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The paper focuses on an approximation of the first passage time proba-
bility density function of a Feller stochastic process by using cumulants
and a Laguerre-Gamma polynomial approximation. The feasibility of
the method relies on closed form formulae for cumulants and moments
recovered from the Laplace transform of the probability density func-
tion and using the algebra of formal power series. To improve the
approximation, sufficient conditions on cumulants are stated. The re-
sulting procedure is made easier to implement by the symbolic calculus
and a rational choice of the polynomial degree depending on skewness,
kurtosis and hyperskewness. Some case-studies coming from neuronal
and financial fields show the goodness of the approximation even for a
low number of terms. Open problems are addressed at the end of the
paper.
Keywords: hitting times, CIR model, Laguerre series, formal power
series, symbolic calculus.

1. INTRODUCTION

One-dimensional diffusion processes play a key role in the description of
fluctuating phenomena belonging to different fields of applications as physics,
biology, neuroscience, finance and others (Karlin and Taylor, 1981; Øksendal,
1998). In particular, the class of stochastic processes with a linear drift and
driven by a Wiener process is widely used for its mathematical tractability and
flexibility. These models are described by a stochastic differential equation of
the following type

dYt = (−τYt + µ) dt+ Σ(Yt) dWt, Y0 = y0, (1)

where {Wt}t≥0 is a standard Wiener process, Y0 = y0 is the initial condition,
τ > 0, µ ∈ R and the volatility Σ(Yt) > 0 are such that a strong solution of
Eq.(1) exists (Arnold (2013) p.105).

The volatility Σ(Yt) determines the amplitude of the noise and, according
to its dependence on Yt, it characterizes families of stochastic processes which
are solution of Eq. (1). If

Σ(Yt) =
√
aY 2

t + bYt + c, a, b, c ∈ R, (2)
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the solution of Eq. (1) is called Pearson diffusion process (Forman and
Sørensen, 2008). The coefficients a, b and c are such that the square root
is defined for all the values of the state space (B1, B2) of Yt, with −∞ ≤ B1 <
y0 < B2 ≤ +∞. A wide range of well-known processes belongs to this class
(σ > 0):

Ornstein-Uhlenbeck process: a = b = 0, c = σ2 and Σ(Yt) = σ;

Inhomogeneous geometric Brownian motion: a = σ2, b = c = 0 and Σ(Yt) = σYt;

Jacobi diffusion: a = −σ2, b = σ2 and Σ(Yt) = σ
√
Yt(1− Yt) + c;

Feller process (CIR model): b = σ2, a = 0 and Σ(Yt) = σ
√
Yt + c.

Throughout this paper we will focus on this last process for its variety
of applications not only in a biological context (Ditlevsen and Lansky, 2006;
Feller, 1951; Lansky, Sacerdote, and Tomassetti, 1995) but also in survival
analysis, in the modeling of nitrous oxide emission from soil and in other
applications such as physics and computer science (see Ditlevsen and Lansky
(2006) and references therein). In the mathematical finance it is known under
the name of Cox-Ingersoll-Ross model (CIR) (Cox, Ingersoll, and Ross, 1985).

While general properties of the Feller process are well known since long,
less known are properties related to first-passage-time (FPT) events which are
very significant phenomena in all of the above mentioned situations. In this
paper we consider the dynamics of Yt until it crosses a threshold S for the first
time, the so called (upcrossing) FPT, defined as

T := inf{t ≥ 0 : Yt ≥ S|0 < y0 < S}. (3)

Many contributions in the literature (Giorno et al., 1986; Going-Jaeschke
and Yor, 2003; Linetsky, 2004; Masoliver and PerellÃş, 2014) focus on com-
puting the Laplace transform (LT) of the probability density function (PDF)
g(t) := g(t|y0, S) of T , namely

g̃(z) =
∫ ∞

0
e−zt g(t) dt, z > 0. (4)

The reason why the literature is focused on the LT of g(t), is that the
PDF is usually not known analitically and neither can be obtained by direct
inversion of Eq. (4). Nevertheless from g̃ we can compute the probability of
crossing the threshold S, P(T |y0) =

∫∞
0 g(t)dt, and the mean FPT, E[T ] as

follows:

P(T |y0) = g̃(z)
∣∣∣∣
z=0

and E[T ] = −dg̃(z)
dz

∣∣∣∣∣∣
z=0

. (5)

Moments of T of any orders can be computed using higher derivatives of g̃,
when they exist. As it is well-known, the moments of T allow nice interpreta-
tion of statistical properties of the PDF g(t) and of FPT events. A different
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strategy to get the moments of T is using the transition PDF of the process
f(y, t|y0, τ) = ∂

∂y
P(Yt < y|Yτ = y0). Indeed if Yt admits a stationary distribu-

tion W(y) := lim
t→∞

f(y, t|y0, 0) independent of y0, the Siegert formula (Siegert,
1951) allows us to compute the moments of T as

E[T n] = n
∫ S

x0

2dz
[Σ(Yt)]2W(z)

∫ z

−∞
W(x)E[T n−1]dx, n = 1, 2, . . . . (6)

Both the depicted strategies are impractical to compute the moments of T
for a Feller process. Despite the closed form formula of g̃(z) (see Section 2), the
computation of higher derivatives is awkward and some efforts have focused
in evaluating just the mean and the variance of T (Ditlevsen and Lansky,
2006; D’Onofrio, Lansky, and Pirozzi, 2018) or at most the third moment
(Giorno et al., 1988). In terms of computational complexity, similar difficulties
apply in computing moments of T through Eq. (6), although the stationary
distribution of Yt is known to be a shifted gamma distribution (see Section 2).
As the distribution of T is often unavailable, simulations of the paths through
Monte Carlo methods are still an efficient tool to get manageable estimations
of g(t), useful to analyze especially asymptotic properties. One more strategy
consists in writing the FPT distribution as a Sturm-Liouville eigenfunction
expansion series, first given for the Feller process in Linetsky (2004), using the
classical argument of Kent (1980) and Kent (1982). Although this strategy
provides an expression for the FPT density, information on the moments of T
can be obtained only numerically and refers exclusively to diffusion processes
without natural boundaries. A discussion on FPT of the Feller process in
the presence of entrance, exit and reflecting boundary at the origin is given
in Martin, Behn, and Germano (2011), solving the Sturm-Liouville boundary
problem in the case τ = 0.

The goal of this paper is twofold: to give closed form formulae for the
cumulants of T of any order for the Feller process regardless of the nature of
the boundaries and to give approximations of g(t) by using moments recovered
from cumulants.

Recall that if T has moment generating function E[ezT ] <∞ for all z in an
open interval about 0, then its cumulants {ck(T )}k≥0 are such that

∑
k≥1

ck(T )z
k

k! = logE[ezT ] (7)

for all z in some (possibly smaller) open interval about 0. Cumulants have nice
properties compared with moments such as the semi-invariance and the addi-
tivity (McCullagh, 1987). Further properties on cumulants are given in Section
3. Overdispersion and underdispersion as well as asymmetry and tailedness of
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the FPT PDF might be analized through the first four cumulants. Examples
on how to employ the first four cumulants in the estimation of the parameters
of a model fitted to data is given in (Antunes et al., 2020; Seneta, 2004).

The employment of cumulants in the FPT literature is not new (Ramos-
Alarcón and Kontorovich, 2013). However, their application has been limited
to few cases and not in the direction addressed in this paper. Here, the idea
to use cumulants essentially relies on the form of g̃(z) for the Feller process.
Indeed g̃(z) is the ratio of two power series whose algebra is simplified if we
consider log g̃(z).We take advantage of the formal power series algebra (Char-
alambides, 2002) to give first a closed form expression of {ck(T )} and then
to recover moments. In Section 4, we propose to use a Laguerre series to
approximate the PDF g(t) taking into account the properties of g̃(z). To the
best of our knowledge, this approach in evaluating the FPT PDF of the Feller
process has not been investigate before in the literature. Such an approxima-
tion works if moments (or cumulants) of T are known and gives better results
when the series is of Laguerre-Fourier type. As the PDF g(t) is unknown, we
give sufficient conditions on the cumulants of T to guarantee the approxima-
tion with the Laguerre-Fourier series. We show how to take advantage of the
formal power series algebra and of the symbolic calculus (Di Nardo, 2012) in
implementing the proposed procedure. Some new results on the Kummer’s
function are also given.

Then we apply our method to different case-studies inspired by neuronal
and financial models. One of the advantages of the method is that few terms
are sufficient to have a good description of g(t) and the complexity of the
overall computation is strongly reduced. Statistical arguments motivate the
choice of stopping the Laguerre series at the fifth term. The case-studies show
that the resulting approximation is accurate also when the sufficient conditions
are not completely fulfilled. A discussion section ends the paper, addressing
future research and open problems.

2. THE FELLER PROCESS AND THE FPT PROBLEM

We consider model (1) such that the function Σ(·) depends on the process
itself and on c ≤ 0. The Feller process investigated here is given by

dYt = (−τYt + µ) dt+ σ
√
Yt − c dW (t). (8)

The state space of the process is the interval (c,+∞). The endpoints c and
∞ can or cannot be reached in a finite time depending on the underlying
parameters. According to the Feller classification of boundaries (Karlin and
Taylor, 1981), c is an entrance boundary if it cannot be reached by Yt in finite
time, and there is no probability flow to the outside of the interval (c,+∞),
that is, the process stays in [c,+∞) with probability 1. In particular, set
s := 2(µ− cτ)/σ2. Then c is an entrance boundary if s ≥ 1.

In the absence of a threshold, the Feller process admits a stationary distri-
bution which is a shifted gamma distribution with the following shape, scale



5

and location parameters

Y∞ ∼ Gamma
(
s,

1
2
σ2

τ
, c

)
. (9)

Let Yt evolve in the presence of a threshold S. Let T be the FPT random
variable of Yt through S defined in Eq. (3). Three distinct situations for
the FPT can occur. Indeed, the process is said to be in the suprathreshold,
subthreshold and threshold regimes if E[Y∞] > S,E[Y∞] < S and E[Y∞] = S,
respectively, where the asymptotic mean of Yt is

E[Y∞] = lim
t→+∞

E[Yt|y0] = µ

τ
. (10)

The Siegert equation (Masoliver and PerellÃş, 2014)

1
2σ

2(y0 − c)
∂2g̃(z)
∂y2

0
− (τy0 + µ) ∂g̃(z)

∂y0
− zg̃(z) = 0 (11)

with initial conditions g̃(z) = 1 if y0 ≡ S and g̃(z) < +∞ for any y0, provides
the LT of the FPT PDF. Indeed the solution of Eq. (11) is

g̃(z) =
Φ
(
z
τ
, s, 2τ(y0−c)

σ2

)
Φ
(
z
τ
, s, 2τ(S−c)

σ2

) , z > 0 (12)

where Φ is the confluent hypergeometric function of the first kind (or Kum-
mer’s function) Φ(a, b, z) = 1F1(a; b; z), and

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∑
n≥0

〈a1〉n · · · 〈ap〉n
〈b1〉n · · · 〈bq〉n

zn

n! (13)

is the generalized hypergeometric function, with 〈a〉n = a(a + 1) · · · (a + n −
1), n ∈ N the rising factorial and 〈a〉0 = 1. For more details on Eqs. (9)-(12)
see D’Onofrio, Lansky, and Pirozzi (2018). In particular, the mean of T is
(Giorno et al., 1988)

E[T ] = (S − y0)
µ− τc

+ 1
τ

∑
n≥2

snΓ(s)
nΓ(s+ n)

[(S − c)n − (y0 − c)n]
(µ
τ
− c)n , (14)

where Γ(z) =
∫ ∞

0
xz−1e−x dx is the gamma function.

3. FPT CUMULANTS

Suppose g̃ a formal power series (Charalambides, 2002)

g̃(z) =
∑
k≥0

g̃k
zk

k! ∈ R[[z]] (15)
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where R[[z]] denotes the ring of formal power series with coefficients in R.
Then log g̃(z) is well defined

log g̃(z) =
∑
k≥1

ck
zk

k! (16)

and the coefficients {ck}k≥1 are named formal cumulants of {g̃k}k≥0. There are
different formulae expressing formal cumulants in terms of {g̃k}k≥0, Di Nardo
(2012). Here we use the logarithmic (partition) polynomials {Pk} such that

ck = Pk(g̃1, . . . , g̃k), k ≥ 1, (17)

where

Pk(x1, . . . , xk) =
k∑
j=1

(−1)j−1(j − 1)!Bk,j(x1, . . . , xk−j+1) (18)

and {Bk,j} are the partial exponential Bell polynomials (Charalambides, 2002).
Let us recall that, for a fixed positive integer k and j = 1, . . . , k, the j-th
partial exponential Bell polynomial in the variables x1, x2, . . . , xk−j+1 is a ho-
mogeneous polynomial of degree j given by

Bk,j(x1, . . . , xk−j+1) =
∑ k!

λ1!λ2! · · ·λk−j+1!

k−j+1∏
i=1

(
xi
i!

)λi

(19)

where the sum is taken over all sequences λ1, λ2, . . . , λk−j+1 of non negative
integers such that

λ1 + 2λ2 + · · ·+ (k− j+ 1)λk−j+1 = k, λ1 +λ2 + · · ·+λk−j+1 = j. (20)

The k-th logarithmic polynomial (18) is a special case of the k-th general
partition polynomial

Gk(a1, . . . , ak;x1, . . . , xk) =
k∑
j=1

ajBk,j(x1, . . . , xk−j+1), k ≥ 1 (21)

when aj = (−1)j−1(j−1)! for j ≥ 1. The first five general partition polynomials
{Gk}5

k=1 are given in Table 1.

Table 1. General partition polynomials
k Gk(a1, . . . , ak;x1, . . . , xk)
1 a1x1

2 a1x2 + a2x
2
1

3 a1x3 + 3a2x2x1 + a3x
3
1

4 a1x4 + 4a2x3x1 + 6a3x2x
2
1 + a4x

4
1 + 3a2x

2
2

5 a1x5 + 5a2x4x1 + 10a2x3x2 + 10a3x3x
2
1 + 15a3x

2
2x1 + 10a4x2x

3
1 + a5x

5
1
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If we set yk = Pk(x1, . . . , xk) for k ≥ 1, then

xk = Yk(y1, . . . , yk) =
k∑
j=1

Bk,j(y1, . . . , yk−j+1), k ≥ 1 (22)

are the inverse relations, with {Bk,j} given in Eq. (19). The polynomial Yk is
the k-th complete Bell (exponential) polynomial and is a special case of Gk in
Eq. (21) when aj = 1 for j ≥ 1.

The logarithmic and the complete Bell polynomials allow us to deal with
moments and cumulants of T . Indeed if g̃ is the Laplace transform of the PDF
g(t) and the rhs of Eq. (15) is its Taylor expansion about 0, then g̃0 = 1,

g̃k = (−1)kE[T k], k ≥ 1 (23)

and there exist cumulants of any order {ck(T )}, see for instance Abate and
Whitt (1996). In particular, from Eq. (16) and Eq. (17), we have

ck = (−1)kPk(E[T ], . . . ,E[T k]) = (−1)kck(T ), k ≥ 1. (24)

Vice-versa, if cumulants {ck(T )} are known, moments of T might be computed
by using the inverse relations (22)

E[T k] = Yk(c1[T ], . . . , ck[T ]), k ≥ 1 (25)

or the well-known recursion formula (Di Nardo and Senato, 2006)

E[T k] = ck(T ) +
k−1∑
i=1

(
k − 1
i− 1

)
ci(T )E[T k−i]. (26)

If T is the FPT random variable of a Feller process modeled by Eq. (8),
the following theorem gives the closed-form expression of the k-th cumulant
for any order k ≥ 1.

Theorem 1. The k-th FPT cumulant for the Feller process in Eq. (8) is

ck(T )=
(
−1
τ

)k
[c∗k(y0)− c∗k(S)] (27)

where

c∗k(w) = Pk

[
h1

(
2τ(w − c)

σ2

)
, h2

(
2τ(w − c)

σ2

)
, . . . , hk

(
2τ(w − c)

σ2

)]
, (28)

Pk is the k-th logarithmic polynomial (18) and

hj(y) = j!
∑
n≥j

[
n

j

]
yn

n!〈s〉n
, j = 1, 2, . . . , k, (29)

with
[
n
j

]
the unsigned Stirling numbers of first type and 〈·〉n the n-th rising

factorial.
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Remark 1. Note that (Charalambides, 2002)[
n

j

]
= Bn,j

(
0!, 1!, . . . , (n− j + 1)!

)
, n ≥ j (30)

with {Bn,j} the partial exponential Bell polynomials given in Eq. (19).

Proof. In Eq. (12), set A = 2τ(y0 − c)/σ2 and B = 2τ(S − c)/σ2. From Eq.
(24) we get

log g̃(z) = log 1F1( z
τ
; s;A)

1F1( z
τ
; s;B) =

∑
k≥1

(−1)kck(T )z
k

k! , (31)

where

1F1

(
z

τ
; s; y

)
=
∑
n≥0

〈 z
τ
〉n
〈s〉n

yn

n! , y = A,B. (32)

To expand the rhs of Eq. (32) in formal power series in z, observe that〈
z

τ

〉
n

=
n∑
j=0

[
n

j

]
zj

τ j
(33)

where
[
n
j

]
are the unsigned Stirling numbers of the first type. Replacing Eq.

(33) in Eq. (32), after some algebra, we get

1F1

(
z

τ
; s; y

)
= 1 +

∑
k≥1

zk

τ k

∑
n≥k

[
n

k

]
yn

〈s〉nn!

 . (34)

From Eqs. (16) and (17), we get

log 1F1

(
z

τ
; s; y

)
=
∑
k≥1

Pk[h1(y), . . . , hk(y)]
k!

zk

τ k
, (35)

where Pk is the k-th logarithmic polynomial given in Eq. (18) and hj(y) is
given in Eq. (29). Moreover Eq. (27) follows taking into account Eq. (31)
and by observing that

log
1F1

(
z
τ
; s;A

)
1F1

(
z
τ
; s;B

) = log 1F1

(
z

τ
; s;A

)
− log 1F1

(
z

τ
; s;B

)

=
∑
k≥1

(
Pk[h1(A), . . . , hk(A)]− Pk[h1(B), . . . , hk(B)]

τ k
zk

k!

)
.

Corollary 1. The mean FPT and the variance of T are respectively

ci(T ) =
(
−1
τ

)i∑
n≥i

ai,n

(2τ
σ2

)n
[(y0 − c)n − (S − c)n] , i = 1, 2 (36)
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where for n ≥ i

ai,n =


n−1

〈s〉n
, i = 1

2n
−1Hn−1

〈s〉n
−

n−1∑
k=1

k−1

〈s〉k
(n− k)−1

〈s〉n−k
, i = 2

(37)

with Hn−1 = ∑n−1
j=1 j

−1 the harmonic numbers.

Proof. The mean FPT is obtained choosing k = 1 in Eq. (27) and observing
that

[
n
1

]
= (n − 1)! for n ≥ 1. The variance of the FPT is obtained choosing

k = 2 in Eq. (27), observing that
[
n
2

]
= (n − 1)!Hn−1 for n ≥ 2 with Hn the

n-th harmonic number and

h1(y)2 =
∑
n≥2

(
n−1∑
k=1

a1,ka1,n−k

)
yn. (38)

Remark 2. Observe that Eq. (36) gives E[T ] for i = 1 and coincides with the
expression (14) of the first moment of T . The comparison follows easily from
the definition of s and the property 〈s〉n = Γ(s+ n)/Γ(s).

Corollary 2. If {ck(T )} is the FPT cumulant sequence, then

E[T k] = (−1)k
τ k

k∑
i=0

(
k

i

)
Yk−i[c∗1(y0), . . . , c∗k−i(y0)]Yi[−c∗1(S), . . . ,−c∗i (S)] (39)

where {Yi} are the complete Bell polynomials given in Eq. (22) and Y0 = 1.

Proof. Since Yk(ay1, a
2y2, . . . , a

kyk) = akYk(y1, y2, . . . , yk), a ∈ R, from Eq.
(25) and Eq. (27), we get

E[T k] = (−1)k
τ k

Yk[c∗1(y0)− c∗1(S), . . . , c∗k(y0)− c∗k(S)]. (40)

Applying the binomial type property of the complete Bell polynomials, we
have

Yk[c∗1(y0)− c∗1(S), c∗2(y0)− c∗2(S), . . . , c∗k(y0)− c∗k(S)]

=
k∑
i=0

(
k

i

)
Yk−i[c∗1(y0), . . . , c∗k−i(y0)]Yi[−c∗1(S), . . . ,−c∗i (S)] (41)

and the result follows.

Note that

Yi[−y1, . . . ,−yi] =
i∑

j=1
(−1)jBi,j[y1, . . . , yi+j−1], i ≥ 1 (42)

since Bi,j(ay1, . . . , ayi+j−1) = ajBi,j(y1, . . . , yi+j−1), a ∈ R from Eq. (19).
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3.1. Computing FPT cumulants

For the subsequent applications of Theorem 1, we add some remarks on the
efficiency of the implementation of Eq. (27). The logarithmic partition poly-
nomials {Pk}, with P1(x1) = x1, might be generated by using the recurrence
relation (Charalambides, 2002)

Pk(x1, . . . , xk) = xk −
k−1∑
r=1

(
k − 1
r

)
xrPk−r(x1, . . . , xk−r), k ≥ 2. (43)

About the computation of {hk(y)} in Eq. (29), from Eq. (34), note that

hk(y) = ∂k

∂uk
1F1 (u; s; y)

∣∣∣∣∣
u=0

, k ≥ 1. (44)

Derivatives of the Kummer’s function with respect to the parameter u have
been computed in Ancarani and Gasaneo (2008). The special case u = 0 is
given in terms of generalized Kampé de Fériet-like hypergeometric functions.
An algorithm for the computation of the k-th derivative of the Kummer’s
function is given in Abad and Sesma (2003). Here, we propose to use a stan-
dard implementation of the series in Eq. (29) involving the unsigned Stirling
number of first type, as procedures implementing the well-known triangular
recurrence relation (Charalambides, 2002)[

n+ 1
j

]
=
[

n

j − 1

]
+ n

[
n

j

]
, j = 1, . . . , n+ 1, n ≥ 0 (45)

are available in many classical technical computing systems as Mathematica
or R.

From Eq. (44) it turns out that the usefulness of expression (29) for the
functions hj is twofold. It also constitutes an alternative way to express the
derivative in Eq. (44) and so it can simplify the form of the Kampé de Fériet
function for particular values of the involved parameters. Moreover from Eq.
(44) and the following expression (Abramowitz and Stegun, 1964)

dk

dxk
f(x) = k!

∑
n≥k

(−1)n−k
[
n
k

]
n! ∆nf(x) (46)

we infer the following formula for the forward differences of order n-th of the
Kummer function:

∆n
u1F1 (u; s; y)

∣∣∣
u=0

= yn

〈s〉n
. (47)

4. THE LAGUERRE-GAMMA POLYNOMIAL APPROXIMATION

The Edgeworth expansion is widely used in the literature to approximate a
PDF around the Gaussian PDF, using a linear combination of Hermite poly-
nomials with coefficients depending on the cumulants of the target PDF. To
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approximate a non-Gaussian PDF, a different family of polynomials is neces-
sary together with a different reference density (Asmussen, Goffard, and Laub,
2019). If the target PDF g(t) is unknown but expected to be close to some ref-
erence density ϕ(t), then ϕ(t) is used as a first approximation to g(t) and later
the approximation is improved by using suitable correction terms depending
on a set of orthonormal polynomials. The following theorems show how to
approximate the FPT PDF of a Feller process by using as reference density
the gamma PDF with scale parameter α+ 1 > 0 and shape parameter β > 0

ϕα,β(t) = βα+1

Γ(α + 1)t
αe−βt, t > 0. (48)

Theorem 2. Let a(α)
k = E[Q(α)

k (βT )], k ≥ 0 where

Qk(t) = (−1)k
(

Γ(α + 1 + k)
k! Γ(α + 1)

)−1/2

L
(α)
k (t), (49)

and L(α)
k (t) is the k-th generalized Laguerre polynomial

L
(α)
k (t) = Γ(α + 1 + k)

k!

k∑
j=0

(
k

j

)
(−t)j

Γ(α + j + 1) . (50)

For t > 0 the series

U(βt, r) :=
∑
k≥0

a
(α)
k Q

(α)
k (βt)rk (51)

converges if r ∈ (0, 1) and

lim
r→1

U(βt, r) = g(t)
ϕα,β(t) . (52)

Proof. Set βt = w and observe that in Eq. (51) the series might be rewritten
as

U(w, r) =
∑
k≥0

b
(α)
k L

(α)
k (w)rk, w > 0 (53)

where for k ≥ 0

b
(α)
k = Γ(k + 1)

Γ(k + 1 + α)

∫ ∞
0

e−t tα L
(α)
k (t) f(t) dt (54)

with f(t) = gβ(t)/ϕα,1(t), gβ(t) the PDF of βT and ϕα,1(t) as given in Eq. (48).
A sufficient condition to have the convergence of the series (53) for r ∈ (0, 1)
at every point of continuity of f(t) is (Hille, 1926)∫ ∞

0
e−zttαf(t)dt = Γ(α + 1)

∫ ∞
0

e−(z−1)tgβ(t)dt <∞ (55)
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for every z− 1 > 0, which is fulfilled when T is the FPT random variable of a
Feller process from Eq. (12). Therefore

lim
r→1

U(w, r) = gβ(w)
ϕα,1(w) (56)

and Eq. (52) follows from Eq. (56) after some algebra, replacing w by βt and
recalling that βgβ(βt) = g(t).

Eqs. (51) and (52) justify the approximation of g with the polynomial of
degree n

ĝ(t) := ϕα,β(t)
n∑
k=0

a
(α)
k Q

(α)
k (βt) (57)

for a suitable choice of n, that we discuss in the next section.

Remark 3. The polynomial approximation (57) is particularly suited when
the PDF of T is unknown, but its moments are available, as happens for the
FPT random variable of the Feller process thanks to Corollary 2. Indeed by
observing that

E[Q(α)
k (βT )] = (−1)k

(
Γ(α + 1 + k)
k!Γ(α + 1)

)−1/2∫ ∞
0

g(t)L(α)
k (βt)dt

= (−1)k
(

Γ(α + 1)Γ(α + 1 + k)
k!

)1/2 k∑
j=0

(
k

j

)
(−β)jE(T j)
Γ(α + j + 1) ,

some algebra allows us to rewrite ĝ(t) in Eq. (57) as

ĝ(t) = β(βt)αe−βt
n∑
k=0

A
(α)
k L

(α)
k (βt), t > 0 (58)

with coefficients

A
(α)
k =

k∑
j=0

(
k

j

)
(−β)jE(T j)
Γ(α + j + 1) , k = 0, 1, . . . , n (59)

depending on the moments of T. Note that {A(α)
k } might be expressed directly

in terms of cumulants of T by using Eq. (25).

Sufficient conditions for the convergence of the series∑
k≥0

a
(α)
k Q

(α)
k (βt), t > 0 (60)

can be recovered by using the analogous on the Laguerre series (Hille, 1926).
Indeed in such a case we have limr→1 U(βt, r) = U(βt, 1) and

g(t) = ϕα,β(t)
∑
k≥0

a
(α)
k Q

(α)
k (βt), t > 0. (61)

The next corollary gives a sufficient condition on g(t) to have the series repre-
sentation (61).
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Corollary 3. The PDF g(t) has the series representation (61) if∫ ∞
0

t−αeβtg(t)2dt <∞. (62)

Proof. Condition (62) is equivalent to ask g(t)/ϕα,β(t) ∈ L 2(ν), equipped
with the usual inner product < g1, g2 >=

∫
g1g2dν and ν the measure hav-

ing density ϕα,β(t). As ν admits moment generating function and all its mo-
ments are finite, there exists a complete set of orthonormal polynomials in
L 2(ν), such that if g/ϕα,β ∈ L 2(ν), we may expand g(t)/ϕα,β(t) in terms of
these polynomials. Let us observe that {Q(α)

k (βt)} is a family of orthonormal
polynomials in L 2(ν) since {L(α)

k (t)} is a family of orthogonal polynomials
with respect to the weight function tαe−t. Therefore the Laguerre series (60)
with a

(α)
k = E[Q(α)

k (βT )], k ≥ 0 represents the Fourier-Laguerre expansion of
g(t)/ϕα,β(t) from whose uniqueness Eq. (61) follows.

As g(t) is unknown, it’s not easy to verify directly the condition (62). If

∞∑
k=0
|E[Q(α)

k (βT )]| <∞ (63)

then expansion (61) holds, due to the Parseval identity. The accuracy of
the approximation (57) depends upon the decay rate of {E[Q(α)

k (βT )]}, as
the L 2(ν)-loss is ∑∞k=n+1(E[Q(α)

k (βT )])2 for a given order of truncation n. A
sufficient condition to have Eq. (62) is

(
|E[Q(α)

k (βT )]|
)2
≈ k(−1−ε) as k →∞ and ε > 0. (64)

So it is fundamental to have a good algorithm to evaluate the coefficients
{E[Q(α)

k (βT )]}. This issue will be analyzed in the next paragraph.

4.1. Computational issues

To simplify the implementation, the approximating polynomial ĝ(t) has
been computed by using Eq. (58). The first five generalized Laguerre polyno-
mials are given in Table 2. Many packages1 return the first n generalized La-

Table 2. Generalized Laguerre polynomials

k L
(α)
k (t)

1 〈α+ 1〉1 − t
2
(
〈α+ 1〉2 − 2〈α+ 2〉1t+ t2

)
/2!

3
(
〈α+ 1〉3 − 3〈α+ 2〉2t+ 3〈α+ 3〉1t2 − t3

)
/3!

4
(
〈α+ 1〉4 − 4〈α+ 2〉3t+ 6〈α+ 3〉2t2 − 4〈α+ 4〉1t3 + t4

)
/4!

5
(
〈α+ 1〉5 − 5〈α+ 2〉4t+ 10〈α+ 3〉3t2 − 10〈α+ 4〉2t3 + 5〈α+ 5〉1t4 − t5

)
/5!
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guerre polynomials by using the following recursion formula (Charalambides,
2002)

L
(α)
k+1(t) = (2k + 1 + α− t)L(α)

k (t)− (k + α)L(α)
k−1(t)

k + 1 , k ≥ 0, (65)

with L(α)
0 (t) = 1. The same recursion (65) allows an efficient computation of

the coefficients {A(α)
k }. This result is proved in the following lemma where

we use the symbolic calculus (Charalambides, 2002) formalized through the
employment of a linear operator acting on a ring of polynomials, for details
see Di Nardo (2012).

Proposition 1. Let A(α)
k (y) = k!

Γ(α+1+k)L
(α)
k (y), for k ≥ 0. Then

A
(α)
k = E[A(α)

k (βm)] (66)

where E is a linear operator transforming mj in mj = E[T j], that is E[mj] =
E[T j], j ≥ 1 and E[1] = m0 = 1.

Proof. The result follows from Eq. (59), since

E[Ak(βm)] =
k∑
j=0

(
k

j

)
(−β)jE[mj]
Γ(α + j + 1) (67)

and using the linear operator E.

Note that the moments {mj} are calculated from cumulants using the re-
cursive relation (26).

The question of how to select the parameters α and β in Eq. (58) results to
be a crucial point. A general guideline to their selection consists in matching
the first two moments of g(t) with the first two of ϕα,β(t). From a statistical
point of view this choice mimics the well-known method of moments. From
a computational point of view, if the first two moments of g(t) and ϕα,β(t)
coincide, then a(α)

k = A
(α)
k = 0 for k = 1, 2 simplifying the computation of Eq.

(58) (Asmussen, Goffard, and Laub (2019)). According to this rule, if

β := c1(T )
c2(T ) and α := βE[T ]− 1 = c2

1(T )
c2(T ) − 1 (68)

then A(α)
1 = A

(α)
1 = 0 in Eq. (58).

The choice of α and β in Eq. (68) deserves some deeper analysis. First
note that the shape parameter α + 1 is given by the mean of the scaled ran-
dom variable βT. Instead, the rate parameter β measures the inverse relative
variance of g(t). The relative variance of a PDF is a normalized measure of its
dispersion. Thus, the more spread out is ϕα,β(t) the greater is the underdis-
persion of g(t). The next section gives some examples and applications of Eq.

1 See for example the package orthopolynom in R.
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(58) stopped at n = 5. The motivation of this choice stems from the statisti-
cal meaning of the coefficients {A(α)

k }. As α := E[βT − 1], symbolic calculus
shows that the coefficients {A(α)

k } are related to the k-th moment E[(βT −1)k],
without the normalizing constant Γ(α+j+1), which depends on the orthonor-
mal property of {Q(α)

k (t)}. Thus the third-order coefficient A(α)
3 accounts for

the skewness of g(t) while the fourth-order coefficient A(α)
4 involves the weight

of tails in causing dispersion, that is the kurtosis. The fifth-order coefficient
A

(α)
5 involves the hyper-skewness m5 of g(t) (Khademalomoom, Narayan, and

Sharma, 2019). Hyper-skewness measures the asymmetric sensitivity of the
kurtosis, that is the relative importance of tails versus the center in causing
skewness. Note that the sixth moment m6 in A(α)

6 is the PDF hyper-kurtosis
and measures both the peakedness and the tails compared with the normal
distribution. As we are considering PDFs with support (0,∞), the contribu-
tion of this coefficient is not statistically meaningful and not considered here.

Some suitable choices of the rate parameter β might improve the approxima-
tion, as the following propositions show.

Proposition 2. If g/ϕα,β ∈ L 2(ν), then β < 2
E[T ] .

Proof. As g/ϕα,β ∈ L 2(ν), all the integrals in∫ ∞
0

t−αeβtg(t)2dt =
∫ 1

0
t−αeβtg(t)2dt+

∫ ∞
1

t−αeβtg(t)2dt = I1 + I2 (69)

are finite. The FPT PDF g(t) has exponential long-time behavior with pa-
rameter the inverse mean FPT (Masoliver and PerellÃş, 2014), i.e

g(t) ≈ 1
E(T )e

− t
E(T ) . (70)

Therefore to have the convergence of the latter integral in Eq. (69), it is
necessary to have β − 2

E[T ] < 0.

Thus in the following proposition we give a sufficient condition for the ratio
g/ϕα,β to be in L 2(ν), assuming

β <
2

E[T ] ⇐⇒ 2c2(T ) > [c1(T )]2 (71)

under the choice (68).

Proposition 3. We have g/ϕα,β ∈ L 2(ν) if β < 2/E[T ] and g(t) = o(tδ) with
2δ + 1 > [c1(T )]2/c2(T ).

Proof. Let us consider again Eq. (69). Under condition (71), the integral I2
is always finite. Moreover 2c2(T ) > [c1(T )]2 ⇐⇒ −1 < α < 1. Let us focus
on I1. If α ∈ (0, 1) and g2(t) = o(t2δ) with 2δ > α then the integrand function
in I1 is limited and I1 is finite.
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5. EXAMPLES

As mentioned before, the Feller process plays a key role in a variety of
applications. In this section we will investigate three examples coming from
different areas of study.

5.1. Example 1

In the first example we consider dimensionless quantities to show the way
the approximation is implemented and how it performs.

In Figure 5.1-top we show the PDF of the first passage time through S = 1
for the Feller process solution of Eq. (8) for y0 = 0.2, c = 0, τ = 1/1.5, σ = 1
and µ = 0.9. The curves are obtained using just 2, 3, 4 or 5 cumulants in the
approximation method, i.e. from Eq. (58) for n = 2, 3, 4, 5. The approxima-
tions are compared to the FPT PDF obtained through simulation of 104 first
passage times of the process by discretization of Eq. (8) (see the Appendix).
We observe that the agreement is satisfactory even for small n, altough the
expression of the cumulants of any order is available and in principle can be
used to improve the approximation. The absolute error between the simulated
PDF and the approximated one is shown in Figure 5.1-bottom. We observe
that the error remains smaller than 0.05 for t > 0. In t = 0 the error is bigger,
but the difference is due mainly to the error in the simulation rather than in
the approximation. The reason is in the criteria for the bandwidth chosen in
building the density from the histograms of the simulated first passage times.

5.2. Example 2: Neuronal modeling

The Feller model was proved to fit experimental data of in vitro neurons
under different conditions (Hopfner, 2007). For this reason in this subsection
we focus on an application to neuronal modeling of Eq. (8). The solution pro-
cess Yt describes the evolution in time of the depolarization of the membrane
potential of the neuron that is modelled as a leaky RC circuit with a drift char-
acterizing the input stimuli. Eq. (8) describes the membrane depolarization
until the occurence of a spike. In accordance with the model, the spikes are
generated when the process Yt crosses a voltage threshold S for the first time,
involving thus the FPT random variable. The process is reset to the start-
ing point y0 after the spike and the evolution starts anew. In this framework
y0 is the starting depolarization, σ determines the amplitude of the noise, c
is the inhibitory reversal potential, τ is the inverse of the characteristic time
constant of the neuron that takes into account the spontaneous voltage decay
towards the resting potential in the absence of inputs and µ characterizes the
input the neuron under consideration receives. In the following, we consider
the same parameters values used in Lansky, Sacerdote, and Tomassetti (1995),
the resetting potential is equal to zero, i.e. y0 = 0 mV, the inhibitory reversal
potential is fixed to c = −10 mV, the noise amplitude σ = 1.2

√
mV/
√
ms,
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ĝ(
t)

2 cumulants
3 cumulants
4 cumulants
5 cumulants
Simulated

0.000

0.025

0.050

0.075

0.100

0.0 2.5 5.0 7.5 10.0
t

E
rr

or

2 cumulants
3 cumulants
4 cumulants
5 cumulants

Figure 1. TOP: Density of the first passage time through S = 1 for the Feller process
solution of Eq. (8) for y0 = 0.2, c = 0, τ = 1/1.5, σ = 1 and µ = 0.9. The curves
are obtained from Eq. (58) for n = 2, 3, 4, 5 (in the legend). The approximations
are compared to the simulated FPT PDF (in solid-red). The curve in red is built by
simulation of 104 first passage times of the Feller process obtained discretizing Eq.
(8) by means of Eq. (A2) with ∆t = 10−2. BOTTOM: The absolute error between
the simulated PDF and the approximated one for the above cases.

µ = 3 mV/ms and the firing threshold to S = 10 mV. The parameter of
spontaneous decay is chosen τ = 0.2 ms (Figure 5.2).

In Ditlevsen and Lansky (2006) the noise amplitude is chosen σ = 2√
mV/
√
ms (Figure 5.3). In this case the density is more skewed and the ap-

proximation fails to fit well the mode, altough the error remains of the order
of 0.05 (not shown). The reason is in the properties of the gamma distribution
that is our reference distribution: the mode is indeed not defined for α < 1,
(α = 0.07 in the example).

Another property of the gamma distribution to take care of is the shape
of the distribution for small α. In fact in this case the gamma density stops
to have the typical bell-shape, and ϕα,β(t) might fail a good approximation of
g(t) for small t. This situation is presented in the following example.



18

0.00

0.05

0.10

0.15

0.20

0 5 10 15
t

ĝ(
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Figure 2. Density of the first passage time through S = 10 mV for the Feller neuronal
model (8) for y0 = 0 mV, c = −10 mV, τ = 0.2 ms, σ = 1.2

√
mV/
√
ms and µ = 3

mV/ms (the regime is suprathreshold). The curves are obtained from Eq. (58) for
n = 2, 3, 4, 5 (in the legend). The approximations are compared to the simulated
FPT PDF (in solid-red).
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Figure 3. Density of the first passage time for the Feller neuronal model (8) for the
same choice of parametrers of Figure 5.2 except for σ = 2

√
mV/
√
ms and µ = 4

mV/ms. The discretization step for the simulation is ∆t = 10−3.

5.3. Example 3 : Financial mean-reverting models

In mathematical finance the Feller process goes under the name of CIR
model and it is used to study the term structure of interest rates (Cox, Inger-
soll, and Ross, 1985) or mean-reverting models for a credit spread (Linetsky,
2004). In the option pricing literature, the Feller process is used to describe the
variance in models with stochastic volatility, where the most notable example
is probably the Heston model (Heston, 1993; Rouah, 2013). In this example
we consider a stochastic model for an instantaneous credit spread following
Eq. (8) in t ∈ [0.01, 4] with the long-run credit spread level of 200 basis points
(µ = 0.02 ·0.25), the initial spread level of 100bp (y0 = 0.01), the rate of mean-
reversion τ = 0.25, and the volatility parameter σ = 0.1 (parameters given in
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Linetsky (2004)). We are interested in the first passage time density of the
long-run level S = 0.02, starting from y0 < S. Comparing the plot in Figure
5.4 with the one given by Linetsky (2004) obtained with a different method of
approximation, we observe a good asymptotic agreement. We stress that the
term asymptotic can be measliding since the agreement is good already for
relatively small t. The PDF shape is not preserved for t ≈ 0.01. The reason is
that for α < 1 (α = −0.34 in this case) the mode of the gamma distribution
is not defined, and thus it cannot be matched with the one of g(t), if it exists.
However if we impose the teoretical information that g(0) = 0, the behaviour
of the PDF is reproduced. Note that using Eq. (58) we overcome the difficul-
ties arisen from the simulation and the need to use 52 terms in approximation
expansion suggested by Linetsky.

0.2

0.4

0.6

0 1 2 3 4
t

ĝ(
t) 5 cumulants

Figure 4. Density of the FPT for the CIR model (8) in the interval t ∈ [0.01, 4] as
in Linetsky (2004), i.e. µ = 0.02 · 0.25, y0 = 0.01, τ = 0.25, σ = 0.1 and S = 0.02.
The curve is obtained from Eq. (58) for n = 5.

6. CONCLUSIONS AND OPEN PROBLEMS

We considered the well-known Feller stochastic process and the related FPT
problem through a constant boundary. We provided a manageable closed
form expression for the cumulants of T of any order by which moments can
be easily obtained, improving the current results available for the first three
moments only. Note that the knowledge of higher moments gives qualitative
information on the FPT PDF such as skewness, kurtosis, hyper-skewness and
hyper-kurtosis.

We used cumulants to build a polynomial approximation of the FPT PDF
g(t), whose expression in closed form is still missing in the literature. The
method is carried out involving the gamma distribution as a first approxima-
tion to g(t) and then improving this approximation by adding suitable correc-
tion terms based on a set of Laguerre polynomials. The resulting Laguerre-
Gamma polynomial has coefficients whose computation was lightened by us-
ing the well-known recurrence relation of the Laguerre polynomials and the
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symbolic calculus. This computation was further simplified choosing the pa-
rameters of the gamma distribution with the method of moments. We have
shown that the proposed method allows us to obtain good approximation of
g(t) even using a low degree (5 in the analyzed case-studies). Moreover it
overcomes the difficulties arisen from the simulation for time t close to zero.
Some care must be taken when the PDF g(t) is expected to have a mode
differently from the gamma distribution selected from the choice of its pa-
rameters. This circumstance deserves to be further investigated either in the
choice of the parameters and in the expected properties of g(t). Moreover, we
give sufficient conditions to improve the approximation of the PDF g(t) with
the Laguerre-Gamma polynomial; criteria that are fulfilled in most cases of
application.

Future work includes the extension of this approach to other processes be-
longing to the class of Pearson’s diffusion, since the expression of the Laplace
transform of the FPT PDF for these processes is often written as a ratio of
two hypergeometric functions. More in general, when the Laplace transform
of the FPT PDF is a ratio of functions admitting a power series represen-
tation, cumulants might be recovered by using the algebra of formal power
series and different polynomial approximations might be tested. For exam-
ple if the transition PDF of the process has a power series representation of
the Laplace transform f̃(z;x, y0) =

∫∞
0 e−ztf(x, t|y0, 0)dt, thus the proposed

method might be investigated as g̃(z) is again a ratio of power series, that is
g̃(z) = f̃(z;x, y0)/f̃(z;x, S).

Appendix A: The Milstein method

To estimate the FPT PDF g(t), we have implemented a classical Monte
Carlo method and simulated the paths of Yt using the stochastic differen-
tial equation (8). The algorithm we refer relies on the Milstein scheme
of discretization that is often used when the term A2 of the SDE dYt =
A1(Yt, t)dt+

√
A2(Yt, t)dW (t) depends on the process Yt (see for instance Kloe-

den and Platen (2011)). Truncation of the Itô-Taylor expansion at the second
order produces Milstein’s method:

Yn = Yn−1 + A1(Yn−1)∆t+
√
A2(Yn−1)∆Wn−1

+1
2
√
A2(Yn−1)(

√
A2(Yn−1))′

[
(∆Wn−1)2 −∆t

]
(A1)

for n = 1, 2, . . . , N for some N . The Milstein scheme exhibits convergence
of order 1 in the strong sense and is a generalization of the Euler-Marayuma
discretization scheme (the two methods coincide when A2(Yt) does not depend
on Yt). In case of Eq. (8), Eq. (A1) gives

Yn = Yn−1+(−τYn−1 + µ) ∆t+σ
√
Yn−1 − c ∆Wn−1+ 1

4σ
2
[
(∆Wn−1)2 −∆t

]
.

(A2)
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