to x2n2

;
that is, the path

c0PR,yy, x
1
1P

1x1n1
, u, x21P

2x2n2

is a hamiltonian path in G. (✷)

By Claim 5.1.2, we may assume that x11x
1
n1

∈ E(G), for otherwise G is traceable and the
desired result holds. Since x11x

1
n1

∈ E(G), we note that C : P 1 + x11x
1
n1

is a cycle in G[A ].

Claim 5.1.3 If |V (P 2)| = 1, then G is traceable.

Proof. Suppose that |V (P 2)| = 1. Thus, P 2 consists of the single vertex x21. By Claim 1, the
vertex x21 is adjacent to neither x11 nor x1n1

. If x21 is adjacent to x1j for some 1 < j < n1, then

the (x1j+1, x
1
j )-path on C that does not contain the edge x1jx

1
j+1 can be extended to a longer

path in G[A ] by adding to it the vertex x21 and the edge x1jx
2
1, contradicting the maximality

of the path P 1. Hence, the vertex x21 is adjacent to no vertex of P 1. By the connectivity of
G and the maximality of the path P 2, the vertex x21 is adjacent to a vertex, u say, in A.

If y ≻ P 1, then {y, u} ≻c H, implying that γc(H) ≤ 2, a contradiction. Thus, y does not
dominate P 1. Let j be the smallest integer so that yx1j is not an edge. Since x11y ∈ E(G), we

note that j ∈ [n1] \ {1}. By the choice of j, we note that yx1ℓ ∈ E(G) for all ℓ ∈ [j − 1].

We now consider the graph G + x1jx
2
1. For notational simplicity, let D∗ = Dx1

jx
2
1
. By

Claim 2, we have |D∗ ∩A| = |D∗ ∩A| = 1. Further, |D∗ ∩ {x1j , x
2
1}| = 1. Let {w} = D∗ ∩A.

Since y is adjacent to neither x1j nor x21, we note that w 6= y. If x21 ∈ D∗, then since x21 is not
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adjacent to any vertex of P 1, we note that w ≻ P 1−x1j . implying that {w, x1j−1} ≻c H, and so

γc(H) ≤ 2, a contradiction. Hence, x21 /∈ D∗, implying that x1j ∈ D∗; that is, D∗ ∩A = {x1j}.

By Lemma 1(c), we note that wx21 /∈ E(G). Since (G+ x1jx
2
1)[D

∗] is connected, we therefore

have wx1j ∈ E(G). Since G is connected, the vertex x21 is adjacent to a vertex, say v, that

belongs to A. Since the vertex x21 is adjacent neither w nor y, the vertices v, w and y are
distinct.

By Claim 3 with R = {v,w}, there exists a path PR,y from c0 to y containing every vertex
in A0 \ {v,w}. The path PR,y can be extended to a hamiltonian path of G by proceeding
along the edge yx1j−1 from y to x1j−1, and then following the (x1j−1, x

1
j )-path, say P ∗, on C

that does not contain the edge x1j−1x
1
j (and contains all vertices of P 1) from x1j−1 to x1j , and

then following the path x1jwvx
2
1 from x1j to x21; that is, the path

c0PR,yy, x
1
j−1P

∗x1j , wvx
2
1

is a hamiltonian path in G. This completes the proof of Claim 5.1.3. (✷)

By Claim 5.1.3, we may assume that |V (P 2)| ≥ 2, for otherwise G is traceable and the
desired result holds. Recall that D1,2 ∩A = {y} and D1,2 ∩A = {x11}. Further, the vertex x11
is adjacent to neither x21 nor x2n2

. In particular, x11x
2
n2

/∈ E(G). In order for the set D1,2 to
dominate the vertex x2n2

, we note that yx2n2
∈ E(G).

We now consider the graph G + x11x
2
n2
. For notational simplicity, let D∗ = Dx1

1x
2
n2
. By

Claim 2, we have |D∗ ∩A| = |D∗ ∩A| = 1. Further, |D∗ ∩ {x11, x
2
n2
}| = 1. Let D∗ ∩A = {u}.

By Lemma 1(c), the vertex u is adjacent to exactly one of x11 and x2n2
. Therefore since y is

adjacent to both x11 and x2n2
, we note that u 6= y.

Suppose firstly that x11 ∈ D∗. In this case, u is adjacent to x11 but not to x2n2
. Since

x11x
2
1 /∈ E(G), in order for the set D∗ to dominate the vertex x21, we note that ux21 ∈ E(G).

By Claim 3 with R = {u}, there exists a path PR,y from c0 to y containing every vertex in
A0 \{u}. The path PR,y can be extended to a hamiltonian path of G by proceeding along the
edge yx2n2

from y to x2n2
, following the path P 2 in reverse direction from x2n2

to x21, proceeding
along the path x21ux

1
1 from x21 to x11, and then following the path P 1 from x11 to x1n1

; that is,
the path

c0PR,yy, x
2
n2
P 2x21, u, x

1
1P

1x1n1

is a hamiltonian path in G. Suppose next that x2n2
∈ D∗. In this case, u is adjacent to x2n2

but not to x11. Since x1n1
x2n2

/∈ E(G), in order for the set D∗ to dominate the vertex x1n1
, we

note that ux1n1
∈ E(G). By Claim 3 with R = {u}, there exists a path PR,y from c0 to y

containing every vertex in A0 \ {u}. The path PR,y can be extended to a hamiltonian path
of G by proceeding along the edge yx11 from y to x11, following the path P 1 from x11 to x1n1

,
proceeding along the path x1n1

ux2n2
from x1n1

to x1n2
, and following the path P 2 in reverse

direction from x2n2
to x21; that is, the path

c0PR,yy, x
1
1P

1x1n1
, u, x2n2

P 2x21

is a hamiltonian path in G. This completes the proof of Claim 5.1. (✷)
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By Claim 5.1, we may assume that x21 ∈ D1,2, for otherwise G is traceable and the desired
result follows. Thus in this case, D1,2 ∩ (A ∪ A) = {x21, y}. Since (G + x11x

2
1)[D1,2] is a

connected graph, x21y ∈ E(G). Moreover by Lemma 1(c), yx11 /∈ E(G). Since x1n1
x21 /∈ E(G),

in order for the set D1,2 to dominate the vertex x1n1
, we note that yx1n1

∈ E(G).

Claim 5.2 If |V (P 2)| = 1, then G is traceable.

Proof. Suppose that |V (P 2)| = 1. Thus, P 2 consists of the single vertex x21. We show firstly
that x11x

1
n1

/∈ E(G). Suppose, to the contrary, that x11x
1
n1

∈ E(G). We show that x21 is not
adjacent to any vertex of P 1. By our earlier observations, the vertex x21 is adjacent to neither
x11 nor x1n1

. Suppose that x21 is adjacent to x1j for some j where 1 < j < n1. In this case,

|V (P 1)| ≥ 3, and so G[A ] has a cycle C : P 1 + x11x
1
n1

as a subgraph. The (x1j+1, x
1
j )-path on

C that does not contain the edge x1jx
1
j+1 can be extended to a longer path in G[A ] by adding

to it the vertex x21 and the edge x1jx
2
1, contradicting the maximality of the path P 1. Hence,

the vertex x21 is adjacent to no vertex of P 1. Thus since {x21, y} dominates all vertices of P 1

different from x11, this implies that y ≻ P 1−x11. Therefore, {y, x
1
n1
} ≻c H, and so γc(H) ≤ 2,

a contradiction. Hence, x11x
1
n1

/∈ E(G).

We now consider the graph G + x1n1
x21. For notational simplicity, let D∗ = Dx1

n1
x2
1
. By

Claim 2, we have |D∗ ∩A| = |D∗ ∩A| = 1. Further, |D∗ ∩ {x1n1
, x21}| = 1. Let D∗ ∩A = {u}.

By Lemma 1(c), the vertex u is adjacent to exactly one of x1n1
and x21. Therefore since y is

adjacent to both x1n1
and x21, we note that u 6= y. If x21 ∈ D∗, then since x21x

1
1 /∈ E(G), we

have ux11 ∈ E(G). If x1n1
∈ D∗, then since x11x

1
n1

/∈ E(G), we must have ux11 ∈ E(G). In both
cases, ux11 ∈ E(G).

By Claim 3 with R = {y}, there exists a path PR,u from c0 to u containing every vertex
in A0 \ {y}. The path PR,u can be extended to a hamiltonian path of G by proceeding along
the edge ux11 from u to x11, following the path P 1 from x11 to x1n1

, and then proceeding along
the path x1n1

yx21 from x1n1
to x21; that is, the path

c0PR,uu, x
1
1P

1x1n1
, y, x21

is a hamiltonian path in G. This completes the proof of Claim 5.2. (✷)

By Claim 5.2, we may assume that |V (P 2)| ≥ 2, for otherwise G is traceable and the
desired result holds. We now consider the graph G + x1n1

x21. For notational simplicity, let
D∗ = Dx1

n1
x2
1
. By Claim 2, we have |D∗ ∩ A| = |D∗ ∩A| = 1. Further, |D∗ ∩ {x1n1

, x21}| = 1.

Let D∗ ∩ A = {u}. By Lemma 1(c), the vertex u is adjacent to exactly one of x1n1
and x21.

Therefore since y is adjacent to both x1n1
and x21, we note that u 6= y.

Suppose firstly that x21 ∈ D∗. In this case, u is adjacent to x21 but not to x1n1
. Since

x11x
2
1 /∈ E(G), in order for the set D∗ to dominate the vertex x11, we note that ux11 ∈ E(G).

By Claim 3 with R = {u}, there exists a path PR,y from c0 to y containing every vertex in
A0 \ {u}. The path PR,y can be extended to a hamiltonian path of G by proceeding along
the edge yx1n1

from y to x1n1
, following the path P 1 in the reverse direction from x1n1

to x11,
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proceeding along the path x11ux
2
1 from x11 to x21, and following the path P 2 from x21 to x2n2

;
that is, the path

c0PR,yy, x
1
n1
P 1x11, u, x

2
1P

2x2n2

is a hamiltonian path in G. Suppose next that x1n1
∈ D∗. In this case, u is adjacent to x1n1

but not to x21. Since x1n1
x1n2

/∈ E(G) and x21 6= x2n2
, in order for the set D∗ to dominate the

vertex x2n2
, we note that ux2n2

∈ E(G).

By Claim 3 with R = {y}, there exists a path PR,u from c0 to u containing every vertex
in A0 \ {y}. The path PR,u can be extended to a hamiltonian path of G by proceeding along
the edge ux2n2

from u to x2n2
, following the path P 2 in the reverse direction from x2n2

to x21,
proceeding along the path x21yx

1
n1

from x21 to x1n1
, and following the path P 1 in the reverse

direction from x1n1
to x11; that is, the path

c0PR,uu, x
2
n2
P 2x21, y, x

1
n1
P 1x11

is a hamiltonian path in G. This completes the proof of Claim 5. (✷)

By Claims 4 and 5, we may assume that z ≥ 3, for otherwise G is traceable and the desired
result holds. The following claim uses similar ideas to those presented in [20]. However for
completeness, we provide a proof of this claim.

Claim 6 If I is an independent set of A where |I| = t ≥ 3, then all the vertices of I can be
ordered u1, u2, . . . , ut in such a way that there exist t− 1 different vertices v1, v2, . . . , vt−1 of
A satisfying {ui, vi} ≻c H − ui+1 for all i ∈ [t− 1].

Proof. We will construct a tournament T (a digraph which any two vertices are joined by
an arc) with vertex set V (T ) = I and where the arcs of T are defined as follow. For every
two distinct vertices u and v in I, we choose a fixed γc-set, say Duv, of G+ uv. By Claim 2,
|Duv ∩ (A∪A)| = 2, implying that |Duv ∩ {u, v}| = 1 and |Duv ∩A| = 1. Let Duv ∩A = {x}.
If u ∈ Duv, then since A is a complete subgraph, it follows that {u, x} ≻c H − v. In this
case, we orient the arc from u to v. If v ∈ Duv, then {v, x} ≻c H − u, and we orient the arc
from v to u. We do this for every two distinct vertices u and v in I. This defines the arcs
of the resulting tournament T . Since every tournament has a directed hamiltonian path, we
let u1u2 . . . ut be a directed hamiltonian path in T . This implies that there exists a vertex
vi ∈ A such that {ui, vi} ≻c H − ui+1 for every i ∈ [t − 1]. Since I = {u1, u2, . . . , ut} is an
independent set, it follows that the vertex vi is adjacent to every vertex in I except for the
vertex ui+1 for all i ∈ [t− 1]. This implies that the vertices v1, v2, . . . , vt are all distinct. (✷)

We now return to the proof of Theorem 7. Since {x11, x
2
1, . . . , x

z
1} is an independent set of

size z ≥ 3, by Claim 6 there exists an ordering u1, u2, . . . , uz of the vertices of {x11, x
2
1, . . . , x

z
1}

such that there exist vertices v1, v2, . . . , vz−1 of A satisfying

{ui, vi} ≻c H − ui+1

for all i ∈ [z− 1]. Let R = {v1, v2, . . . , vz−1}. For notational convenience, if uj = xi1 for some
i, j ∈ [z], then we relabel the path P i as the path T j. Further we let u′j = xini

. We note that
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vi ≻ {u1, u2, . . . , uz} \ {ui+1} for all i ∈ [z − 1]. Further, we note that the collection of paths
P 1, P 2, . . . , P z is therefore precisely the collection of paths T 1, T 2, . . . , T z. If |V (T i)| = 1 for
all i ∈ [z], then {v1, v2} ≻c H, and so γc(H) ≤ 2, a contradiction. Hence, |V (T i)| > 1 for
some i ∈ [z]. For i ∈ [z], we let

ℓ = max{i : |V (T i)| > 1}.

Therefore if ℓ < z, then |V (T j)| = 1 for all j where ℓ < j ≤ z, implying that uj = u′j for such

values of j. We remark that it is possible that |V (T j)| = 1 for some j < ℓ. The structure of
G[A ] is now illustrated by Figure 7.
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Figure 7: The structure of G[A ] after rearranging the paths

Claim 7 If ℓ > 1, then G is traceable.

Proof. Suppose that ℓ > 1. Therefore, u′ℓ 6= u′1 and u′ℓ 6= uℓ. We now consider the graph
G + u1u

′
ℓ. For notational simplicity, let D1,ℓ = Du1u

′
ℓ
. By Claim 2, we have |D1,ℓ ∩ A| =

|D1,ℓ ∩A| = 1. Further, |D1,ℓ ∩ {u1, u
′
ℓ| = 1. Let D1,ℓ ∩A = {w}. By Lemma 1(c), the vertex

w is adjacent to exactly one of u1 and u′ℓ. By Claim 6, {ui, vi} ≻c H −ui+1 for all i ∈ [z− 1].
Therefore since uiu

′
i−1 /∈ E(G), this implies that viu

′
i−1 ∈ E(G) for all i ∈ [z] \ {1}.

Suppose firstly that u1 ∈ D1,ℓ. Thus, w is adjacent to u1 but not to u′ℓ. If w = vj for some
j ∈ [z − 1], then {u1, w} does not dominate the vertex uj+1, contradicting the fact that D1,ℓ

is a (connected) dominating set of G+u1u
′
ℓ. Hence, w /∈ R. Since u1uz /∈ E(G), we note that

wuz ∈ E(G). Further since u1u
′
z /∈ E(G) and {u1, v1} ≻c H − u2 and z ≥ 3, it follows that

v1u
′
z ∈ E(G). (Possibly, uz = u′z.) As observed earlier, viu

′
i−1 ∈ E(G) for all i ∈ [z] \{1}. By

Claim 3, there exists a path PR,w from c0 to w containing every vertex in A0 \R. The path
PR,w can be extended to a hamiltonian path of G by proceeding along the edge wuz from
w to uz, following the path T z from uz to u′z, proceeding along the path u′zv1u1 from u′z to
u1, following the path T 1 from u1 to u′1, proceeding along the path u′1v2u2 from u′1 to u2,
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following the path T 2 from u2 to u′2, proceeding along the path u′2v3u3 from u3 to u′3, and,
continuing in this way, finally proceeding along the path u′z−2vz−1uz−1 from u′z−2 to uz−1,
and then following the path T z−1 from uz−1 to u′z−1; that is, the path

c0PR,wuz, uzT
zu′z, v1, u1T

1u′1, v2, u2T
2u′2, · · · , uz−2T

z−2u′z−2, vz−1, uz−1T
z−1u′z−1

is a hamiltonian path in G, as desired. Suppose next that u′ℓ ∈ D1,ℓ. Thus, w is adjacent to
u′ℓ but not to u1. If ℓ ≤ z − 2, then u′ℓ is adjacent to neither u′z−1 nor u′z, implying that w is
adjacent to both u′z−1 and u′z. If ℓ = z − 1, then w is adjacent to u′z−1. Further since u′z−1

is not adjacent to u′z, the vertex w is adjacent to u′z in this case. If ℓ = z, then w is adjacent
to u′z. Further since z ≥ 3, the vertex u′z−1 6= u1. Thus since the vertex u′z is not adjacent to
u′z−1, the vertex w is therefore adjacent to u′z−1 in this case. Thus in all cases, we note that
the vertex w is adjacent to both u′z−1 and u′z.

Let R1 = (R \ {v1}) ∪ {w}. By Claim 3, there exists a path PR1 from c0 to v1 containing
every vertex in A0 \ R1. The path PR1,v1 can be extended to a hamiltonian path of G by
proceeding along the edge v1u1 from v1 to u1, following the path T 1 from u1 to u′1, proceeding
along the path u′1v2u2 from u′1 to u2, following the path T 2 from u2 to u′2, proceeding along
the path u′2v3u3 from u3 to u′3, and, continuing in this way, finally proceeding along the
path u′z−2vz−1uz−1 from u′z−2 to uz−1, and then following the path T z−1 from uz−1 to u′z−1,
proceeding along the path u′z−1wu

′
z from u′z−1 to u′z, following the path T z in the reverse

direction from u′z to uz; that is, the path

c0PR1,v1v1, u1T
1u′1, v2, u2T

2u′2, · · · , uz−1T
z−1u′z−1, w, u

′
zT

zuz

is a hamiltonian path in G, as desired. (✷)

By Claim 7, we may assume that ℓ = 1, for otherwise G is traceable and the desired result
follows. Thus, P 1 = T 1 and |V (P 1)| = n1 ≥ 2, and so u1 6= u′1. Moreover, ui = u′i for all
i ∈ [z] \ {1}.

Suppose firstly that u1u
′
1 ∈ E(G), and soG[A ] contains a cycle C : T 1+u1u

′
1 as a subgraph.

If there exist integers j and r where j ∈ [n1−1]\{1} and r ∈ [z]\{1} such that urx
1
j ∈ E(G),

then the (x1j+1, x
1
j )-path on C that does not contain the edge x1jx

1
j+1 can be extended to

a longer path in G[A ] by adding to it the vertex ur and the edge urx
1
j , contradicting the

maximality of the path P 1. Hence, no vertex of T 1 is adjacent to any vertex from the set
{u2, u3, . . . , uz}, implying that the vertex ui is an isolated vertex in G[A ] for all i ∈ [z] \{1}.
Since {u2, v2} ≻c H−u3 and u2 is isolated in G[A ], this implies that v2 ≻ H−u3. Therefore,
{v1, v2} ≻c H, and so γc(H) ≤ 2, a contradiction. Hence, u1u

′
1 /∈ E(G).

We now consider the graph G + u1u
′
1. For notational simplicity, let D1,1 = Du1u

′
1
. By

Claim 2, we have |D1,1∩A| = |D1,1∩A| = 1. Further, |D1,1∩{u1, u
′
1| = 1. Let D1,1∩A = {w}.

By Lemma 1(c), the vertex w is adjacent to exactly one of u1 and u′1. If w = vi for some
i ∈ [z − 1], then D1,1 does not dominate ui+1, a contradiction. Hence, w ∈ A \ R. Since
neither u1 nor u′1 is adjacent to uz or uz−1, the vertex w is necessarily adjacent to both uz
and uz−1. Recall that viui−1 ∈ E(G) for all i ∈ [z − 1] \ {1}, and recall that v2u

′
1 ∈ E(G).

Let R1 = (R \ {v1}) ∪ {w}. By Claim 3, there exists a path PRw from c0 to v1 containing
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every vertex in A0 \ R1. The path PR1,v1 can be extended to a hamiltonian path of G by
proceeding along the edge v1u1 from v1 to u1, following the path T 1 from u1 to u′1, and then
proceeding along the path u′1v2u2v3 . . . vz−1uz−1wuz; that is, the path

c0PR1,v1v1, u1T
1u′1v2u2v3 · · · vz−1uz−1wuz

is a hamiltonian path in G. This completes the proof Theorem 7. ✷

5 k-γc-Critical Graphs which are Non-Traceable

In this section, we establish the realizability result that for k ≥ 4, there exist k-γc-critical
graphs which is non-traceable containing ζ vertices for all 0 ≤ ζ ≤ k−4. For this purpose, for
k ≥ 3 we introduce a class P(k) of k-γc-critical graphs such that, for every graph G ∈ P(k)
and every integer ℓ ≥ 1, there exists a (k+ ℓ)-γc-critical graph that contains G as an induced
subgraph. Further, we construct a class N (s) of graphs for all s ≥ 6.

The class P(k) for k ≥ 3. A k-γc-critical graph G is in the class P(k) if there exists a
maximal complete subgraph H of G of order at least 2 satisfies the following two properties.

(a) Every vertex of G belongs to some γc-set of G that contains a vertex of H.
(b) For every pair of non-adjacent vertices x and y in G, there exists a CD-set D′

xy of G+xy
such that D′

xy ∩ V (H) 6= ∅ and |D′
xy| < k (we remark that D′

xy need not necessarily be
a γc-set of G+ xy).

The class N (s) for s ≥ 6. For a set S = [s] where s ≥ 6, we let B1 = {ai : i ∈ [s]} and
B2 = {bi : i ∈ [s]} be two disjoint sets of vertices, and let

B3 =

{

zi,j : {i, j} ∈

(

S

2

)}

where

(

S

2

)

is a set of all pairs (regardless of order) of the members in S, and so |B3| =
(

s
2

)

.

A graph G in the class N (s) can be constructed from the disjoint sets B1, B2 and B3 by
adding a new vertex x and adding edges as follows:

• Add edges so that B1 and B2 form two complete subgraphs.
• Add all edges between B1 and B2 except for the edges aibi for i ∈ [s].
• Join x to every vertex of B3.
• Join bi to zj,ℓ for 1 ≤ i 6= j 6= ℓ ≤ s.
• Join ai to zi,j for 1 ≤ i 6= j ≤ s.

We note that for i ∈ [s], NB3(ai) = {zi,1, zi,2, . . . , zi,i−1, zi,i+1, zi,i+2, . . . , zi,s} and

NB3(bi) =

{

zj,ℓ : {j, ℓ} ∈

(

S \ {i}

2

)}

.

A graph in the class N (s) is illustrated by Figure 8.
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Figure 8: A graph G in the class N (s)

Let F(k, ζ) be the class of k-γc-critical graphs with ζ cut-vertices which are non-traceable.
In view of Theorem 3, F(k, ζ) = ∅ for all k ∈ [3]. We show next that N (s) ⊆ P(4) and
N (s) ⊆ F(4, 0). In particular, this implies that the class P(4) is not empty when k = 4.

Lemma 6 For all s ≥ 6, N (s) ⊆ F(4, 0). Moreover, N (s) ⊆ P(4) where in the construction
of P(4) here we take H as the maximal complete subgraph G[B2].

Proof. Let G ∈ N (s). We show that G is a 4-γc-critical non-traceable graph. Let H be
the maximal complete subgraph G[B2] of G. We show firstly that γc(G) ≥ 4. Suppose,
to the contrary, that there exists a CD-set D of G of size 3. Suppose that x ∈ D. If
D = {x, zi,j , zi′,j′}, then D does not dominate aℓ where ℓ ∈ S \{i, j, i′, j′}. If D = {x, zi,j , ai},
then D does not dominate bi. If D = {x, zi,j , bℓ}, then D does not dominate aℓ. In all three
cases we produce a contradiction. Hence, x /∈ D. In order to dominate the vertex x, we
have zi,j ∈ D for some i and j where 1 ≤ i 6= j ≤ s. If D = {zi,j , ai, aj}, then D does not
dominate zi′,j′ where {i

′, j′}∩{i, j} = ∅. If D = {zi,j , ai, aℓ} where ℓ /∈ {i, j}, then D does not
dominate zi′,j′ where {i′, j′} ∩ {i, j, ℓ} = ∅. If D = {zi,j , ai, bℓ} where ℓ /∈ {i, j}, then D does
not dominate zj,ℓ. If D = {zi,j , ai, zi,j′} or D = {zi,j , bℓ, zi′,j′}, then D does not dominate zj,ℓ
where ℓ /∈ {i, i′, j, j′}. If D = {zi,j , bℓ, bℓ′} where ℓ, ℓ′ /∈ {i, j}, then D does not dominate zℓ,ℓ′ .
In all cases, we have a contradiction. We deduce, therefore, that not such CD-set D of size 3
exists. Hence, γc(G) ≥ 4.

We show next that property (a) holds in the construction of P(4), and, simultaneously, we
show that γc(G) = 4. For all i and j where 1 ≤ i 6= j ≤ s, we note that xzi,jaibj is an induced
path in G and the set Di,j = {x, zi,j , ai, bj} is a CD-set of G. This implies that γc(G) ≤ 4
and every vertex of G belongs to some CD-set of G of size 4 that contains a vertex of H,
where recall that V (H) = B2. As observed earlier, γc(G) ≥ 4. Consequently, γc(G) = 4 and
every vertex of G belongs to some γc-set of G that contains a vertex of H. This establishes
property (a) in the construction of P(4).
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We show next that property (b) in the construction of P(4) holds. Let u and v be an
arbitrary pair of non-adjacent vertices of G. We show that there exists a CD-set Duv of
G+ uv such that |Duv | = 3 and the set Duv contains at least one vertex in B2.

Suppose that x ∈ {u, v}. Renaming vertices if necessary, we may assume that x = u.
Thus, v ∈ B1 ∪ B2. If v = ai, then let Duv = {x, ai, bj} where i 6= j. If v = bi, then let
Duv = {x, ai, bj} where i 6= j. In both cases, |Duv | = 3, the set Duv contains a vertex of B2

and Duv ≻c G + uv, as desired. Hence, we may assume that x /∈ {u, v}, for otherwise the
desired result holds.

Suppose next that zi,j ∈ {u, v} for some i and j where 1 ≤ i 6= j ≤ s. Renaming vertices
if necessary, we may assume that zi,j = u. If v = aℓ, then necessarily ℓ 6= i and we let
Duv = {aℓ, bℓ, zi,j}. If v = bi or v = bj , then we let Duv = {zi,j , bi, bj}. If v = zi′,j′

where {i, j} 6= {i′, j′}, then zi,j is adjacent to at least one of the vertices bi′ or bj′ and we
let Duv = {zi,j, bi′ , bj′}. In all cases, |Duv| = 3, the set Duv contains a vertex of B2 and
Duv ≻c G+ uv, as desired. Hence, we may assume that {u, v} ⊆ B1 ∪ B2, for otherwise the
desired result holds. Thus, {u, v} = {ai, bi} for some i ∈ [s]. We now let Duv = {ai, bi, zi,j}
where i 6= j. Once again in this case, |Duv| = 3, the set Duv contains a vertex of B2 and
Duv ≻c G+ uv, as desired.

Thus, for an arbitrary pair x and y of non-adjacent vertices of G, there exists a CD-set
Duv of G+ uv such that |Duv| = 3 and the set Duv contains at least one vertex of H, where
V (H) = B2. As observed earlier, γc(G) = 4. Therefore, property (b) in the construction of
P(4) holds. In particular, we note G is a 4-γc-critical graph. Since G is an arbitrary graph
in N (s), we have N (s) ⊆ P(4).

By construction, we note that G has no cut-vertex. Finally, to show that N (s) ⊆ F(4, 0),
it remains to show that G is non-traceable. Let S = B1 ∪ B2 ∪ {x} and consider the graph
G − S. We note that |S| = 2s + 1 and G − S consists of

(

s
2

)

isolated vertices, namely the

vertices zi,j where 1 ≤ i 6= j ≤ s. Since s ≥ 6, we note that 2s+ 2 <
(

s
2

)

= s(s−1)
2 . Hence,

|S| = 2s+ 1 < 2s+ 2 <
s(s+ 1)

2
= |B3| = ω(G− S).

Therefore, by Observation 1 the graph G is non-traceable. Thus, N (s) ⊆ F(4, 0). This
completes the proof of Lemma 6. ✷

For k ≥ 4 and for ℓ ≥ 1, we next give a construction of a (k + ℓ)-γc-critical graph that
contains a graph G in the class P(k) as an induced subgraph. Let G be a graph in the class
P(k), and let H be a maximal complete subgraph of G having properties (a) and (b) in the
construction of the class P(k). For ℓ ≥ 1, let G1, . . . , Gℓ be ℓ vertex disjoint complete graphs
where Gi = Kni

and ni ≥ 1 for i ∈ [ℓ]. Let G(n1, n2, . . . , nℓ) be the graph constructed from
an isolated vertex x0, vertex disjoint copies of the complete graphs G1, . . . , Gℓ and G ∈ P(k)
by adding edges according to the join operations

x0 ∨G1 ∨G2 ∨ · · · ∨Gℓ ∨ HG.

Let P(k, ℓ) be the class of all such graphs G(n1, n2, . . . , nℓ). A graph in the class P(k, ℓ) is
illustrated in Figure 9.
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Figure 9: The graph in the class P(k, ℓ)

Theorem 8 For k ≥ 4 and ℓ ≥ 1, every graph in the class P(k, ℓ) is a (k + ℓ)-γc-critical
graph.

Proof. For k ≥ 4 and ℓ ≥ 1, let G(n1, n2, . . . , nℓ) be a graph in the class P(k, ℓ) that is
constructed from a graph G ∈ P(k) with H as the maximal complete subgraph of G having
properties (a) and (b) in the construction of G. For notation convenience, we write the graph
G(n1, n2, . . . , nℓ) simply as Gk,ℓ. Let G1, . . . , Gℓ be the ℓ vertex disjoint complete graphs
used to construct Gk,ℓ, where Gi = Kni

for i ∈ [ℓ]. Let xi be an arbitrary vertex of Gi for
i ∈ [ℓ], and let X = {x1, . . . , xℓ}. Let D be a γc-set of G that contains a vertex of H. Thus,
|D| = γc(G) = k and D ∩ V (H) 6= ∅.

We show firstly that γc(Gk,ℓ) = k+ℓ. SinceD∪X ≻c G, we note that γc(Gk,ℓ) ≤ |D|+|X| =
k+ ℓ. To show that γc(Gk,ℓ) ≥ k+ ℓ, let D′ be an arbitrary γc-set of Gk,ℓ. If D

′ contains the
vertex x0, then since D′ is a CD-set of Gk,ℓ it also contains a vertex of G1. If D′ does not
contains the vertex x0, then in order to dominate the vertex x0, we note that D′ contains a
vertex of G1. Hence in both cases, D′ ∩V (G1) 6= ∅. Since G−H is not the empty graph, the
set D′ contain at least one vertex of G. By the connectedness of Gk,ℓ[D

′], the set D′ therefore
contains at least one vertex from each of the sets Gi for i ∈ [ℓ] and D′∩V (H) 6= ∅. Therefore,
|D′ ∩ (∪ℓ

i=1V (Gi))| ≥ ℓ, that is, |D′ ∩ (V (Gk,ℓ) \ V (G))| ≥ ℓ. Since H is a complete subgraph
of G and D′ ∩ V (H) 6= ∅, we note that the set D′ ∩ V (G) is a CD-set of G, implying that
|D′∩V (G)| ≥ γc(G) = k. Hence, γc(Gk,ℓ) = |D′| = |D′∩V (G)|+|D′∩(V (Gk,ℓ)\V (G))| ≥ k+ℓ.
Consequently, γc(Gk,ℓ) = k + ℓ.

We establish next the criticality of Gk,ℓ. Let u and v be an arbitrary pair of non-adjacent
vertices of Gk,ℓ. We show that there exists a CD-set Duv of Gk,ℓ+uv such that |Duv| < k+ ℓ.
We first consider the case when {u, v} ⊆ V (Gk,ℓ) \ V (G). Renaming vertices if necessary, we
may assume that u = xj and v = xj′ where 0 ≤ j < j′ ≤ ℓ. Since u and v are non-adjacent
vertices of Gk,ℓ, we note that j +2 ≤ j′. If j > 0, then let Duv = D ∪ (X \ {xj+1}). If j = 0,
then let Duv = D∪ (X \{x1}). In both cases, |Duv | = k+ ℓ−1 and Duv ≻c Gk,ℓ+uv. Hence,
we may assume that at least one of u and v belongs to G, for otherwise the desired result
follows. Renaming vertices if necessary, we may assume that u ∈ V (G). By property (a)
in the construction of the graph G ∈ P(4), there exists a γc-set Du of G that contains the
vertex u and contains a vertex of H.

Suppose next that v /∈ V (G), and so v = x0 or v ∈ V (Gi) for some i ∈ [ℓ]. Renaming
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vertices if necessary, we may assume that v = xi for some i ∈ [ℓ] ∪ {0}. Suppose that
u ∈ V (H), implying that v 6= xℓ. If v = x0, then let Duv = Du ∪ (X \ {x1}). If v 6= x0, then
let Duv = Du ∪ (X \ {xℓ}). In both cases, |Duv| = k+ ℓ− 1 and Duv ≻c Gk,ℓ+uv. Hence, we
may assume that u ∈ V (G) \ V (H). Once again if v 6= x0, then let Duv = Du ∪ (X \ {xℓ}),
and if v = xi for some i ∈ [ℓ], then let Duv = Du∪ (X \{xℓ}). In both cases, |Duv | = k+ ℓ−1
and Duv ≻c Gk,ℓ + uv. Hence, we may assume that v ∈ V (G). By property (b) in the
construction of the graph G ∈ P(4), there exists a γc-set D′

uv of G that contains a vertex
of H and such that |D′

uv | ≤ k − 1. In this case, we let Duv = D′
uv ∪ X and note that

|Duv| ≤ |D′
uv| + |X| ≤ k + ℓ− 1 and Duv ≻c Gk,ℓ + uv. These observations imply that Gk,ℓ

is a (k + ℓ)-γc-critical graph. This completes the proof of Theorem 8. ✷

We are now ready to establish the realisability of k-γc-critical non-traceable graphs con-
taining ζ cut-vertices for all k ≥ 4 and 0 ≤ ζ ≤ k − 4. Recall that F(k, ζ) is the class of
k-γc-critical graphs with ζ cut-vertices which are non-traceable.

Theorem 9 For integers k ≥ 1 and ζ ≥ 0, F(k, ζ) 6= ∅ if and only if k ≥ 4 and 0 ≤ ζ ≤ k−4.

Proof. We first show that if k ≥ 4 and 0 ≤ ζ ≤ k−4, then F(k, ζ) 6= ∅. In view of Lemma 6,
F(4, 0) 6= ∅. Thus if k = 4 and ζ = k − 4 = 0, then F(k, ζ) 6= ∅. Hence, we may assume
that k ≥ 5, for otherwise the desired result follows. Let G ∈ N (s) for some integer s ≥ 6.
Adopting our earlier notation, Lemma 6 yields also that G ∈ P(4) where here we take H
as the maximal complete subgraph G[B2] having properties (a) and (b) in the construction
of G. For a given ζ ∈ [k − 4] ∪ {0}, let G∗ = G(n1, n2, . . . , nk−4) be a graph in the class
P(4, k − 4) that is constructed from the graph G by taking ni ≥ 2 for i ∈ [k − 4] in the case
when ζ = 0 and taking ni = 1 for i ∈ [ζ] and ni ≥ 2 for i ∈ [k − 4] \ [ζ] in the case when
ζ ∈ [k− 4] for the k− 4 complete graphs Kn1 ,Kn2 , . . . ,Knk−4

used in the construction of G∗.
We note that if ζ = 0, then G∗ has no cut-vertex, while if ζ ∈ [k − 4], then G∗ has exactly
ζ cut-vertices, namely the singleton vertices of the ζ complete graphs Kn1 , . . . ,Knζ

. In both
cases, G∗ has exactly ζ cut-vertices. Moreover, by Theorem 8 the graph G∗ is a k-γc-critical.

We show next that G∗ is non-traceable. Adopting our earlier notation used in the con-
struction of the graph G ∈ P(4), let S = B1 ∪B2 ∪ {x} and consider the graph G∗ − S. We
note that |S| = 2s + 1 and G∗ − S consists of

(

s
2

)

isolated vertices, namely the vertices zi,j
where 1 ≤ i 6= j ≤ s, together with an additional component containing the vertex x0 and the
k− 4 complete graphs Kn1 ,Kn2 , . . . ,Knk−4

. Since s ≥ 6, we note that 2s+ 2 <
(

s
2

)

= s(s−1)
2 .

Hence,

|S| = 2s+ 1 < 2s+ 2 <
s(s+ 1)

2
+ 1 = |B3|+ 1 = ω(G∗ − S).

Therefore, by Observation 1 the graph G∗ is non-traceable, implying that G∗ ∈ F(k, ζ).
Hence, if k ≥ 4 and 0 ≤ ζ ≤ k − 4, then F(k, ζ) 6= ∅.

Conversely, suppose that F(k, ζ) 6= ∅. Since every hamiltonian graph is traceable, by
Theorem 3, we must have that k ≥ 4. Theorem 5 implies that F(k, ζ) = ∅ when ζ ≥ k − 1.
Thus, ζ ≤ k− 2. By Theorem 7 also implies that F(k, ζ) = ∅ when ζ ∈ {k− 3, k− 2}. These
results imply that 0 ≤ ζ ≤ k − 4 and k ≥ 4. This completes the proof of Theorem 9. ✷
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