
Applied Mathematics and Computation 391 (2021) 125489 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Total value adjustment for a stochastic volatility model. A 

comparison with the Black–Scholes model 

Beatriz Salvador a , ∗, Cornelis W. Oosterlee 

a , b 

a CWI Centrum Wiskunde & Informatica, Amsterdam, the Netherlands 
b DIAM, Delft University of Technology, Delft, the Netherlands 

a r t i c l e i n f o 

Article history: 

Received 30 July 2019 

Revised 10 February 2020 

Accepted 21 June 2020 

Available online 9 September 2020 

Keywords: 

(non)linear PDEs 

Heston model 

Expected exposure 

Potential future exposure 

Credit value adjustment 

Finite element method 

a b s t r a c t 

Since the 20 07/20 08 financial crisis, the total value adjustment (XVA) should be included 

when pricing financial derivatives. In the present paper, the derivative values of European 

and American options have been priced where we take into account counterparty risk. 

Whereas European and American options considering counterparty risk have already been 

priced under Black-Scholes dynamics in [1], here the novel contribution is the introduction 

of stochastic volatility resulting in a Heston stochastic volatility type partial differential 

equation to be solved. We derive the partial differential equation modeling the XVA when 

stochastic volatility is assumed. For both European and American options, a linear and a 

nonlinear problem have been deduced. In order to obtain a numerical solution, suitable 

and appropriate boundary conditions have been considered. In addition, a method of char- 

acteristics for the time discretization combined with a finite element method in the spatial 

discretization has been implemented. The expected exposure and potential future exposure 

are also computed to compare the current model with the associated Black–Scholes model. 

© 2020 Published by Elsevier Inc. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Since the 20 07/20 08 financial crisis, counterparty credit risk has become an important aspect of the Basel regulations,

which should be considered when pricing and risk managing financial derivatives. Different value adjustments are nowadays

included to the (risk-free) financial derivative values, such as, credit value adjustment, CVA [2,3] , debit value adjustment,

DVA [4] , funding value adjustment, FVA [5,6] , collateral value adjustment, CollVA, or capital value adjustment, KVA [7] . The

set of adjustments is collectively known as total value adjustment or XVA. 

The PDE model for pricing the XVA associated with European options was derived in Burgard and Kjaer [8] , with more

discussion on funding costs found in [9,10] . A way to extend the PDE model to American options is presented in [1] . Linear

and nonlinear Black–Scholes-type equations, connected to the mark-to-market value, which model the total value adjust-

ment, were derived. As a basic principle behind these Black–Scholes XVA models constant asset volatility was assumed.

However, these equations cannot take into account the implied volatility surface features observed in the market, such as

the implied volatility smile and skew phenomena. These indicate that implied volatility tends to vary with respect to the

strike price and expiration time. In this work, we model the volatility of the underlying price as a stochastic process, and

consider the Heston model [11] to value derivatives with XVA more accurately. As a result, we will deal with a model

depending on two stochastic factors, the asset price and the volatility/variance of the asset process. 
∗ Corresponding author. 
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Particularly, we will value European and American options traded between two risky counterparties. As in [1] , we derive

the partial differential equation (PDE) modeling the risky derivative value, when the risk–free value, v , is modeled by the

Heston PDE. The initial value problem for the XVA is based on a similar procedure as for the Black–Scholes model, and the

risky derivative value ̂  v is decomposed as the sum ̂

 v = v + u, where u denotes the total value adjustment component. 

We consider two possible values for the mark–to–market close–out value, the risk–free value which leads to a linear

valuation problem, and the risky derivative value where a nonlinear model results. 

Numerical European option pricing PDE valuation based on the Heston model, has been addressed by many authors,

like in [12,13] . American option pricing under stochastic volatility is also presented in different papers, see, for example,

[14,15] . Some authors do not only compute the option values but also counterparty risk has been included, in the form of

CVA. In [16] , the CVA for cliquet options under stochastic volatility is addressed. In [17,18] , a comparison of CVA under the

Heston and Black Scholes models is made to analyze the relevance of incorporating stochastic volatility in this context, and

in [18,19] the exposures associated with CVA under Heston model were also computed. 

The goal of the present paper is to compute the total value adjustment that should be incorporated under Heston’s

stochastic volatility. In particular, we incorporate the total value adjustments formed by CVA, DVA and FVA. We compare

the constant and stochastic volatility models, to show the relevance of considering the stochastic volatility behaviour. For

this, the expected exposure, EE , and the potential future exposure, PFE , will also be computed. 

To obtain a numerical solution, first of all, appropriate boundary conditions are imposed on a truncated computational

domain. We will work with a Lagrange–Galerkin discrete method for the time and spatial discretizations. Moreover, a fixed-

point iterative scheme is implemented to solve the nonlinear XVA problem when considering the mark–to–market value

being equal to the risky value. Various numerical results are presented and compared to show the relevance of incorporating

counterparty risk in combination with stochastic volatility. 

The paper is organized as follows: in Section 2 , the PDE problem modeling the XVA, is derived. In Section 3 , the numeri-

cal methods are explained. Section 4 presents some numerical results to show the relevance of including stochastic volatility

and some conclusions are drawn in Section 5 . 

2. Mathematical model 

We consider a contract between two counterparties, a seller X and a buyer Y , and we assume the following assets asso-

ciated to the trade: 

• Counterparty X ’s zero recovery bond price, B X , with yield r B X ; 
• Counterparty Y ’s zero recovery bond price, B Y , with yield r B Y ; 
• An underlying asset without default risk. 

As a novel aspect compared to the work in [1] , we introduce stochastic volatility. The assets are modeled as stochastic

processes which here satisfy the following stochastic differential equations (SDEs): 

dB X t = r B X (t) B X t dt − B X t dJ t X, 

dB Y t = r B Y (t) B Y t dt − B Y t dJ t Y, (1) 

dS t = r R (t) S t dt + 

√ 

νt S t dW t S, 

where νt , the instantaneous variance, follows a CIR process [20] , 

d νt = κ(θ − νt ) d t + σ
√ 

νt d W t ν. (2) 

Here, W t S and W t ν are two Wiener processes with correlation coefficient ρ , so the instantaneous covariance equals ρdt .

Moreover, J t X and J t Y denote two independent jump processes which take value 1 in the case X and Y go into default

before the maturity time, respectively, otherwise their value equals zero. The other parameters in the above equations are

as follows. r R is the rate of return of the asset; θ is the mean variance. When t tends to infinity the expected value of

νt tends to θ ; κ is the speed at which νt reverts to θ ; σ is the volatility of the variance, or “vol of vol” (in short) and

determines the volatility of νt . 

When the variance process parameters satisfy the Feller condition, given by 

2 κθ

σ 2 

> 1 , 

then the process νt is strictly positive, otherwise, the variance process may reach zero. 

Next, assume a derivative trade between two defaultable counterparties. We denote by ̂  v t = ̂

 v (t, S t , νt , J t X, J t Y ) the deriva-

tive value at time t , considering counterparty risk from the point of view of the seller X , which depends on the asset’s spot

value, S t , variance, νt , and the default states, J t X and J t Y, associated to the seller X and buyer Y , respectively. When a trans-

action takes place between two risk–free counterparties, the derivative value is denoted by v t = v (t, S t , νt ) . 

If we deal with a derivatives contract between two defaultable counterparties, some technical issues related to the close–

out of such a contract should be mentioned. Two possible values are assumed to be assigned to the close–out mark–to–

market value, M , [8] , i.e. the risk–free or the defaultable derivative value. The derivative value including the probability of

default, ̂ v (t, S t , νt , J t X, J t Y ) , includes several adjustments due to counterparty risk, whereas the derivative value based on
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risk–free counterparties, v (t, S t , νt ) , does not consider any adjustment associated with the counterparty risk and equals the

well-known Heston PDE derivative value. 

Moreover, in a derivative trade between risky counterparties, we need to model the following two conditions regarding

the default of the issuers of the contract: 

• If the seller X would go into default first, then ̂ v (t, S t , νt , 1 , 0) = M + (t, S t , νt ) + R X M −(t, S t , νt ) ; (3)

• If the buyer Y would go into default first, then ̂ v (t, S t , νt , 0 , 1) = R Y M + (t, S t , νt ) + M −(t, S t , νt ) . (4)

In the above equations, R X ∈ [0, 1] and R Y ∈ [0, 1] denote the recovery rates on the derivatives position of the counterpar-

ties X and Y , respectively. In addition, the following notation has been employed: 

z+ = max (z, 0) z− = min (z, 0) . 

Depending on the, positive or negative, value of M , an amount is received or paid, respectively, by counterparty X . This

amount may, or may not, be affected by the corresponding recovery rate. 

Note that according to the choice of mark–to–market value, based on a risk–free or risky derivative value, a linear or

nonlinear problem will be derived. 

2.1. Heston model with counterparty risk 

With the aim of computing the value of a derivative under the existence of counterparty risk in the contract, the deriva-

tive is totally hedged by a self–financing portfolio �, covering the underlying risk factors in the model. We value the deriva-

tive from the point of view of the seller X , so that, as in [8] , the following hedge equation is built. 

−̂ v t = �t . 

Assuming portfolio �t , at time t , consists of the following products, 

• �( t ) units of another risky option ̃

 v t = ̃

 v (t, S, ν, JX, JY ) ; 
• 	( t ) units of the underlying asset S t ; 
• αX ( t ) units of B X t ; 
• αY ( t ) units of B Y t ; 
• γ ( t ) units of cash, made up of a financing amount, to buy Y ’s bonds, and an amount which guarantees that the value of

the portfolio at time t hedges the derivative contract value, such amount is called a repo amount. 

We will denote by γ P the cost of the portfolio and by γB X 
the cost of a position in X ’s bonds, which means the necessary

amount to buy or sell X ’s bonds. We define the funding account, γ F , as the difference between the cost of the hedge portfolio

and the price of the position in counterparty X ’s bonds, γ˜ v is added to the equation, which refers to the cost of � options.

So, 

γF = γP − (γB X + γ˜ v ) . 

In addition, similarly to γB X 
, γB Y 

denotes the cost of a position in Y ’s bonds. Moreover, the repo account, γ R , is formed by

the cash amount invested or borrowed, with the aim of funding the asset position 	( t ) S t through a repurchase agreement.

Although γ P , γB X 
, γ˜ v , γ F and � all depend on t , for simplicity we omit this dependence in the next expressions. 

As in [1] , the values of the different bonds satisfy the following relations for s ≥ t : 

dB F (t, s ) = 

{
r F (s ) B F (s ) ds if γF ≤ 0 , 

r(s ) B F (s ) ds if γF > 0 , 

and 

dB B Y = r(s ) B B Y (s ) ds, 

dB R (t, s ) = r R (s ) B R (s ) ds, 

jointly with B F (t , t ) = B B Y (t , t ) = B R (t , t ) = 1 . B F and B R are two bonds with different interest rates, in which the amount of

cash is invested. Moreover, r denotes the risk–free interest rate, r F the funding rate from the issuer and r R is the rate paid

for the underlying in a repurchase agreement. According to the previous details, the portfolio value can be written as: 

�t = 	(t) S t + αX (t) B X t + αY (t) B Y t + γ (t) + �(t) ̃  v t , (5)

and, with the purpose of preventing arbitrage opportunities, 

d �t = −d ̂  v t . 
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Taking into account the relation among the intensity of default, the spread and the recovery rate, as B X and B Y are zero

recovery bonds, their spreads and their default intensities λX and λY , are given by, respectively: 

λX = r B X − r, λY = r B Y − r. (6) 

Based on the self–financing feature of the portfolio, we obtain: 

d �t = 	(t) d S t + αX (t) d B X t + αY (t) d B Y t + (rγF + + r F γF − −rγB Y − r R γR )(t) dt + �(t) d ̃  v t . (7)

We apply Ito’s lemma for jump–diffusion processes to obtain the equation for the variation of the derivative value ̂  v t 

d ̂  v t = 

(
∂ ̂  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̂

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̂

 v 
∂ν2 

+ ρσνS 
∂ 2 ̂

 v 
∂ S∂ ν

)
d t + 

∂ ̂  v 
∂S 

d S + 

∂ ̂  v 
∂ν

d ν

+ 	̂ v X t dJX + 	̂ v Y t dJY 

= 

(
∂ ̂  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̂

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̂

 v 
∂ν2 

+ ρσνS 
∂ 2 ̂

 v 
∂ S∂ ν

+ r R S 
∂ ̂  v 
∂S 

+ κ(θ − ν) 
∂ ̂  v 
∂ν

)
dt 

+ 

√ 

νS 
∂ ̂  v 
∂S 

d W S + σ
√ 

ν
∂ ̂  v 
∂ν

d W ν + 	̂ v X t d JX + 	̂ v Y t d JY, (8) 

where ̂  v and all partial derivatives of ̂  v are evaluated at (t, S t , νt , J t X, J t Y ) . Moreover, we have used the notations, 

	̂ v X t = ̂

 v (t, S t , νt , 1 , 0) −̂ v (t, S t , νt , 0 , 0) , 

	̂ v Y t = ̂

 v (t, S t , νt , 0 , 1) −̂ v (t, S t , νt , 0 , 0) . 

These quantities can be computed using the default conditions given by (3) and (4) . A similar result is obtained for the

option ̃

 v . 
Considering the expressions (7) and (8) , the following hedging equation is obtained, 

	(t) dS + αX (t) dB X + αY (t) dB Y + (rγF + + r F γF − −rγB Y − r R γR )(t) dt 

+ �

((
∂ ̃  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̃

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̃

 v 
∂ν2 

+ ρσνS 
∂ 2 ̃

 v 
∂ S∂ ν

+ r R S 
∂ ̃  v 
∂S 

+ κ(θ − ν) 
∂ ̃  v 
∂ν

)
dt 

+ 

√ 

νS 
∂ ̃  v 
∂S 

d W S + σ
√ 

ν
∂ ̃  v 
∂ν

d W t ν + 	˜ v X d JX + 	˜ v Y d JY 
)

= −
((

∂ ̂  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̂

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̂

 v 
∂ν2 

+ ρσνS 
∂ 2 ̂

 v 
∂ S∂ ν

+ r R S 
∂ ̂  v 
∂S 

+ κ(θ − ν) 
∂ ̂  v 
∂ν

)
dt 

+ 

√ 

νS 
∂ ̂  v 
∂S 

d W S + σ
√ 

ν
∂ ̂  v 
∂ν

d W ν + 	̂ v X d JX + 	̂ v Y d JY 
)

. 

Connected to the SDEs in (1) , we deduce 

	(t) dS + αX (t)(r B X (t) B X dt − B X dJX ) + αY (t)(r B Y (t) B Y dt − B Y dJY ) 

+ (rγF + r F γF − −rγB Y − r R γR )(t) dt + �
((

∂ ̃  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̃

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̃

 v 
∂ν2 

+ ρσνS 
∂ 2 ̃

 v 
∂ S∂ ν

+ r R S 
∂ ̃  v 
∂S 

+ κ(θ − ν) 
∂ ̃  v 
∂ν

)
d t + 

√ 

νt S 
∂ ̃  v 
∂S 

d W S + σ
√ 

ν
∂ ̃  v 
∂ν

d W ν

+ 	˜ v X dJX + 	˜ v Y dJY 

)
(9) 

= −
((

∂ ̂  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̂

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̂

 v 
∂ν2 

+ ρσνS 
∂ 2 ̂

 v 
∂ S∂ ν

+ r R S 
∂ ̂  v 
∂S 

+ κ(θ − ν) 
∂ ̂  v 
∂ν

)
dt 

+ 

√ 

νS 
∂ ̂  v 
∂S 

d W S + σ
√ 

ν
∂ ̂  v 
∂ν

d W ν + 	̂ v X d JX + 	̂ v Y d JY 
)

. 

When removing all risk from the portfolio �t , the following weights need to be chosen: 

�(t) = −∂ ̂  v /∂ν

∂ ̃  v /∂ν
, 

	(t) = −∂ ̂  v 
∂S 

− �
∂ ̃  v 
∂S 

= −∂ ̂  v 
∂S 

+ 

∂ ̂  v /∂ν

∂ ̃  v /∂ν

∂ ̃  v 
∂S 

, 

αX (t) = 

	̂ v X + �	˜ v X 
B 

= 

−̂ v + (M + + R X M−) + �( ̃  v − (M + + R X M−)) 

B 

, 

X X 
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αY (t) = 

	̂ v Y + �	˜ v Y 
B Y 

= 

−̂ v + (M − + R Y M+) + �( ̃  v − (M − + R Y M+)) 

B Y 

. 

As a result, the hedging Eq. (9) leads to: 

αX (t) r B X (t) B X t dt + αY (t) r B Y (t) B Y t dt + (rγF + + r F γF − −rγB Y − r R γR )(t) dt 

+ �

(
∂ ̃  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̃

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̃

 v 
∂ν2 

+ ρσνS 
∂ 2 ̃

 v 
∂ S∂ ν

)
dt (10)

= −
(

∂ ̂  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̂

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̂

 v 
∂ν2 

+ ρσνS 
∂ 2 ̂

 v 
∂ S∂ ν

)
dt . 

Taking into account the following equivalence: 

αX r B X B X dt + αY r B Y B Y dt + (rγF + + r F γF − −rγB Y − r R γR ) dt 

= r γP − r γ˜ v + s F γF − −r R 	S + (r B Y − r ) αY B Y + (r B Y − r ) αX B X , 

and, similarly to the derivations in [8] , following (6) , replacing the values of γ F , γ R , γ˜ v and γB Y 
, and rewriting αX B X and

αY B Y in terms of the mark–to–market value, the previous equivalence can be written as follows, 

αX r B X B X dt + αY r B Y B Y dt + (rγF + + r F γF − −rγB Y − r R γR ) dt 

= −r ̂  v + r�˜ v + s F (−̂ v − αX B X − �˜ v ) − + λX αX B X + λY αY B Y − r R 	S 

= −r ̂  v + r�˜ v + s F (−̂ v − αX B X − �˜ v ) − + λX ( −̂ v + (M + + R X M−) 

+�( ̃  v − (M + + R X M−)) ) − r R 	S + λY ( −̂ v + (M − + R Y M+) 

+�( ̃  v − (M − + R Y M+)) ) 

= −(r + λX + λY ) ̂  v + (r + λX + λY )�˜ v + s F (−̂ v − αX B X − �˜ v ) − −r R 	S 

+ λX (M + + R X M−) + λX �(M + + R X M−) 

+ λY (M − + R Y M+) + λY �(M − + R Y M+) . 

By introducing this into the hedging Eq. (10) , we obtain: 

− (r + λX + λY ) ̂  v + (r + λX + λY )�˜ v + s F (−̂ v − αX B X − �˜ v ) − −r R 	S 

+ λX (M + + R X M−) + λX �(M + + R X M−) + λY (M − + R Y M+) 

+ λY �(M − + R Y M+) + �

(
∂ ̃  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̃

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̃

 v 
∂ν2 

+ ρσνS 
∂ 2 ̃

 v 
∂ S∂ ν

)
dt 

= −
(

∂ ̂  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̂

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̂

 v 
∂ν2 

+ ρσνS 
∂ 2 ̂

 v 
∂ S∂ ν

)
dt . 

After rearranging and replacing the value of �, we deduce: 

1 

∂ ̂  v /∂ν

(
∂ ̂  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̂

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̂

 v 
∂ν2 

+ ρσνS 
∂ 2 ̂

 v 
∂ S∂ ν

− (r + λX + λY ) ̂  v + r R S 
∂ ̂  v 
∂S 

+ λX (M + + R X M−) + λY (M − + R Y M +) − s F M + ) 

= 

1 

∂ ̃  v /∂ν

(
∂ ̃  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̃

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̃

 v 
∂ν2 

+ ρσνS 
∂ 2 ̃

 v 
∂ S∂ ν

+ r R S 
∂ ̃  v 
∂S 

−(r + λX + λY ) ̃  v + λX (M + + R X M−) + λY (M − + R Y M+) − s F M+ ) . 

As this equation must hold for all derivatives of ̂  v and ̃

 v , the right-hand side should be equal to some general function

λ(t, S, ν) − κ(θ − ν) . 

For simplicity, we set λ = 0 , resulting in the following Heston PDE 

∂ ̂  v 
∂t 

+ 

1 

2 

νS 2 

∂ 2 ̂

 v 
∂S 2 

+ 

1 

2 

σ 2 ν
∂ 2 ̂

 v 
∂ν2 

+ ρσνS 
∂ 2 ̂

 v 
∂ S∂ ν

+ r R S 
∂ ̂  v 
∂S 

+ κ(θ − ν) 
∂ ̂  v 
∂ν

− (r + λX + λY ) ̂  v 

= s F M + −λX (M + + R X M−) − λY (M − + R Y M+) . 

As a result, the derivative value considering counterparty risk and stochastic volatility is modeled by the PDE problem { 

∂ t ̂  v + A ̂

 v − (r + λX + λY ) ̂  v = s F M + −λX (M + + R X M−) 
−λY (M − + R Y M+) , ̂ v (T , S, ν) = g(S) , 

(11)

where s F represents the funding costs of the entity, M the mark–to–market value, the differential operator A is given by, 

A v = 

1 

νS 2 

∂ 2 v + 

1 

σ 2 ν
∂ 2 v + ρσνS 

∂ 2 v + r R S 
∂v + κ(θ − ν) 

∂v 
, (12)
2 ∂S 2 2 ∂ν2 ∂ S∂ ν ∂S ∂ν
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and g ( S ) denotes the payoff function. 

As we introduced previously, according to the choices of the mark–to–market value at default, based on the two common

scenarios, two different PDEs models are deduced. When M = ̂

 v , a nonlinear problem is posed, {
∂ t ̂  v + A ̂

 v − r ̂  v = s F ̂  v + + λX (1 − R X ) ̂  v − + λY (1 − R Y ) ̂  v + , ̂ v (T , S, ν) = g(S) . 

With M = v , a linear problem is deduced, {
∂ t ̂  v + A ̂

 v − (r + λX + λY ) ̂  v = s F v + −(λX + R Y λY ) v + −(λY + R X λX ) v−, ̂ v (T , S, ν) = g(S) . 

To obtain the equation which models the XVA, we split up the risky derivative value, ̂  v , as the sum of the risk–free value,

and the total value adjustment, u : 

̂ v = v + u. 

Note that function v is the solution of the classical Heston PDE model [21] given by {
∂ t v + A v − rv = 0 , 

v (T , S, ν) = g(S) , 
(13) 

where the operator A has been previously introduced in (12) . 

With the separation of ˆ v in (11) , noting that v is the solution of (13) , the problem which models the XVA reads, ⎧ ⎨ ⎩ 

∂ t u + A u − (r + λX + λY ) u = s F M + −λX (M + + R X M−) 

−λY (M − + R Y M+) + (λX + λY ) v 
u (T , S, ν) = 0 . 

(14) 

Like in the case of the risky derivative problem, depending on the choice of the mark–to–market close–out value, two

models are obtained. When M = ̂

 v , a nonlinear problem is to be solved, {
∂ t u + A u − ru = s F (v + u ) + + λX (1 − R X )(v + u ) − + λY (1 − R Y )(v + u )+ , 

u (T , S, ν) = 0 . 
(15) 

For M = v , the linear problem to be solved reads, {
∂ t u + A u − (r + λX + λY ) u = s F v + + λX (1 − R X ) v − + λY (1 − R Y ) v+ , 

u (T , S, ν) = 0 . 
(16) 

Based on the PDE problems, we can write the total value adjustment in terms of conditional expectations. With this aim,

following [18] , we consider an arbitrage-free economy with the risk-neutral pricing measure denoted by Q , such that a price

associated to any attainable claim is computed as the expectation of a discounted value under this probability measure. We

choose the numeraire of Q to be, C t = exp (rt) , where r is the risk-free rate. Such numeraire refers to the bank account, with

C 0 = 1 . 

In order to compute the expected exposure and potential future exposure, we introduce generally the exposure. Let’s

assume that { X t , t ∈ [0, T ]} is a Markov process, and let T be the maturity time for a position. The associated discounted and

added cash flows at time t ≤ T are denoted by �( t , T ). The exposure at time t is now defined as 

E t = ( EQ [�(t, T ) | X t ] ) + , 

where E t : � → R + ∪ { 0 } is a random variable on the sample space �. The potential future exposure, PFE , measures the

exposure to occur at a future date at a high confidence level. It is defined as a quantile of the exposure distribution, often

under the real-world probability measure P . At a fixed time t ∈ [0, T ], the value of the PFE is thus defined by 

P F E α(t) = inf { y | P ({ ω : E t (ω) < y } ) ≤ α} , 
where α is the confidence level and ω ∈ �. 

The expected exposure, EE , is the probability-weighted average exposure at a future date. At a fixed time t ∈ [0, T ], EE ( t )

is given by 

E E (t) = EP [ E t ] = EP [ ( EQ [�(t, T ) | X t ] ) + ] = 

∫ 
�

E t (ω) dP (ω) , 

with ω ∈ �. 
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Finally, we define the risk-neutral discounted expected exposure in terms of the expected exposure as follows 

EE ∗(t) = EQ 

[ 
E t 

C t 

] 
= 

∫ 
�

E t (ω) 

C t (ω) 
dQ (ω) , 

which is independent of the counterparty default. 

Thanks to the Feynman-Kac theorem, the following expressions at initial time can be derived. For M = ̂

 v , 

u (0 , s, ν) = EQ 

[∫ 
0 

T e 

∫ 
0 

ωrdτ ( −s F (v (ω, S(ω) , ν(ω)) + u (ω, S(ω) , ν(ω)))+ 

−λX (1 − R X )(v (ω, S(ω) , ν(ω)) + u (ω, S(ω) , ν(ω)))−

−λY (1 − R Y )(v (ω, S(ω) , ν(ω)) + u (ω, S(ω) , ν(ω)))+ ) dω | S 0 = s, ν0 = ν

]
. 

Due to the constant parameters, this expression can be rewritten: 

u (0 , s, ν) = − E Q 

[ 
s F 

∫ 
0 

T e rω (v (ω, S(ω) , ν(ω)) + u (ω, S(ω) , ν(ω))) + dω | S 0 = s, ν0 = ν
] 

− EQ 

[ 
λX (1 − R X ) 

∫ 
0 

T e rω (v (ω, S(ω) , ν(ω)) + u (ω, S(ω) , ν(ω))) − dω | S 0 = s, ν0 = ν
] 

(17)

− EQ 

[ 
λY (1 − R Y ) 

∫ 
0 

T e rω (v (ω, S(ω) , ν(ω)) + u (ω, S(ω) , ν(ω))) + dω | S 0 = s, ν0 = ν
] 
. 

In the case of M = v , 

u (0 , s, ν) = EQ 

[∫ 
0 

T e 

∫ 
0 

ω(r + λX + λY ) dτ ( −s F v (ω, S(ω) , ν(ω)) + −λX (1 − R X ) v (ω, S(ω) , ν(ω))−

−λY (1 − R Y ) v (ω, S(ω) , ν(ω))+ ) dω | S 0 = s, ν0 = ν

]
. 

We can rewrite this expression, as, 

u (0 , s, ν) = −EQ 

[ 
s F 

∫ 
0 

T e (r + λX + λY ) ω v (ω, S(ω) , ν(ω)) + dω | S 0 = s, ν0 = ν
] 

−EQ 

[ 
λX (1 − R X ) 

∫ 
0 

T e (r + λX + λY ) ω v (ω, S(ω) , ν(ω)) − dω | S 0 = s, ν0 = ν
] 

(18)

−EQ 

[ 
λY (1 − R Y ) 

∫ 
0 

T e (r + λX + λY ) ω v (ω, S(ω) , ν(ω)) + dω | S 0 = s, ν0 = ν
] 

. 

In the previous expression, S 0 and ν0 have been used to denote the values of S and ν at the time instance t = 0 

So, the XVA is modeled by means of a PDE and it is rewritten in terms of expectations by the Feynman–Kac theorem.

Moreover, the expressions for XVA have been split into three individual terms, each of which represents a specific adjust-

ment, the FVA, DVA and CVA, respectively. In order to analyze the impact of stochastic volatility, we also compute the EE

and the PFE values. For this, the XVA is re-written in terms of the loss–given default and the probability of default quantities.

The value of these adjustments is written in terms of the expected exposure, as follows: 

CVA (0) = LGD Y 

∫ 
0 

T EE ∗(t) dP D Y (t) 

	 LGD Y 

∑ 

j=0 

M − 1 EE ∗(t j )(P D Y (t j+1 ) − P D Y (t j )) , 

DVA (0) = LGD X 

∫ 
0 

T EE ∗(t) dP D X (t) 

	 LGD X 

∑ 

j=0 

M − 1 EE ∗(t j )(P D X (t j+1 ) − P D X (t j )) , 

FVA (0) = F S 

∫ 
0 

T EE ∗(t ) dt , 

where { 0 = t 0 < t 1 , . . . < t M+ T } is a fixed time grid. Moreover LGD denotes the loss given default, which describes the per-

centage of loss when a bank’s counterparty goes into default and the amount of funds that are lost by an investor when

a borrower fails to make the payments. The LGD is computed as LGD = 1 − R, with R the recovery rate. The indices X and

Y refer to the counterparty and the institution, respectively. PD defines the risk-neutral probability of counterparty default

between the times zero and t . Finally, FS refers to the funding spread. Note that in the DVA formula, the quantity EE ∗ is
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related to the expected negative exposure, which then leads to negative values. Taking into account the expressions for the

individual adjustments, XVA can be written as follows: 

XVA (0) = CVA (0) + DVA (0) + FVA (0) 

= LGD Y 

∫ 
0 

T EE ∗(t) dP D Y (t) + LGD X 

∫ 
0 

T EE ∗(t) dP D X (t) + 

F S 

∫ 
0 

T EE ∗(t) dt 

	 LGD Y 

∑ 

j=0 

M − 1 EE ∗(t j )(P D Y (t j+1 ) − P D Y (t j )) + (19) 

LGD X 

∑ 

j=0 

M − 1 EE ∗(t j )(P D X (t j+1 ) − P D X (t j )) + F S 
∑ 

j=0 

M − 1 EE ∗(t j ) . 

Note that the EE and PFE for the Heston model depend on both the asset price and the stochastic variance process. In

order to compute these values throughout the life of the option, the asset price and stochastic volatility are fixed to specific

values. Moreover, with the aim of comparing with the Black–Scholes model solutions, where EE and PFE only depend on the

asset price, the exposures in this case will be computed considering the derivative value to be evaluated at the same asset

prices, and for the particular volatility which is then fixed for the Heston exposure profiles. Finally, as commonly found in

finance, the computation of the exposures will be addressed by Monte Carlo techniques. 

2.2. Heston model for American options considering counterparty risk 

In the previous section, the XVA model for European options has been derived, next, we derive the American option

valuation adjustments, including counterparty risk. Based on hedging arguments, a self-financing portfolio is defined and

no-arbitrage properties are imposed. In particular, we build the same portfolio as in (5) for the European options. However,

in the American case, with the purpose of avoiding arbitrage opportunities, the following hedging inequality is found, 

d �t + d ̂  v t ≤ 0 . 

Following the same reasoning as in the European option case, the following linear complementarity problem results, ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

N ( ̂  v ) = ∂ t ̂  v + A ̂

 v − (r + λX + λY ) ̂  v − s F M + + λX (M + + R X M−) 

+ λY (M − + R Y M+) ≤ 0 , ̂ v (t, S, ν) ≥ g(S) , 

N ( ̂  v )( ̂  v − g) = 0 , ̂ v (T , S, ν) = g(S) . 

(20) 

The above formulation is also written in terms of the mark–to–market value. According to the mark–to–market close–out

value, we thus find also two complementarity problems. When M = ̂

 v , a nonlinear operator is obtained: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

N 1 ( ̂  v ) = ∂ t ̂  v + A ̂

 v − r ̂  v − s F ̂  v + −λX (1 − R X ) ̂  v − −λY (1 − R Y ) ̂  v + ≤ 0 , ̂ v (t, S, ν) ≥ g(S) , 

N 1 ( ̂  v )( ̂  v − g) = 0 , ̂ v (T , S, ν) = g(S) . 

For M = v , a linear operator results, ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

N 2 ( ̂  v ) = ∂ t ̂  v + A ̂

 v − (r + λX + λY ) ̂  v − s F v + +(λX + R Y λY ) v+ 

+(λY + R X λX ) v− ≤ 0 , ̂ v (t, S, ν) ≥ g(S) , 

N 2 ( ̂  v )( ̂  v − g) = 0 , ̂ v (T , S, ν) = g(S) . 

As in [1] , in the case of American options, to obtain the XVA value, we compute the value of the risky derivative and

the risk–free value and define the total value adjustment as the difference between them, i.e. XVA = ̂

 v − v . Note that the

risk–free value is the solution of the following classical complementarity problem, ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

˜ N (v ) = ∂ t v + A v − rv ≤ 0 , 

v (t, S, ν) ≥ g(S) , ˜ N (v )(v − g) = 0 , 

v (T , S, ν) = g(S) . 

(21) 

The expected exposure, EE , and the potential future exposure, PFE , are computed as for the European options, where v
and ̂

 v are solutions of the corresponding complementarity problems. 
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3. Numerical methods 

In order to solve the previously defined PDE problems numerically, various numerical techniques are employed. We

focus on the nonlinear problem, as the linear version can be addressed in a very similar way. First of all, we need to apply

a localization procedure to define a suitable finite domain with appropriate boundary conditions. The time discretization is

based on the Lagrangian method, which is combined with a piecewise linear finite element spatial discretization. Comparing

with the literature, finite difference methods, in particular ADI-type methods [12] , have also been successfully applied to

solve the classical Heston PDE. Non–uniform meshes in both spatial directions, S and ν , are then used. In particular, a mesh

with clustered grid points at (S, ν) = (K, 0) is built. Here, we will work with a finite element method to solve the PDE, and

employ a uniform mesh, for simplicity. 

Numerical methods are proposed to solve the nonlinear problem (15) , the solution of which will be the discrete adjust-

ment value, including credit value adjustment, debit value adjustment and funding value adjustment. For the linear problem

(16) the same numerical techniques will be applied. Note that the fixed-point iterative scheme is not needed in that case. 

A change of time direction, using τ = T − t, is introduced, so that the following initial value problem is solved forward

in “time” τ :. ⎧ ⎨ ⎩ 

∂ u/ ∂ τ − 1 / 2 νt S t 2 ∂ 2 u / ∂ S2 − 1 / 2 σ 2 νt ∂ 2 u / ∂ ν2 − ρσνt S t ∂ 2 u / ∂ S∂ ν − r R S ∂u / ∂S − κ(θ − ν) ∂ u / ∂ ν + ru, 

= −s F (v + u ) + −λX (1 − R X )(v + u ) − −λY (1 − R Y )(v + u )+ 

u (0 , S, ν) = 0 . 

(22)

To solve the problem by finite elements, the PDE is written in terms of a divergence operator. With matrix A and vector b

as follows, 

A = 1 / 2 

(
νS2 ρνSσ

ρνSσ νσ 2 

)
b = 

(
( ν + ρσ/ 2 − r R ) S 

σ 2 / 2 + ρσ/ 2 ν − κ(θ − ν) 

)
, (23)

the PDE in (22) is written as, 

∂u / ∂τ − div (A ∇u ) + b · ∇u + ru = − f (v + u ) , (24)

where function f is defined as: 

f (v ) = s F v + + λX (1 − R X ) v − + λY (1 − R Y ) v + . (25)

3.1. Method of characteristics 

For the time discretization, we use a characteristics method (also known as semi-Lagrangian scheme), which is based on

the material derivative of u , i.e 

Du / Dτ := ∂u / ∂τ + ∂u / ∂S ∂S / ∂τ + ∂u / ∂ν∂ν/ ∂τ , (26)

for a given function S = S(τ ) and ν = ν(τ ) . In our particular model, the material derivative term corresponds with: 

Du / Dτ = ∂u / ∂τ + ( ν + ρσ/ 2 − r R ) S ∂u / ∂S + ( σ 2 / 2 + ρσ/ 2 ν − κ(θ − ν) ) ∂u / ∂ν. (27)

Eq. (24) then reads: 

Du / Dτ − div (A ∇u ) + ru = − f (v + u ) . (28)

Including the advective term in (27) , we use the number of time points N T > 0, a constant time step 	τ = T /N T > 0 , and the

time instants τ n = n 	τ (n = 0 , 1 , . . . , N T ) . Approximating the material derivative in (24) by the method of characteristics,

the following semi-discrete problem is posed: {
u n + 1 − un ◦ χ n/ 	τ − div (A ∇u n + 1 ) + ru n + 1 = − f (v n + 1 + u n + 1 ) , 
u0(S, ν) = 0 , 

(29)

where χ n = χ(τ n ) = χ((S, ν) , τ n + 1 ; τ n ) and u n ( · ) ≈ u ( τ n , · ). Moreover, the characteristic curve, χ(τ ) =
χ((S, ν) , τ n + 1 ; τ ) , associated to the vector b passing through the point ( S , ν) at time τ n + 1 , is the solution of the

following ODE problems: { 

d χ1 / d τ = ( ν + ρσ/ 2 − r R ) χ1 , 

χ1 (τ n + 1 ) = S, 

{ 

d χ2 / d τ = σ 2 / 2 + ρσ/ 2 χ2 − κ(θ − χ2 ) , 

χ2 (τ n + 1 ) = ν . 
(30)

The components of this characteristic curve, can be computed as: 

χ1 (τ ) = S exp ( −( ν + ρσ/ 2 − r R ) (τ n + 1 − τ ) ) , 

χ2 (τ ) = −1 / ρσ/ 2 + κ( σ 2 / 2 − κθ ) + ( ν + 1 / ρσ/ 2 + κ( σ 2 / 2 − κθ ) ) exp ( −( ρσ/ 2 + κ) (τ n + 1 − τ ) ) . 

Finally, to evaluate u n ◦χn in (29) at the quadrature nodes used to compute the integrals in the finite element method,

we apply a piecewise bilinear interpolation method. 
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3.2. Fixed-point algorithm 

To deal with the nonlinearity of the problem (29) , a fixed-point algorithm is proposed at each time step n . Then, at

each iteration k of the fixed-point scheme, the function u n + 1 , k + 1 is obtained. As a result, the global numerical iterative

scheme, represented by Algorithm 1 below, is implemented. 

Algorithm 1 

Let N > 1 , n = 0 , ε > 0 and u0 given 

While n ≤ N: 

1) Let u n + 1 , 0 = un , k = 0 , e = ε + 1 

2) While e ≥ ε: 

(2.a) Search u n + 1 , k + 1 as the solution of: 

( 1 + r	τ ) u n + 1 , k + 1 − 	τ div (A ∇u n + 1 , k ) = un ◦ χ n − 	τ f (vn + u n + 1 , k ) (31) 

(2.b) e = ‖ u n + 1 , k + 1 − u n + 1 , k ‖ / ‖ u n + 1 , k + 1 ‖ 

3.3. Boundary conditions 

As is common for vanilla options, the definition of the computational domain is based on a maximum value for the

underlying price coordinate, which is set to four times the strike prices, S max = 4 K. Similarly, we consider the interval

[0 , νmax ] for the admissible variance values, we set νmax = 1 , however, higher values can also be employed. The fol-

lowing boundary conditions are proposed. First of all, we introduce the notation x 0 = τ, x 1 = S, x 2 = ν, and the domain

�∗ = (0 , x 0 ∞ ) × (0 , x 1 ∞ ) × (0 , x 2 ∞ ) , where x 0 ∞ = T , x 1 ∞ = S max and x 2 ∞ = νmax . The boundary of �∗ is: 

∂�∗ = 

⋃ 

i =0 

2(�i ∗, − ∪ �i ∗, + ) , 

where we use the notation: 

�i ∗, − = { (x 0 , x 1 , x 2 ) ∈ ∂�∗(x i = 0) } , 

�i ∗, + = { (x 0 , x 1 , x 2 ) ∈ ∂�∗(x i = x i ∞ ) } . 
The PDE in (22) can then be written in the form: ∑ 

i, j=0 

2 b i, j 

∂ 2 u 

∂ x i ∂ x j 
+ 

∑ 

j=0 

2 p j 
∂u 

∂x j 
+ c 0 u = g 0 , 

where the coefficients are defined as follows: 

B (x 0 , x 1 , x 2 ) = (b i j ) = 

( 

0 0 0 

0 

1 
2 

x 2 x 
2 
1 

ρσ x 1 x 2 
2 

0 

ρσ x 1 x 2 
2 

1 
2 
σ 2 

2 x 2 

) 

, c 0 = r, 

p(x 0 , x 1 , x 2 ) = (p j ) = 

( −1 

r R x 1 
κ(θ − x 2 ) 

) 

, 

g(x 0 , x 1 , x 2 ) = s F (v + u ) + + λX (1 − R X )(v + u ) − + λY (1 − R Y )(v + u ) + . 

Next, we introduce the following subset of �∗, in terms of the normal vector to the boundary pointing inwards the domain

�∗, 
−→ 

m = (m 0 , m 1 , m 2 ) 

�0 = 

{ 

x ∈ ∂�∗/ 
∑ 

i, j=0 

2 b i j m i m j = 0 

} 

, �1 = ∂�0 − �0 , 

�2 = 

{ 

x ∈ �0 / 
∑ 

i =0 

2 

( 

p i −
∑ 

j=0 

2 

∂b i j 

∂x j 

) 

m i ≤ 0 

} 

. 

For our particular problem, we have: �0 = �0 ∗, − ∪ �0 ∗, + ∪ �1 ∗, − ∪ �2 ∗, −, �1 = �1 ∗, + ∪ �2 ∗, + and �2 = �0 ∗, + or

�2 = �0 ∗, + ∪ �2 ∗, −, if the Feller condition is satisfied or not, respectively. Thus, following [22] , the boundary condi-

tions must be imposed over the subset �1 ∪ �2 , which matches with the set � ∗, − ∪ � ∗, + ∪ � ∗, + or � ∗, − ∪ � ∗, + ∪
0 1 2 0 1 
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�2 ∗, + ∪ �2 ∗, −, according to the Feller condition. Note that at the boundary S = 0 is not necessary to impose any condition.

Similar procedure is made for the risk–free value problem, obtaining the same boundaries to impose a condition. 

Like the boundary conditions in [1] and the solution obtained for the Black–Scholes model, the following boundary

conditions are imposed (we also explain the boundary conditions for the classical Heston PDE and not only for the XVA

problem). 

3.3.1. Boundary conditions, the risk–free derivative value 

To obtain a numerical solution for the classical Heston PDE, different boundary conditions have been proposed in

[12] , [14] . We use a formulation, based on the properties of the equation at the boundaries, which are linked with the

Black–Scholes equation obtained in [1] . 

At the boundary �2 + , where ν takes its maximum value, different Dirichlet boundary conditions are proposed in the

literature, see, for example, [12] . Following Forsyth [14] , the following condition is imposed in this work: 

lim 

ν→ νmax 

∂v 
∂ν

(τ, S, ν) = 0 . 

Assuming lim 

ν→ νmax 
ν∂v / ∂ν(τ, S, ν) = 0 , for νmax large enough, the equation on �2 + turns into: 

∂v 
∂τ

− 1 

2 

νS 2 

∂ 2 v 
∂S 2 

− r R S 
∂v 
∂S 

+ rv = 0 , 

which corresponds to prescribing the Black-Scholes equation at this boundary. So, at the boundary, where the volatility takes

the value νmax , we impose the classical Black-Scholes formula, given by the expressions: 

v (τ, S, νmax ) = S exp (−D 0 τ ) N(d 1 ) − K exp (−rτ ) N(d 2 ) , call option , 

v (τ, S, νmax ) = K exp (−rτ ) N(−d 2 ) − S exp (−D 0 τ ) N(−d 1 ) , put option , 

with 

D 0 = r − r R , 

d 1 = 

log (S/K) + (r − D 0 + 0 . 5 νmax ) τ√ 

νmax 

√ 

τ
, d 2 = 

log (S/K) + (r − D 0 − 0 . 5 νmax ) τ√ 

νmax 

√ 

τ
. 

At the boundary �1 + , where the asset price S takes its maximum value, different Dirichlet and Neumann conditions

have been proposed in the literature, see [12,14] . Following D’Halluin et al. [23] and Castillo et al. [24] , dividing the equation

by S 2 , we employ the condition 

lim 

S→ S max 

∂ 2 v 
∂S2 

= 0 , 

where S max is large enough. 

As in [25] we consider the solution to be of the form, 

v (τ, S, ν) = H 1 (τ ) S + H 2 (τ ) ν + H 3 (τ ) ν2 + H 4 (τ ) νS + H 5 (τ ) ν2 S + H 6 (τ ) , (31)

where the coefficients H 1 ( τ ), H 2 ( τ ), H 3 ( τ ), H 4 ( τ ), H 5 ( τ ), and H 6 ( τ ) are all independent of S and ν . These coefficients can be

obtained by substituting the expression (31) in the discretized equations with S → ∞ . Choosing, at each fixed-point iteration,

the particular values H 1 n + 1 , k + 1 (τ ) = H 2 n + 1 , k + 1 (τ ) = H 3 n + 1 , k + 1 (τ ) = H 4 n + 1 , k + 1 (τ ) = H 5 n + 1 , k + 1 (τ ) = 0 ,

the following nonhomogenous Dirichlet condition is deduced 

v n + 1 , k + 1 (S ∞ 

, ν) = H 6 n + 1 , k + 1 (τ ) = 

vn ◦ χ n 

1 + r	τ
. 

However, to derive a condition which matches the condition in the corner of the domain, we consider the analytic

solution for the Black–Scholes problem with varying volatility ν on the boundary. Moreover, such Dirichlet condition also

satisfies, lim 

S→ S max 

∂ 2 v / ∂S2 = 0 . 

In the case the Feller condition is violated, we impose the classical condition from the literature at boundary �2 −. By

substituting ν = 0 in the equation, the following equation is obtained: 

∂v 
∂τ

− r R S 
∂v 
∂S 

− κθ
∂ v 
∂ ν

+ rv = 0 . (32)

We solve such equation by finite differences and then the numerical solution is imposed as a boundary condition. 
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3.3.2. Boundary conditions for the XVA problem 

To obtain the XVA values, we will reason similarly as for the classical Heston option pricing PDE. 

At the boundary �2 + , we also assume lim 

ν→ νmax 
∂u / ∂ν(τ, S, ν) = 0 , and the resulting boundary condition reads, 

∂u 

∂τ
− 1 

2 

νS 2 

∂ 2 u 

∂S 2 

− r R S 
∂u 

∂S 
+ ru = − f (v + u ) , 

where function f has been defined in (25) . Note that this equation corresponds to the XVA equation obtained for the Black-

Scholes model, see also [1] . So, we impose a non-homogeneous Dirichlet boundary condition given by the XVA solution of

the Black-Scholes problem. 

At the boundary �1 + , we follow essentially the same procedure as for the risk–free value v . So, after division by S 2 , we

obtain lim 

S→ S max 

∂ 2 u / ∂S2 = 0 . 

To determine a condition which works well at the intersection point with �2 + , we impose the solution of the one-

dimensional XVA problem, modeled by the Black–Scholes equation in [1] , which also satisfies lim 

S→ S max 

∂ 2 u / ∂S2 = 0 . 

In the case the Feller condition is not satisfied, based on a similar reasoning as for the risk–free value at boundary �2 −,

by replacing the parameter ν by the value 0, we find the following condition, 

∂u 

∂τ
− r R S 

∂u 

∂S 
− κθ

∂u 

∂ν
+ ru = − f (u + v ) , (33) 

The value of u on this boundary can be computed by solving the PDE in [0, S max ], applying numerical methods. Then, the

numerical solution is imposed as boundary condition. 

3.4. Finite element method 

For the spatial discretization the finite element method is employed. A mesh with triangular cells is placed in �, and the

associated piecewise linear Lagrange finite element space is considered. At each time step, n = 0 , 1 , 2 , . . . , N T − 1 , and for

each iteration of the fixed-point scheme, k = 0 , 1 , . . . , after applying Green’s formula, the following variational formulation

is obtained: 

Find u n + 1 , k + 1 ∈ { ϕ ∈ H 1(�) /ϕ = u BS n + 1 , k + 1 on �2 + , ϕ = u BS n + 1 , k + 1 on �1 + } , such that ∫ 
�
(1 + r	τ ) u n + 1 , k + 1 ϕd Sd ν + 	τ

∫ 
�

A ∇u n + 1 , k + 1 ∇ϕd Sd ν

= 

∫ 
�
(un ◦ χ n ) ϕd Sd ν − 	τ

∫ 
�

f (v n + 1 + u n + 1 , k ) ϕd Sd ν, ∀ ϕ ∈ H 1 ∗(�) , (34) 

where H 1 ∗(�) = { ϕ ∈ H 1(�) /ϕ = 0 on �2 + ∪ �1 + } and u BS denotes the solution of the Black–Scholes equation, as obtained

in [1] . 

In order to describe the finite element discretization, we fix N S > 0 and N ν > 0, to build a uniform mesh (S i = i 	S, ν j =
j	ν) for i = 0 , . . . , N S + 1 and j = 0 , . . . , N ν + 1 , in the computational domain �. Associated with this uniform mesh, the

following finite element spaces are introduced 

W h = { ϕ h ∈ C(�) / ϕ h | T j ∈ P 1 , ∀ T j ∈ T } , 
W h, ∗ = { ϕ h ∈ W h / ϕ h = 0 on �2 + ∪ �1 + } , 

to determine u n + 1 , k + 1 ∈ W h , satisfying the boundary conditions and such that: ∫ 
�
(1 + r	τ ) u n + 1 , k + 1 h ϕ h d Sd ν + 	τ

∫ 
�

A ∇u n + 1 , k + 1 h ∇ϕ h d Sd ν

= 

∫ 
�
(un h ◦ χ n ) ϕd Sd ν − 	τ

∫ 
�

f (v n + 1 + u n + 1 , k h ) ϕ h d Sd ν ∀ ϕ h ∈ W h, ∗(�) . (35) 

The elements of the matrix and the right-hand side vector are found by means of a quadrature formula, based on the

midpoints of the edges of the triangles. The resulting discrete system is solved using a partial pivoting LU factorization

method. For the American case, the discrete complementarity problem is solved by the augmented Lagrangian active set

algorithm, as introduced in [26] . 

The risk-free option value is computed solving the classical Heston PDE, using the same numerical methods. For this

particular case, due to the linearity of the problem, the fixed-point scheme is not required. 
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Table 1 

Parameter values of Tests A and B. 

Test A Test B 

Spot ( S ) 10 10 

Strike ( K ) 10 10 

Interest ( r ) 0.04 0.04 

Initial vol. ( 
√ 

ν0 ) 0.2, 0.4, 0.6, 0.8 0.2, 0.4, 0.6, 0.8 

Maturity time ( T ) 0.25 0.25 

Mean reversion ( κ) 1.4 0.4 

Mean var ( θ ) 0.33 0.33 

Vol of var ( σ ) 0.7 0.7 

Correlation ( ρ) 0.1 0.1 
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3.5. Augmented Lagrangian active set for American options 

The numerical methods have been explained so far for European options, where early-exercise is not allowed. The Amer-

ican option value has been modeled by the linear and nonlinear complementarity problems introduced in (21) and (20) .

For the explanation of the numerical methods for the American option problems, let us focus on the nonlinear problem for
 v n + 1 , k + 1 . After applying a time discretization by the method of characteristics and the spatial discretization by the finite

element method, the discrete problem at each fixed-point iteration can be written as: { 

A h ̂  v n + 1 , k + 1 ≥ b h n + 1 , k + 1 , ̂ v n + 1 , k + 1 ≥ �h , 

(A h ̂  v n + 1 , k + 1 − b h n + 1 , k + 1 )( ̂  v n + 1 , k + 1 − �h ) , 
(36)

where �h denotes the discretized exercise value, g ( S ). The discrete problem (36) has been solved by the Augmented La-

grangian active set (ALAS) algorithm proposed by Krkkinen et al. [26] . 

4. Numerical results 

In this section, we discuss several numerical results explaining the impact of incorporating total value adjustment in

the pricing of financial options. We include counterparty risk and the XVA for some examples. To study the impact of the

stochastic volatility to the exposure, the expected exposure, EE ( t ), associated with the XVA is computed. In addition, we

compute the PFE ( t ) corresponding with the total value adjustment. Both quantities, under the Heston and Black–Scholes

models, are compared. 

For this purpose and in order to see if the quantities are affected by the Feller condition, we define two tests: Test A,

where the Feller condition is satisfied, and Test B, where Feller condition is violated. The parameter data for both tests are

found in Table 1 . We compute the risk measures for European call and put options. In addition, we also study the American

option XVA value and the associated exposures for a put option. 

In Figs. 1–3 , the EE , 97.5% PFE and 2.5% PFE XVA profiles related to different European and American options have been

computed. 

In Fig. 1 the different profiles with respect to changes in the initial volatility are plotted for the nonlinear problem.

Clearly, the EE and PFE profiles increase as the volatility increases. Moreover, it can be seen that the Black–Scholes model

exhibits an observable sensitivity regarding changes in the volatility. A similar behaviour is observed in the case of the Test

A parameter set (which is not shown here). In addition, comparing Fig. 1 for 
√ 

ν0 = 0 . 6 with Fig. 2 (b), we can observe that

the exposures are not affected by the Feller condition. 

In Fig. 2 , the volatility value is fixed, and we show how the exposure profiles are affected by the decision of the mark–

to–market value. Comparing the obtained values for both models, a clearly different behaviour is seen when comparing the

mark–to–market being equal to the risk–free value (the linear problem) with the mark–to–market being the risky derivative

value (nonlinear problem). While in the linear case, the EE and the PFE profiles are higher for the Heston model, for the

nonlinear problem, this is observed only for low volatility values. Such pattern can be explained by the sensitivity in Fig. 1 .

In the nonlinear problem, the exposure formulas are given in terms of the risk–free value and of the XVA, which makes

that this sensitivity is doubled. This is different for the linear problem where the exposure profiles under the Black–Scholes

model are lower than under the Heston model which is not affected by the mark–to–market value, but the opposite situation

is observed in the nonlinear case. 

In Fig. 3 , we compute the EE and PFE profiles for an American put option with the parameters in Test A. We show the

exposures for different values of the volatility, like in Fig. 1 for the European options. The Heston exposure profiles remain

almost constant in the presence of changes in the volatility, in particular, there are only minor differences between the EE

and PFE profiles. 

Concluding, based on the previous results, it is clear that for the European case, where the options can only be exercised

at maturity time, the exposures are higher in the middle of the time interval for a low volatility, while for a higher volatility
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Fig. 1. EE and PFE profiles for different volatility values 
√ 

ν0 , Test B (Feller condition is not satisfied). Nonlinear problem, European call option. 

 

 

 

 

 

 

 

 

 

 

 

the exposures decrease with the life of the option, having their maximum value at the beginning. However, in the American

case, where the option can be exercised at any moment until maturity, the exposures take their maximum value at the

beginning of the option’s lifetime and then decrease until the maturity time. 

The results obtained show us the relevance of incorporating stochastic volatility when pricing derivatives with XVA. For

the constant volatility Black–Scholes model, the exposures are sensitives with the volatility values. Moreover, the Feller

condition does not affect the exposure profiles in the parameter settings studied here. 

In addition, in Fig. 4 , we present the risky derivative value, the risk–free value and the associated XVA for a European

call option. As expected, the XVA gets more negative when volatility values increase. The main variation in the XVA happens

with the variation in the asset price. It is seen that the XVA gets more negative while the option goes in-the-money, when

the buyer will be interested in exercising, so that the exposure will increase. 

In the case of an American put option, presented in Fig. 5 , the XVA is equal to zero in the exercise region, where the

derivative should be exercised (and terminates). In this case, as we can deduce from Fig. 3 , the XVA is not much affected by

variation in the volatility. However, similar to European options, the main variation of the XVA comes from the asset price

variation, obtaining a similar behaviour as for Black–Scholes model [1] . 

Next, we present the empirical convergence of the numerical methods in Table 2 . As mentioned, we use a uniform mesh

and the empirical convergence ratio is defined as follows: 

CR = 

‖ u h/ 2 − u h/ 4 ‖ ∞ 

‖ u h − u h/ 2 ‖ ∞ 

. 
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Fig. 2. Linear and nonlinear problem: Test A, European call option, Feller condition satisfied. Volatility value 
√ 

ν0 = 0 . 6 . 

Table 2 

Empirical order of convergence for an Euro- 

pean call option with the following parame- 

ter data: θ = 0 . 3 , κ = 0 . 8 , σ = 0 . 7 , r = 0 . 04 , 

δ = 0 . 0 , k = 10 , ρ = −0 . 3 and T = 1 . 

	S = 	ν 	τ CR p 

2 − 2 1/12 

2 − 3 1/24 

2 − 4 1/48 2.0578 1.0411 

2 − 5 1/96 2.5246 1.3361 

2 − 6 1/192 2.0029 1.0021 

2 − 7 1/384 1.9593 0.9703 

Table 3 

XVA value for a put option with the following parameters: θ = 0 . 33 , κ = 1 , 

σ = 0 . 5 , r = 0 . 04 , δ = 0 . 0 , k = 15 , ρ = −0 . 3 , λB = λC = 0 . 04 , R B = R C = 0 . 3 and 

T = 0 . 25 . 

American options European options 

( S , ν) M = v M = ̂

 v M = v M = ̂

 v 
(9,0.25) 0.00000000 0.00000000 −0 . 08120621 −0 . 08145264 

(9,0.5) 0.00000000 0.00000000 −0 . 08246912 −0 . 08254409 

(9,0.75) 0.00000000 0.00000000 −0 . 08434795 −0 . 08285474 

(15,0.25) −0 . 0 0 022315 −0 . 0 0 0 0 0626 −0 . 01982075 −0 . 01988082 

(15,0.5) −0 . 0 0 022318 −0 . 0 0 0 0 0626 −0 . 02736400 −0 . 02734565 

(15,0.75) −0 . 0 0 022321 −0 . 0 0 0 0 0626 −0 . 03329995 −0 . 03247313 

(18,0.25) −0 . 0 0 016440 −0 . 0 0 0 0 0461 −0 . 00794203 −0 . 00796562 

(18,0.5) −0 . 0 0 016445 −0 . 0 0 0 0 0462 −0 . 01450847 −0 . 01443643 

(18,0.75) −0 . 0 0 016450 −0 . 0 0 0 0 0462 −0 . 02016455 −0 . 01914779 

 

 

 

 

 

 

 

From this quantity we compute the experimental order of convergence, i.e. p = log 2 (CR ) . Table 2 shows that we obtain first-

order convergence, which is the expected order of convergence (using piecewise linear finite elements and a first-order time

discretization). 

In Fig. 6 , the influence of the maturity time to the total value adjustment has been represented. We have computed the

XVA for a European call option, with the same parameter values as in the example represented in Fig. 4 , where the maturity

time is set to 4 years. Moreover, the equivalent American put option is found in Fig. 5 , with a maturity time of 3 years. For

the European option, as in [1] , the XVA increases when the maturity time is longer. However, in the case of an American

option, the maturity time does not seem to affect the total value adjustment. In addition, comparing with the European

options, the American option buyer is less exposed to the risk, and the XVA is lower in absolute terms. 
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Fig. 3. Nonlinear problem, American put option, Test A (Feller condition satisfied). 

Table 4 

XVA value for a call option with the following parameters: θ = 0 . 33 , κ = 1 , σ = 

0 . 5 , r = 0 . 04 , δ = 0 . 0 , k = 15 , ρ = −0 . 3 , λB = λC = 0 . 04 , R B = R C = 0 . 3 and T = 

0 . 25 . 

American options European options 

( S , ν) M = v M = ̂

 v M = v M = ̂

 v 

(9,0.25) −0 . 0 0 0 09147 −0 . 0 0 0 0 0257 −0 . 0 0 025381 −0 . 0 0 025365 

(9,0.5) −0 . 0 0 0 09145 −0 . 0 0 0 0 0257 −0 . 00166034 −0 . 00153987 

(9,0.75) −0 . 0 0 0 09142 −0 . 0 0 0 0 0257 −0 . 00369311 −0 . 00249308 

(15,0.25) −0 . 0 0 022321 −0 . 0 0 0 0 0626 −0 . 02207651 −0 . 02214413 

(15,0.5) −0 . 0 0 022318 −0 . 0 0 0 0 0626 −0 . 02985921 −0 . 02985922 

(15,0.75) −0 . 0 0 022316 −0 . 0 0 0 0 0626 −0 . 03605155 −0 . 03247313 

(18,0.25) −0 . 0 0 0 0 0 0 0 0 −0 . 0 0 0 0 0 0 0 0 −0 . 05180187 −0 . 05196003 

(18,0.5) −0 . 0 0 0 0 0 0 0 0 −0 . 0 0 0 0 0 0 0 0 −0 . 05865562 −0 . 05870790 

(18,0.75) −0 . 0 0 0 0 0 0 0 0 −0 . 0 0 0 0 0 0 0 0 −0 . 06461869 −0 . 06359331 



B. Salvador and C.W. Oosterlee / Applied Mathematics and Computation 391 (2021) 125489 17 

Fig. 4. Option values decomposed to visualize the XVA component, with parameter values, κ = 0 . 1 , θ = 0 . 12 , σ = 0 . 8 , ρ = −0 . 3 , T = 1 and K = 100 . 

Table 5 

XVA value for call and put options with constant volatility (Black-Scholes model) and 

M = ̂

 v and the following parameters: r = 0 . 04 , δ = 0 . 0 , k = 15 , λB = λC = 0 . 04 , R B = 

R C = 0 . 3 and T = 0 . 25 . 

American options European options 

( S , σ 2 ) Call Put Call Put 

(9,0.25) −0 . 0 0 085907 −0 . 00460660 −0 . 0 0 061468 −0 . 081770 0 0 

(9,0.5) −0 . 00323710 −0 . 02928685 −0 . 00255262 −0 . 08354573 

(9,0.75) −0 . 00572234 −0 . 03942949 −0 . 00494266 −0 . 08576836 

(15,0.25) −0 . 02393488 −0 . 016110151 −0 . 02299540 −0 . 02065941 

(15,0.5) −0 . 03204289 −0 . 027638443 −0 . 03143356 −0 . 02882724 

(15,0.75) −0 . 03776497 −0 . 02254091 −0 . 03799388 −0 . 0351089521 

(18,0.25) −0 . 051917344 −0 . 00729616 −0 . 05198151 −0 . 00789987 

(18,0.5) −0 . 05817008 −0 . 01342870 −0 . 05972470 −0 . 01531877 

(18,0.75) −0 . 06316036 −0 . 01860614 −0 . 06627720 −0 . 02147804 

 

 

 

 

 

Finally, we compare the European and American option values and the impact of the choice of the mark–to–market

value. Tables 3 and 4 present some XVA values for some specific price and volatility values. Moreover, in Table 5 , the value

for constant volatility is shown. The XVA is higher in absolute terms for the European option, where no early-exercise is

allowed. Moreover, the XVA value is not affected by the choice of the mark-to-market value. Finally, comparing puts and

calls, we observe that the XVA value varies with the asset price, according to whether the option is in the money or out of

the money. Furtheremore, the fixed-point scheme, converges in 3 or 4 iterations for the previous examples. 
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Fig. 5. American put option values decomposed; Parameter values from Test A. 

Fig. 6. XVA for a long maturity time. 
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5. Conclusions 

In this paper, we have studied the XVA components that are added to the risk–free option derivative values under the

Heston stochastic volatility model. As a result, linear and nonlinear valuation PDE models depending on two stochastic

factors, the asset price and the variance, have been derived. 

After presenting the mathematical model, we have presented the chosen boundary conditions, based on those in [1] .

Moreover, the method of characteristics, combined with a piecewise finite element method, is used to obtain the numerical

solution. To deal with the nonlinearity, a fixed-point scheme has been employed. 

The relevance of incorporating stochastic volatility is shown by comparing the XVA, EE and PFE profiles under the Heston

and Black–Scholes models, for different parameter sets. The results show the impact of the stochastic volatility, where the

variations of the XVA and the exposure profiles are sometimes significantly lower in the presence of changes in the volatility

values. The stochastic volatility results in this paper are not much affected by the Feller condition. Finally, the numerical

examples present the values of the XVA and the risky derivative values in terms of the asset price and the volatility values.

According to these results, the XVA for American options is hardly affected by volatility in this test case. 

The study of the XVA presented in this work can be extended for a portfolio with multiples options and depending of

several underlying actives or with different payoff functions. In addition, these options can have different maturities, re-

sulting in discontinuities in time, [17] . However, when multi-assets options are included, numerical methods, as multigrid

methods to solve the PDE, can be more desirable. Furthermore, the methodology followed in this work, introduced previ-

ously in [8] is already applied in the industry. 
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