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Abstract

The paper deals with the approximate solution of integro-differential
equations of Prandtl’s type. Quadrature methods involving “optimal”
Lagrange interpolation processes are proposed and conditions under
which they are stable and convergent in suitable weighted spaces of
continuous functions are proved.

The efficiency of the method has been tested by some numerical
experiments, some of them including comparisons with other numerical
procedures. In particular, as an application, we have implemented the
method for solving Prandtl’s equation governing the circulation air
flow along the contour of a plane wing profile, in the case of elliptic or
rectangular wing-shape.
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1 Introduction

Hypersingular Integro-Differential Equations (IDE) find application in the
treatment of many physics and engineering problems (for instance, see [1],
[2], [3], [4], [5] [6] and the references therein). In particular, the IDE of
Prandtl’s type

σ(y)ζ(y)+aζ ′(y)+
b

π

∫ 1

−1

ζ ′(x)
x− y

dx+
1

π

∫ 1

−1
k̄(x, y)ζ(x)dx = g(y), y ∈ (−1, 1),

(1)

1

http://arxiv.org/abs/2008.00294v1


with σ(y), k̄(x, y) and g(y) given functions, the constants a, b ∈ IR s.t. a2 +
b2 = 1, and the unknown solution ζ is a differentiable function, satisfying
the zero boundary condition

ζ(−1) = ζ(1) = 0, (2)

is well-known in aerodynamics. In fact, the solution ζ can represent the
circulation distribution of air flow along the contour of a wing profile (see, for
instance, [7], [3], [8], [9], [10] and the references therein). (Some experiments
concerned with this application will be proposed in Section 4.)

Taking into account the zero boundary condition (2), the solution ζ is
conveniently represented as the product of a smooth function f for a Jacobi
weight, i.e.

ζ(x) = f(x)vα,β(x), vα,β(x) = (1− x)α(1 + x)β, α, β > 0. (3)

Several authors have studied this kind of IDEs and introduced numerical
methods for approximating their solutions (see [11, 12, 13, 14, 15, 16] and
the references therein), mainly in the case α = β = 1

2 . In [14] and [16],
when σ ≡ 0, the equation has been also considered in the more general
case 0 < α < 1, β = 1 − α. In particular in [14] the authors introduced
collocation and quadrature methods based on Jacobi zeros studying stability
and convergence in weighted L2 spaces and in [16] a regularized version of
(1) has been investigated in a scale of pairs of weighted Besov spaces.

Here, we consider the equation (1) both for σ ≡/ 0, α = β = 1
2 and

for σ ≡ 0, 0 < α < 1, β = 1 − α. In both cases we seek the solution in a
couple of weighted Zygmund-type spaces equipped with uniform norm. Two
quadrature methods which make use of optimal Lagrange interpolation pro-
cesses are proposed and for them we determine conditions assuring stability
and convergence. The error estimates in weighted uniform norm and the
conditioning of the final linear systems are studied. Finally, some numerical
tests, which confirm the agreement among the theoretical estimates with the
numerical results, are provided.

The plan of the paper is the following. Next section contains some basic
results and notation used along the paper. In Section 3 the numerical pro-
cedures are described and the results about their stability and convergence
are stated. Section 4 contains some numerical tests to show the efficiency
of the proposed procedure, some of them in comparison with other ones. In
Section 5 the proofs of the main results are given, while Section 6 contains
conclusions and a brief discussion on the numerical experiments.
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2 Preliminaries

From now on the following setting will be used along all the paper:

u = vγ,δ, γ, δ ≥ 0, w = v1−α,α, ρ = vα,1−α, 0 < α < 1. (4)

Moreover the constant C will be used several times, having different meaning
in different formulas. We will write C 6= C(a, b, . . .) to say that C is a positive
constant independent of the parameters a, b, . . ., and C = C(a, b, . . .) to say
that C depends on a, b, . . .. If A,B ≥ 0 are quantities depending on some
parameters, we will write A ∼ B, if there exists a constant 0 < C 6= C(A,B)
such that

B

C ≤ A ≤ CB.

IPm will denote the space of the algebraic polynomials of degree at most m.
For a bivariate function k(x, y) we use kx (or ky) to regard k as function of
the only variable y (or x).

Many properties holding for FP integrals can be found in [17], [18] (see
also [19] and the references therein). Here we recall [20, Lemma 6.1, Cap II]

d

dy

∫ 1

−1

g(x)

x− y
dx =

∫ 1

−1

g′(x)
x− y

dx− g(−1)

1 + y
− g(1)

1− y
, −1 < y < 1,

holding if g has a generalized derivative g′ ∈ Lp(−1, 1), for some p > 1.
Then, under the zero endpoints conditions (2)-(3) with β = 1−α, equation
(1) can be rewritten as

(Mσρ +DAρ +K +H)f(y) = g(y),

where

(Mσρf)(y) = (σρf)(y), (Dq)(y) =
d

dy
q(y),

(Aρf)(y) = a(fρ)(y) +
b

π

∫ 1

−1

(fρ)(x)

x− y
dx,

(Kf)(y) =
1

π

∫ 1

−1
k(x, y)(fρ)(x)dx, (Hf)(y) =

1

π

∫ 1

−1
h(x, y)(fρ)(x)dx,

with σ(y) a given function, k(x, y) and h(x, y) smooth and weakly singular
kernels, respectively, such that k̄ in (1) satisfies k̄(x, y) = k(x, y) + h(x, y).
The Fredholm index of the Cauchy singular integral operator Aρ : L2

ρ → L2
ρ
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is equal to −1 if a = cos (πα), b = − sin (πα) (see, for instance, [21]). Here,
L2
ρ is the Hilbert space defined by the inner product

< f, g >ρ=

∫ 1

−1
f(x)g(x)ρ(x)dx. (5)

2.1 Function spaces

We consider the space of functions

Cu =























{

f ∈ C0((−1, 1)) : limx→±1∓(fu)(x) = 0
}

, γ > 0, δ > 0
{

f ∈ C0((−1, 1]) : limx→−1+(fu)(x) = 0
}

, γ = 0, δ > 0
{

f ∈ C0([−1, 1)) : limx→1−(fu)(x) = 0
}

, γ > 0, δ = 0

C0([−1, 1]), γ = δ = 0

,

equipped with the norm

‖f‖Cu := ‖fu‖∞ = max
|x|≤1

|(fu)(x)| .

Somewhere, for brevity, we will set ‖f‖A := maxx∈A |f(x)|.
Note that the limit conditions are necessary for the validity of the Weier-

strass theorem in Cu. Then, denoting by

Em(f)u = inf
Pm∈IPm

‖(f − Pm)u‖∞

the error of best polynomial approximation of f ∈ Cu by means of polyno-
mials of degree at most m, we have [22, p. 172 (2.5.23)]

lim
m
Em(f)u = 0. (6)

Setting ϕ(x) =
√
1− x2, for any f ∈ Cu and for an integer k ≥ 1, we

consider the main part of the ϕ-modulus of smoothness [23, p. 90]

Ωk
ϕ(f, t)u = sup

0<τ≤t
‖u∆k

τϕf‖Ikτ , Ikτ = [−1 + (2kτ)2, 1− (2kτ)2], (7)

where

∆k
τϕf(x) =

k
∑

i=0

(−1)i
(

k

i

)

f

(

x+
τϕ(x)

2
(k − 2i)

)

.
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By means of Ωk
ϕ(f, t)u, we define the Zygmund space of order r ∈ IR, r >

0,

Zr,k(u) =

{

f ∈ Cu : sup
t>0

Ωk
ϕ(f, t)u

tr
< +∞

}

, k ≥ r,

endowed with the norm

‖f‖Zr,k(u) = ‖fu‖∞ + sup
t>0

Ωk
ϕ(f, t)u

tr
. (8)

The following equivalence holds true (see, for instance, [22, p. 172])

sup
t>0

Ωk
ϕ(f, t)u

tr
∼ sup

i≥0
(1 + i)rEi(f)u, (9)

where the constants in “∼” depends on r. Such norms equivalence ensures
that the definition of the Zygmund space doesn’t depend on k ≥ r and
therefore we will set Zr(u) := Zr,k(u).

When r is a positive integer, we define the Sobolev space

Wr(u) =
{

f ∈ Cu : f (r−1) ∈ AC(−1, 1), ‖f (r)ϕru‖∞ <∞
}

,

where AC(−1, 1) denotes the set of the functions which are absolutely con-
tinuous on every closed subinterval of (−1, 1), equipped with the norm

‖f‖Wr(u) = ‖fu‖∞ + ‖f (r)ϕru‖∞.

In order to estimate Em(f)u we recall the Favard inequality (see, for
instance, [22, p. 172])

Em(f)u ≤ C
mr

‖f‖Zr(u), ∀f ∈ Zr(u), (10)

where the constant C does not depend on m and f but depends on r. More-
over, letting Em(f)Zr(u) = infPm∈IPm

‖f − Pm‖Zr(u), we recall [24, p. 33]

Em(f)Zr(u) ≤ C sup
k≥1

krEk(f)u, C 6= C(m, f). (11)

In the sequel we will write Zr := Zr(v
0,0), Em(f)v0,0 := Em(f), and Z0(u) =

W0(u) = Cu.
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2.2 Lagrange interpolation

For a given Jacobi weight θ = vα,β, α, β > −1, let {pθm}∞m=0 be the corre-
sponding sequence of orthonormal polynomials with positive leading coeffi-
cients and let {λθm,k}mk=1 be the Christoffel numbers w.r.t. θ. Let ρ and w
be defined in (4). Let Lw

m(G,x) be the Lagrange polynomial interpolating
a given function G ∈ Cuϕ at the zeros {xi}mi=1 of pwm and let Lρ

m(G,x) be
the Lagrange polynomial interpolating G ∈ Cuρ at the zeros {ti}mi=1 of pρm.
Following an idea in [25, 26], we represent Lw

m(G,x) in the basis

ψw
i (x) =

λwm,i

∑m−1
j=0 pwj (xi)p

w
j (x)

(uϕ)(xi)
, i = 1, 2, . . . ,m,

of IPm−1 and Lρ
m(G,x) in the basis

ψρ
i (x) =

λρm,i

∑m−1
j=0 pρj (ti)p

ρ
j (x)

(uρ)(ti)
, i = 1, 2, . . . ,m,

of IPm−1. More precisely, we write

Lw
m(G,x) =

m
∑

i=1

ψw
i (x)(uϕG)(xi) (12)

and

Lρ
m(G,x) =

m
∑

i=1

ψρ
i (x)(uρG)(ti). (13)

The choice of these bases is crucial in the study of the conditioning of the
linear systems involved in our numerical methods (see Theorems 3.3 and
3.6).

Next lemma, a consequence of [27, Theorem 2.2], states the conditions
under which the above introduced Lagrange processes are optimal:

Lemma 2.1. Let 0 < α < 1. If γ, δ satisfy

−α
2
+

1

4
≤ γ < −α

2
+

5

4
,

α

2
− 1

4
≤ δ <

α

2
+

3

4
, (14)

then
‖Lw

m(f)uϕ‖∞ ≤ C logm‖fuϕ‖∞, ∀f ∈ Cuϕ, (15)

‖Lρ
m(f)uρ‖∞ ≤ C logm‖fuρ‖∞, ∀f ∈ Cuρ, (16)

where C 6= C(m, f).
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The following lemma, a special case of [28, Th.1, p. 680], will be also
useful in the sequel.

Lemma 2.2. Let 0 < α < 1. If γ, δ satisfy 0 ≤ γ < −α
2 +

3
4 , 0 ≤ δ < α

2 +
1
4 ,

then, for any f ∈ C0([−1, 1]),

∫ 1

−1
|Lρ

m(f, x)|u−1(x)dx ≤ C‖f‖∞, C 6= C(m, f).

3 Main results

We present now our main results, concerned with the equations

(DAρ +K +H)f = g, 0 < α < 1, (17)

(Mσϕ +DAϕ +K +H)f = g. (18)

We start investigating (17) in the pair of Zygmund spaces (Zr(uρ), Zr−1(uϕ)) .

Theorem 3.1. Let 0 < α < 1. Assume that with γ, δ satisfying

max

{

0,−α
2
+

1

4

}

≤ γ < −α
2
+

1

2
, max

{

0,
α

2
− 1

4

}

≤ δ <
α

2
, (19)

and for some s > 0 it is

sup
|x|≤1

‖kx‖Zs(uϕ) < +∞, (20)

sup
|y|≤1

(uϕ)(y)

∫ 1

−1
|h(x, y)|u−1(x)dx < +∞, (21)

and

A(τ) := sup
y∈Iτ

(uϕ)(y)

∫ 1

−1
|∆τϕ(y)h(x, y)|u−1(x)dx < Cτ s, (22)

with C 6= C(τ), Iτ = [−1 + (2τ)2, 1 − (2τ)2]. If Ker(DAρ +K +H) = {0}
in Zr(uρ) with 1 < r < s + 1, then equation (17) admits a unique solution
f∗ in Zr(uρ) for any g ∈ Zr−1(uϕ).

Provided the conditions assuring existence and uniqueness of the solu-
tion of equation (17), we go to describe the numerical method proposed to
approximate its solution. Letting

(Kmf)(y) =
1

π

∫ 1

−1
Lρ
m(ky, x)(fρ)(x)dx, (23)

7



we proceed to solve the finite dimensional equation

(DAρ + Lw
mKm + Lw

mH)fm = Lw
mg, m ≥ 1, (24)

in the unknown fm, where

fm(y) =
m
∑

k=1

ψρ
k(y)ak. (25)

Since by [21, Theorems 9.9 and 9.14, Remark 9.15] and [29, (4.21.7)] we get

DAρpρm = (m+ 1)pwm, m = 0, 1, . . . , (26)

equation (24) can be written as

Lw
m(DAρfm +Kmfm +Hfm) = Lw

m(g)

and collocating it at the zeros {xi := xwi }mi=1 of pwm, we get, for i = 1, . . . ,m,

(uϕDAρfm)(xi) + (uϕKmfm)(xi) + (uϕHfm)(xi) = (uϕg)(xi). (27)

In view of (13) and (26)

(DAρfm)(xi) =
m
∑

k=1

ak
(uρ)(tk)

λρm,k

m−1
∑

j=0

pρj (tk)(j + 1)pwj (xi) (28)

and, by (23),

(Kmfm)(xi) =
1

π

m
∑

k=1

ak
(uρ)(tk)

λρm,k k(tk, xi). (29)

Moreover, we have

(Hfm)(xi) =
1

π

m
∑

k=1

akλ
ρ
m,k

(uρ)(tk)

m−1
∑

j=0

pρj (tk)cj(xi), cj(y) =

∫ 1

−1
h(x, y)pρj (x)ρ(x)dx.

(30)
Thus, combining (28), (29) and (30) with (27), setting am = [a1, . . . , am]T ,
we get the linear system

Amam = bm, (31)

Am = Um (Vm [DmZm +Wm] +Km)Λm, bm = Umgm, (32)

8



with Um = diag ((uϕ)(x1), . . . , (uϕ)(xm)) , gm = [g(x1), . . . , g(xm)]T ,

{

Wm(i, j) =
1

π
ci(xj)

}

i=0,1,...,m−1

j=1,...,m

,

{

Km(i, k) =
1

π
k(tk, xi)

}

i=1,...,m
k=1,...,m

,

Dm = diag(1, . . . ,m), Λm = diag

(

λρm,1

(uρ)(t1)
, . . . ,

λρm,m

(uρ)(tm)

)

,

{Vm(i, j) = pρj (ti)}i=1,...,m
j=0,1,...,m−1

, {Zm(i, j) = pwi (xj)}i=0,1,...,m−1

j=1,...,m

.

Therefore, if a∗m = [a∗1, . . . , a
∗
m]T is the unique solution of the linear system

(31), we construct the unique solution of the equation (24) as follows

f∗m(y) =

m
∑

k=1

ψρ
k(y) a

∗
k.

About the stability and the convergence of the method, we prove the fol-
lowing

Theorem 3.2. Let 0 < α < 1. Let us assume that (19) holds and that,
for some s > 0, the kernels k and h satisfy the assumptions (20)-(22),
g ∈ Zs(uϕ), and Ker(DA

ρ +K +H) = {0} in Zr(uρ) with 1 < r < s+ 1.
Then, for m sufficiently large (say m > m0), the operators DAρ +Lw

mKm+
Lw
mH : (IPm−1, ‖ · ‖Zr(uρ)) → (IPm−1, ‖ · ‖Zr−1(uϕ)) are invertible and their

inverses are uniformly bounded. Moreover, the unique solution f∗ of (17)
belongs to Zs+1(uρ) and if f∗m denotes the unique solution of (24), for all
1 < r < s+ 1, the following error estimate holds true

‖f∗ − f∗m‖Zr(uρ) ≤ C
(

logm

ms−r+1

)

‖f∗‖Zs+1(uρ), (33)

where the constant C is independent of m and f∗.

We conclude with the study of the linear system conditioning.

Theorem 3.3. Under the assumptions of Theorem 3.2, denoting by
cond(Am) the condition number of Am in infinity norm, we have

cond(Am) ≤ C
∥

∥

∥

∥

(

(DAρ + Lw
mKm + Lw

mH) |IPm−1

)−1
∥

∥

∥

∥

Cuϕ→Cuρ

m log3m,

(34)
where C 6= C(m).
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Now we treat the case of the equation (18). Next theorem assigns suffi-
cient conditions under which it is unisolvent.

Theorem 3.4. Let us assume that for some s > 0, 0 ≤ γ < 1
4 and 0 ≤

δ < 1
4 , the kernels k and h satisfy the assumptions (20)-(22) with α = 1

2
and σϕ ∈ Zs. If Ker(Mσϕ + DAϕ + K + H) = {0} in Zr(uϕ) with 1 <
r < s+1, then equation (18) admits a unique solution f∗ in Zr(uϕ) for any
g ∈ Zr−1(uϕ).

Now, to approximate the solution of equation (18) we solve the following
finite dimensional equation

(Lϕ
mMσϕ +DAϕ + Lϕ

mKm + Lϕ
mH)fm = Lϕ

m(g), m ≥ 1, (35)

in the unknown

fm(y) =
m
∑

k=1

ψϕ
k (y)āk, ψϕ

k (y) =
ℓϕm,k(y)

(uϕ)(xϕk )
, xϕk zeros of pϕm. (36)

By (28), (29), (30) with α = 1
2 and

(uϕMσϕfm)(xϕi ) = (σϕ)(xϕi )ai, 1 ≤ i ≤ m,

the finite dimensional equation (35) is equivalent to the linear system

Āmām = bm,

where

ām = [ā1, . . . , ām]T , bm = Umgm, Ām = Γm +Am,

with Am and bm defined in (32) and Γm = diag((σϕ)(xϕ1 ), . . . , (σϕ)(x
ϕ
m)).

About the stability and the convergence of the method and the condi-
tioning of the linear systems, next theorems hold true.

Theorem 3.5. Under the same assumptions of Theorem 3.2 with α = 1
2 ,

if for some s > 0, σϕ ∈ Zs and Ker(Mσϕ + DAϕ + K + H) = {0} in
Zr(uϕ), with 1 < r < s + 1, then, for m sufficiently large, the operators
Lϕ
mMσϕ+DA

ϕ+Lϕ
mKm+Lϕ

mH : (IPm−1, ‖·‖Zr(uϕ)) → (IPm−1, ‖·‖Zr−1(uϕ))
are invertible and their inverses are uniformly bounded.
Moreover, the unique solution f∗m of (35) converges to the unique solution
f∗ ∈ Zs+1(uϕ) of (18) and, for all 1 < r < s+1, the following error estimate
holds

‖f∗ − f∗m‖Zr(uϕ) ≤ C
(

logm

ms−r+1

)

‖f∗‖Zs+1(uϕ), (37)

where the constant C is independent of m and f∗.
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Theorem 3.6. Under the assumptions of Theorem 3.5, denoting by
cond(Ām) the condition number of the matrix Ām in infinity norm, we get

cond(Ām) ≤C
∥

∥

∥

∥

(

(Lϕ
mMσϕ +DAϕ + Lϕ

mKm + Lϕ
mH) |IPm−1

)−1
∥

∥

∥

∥

Cuϕ→Cuϕ

m log3m,

(38)

where C 6= C(m).

Remark 3.1. Firstly we recall that the following subspace of L2
ρ

L2,r+1
ρ =







f ∈ L2
ρ : ‖f‖

L
2,r+1
ρ

:=

( ∞
∑

n=0

(1 + n)2(r+1)c2n

)
1

2

< +∞







,

where {cn}∞n=0 are the Fourier coefficients of f in the orthonormal system
{pρn}∞n=0 w.r.t. the inner product (5), is embedded in the Zygmund space
Zr(uρ) (see [30], [31]), i.e.,

‖f‖Zr(uρ) ≤ C‖f‖
L
2,r+1
ρ

, C 6= C(f).

This observation could allow to deduce error estimates in ‖ · ‖Zr(uρ) starting
from that obtained in ‖·‖

L
2,r+1
ρ

. In fact, by using the estimate in [14, Theorem

3.1], one can prove

‖f∗ − f∗m‖Zr(uρ) ≤ C‖f∗ − f∗m‖
L
2,r+1
ρ

≤ C
ms−r

‖f∗‖
L
2,s+1
ρ

, C 6= C(m, f∗).

However, comparing the latter bound with the one in (33), it is clear that a
direct estimate in Zygmund norm, let us get a better rate of convergence.

Now, if f∗ is the solution of the equation (17) (or (18)) and f∗m is the
solution of (24) (or (35)), we denote by ζ∗ = f∗ρ the exact solution of the
initial Prandtl’s equation (1) and by ζ∗m := f∗mρ its m−th approximation.
By Theorems 3.2 and 3.5 we can easily deduce the following

Corollary 3.1. Under the assumptions of Theorems 3.2 or 3.5, for any
ε > 0, one has

‖(ζ∗ − ζ∗m)u‖∞ = ‖(f∗ − f∗m)uρ‖∞ ≤ C‖f∗ − f∗m‖Z1+ε(uρ) ≤ C logm

ms−ε
, (39)

where C 6= C(m).
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Remark 3.2. Estimate (39) will be useful in the practical evaluation of the
error in the numerical tests, since the discrete absolute error on the left hand
side is what we want in order to deduce the number of the exact digits we can
reach. From (39) we can deduce that the convergence order of the proposed
method is at least s− ε. We recall that for functions belonging to Zs+1(uρ)
the convergence order of the polynomial of best approximation is s+ 1 (see
(11)).

Remark 3.3. As you can see, the estimates of cond(Am) and cond(Ām)
given in Theorems 3.3 and 3.6 are not complete, since we are not able to
state the uniformly boundedness of the norms in (34) and (38). Neverthe-
less, the numerical evidences provided by the numerical tests (see Section 4)
encourage us to believe that such norms do not increase w.r.t. m.

We conclude by showing some weakly singular kernels satisfying (21)-
(22).

Proposition 3.1. Under the assumptions 0 ≤ γ, δ < 1 and −1 < µ < 0,
the kernels

h(x, y) =























|x− y|µ,
|x− y|µsgn(x− y),

log |x− y|,
|x− y|µ log |x− y|,

satisfy (21) and, with A(t) as in (22), next estimates hold

A(τ) ≤ C























τµ+1 h(x, y) = |x− y|µ
τµ+1 h(x, y) = |x− y|µsgn(x− y)

τ log τ−1 h(x, y) = log |x− y|
τµ+1 log τ−1 h(x, y) = |x− y|µ log |x− y|.

(40)

4 Numerical Tests

Now we show the performance of our methods by some numerical examples,
where the exact solution ζ of (1) will be approximated by ζm := fmρ,
with fm given in (25) or (36). When the ζ is unknown we will retain the
approximation ζ1024 as exact.

In the tables we will report, for each m, the maximum absolute error
attained by ζm at the grid points yi = −1 + i

100 , i = 0, . . . , 200, i.e.

Errm = max
i=0,...,200

u(yi)|ζ(yi)−ζm(yi)|, errm = max
i=0,...,200

u(yi)|ζ1024(yi)−ζm(yi)|.
(41)
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In order to make comparisons with other methods existing in the liter-
ature, in Example 1 we show the numerical results obtained approximating
an IDE considered in [15] and in Example 2 we compare our results with
those achieved with the method in [16].

Moreover, to verify the effectiveness of our theoretical estimates, in Ex-
amples 2 and 3 we consider suitable test IDEs and we will report the Esti-
mated Order of Convergence (EOC) for increasing values of m, i.e.

EOCm =
log(errm/err2m)

log 2
.

According to Theorems 3.3 and 3.6, the condition numbers of the linear
systems increase with m at least as m log3m. Presuming a more general
increasing behaviour of the condition numbers of order mν , with ν > 0, for
the Examples 2 and 3, we will report for each m the following estimators of
ν

ν(m) =
log
(

cond(A2m)
cond(Am)

)

log 2
and ν(m) =

log
(

cond(Ā2m)
cond(Ām)

)

log 2
,

respectively.
The values cond(Am) and cond(Ām) are computed using the MatLab

function cond.m with parameter P = inf .
Finally, in Subsection 4.1 we show how our numerical method can be

used to approximate the solutions of some special IDEs of Prandtl’s type
coming from some problems in aerodynamics.

All the computations were performed in 16−digits arithmetic.

Example 4.1. Let us consider the IDE of Prandtl’s type (18) with

σ(y)=2, k(x, y)≡0, h = log |x− y|,

and g(x) such that the exact solution is ζ(x) =
√
1− x2f(x) with f(x) =

√

(1− x2)3. This equation has been considered in [15]. The authors show
(see [15, Table 2]) only the approximations of the solution obtained for n =
15: they get at most 2 exact decimal digits. As one can see inspecting Table
1, our results are more satisfactory. In fact with n = 16 we get 3 exact
decimal digits and with n = 512 we attain 11 exact decimal digits.

The same integral equation has been considered in [15] also with g(x)
such that the exact solution is ζ(x) =

√
1− x2f(x) with f(x) = x. Applying

their method with n = 35 the authors get approximations of the solution with
at most 3 exact decimal digits. On the contrary, our method allows us to
attain approximations of the solution with the machine precision by solving
a linear system of order n = 2.

13



Table 1: Example 4.1

m cond(Ām) Errm
8 4.9982e + 00 1.5099e − 03

16 9.0130e + 00 7.0718e − 05

32 1.6870e + 01 1.6872e − 06

64 3.2465e + 01 4.5720e − 08

128 6.3581e + 01 8.8290e − 10

256 1.2576e + 02 2.5805e − 11

512 2.5011e + 02 6.4149e − 13

Example 4.2. Now we consider the equation (17) with α = 1
4 ,

k(x, y) =
∣

∣

∣
cos
(

y − π

4

)
∣

∣

∣

9

2

+ | sin(x)| 72 , h(x, y) = |x− y|−
1

3 , g(y) = |y| 112 .

The solution is ζ(x) = (1 − x)
1

4 (1 + x)
3

4 f(x), f unknown. Here, choosing
γ = 1

8 and δ = 0 (according to (19)), k satisfies (20) with s = 9
2 , h satisfies

(22) with s = 2
3 (see Proposition 3.1) and g ∈ Z 11

2

(v
5

8
, 1
2 ). Thus, by Theorem

3.2, f ∈ Z 5

3

(v
3

8
, 3
4 ) and, by Remark 3.2, the error behaves at least as logm

m
2
3
−ε

.

This slow convergence is confirmed inspecting Table 2. In fact, the arithmetic
mean of the estimated orders of convergence EOCm is almost 1.1342. In this
case the estimator ν(m) shows that ν ∼ 1.00051.

Note that, the integrals cj in (30) have been computed using the recur-
rence relation showed in [32, p. 333].

Applying the numerical method proposed in [16, p. 160] for the numerical
resolution of the above integral equation you get the results presented in
Table 3. As you can see, since the obtained linear systems have higher
condition numbers, no correct digits are achieved for the approximations of
the solution.

Example 4.3. Consider the integral equation (18) with

(σϕ)(y) = y2 + 1, k(x, y) =
cos(x+ y)

(x2 + y2 + 20)2
, h ≡ 0, g(y) =

∣

∣

∣

∣

y +
3

10

∣

∣

∣

∣

7

2

+ y sin(y).

In this case the solution has the form ζ(x) =
√
1− x2f(x), f unknown.

According to (19) we take γ = δ = 0. Since σϕ ∈ Zs(ϕ) for any s > 0,

14



Table 2: Example 4.2

m cond(Am) ν(m) errm EOCm

8 5.5777e + 00 3.5841e − 02

16 1.1021e + 01 9.82621e − 01 2.1644e − 02 0.7276

32 2.1911e + 01 9.91306e − 01 9.3647e − 03 1.2086

64 4.3681e + 01 9.95335e − 01 4.7068e − 03 0.9924

128 8.7390e + 01 1.00044e + 00 2.2208e − 03 1.0836

256 1.7485e + 02 1.00058e + 00 9.5749e − 04 1.2137

512 3.4982e + 02 1.00051e + 00 3.2044e − 04 1.5791

Table 3: Example 4.2: Numerical results obtained using the method in [16]

m cond(Am) errm
8 2.0128e + 01 6.1062e + 01

16 9.3696e + 01 6.0582e + 01

32 4.8291e + 02 5.9618e + 01

64 2.6155e + 03 5.7693e + 01

128 1.4510e + 04 5.3846e + 01

256 8.1311e + 04 4.6153e + 01

512 4.5778e + 05 3.0769e + 01

k satisfies (20) for any s > 0 and g ∈ Z 7

2

(ϕ), by Theorem 3.5, s = 7
2 and

therefore f ∈ Z 9

2

(ϕ). So, according to Remark 3.2, the errors behave at least

as logm

m
7
2
−ε

. By Table 4, we can conclude that the theoretical expectations are

verified, being the arithmetic mean of the EOCm ∼ 3.9343. In this case, we
have cond(Ām) ∼ m at most.

4.1 An application

The Prandtl’s equation (see [8],[9])

βC(z) =
α(z)

2

∫ b

−b

C(η)

(η − z)2
dη + j(z), (42)

with the zero boundary conditions C(±b) = 0, governs the (unknown) circu-
lation air flow C(y) along the contour of a plane wing profile. The constant

15



Table 4: Example 4.3

m cond
(

Ām

)

ν(m) errm EOCm

8 4.9498e + 00 9.7163e − 05

16 9.1339e + 00 8.8384e − 01 5.3368e − 06 4.18634

32 1.7478e + 01 9.3631e − 01 3.1042e − 07 4.10367

64 3.4150e + 01 9.6627e − 01 1.5510e − 08 4.32298

128 6.7481e + 01 9.8259e − 01 7.4500e − 10 4.37980

256 1.3413e + 02 9.9114e − 01 5.1794e − 11 3.84638

512 2.6744e + 02 9.9552e − 01 7.6090e − 12 2.76699

β =
√
1−M2, where M the Mach number in undisturbed motion, j, α are

given functions depending on the geometry of the wing and the solution
C(z) =

√
b2 − z2c(z).

4.1.1 Elliptic wing

In this case, being x2 + z2/b2 = 1 the ellipsis equation, 2b is the wingspan,

α(z) = b−1
√

b2 − z2, j(z) = 2πα(y)ǫ,

with ǫ acute angle between the direction of the relative wind and the chord
of the wing (the angle of attack).

Introducing the changes of variable z = by, η = bx, we have the equiva-
lent equation

βζ(y) =
α̃(y)

2b

∫ 1

−1

ζ(x)

(x− y)2
dx+ j̃(y), (43)

with ζ(y) =
√

1− y2d1(y) and therefore

2bβ

π
d1(y)−

1

π

∫ 1

−1

d1(x)

(x− y)2
ϕ(x)dx = 4bǫ.

Setting

σ1(y) =
2bβ

πϕ(y)
, ρ(y) = ϕ(y), g1(y) = 4bǫ

we have to solve
(Mσ1ϕ +DAϕ)d1(y) = g1(y). (44)
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The exact solution is known in this case

C̃(y) =
√

1− y2d1(y) =
√

1− y2
4ǫb

1 + 2bβ
π

.

We have tested our method selecting β = 1, b = 10 and choosing two different
values for the angle of attack, ǫ = 0.1 and ǫ = 0.0872. In both the cases,
since the solution belongs to Zs(ϕ) for any s > 1, the machine precision is
attained by solving a linear system of order m = 2. We point out that in
[9], for the same tests, by using a discretization based on a N − th Gauss
rule, only two exact digits are achieved with N = 50.

4.1.2 Rectangular wing

In this case 2b is the length of the rectangular’s largest dimension and

α(z) = 1, j(z) = 2πǫ.

By (43) with ζ(y) =
√

1− y2d2(y)

2bβ

π
d2(y)ϕ(y) −

1

π

∫ 1

−1

d2(x)

(x− y)2
ϕ(x)dx = 4bǫ,

and setting

σ2(y) =
2bβ

π
, ρ(y) = ϕ(y), g2(y) = 4bǫ

the equation can be rewritten

(Mσ2ϕ +DAϕ)d2(y) = g2(y). (45)

For this case the exact solution is unknown.
Since σ2ϕ ∈ Z1, according to Remark 3.2, the error behaves asO

(

logm
m1−ε

)

.

Inspecting Table 5, one can see that the numerical results are better than
the expected ones, as order.

5 The proofs

5.1 Proof of Theorem 3.1

In order to prove the theorem we need to study the mapping properties of
the operators D,Aρ,K and H. To this end for 0 < α < 1 we consider the
following subspace of Zr(u)

Zr,0(u) :=

{

f ∈ Zr(u) :

∫ 1

−1
f(x)ρ−1(x)dx = 0

}

, ‖f‖Zr,0(u) := ‖f‖Zr(u).

17



Table 5: Rectangular wing

m cond(Ām) errm
8 2.9237e + 00 1.0186e − 03

16 4.8340e + 00 4.5344e − 05

32 8.3045e + 00 1.6127e − 06

64 1.5198e + 01 5.7771e − 08

128 2.8963e + 01 2.1943e − 09

256 5.6503e + 01 8.7550e − 11

The following lemma states the boundedness of the operatorD : Zr(u) →
Zr−1(uϕ), r > 1.

Lemma 5.1. For r > 1

f ′ ∈ Zr−1(uϕ) ⇔ f ∈ Zr(u), (46)

and
‖f ′‖Zr−1(uϕ) ≤ C‖f‖Zr(u), C 6= C(f). (47)

In particular, (47) is not true for r = 1.

Proof. (46) follows by arguments similar to those used in [33, p. 337-338].
Start from

‖f ′‖Zr−1(uϕ) = ‖f ′uϕ‖∞ + sup
t>0

Ωk
ϕ(f

′, t)uϕ
tr−1

.

First we prove

sup
t>0

Ωk
ϕ(f

′, t)uϕ
tr−1

≤ C sup
t>0

Ωk+1
ϕ (f, t)u

tr
, k > r − 1. (48)

Since f ∈ Cu, by (6) there exists a sequence {Pm}m of best approx-
imation polynomials s.t. the series Pm +

∑∞
i=0(P2i+1m − P2im) converges

uniformly in [−1, 1] to f in Cu. If we prove that the series

∞
∑

i=0

(P2i+1m(x)− P2im(x))′(uϕ)(x) (49)
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uniformly converges ∀x ∈ [−1, 1], then the equality
( ∞
∑

i=0

(P2i+1m − P2im)

)′

uϕ =
∞
∑

i=0

(P2i+1m − P2im)′uϕ

holds true and the series P ′
m+

∑∞
i=0(P2i+1m−P2im)′ converges uniformly in

[−1, 1] to f ′ in Cuϕ.
By the Bernstein inequality [23, Th. 8.4.7] and the weak-Jackson in-

equality [23, Th. 8.2.1], we have

‖(P2i+1m − P2im)′uϕ‖∞ ≤ C(2i+1m)‖(P2i+1m − P2im)u‖∞

≤ C(2i+1m)E2im(f)u ≤ C(2i+1m)

∫ 1

2im

0

Ωk+1
ϕ (f, t)u

t
dt

≤ C 1

(2im)r−1
sup
t>0

Ωk+1
ϕ (f, t)u

tr
, C 6= C(m).

Thus, by the assumption on f , we have

∞
∑

i=0

‖(P2i+1m − P2im)′uϕ‖∞ ≤ C
mr−1

sup
t>0

Ωk+1
ϕ (f, t)u

tr

and the series (49) uniformly converges ∀x ∈ [−1, 1]. Then

Em(f ′)uϕ ≤ ‖(f − Pm)′uϕ‖∞ ≤
∞
∑

i=0

‖(P2i+1m − P2im)′uϕ‖∞

≤ C
mr−1

sup
t>0

Ωk+1
ϕ (f, t)u

tr
, (50)

where C 6= C(m). Since, using (9)

sup
t>0

Ωk
ϕ(f

′, t)uϕ
tr−1

≤ C sup
m≥1

mr−1Em(f ′)uϕ,

taking into account (50), (48) follows.
Let Q1 be the 1-degree polynomial of best approximation of f ′ ∈ Cuϕ.

We have

‖f ′uϕ‖∞ ≤ E1(f
′)uϕ + ‖Q1uϕ‖∞.

By (50) and ‖Q1uϕ‖∞ ≤ C‖fu‖∞,

‖f ′uϕ‖∞ ≤ C
[

sup
t>0

Ωk+1
ϕ (f, t)u

tr
+ ‖fu‖∞

]

≤ C‖f‖Zr(u), k > r − 1.
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(47) follows by combining the last estimate with (48).
Finally, for r = 1 (47) becomes

‖f ′uϕ‖∞ ≤ ‖f‖Z1(u)

and the above inequality is not true, beingW1(u) ⊂ Z1(u). For example the
function f(x) = x log |x|, |x| ≤ 1, belongs to Z1(u) but does not belong to
W1(u) (see [34, p. 54].

Lemma 5.2. Let γ, δ ≥ 0 and r > 1. The operator D : Zr,0(u) → Zr−1(uϕ)
is continuous and invertible. Moreover its inverse is bounded.

Proof. Since the continuity of D is a consequence of Lemma 5.1 it remains
to prove only the invertibility. By (46) for any g ∈ Zr−1(uϕ) there exists f ∈
Zr(u) s.t. Df = g, i.e. D : Zr(u) → Zr−1(uϕ) is surjective. On the other

hand, to any f ∈ Zr(u) we can associate the function f̄ = f−
∫
1

−1
f(x)ρ−1(x)dx

∫
1

−1
ρ−1(x)dx

belonging to Zr,0(u), then D : Zr,0(u) → Zr−1(uϕ) is surjective too. Since
the injectivity can be easily proved, it follows that D : Zr,0(u) → Zr−1(uϕ)
is invertible for any r > 1. Moreover, by the open mapping theorem (see,
for example, [35, p. 517]), the inverse of D is bounded.

Setting (Aρ−1

f)(x) = (cos πα)ρ−1(x)f(x) +
sinπα

π

∫ 1

−1
f(y)

ρ−1(y)

y − x
dy,

the following result can be found in [36, Corollary 2.2].

Lemma 5.3. Let 0 < α < 1. Under the assumptions in (19) the linear
maps

Aρ−1

: Zr,0(u) → Zr(uρ), Aρ : Zr(uρ) → Zr,0(u)

are both continuous for r > 0. Moreover, Aρ is the inverse of Aρ−1

and the
following equivalences hold true

‖Aρ−1

f‖Zr(uρ) ∼ ‖f‖Zr(u), ‖Aρf‖Zr(u) ∼ ‖f‖Zr(uρ), (51)

where the constants in “∼” are independent of f.

As a consequence of Lemmas 5.2 and 5.3 we deduce the following result.

Corollary 5.1. Let 0 < α < 1. Under the assumptions in (19) the operator
DAρ : Zr(uρ) → Zr−1(uϕ) is continuous and invertible for each r > 1.
Moreover its inverse is bounded.

The following lemma will be useful in the sequel.
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Lemma 5.4. Let us assume that the kernel k(x, y) satisfies (20). Then
there exists a sequence {Pm}m of polynomials Pm(x, y) =

∑m
i=0 pi,m(x)yi, of

degree not greater than m in y, such that pi,m(x) is piecewise constant for
all i = 0, . . . ,m and

sup
x,y∈[−1,1]

(uϕ)(y)|Pm(x, y)− k(x, y)| ≤ C sup
|x|≤1

Em(kx)uϕ, (52)

where C 6= C(m).

Proof. The proof can be easily deduced following step by step the proof of
Lemma 4.11 in [37].

Lemma 5.5. Let 0 < α < 1 and let γ, δ < 1. If for some s > 0 the kernel k
satisfies (20), then K : Cuρ → Zr−1(uϕ) is continuous for all 1 ≤ r ≤ s+ 1
and compact for all 1 ≤ r < s+ 1.

Proof. Taking into account (20) we have

(uϕ)(y)|(Kf)(y)| ≤ 1

π
‖fuρ‖∞(uϕ)(y)

∫ 1

−1
|k(x, y)|u−1(x)dx

≤ C‖f‖Cuρ sup
|x|≤1

‖kxuϕ‖∞ ≤ C‖f‖Cuρ . (53)

Let {Pm}m be the sequence of polynomials defined in Lemma 5.4. Then

Em(Kf)uϕ ≤ 1

π
sup
|y|≤1

(uϕ)(y)

∫ 1

−1
|k(x, y)− Pm(x, y)||(fρ)(x)|dx

≤ C‖fuρ‖∞ sup
x,y∈[−1,1]

(uϕ)(y)|k(x, y) − Pm(x, y)|
∫ 1

−1
u−1(x)dx

≤ C‖fuρ‖∞ sup
|x|≤1

Em(kx)uϕ.

Since, under the assumption (20), kx ∈ Zs(uϕ), using (10), we get

Em(Kf)uϕ ≤ C
ms

‖f‖Cuρ . (54)

Combining (53) and (54) with (8) and (9), the continuity of K : Cuρ →
Zr−1(uϕ) with 1 ≤ r ≤ s+ 1 follows.

Now, since for all f ∈ Zr−1(uϕ) we have [27, p. 6]

‖f − Lw
m(f)‖Zr−1(uϕ) ≤

C
ms−r+1

‖f‖Zs(uϕ) logm, 0 ≤ r − 1 < s, (55)
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the imbedding operator E : Zs(uϕ) → Zr−1(uϕ) can be approximated by
a sequence of finite dimensional operators and then Zs(uϕ) is compactly
imbedded in Zr−1(uϕ) for 0 ≤ r − 1 < s. Consequently, from the continu-
ity of the operator K : Cuρ → Zs(uϕ) we deduce the compactness of the
operator K : Cuρ → Zr−1(uϕ) for 1 ≤ r < s+ 1.

Lemma 5.6. Let 0 < α < 1. If the kernel h(x, y) satisfies (21) and (22),
then the operator H : Cuρ → Zr−1(uϕ), is continuous for all 1 ≤ r ≤ s + 1
and compact for all 1 ≤ r < s+ 1.

In particular, when α = 1
2 and h(x, y) = log |x − y|, for all r ≥ 1 the

operator H is continuous as a map from Zr(ϕ) into Zr(ϕ) and compact as
a map from Zr(ϕ) into Zr−1(ϕ).

Proof. We have

(uϕ)(y)|(Hf)(y)| ≤ C‖fuρ‖∞(uϕ)(y)

∫ 1

−1
|h(x, y)|u−1(x)dx, (56)

and, by (21), we deduce the continuity of the operator H : Cuρ → Cuϕ.
We observe that the compactness of H : Cuρ → Zr−1(uϕ) can be proved

if the following estimate holds

Ωϕ(Hf, t)uϕ
ts

≤ C‖f‖Cuρ (57)

for some s > r − 1. Indeed, by using the weak-Jackson inequality [23, Th.
8.2.1] together with (57), we get

Em(Hf)uϕ ≤ C
ms

‖f‖Cuρ , (58)

and, combining (56) and (58) with (8) and (9) we get the continuity of
H : Cuρ → Zr−1(uϕ), 1 ≤ r ≤ s+1. Moreover, by (11) and (58), we obtain

Em(Hf)Zr−1(uϕ) ≤ C sup
m
mr−1Em(Hf)uϕ ≤ C

ms−r+1
‖f‖Cuρ , s > r − 1,

and, therefore, by [33, p. 44] it follows that H : Cuρ → Zr−1(uϕ) is compact.
So, it remains to prove (57). By the assumption (22), we have

‖uϕ∆τϕHf‖Iτ =
1

π
sup
y∈Iτ

(uϕ)(y)

∣

∣

∣

∣

∫ 1

−1
∆τϕ(y)h(x, y)f(x)ρ(x)dx

∣

∣

∣

∣

≤ C‖fuρ‖∞ sup
y∈Iτ

(uϕ)(y)

∫ 1

−1
|∆τϕ(y)h(x, y)|u−1(x)dx ≤ C‖f‖Cuρτ

s.
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Thus, by definition of Ωϕ, (57) follows.
The case α = 1

2 and h(x, y) = log |x − y| is special since d
dy
(Hf)(y) =

−(Aϕf)(y). The proof can be deduced following [38, Proof of Theorem 2.2].

Proof of Theorem 3.1. The theorem follows by Corollary 5.1, Lemmas 5.5,5.6
and the Fredholm alternative Theorem (see, for instance, [39, Cor. 3.8]).

5.2 Proofs of Theorems 3.2 and 3.3

In order to prove the theorems, we need the following lemmas.

Lemma 5.7. Let 0 < α < 1. If, for some s > 0 and γ, δ satisfying (19),
the kernel k satisfies (20), then, for every 1 ≤ r < s+ 1,

‖(K − Lw
mKm)f‖Zr−1(uϕ) ≤ C‖f‖Cuρ

sup
|x|≤1

‖kx‖Zs(uϕ)
logm

ms−r+1
, C 6= C(m, f, k).

Proof. By definitions of K and Km we have

(Kf)(y)−Lw
m(Kmf)(y)=

1

π

[
∫ 1

−1

k(x, y)(fρ)(x)dx −Lw
m

(
∫ 1

−1

Lρ
m(ky, x)(fρ)(x)dx, y

)]

.

In what follows for any a : [−1, 1]2 → IR, we set

(Kaf)(y)=
1

π

∫ 1

−1

a(x, y)(fρ)(x)dx, (K̃a
mf)(y)=

1

π
Lw
m

(
∫ 1

−1

Lρ
m (a(·, y), x) (fρ)(x)dx, y

)

.

Let {Pm}m be the sequence of polynomials defined in Lemma 5.4. Since
KPm − K̃Pm

m = 0, then for R(x, y) = k(x, y)− Pm(x, y) we get

‖uϕ(K − Lw
mKm)f‖∞ ≤ ‖uϕKRf‖∞ + ‖uϕK̃R

mf‖∞.

By (53), we obtain

‖uϕKRf‖∞ ≤ C‖f‖Cuρ sup
|x|≤1

‖Rxuϕ‖∞,

and, by Lemmas 2.1 and 2.2, we deduce

‖uϕK̃R
mf‖∞ ≤ C logm ‖f‖Cuρ sup

|y|≤1
(uϕ)(y)

∫ 1

−1
|Lρ

m (Ry, x) |u−1(x)dx

≤ C logm ‖f‖Cuρ sup
|y|≤1

(uϕ)(y)‖Ry‖∞.
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Thus, by Lemma 5.4,

‖uϕ(K − Lw
mKm)f‖∞ ≤ C logm ‖f‖Cuρ sup

x,y∈[−1,1]
(uϕ)(y)|k(x, y) − Pm(x, y)|

≤ C logm ‖f‖Cuρ sup
|x|≤1

Em(kx)uϕ.

Finally, in virtue of the assumption (20) on k, using (10) we obtain

‖uϕ(K − Lw
mKm)f‖∞ ≤ C‖f‖Cuρ sup

|x|≤1
‖kx‖Zs(uϕ)

logm

ms
, C = C(s). (59)

Now, taking into account the equivalence (9), we get

‖uϕ(K − Lw
mKm)f‖Zr−1(uϕ) ≤ C‖uϕ(K − Lw

mKm)f‖∞
+ C sup

m
mr−1‖uϕ(K − Lw

mKm)f‖∞, C = C(r, s),

and the thesis follows combining last estimate with (59).

Lemma 5.8. Let 0 < α < 1. If, for some s > 0 and γ, δ satisfying (14),
the kernel h satisfies (21)-(22), then, for every 1 ≤ r < s+ 1,

‖(H − Lw
mH)f‖Zr−1(uϕ) ≤ C‖f‖Cuρ

logm

ms−r+1
, C 6= C(m, f).

Proof. By Lemma 2.1 and using (58) we get

‖uϕ(H − Lw
mH)f‖∞ ≤ C logmEm−1(Hf)uϕ ≤ logm

ms
‖f‖Cuρ . (60)

Using the equivalence (9) and (60) the theorem follows.

Proof of Theorem 3.2. We first note that, by Corollary 5.1, g ∈ Zs(uϕ)
implies [DAρ]−1g ∈ Zs+1(uρ) and, by Lemmas 5.5 and 5.6, [DAρ]−1Kf,
[DAρ]−1Hf ∈ Zs+1(uρ) for any f ∈ Cuρ, then

f = −[DAρ]−1Kf − [DAρ]−1Hf + [DAρ]−1g ∈ Zs+1(uρ)

too.
Since by Lemmas 5.7 and 5.8 we can choose m sufficiently large (say

m > m0) such that

‖(DAρ +K +H)−1[(Lw
mKm −K) + (Lw

mH −H)]‖Zr(uρ)→Zr(uρ) < 1,
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then, using a well-known result (see, for example, [39, Theorem 10.1, p.
142]), the inverse operators (DAρ+Lw

mKm+Lw
mH)−1 : Zr−1(uϕ) → Zr(uρ)

exist and are uniformly bounded w.r.t. m, i.e.

sup
m≥m0

‖(DAρ + Lw
mKm + Lw

mH)−1‖Zr−1(uϕ)→Zr(uρ) < +∞. (61)

In order to prove (33), we use the following identity

(f − fm) = (DAρ + Lw
mKm + Lw

mH)−1 [(g − Lw
mg)− (Lw

mKm −K)f

−(Lw
mH −H)f ] . (62)

Since by (55) and the assumptions on g it is

‖g − Lw
mg‖Zr−1(uϕ) ≤ C logm

ms−r+1
‖g‖Zs(uϕ),

using (61) and Lemmas 5.7 and 5.8, we get

‖f − fm‖Zr(uρ) ≤ C logm

ms−r+1

[

‖g‖Zs(uϕ) + ‖f‖Zs+1(uρ)

]

. (63)

On the other hand, since g = (DAρ +K +H)−1f , by Theorem 3.1,

‖g‖Zs(uϕ) ≤ C‖f‖Zs+1(uρ). (64)

Combining (64) and (63), (33) follows.

Proof of Theorem 3.3. Let P ∈ IPm−1, m > 1. Using [40, Th. 3.1] with
w1 = uρ and w2 = u, we get

‖AρP‖Cu ≤ C‖P‖Cuρ + C
∫ 1

0

Ωk
ϕ(P, t)uρ

t
dt

= ‖P‖Cuρ + C
{

∫ 1

m

0
+

∫ 1

1

m

}

Ωk
ϕ(P, t)uρ

t
dt.

Applying Ωk
ϕ(P, t)uρ ≤ Ct‖P ′ϕuρ‖∞ and the Bernstein inequality [23, Th.

8.4.7] in the first integral and Ωk
ϕ(P, t)uρ ≤ C‖Puρ‖∞ in the second one, it

is easy to deduce that

‖AρP‖Cu ≤ C logm‖P‖Cuρ .

Using the above inequality together with the Bernstein inequality [23, Th.
8.4.7] we get

‖DAρP‖Cuϕ ≤ Cm logm‖P‖Cuρ . (65)
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Then, taking into account (26) and (see, for example, [16])

(DAρ)−1pwm =
1

m+ 1
pρm, (66)

the operator DAρ : (IPm−1, ‖ · ‖Cuρ) → (IPm−1, ‖ · ‖Cuϕ) is continuous and
invertible. Consequently, the operator (DAρ + Lw

mKm + Lw
mH) : (IPm−1, ‖ ·

‖Cuρ) → (IPm−1, ‖ · ‖Cuϕ) is continuous and invertible too and its inverse is
bounded (see, for example, [39, Theorem 3.4]).

Now, for every θ = (θ1, . . . , θm)T there exists η = (η1, . . . , ηm)T such
that Amθ = η iff (DAρ + Lw

mKm + Lw
mH)θ̃(y) = η̃(y), where

θ̃(y) =
m
∑

i=1

ψρ
i (y)θi, η̃(y) =

m
∑

i=1

ψw
i (y)ηi,

with θi = (uρθ̃)(ti) and ηi = (uϕη̃)(xi).
Then, for every θ we have

‖Amθ‖∞ = ‖η‖∞ = |ην | = |(η̃vγ,βϕ)(xν)| ≤ ‖η̃‖Cuϕ

= ‖(DAρ + Lw
mKm + Lw

mH)θ̃‖Cuϕ

≤ ‖DAρθ̃‖Cuϕ + ‖Lw
mKmθ̃‖Cuϕ + ‖Lw

mHθ̃‖Cuϕ

=: N1 +N2 +N3,

where |ην | = max
1≤i≤n

|ηi|. Using (65) and (16), we get

N1 ≤ Cm log2m‖θ‖∞. (67)

Moreover, by (15), the definition (23) of Kmθ̃, Lemma 2.2, the assumption
(20) and (16), we deduce

N2 ≤ C logm‖Kmθ̃‖Cuϕ

≤ C logm‖θ̃‖Cuϕ sup
|y|≤1

(uϕ)(y)

∫ 1

−1
|Lρ

m(ky, x)|u−1(x)dx

≤ C logm‖θ̃‖Cuϕ sup
|y|≤1

(uϕ)(y)‖ky‖∞

= C logm‖θ̃‖Cuϕ sup
|x|≤1

‖kxuϕ‖∞

≤ C log2m‖θ‖Cuϕ .
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Finally, by (15), the definition of Hθ̃, the assumption (21) and (16), we have

N3 ≤ C logm‖Hθ̃‖Cuϕ

≤ C logm‖θ̃‖Cuϕ sup
|y|≤1

(uϕ)(y)

∫ 1

−1
|h(x, y)|u−1(x)dx

≤ C log2m‖θ‖∞.

Summing up, we get

‖Am‖∞ ≤ Cm log2m (68)

Similarly proceeding, for every η, using (15), we get

‖A−1
m η‖∞ ≤ C

∥

∥

∥

∥

(

(DAρ + Lw
mKm + Lw

mH) |IPm−1

)−1
∥

∥

∥

∥

Cuϕ→Cuρ

‖η̃‖Cuϕ

≤ C logm

∥

∥

∥

∥

(

(DAρ + Lw
mKm + Lw

mH) |IPm−1

)−1
∥

∥

∥

∥

Cuϕ→Cuρ

‖η‖∞

and, then,

‖A−1
m ‖∞ ≤ C logm

∥

∥

∥

∥

(

(DAρ + Lw
mKm + Lw

mH) |IPm−1

)−1
∥

∥

∥

∥

Cuϕ→Cuρ

.(69)

Combining (68) and (69), the theorem follows.

5.3 Proof of Theorem 3.4

Lemma 5.9. Under the assumptions 0 ≤ γ < 1
2 , 0 ≤ δ < 1

2 , and if σϕ ∈
Zr with r ≥ 0, then the multiplying operator Mσϕ : Zr(uϕ) → Zr(uϕ) is
continuous. Moreover, if σϕ ∈ Zr with r ≥ 1, then Mσϕ : Zr(uϕ) →
Zr−1(uϕ) is compact.

Proof. Since

‖(Mσϕf)uϕ‖∞ = ‖σϕfuϕ‖∞ ≤ ‖σϕ‖∞‖fuϕ‖∞ (70)

and, by standard computation and the Favard inequality (10), denoting by
⌊a⌋ the greatest integer smaller or equal to a> 0, we have

Em(Mσϕf)uϕ≤‖σϕ‖∞E⌊m

2 ⌋(f)uϕ+2‖fuϕ‖∞E⌊m

2 ⌋(σϕ)≤
C
mr

‖f‖Zr(uϕ)‖σϕ‖Zr
,

(71)
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it follows ‖Mσϕf‖Zr(uϕ)=‖(Mσϕf)uϕ‖∞+supmmrEm(Mσϕf)uϕ<C‖f‖Zr(uϕ),
i.e., the operator Mσϕ : Zr(uϕ) → Zr(uϕ) is continuous. Then Mσϕ :
Zr(uϕ) → Zr−1(uϕ) is compact, since Zr(uϕ) is compactly imbedded into
Zr−1(uϕ) (see (55)).

Proof of Theorem 3.4. The theorem follows by Corollary 5.1, Lemmas 5.5,
5.6 and 5.9 and the Fredholm alternative Theorem.

5.4 Proof of Theorems 3.5 and 3.6

Lemma 5.10. If, for some s > 0, 0 ≤ γ < 1
4 and 0 ≤ δ < 1

4 , we have
σϕ ∈ Zs, then, for every 1 ≤ r < s+ 1,

‖(Mσϕ −Lϕ
mMσϕ)f‖Zr−1(uϕ) ≤ C‖f‖Zs(uϕ)‖σϕ‖Zs

logm

ms−r+1
, C 6= C(m, f, σ).

Proof. By Lemma 2.1 for α = 1
2 , under the assumptions on γ, δ

‖uϕ(Mσϕ − Lϕ
mMσϕ)f‖∞ ≤ C logmEm(Mσϕf)uϕ.

Since σϕ ∈ Zs, by (71) with r = s, we obtain

‖uϕ(Mσϕ − Lϕ
mMσϕ)f‖∞ ≤ C logm

ms
‖f‖Zs(uϕ)‖σϕ‖Zs .

Finally, by equivalence (9), the lemma follows.

Proof of Theorem 3.5. Taking into account Lemma 5.10 the proof is similar
to that of Theorem 3.2.

Proof of Theorem 3.6. The proof is similar to that of Theorem 3.3 taking
into account that, by (15), (70) and (16), we get

‖Lϕ
mMσϕθ̃‖Cuϕ ≤ C logm‖Mσϕθ̃‖Cuϕ ≤ C logm‖θ̃‖Cuϕ

≤ C log2m‖θ‖∞.

5.5 Proof of Proposition 3.1

We prove (40) for h(x, y) = |x− y|µ, since the other cases similarly follows.
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Setting ϕ1(x) =
√

1− |x|, by ϕ(y)√
2

≤ ϕ1(y) ≤ ϕ(y) it follows Ωϕ ∼ Ωϕ1
[23].

Assume at first y ∈ [−1 + 4τ2, 0] and consider the following decomposition

(uϕ)(y)

∫ 1

−1
u−1(x)|∆τϕ1(y)kx(y)|dx = (uϕ)(y) ×

×
(

∫ −1+ 1+y
2

−1
+

∫ y−τϕ1(y)

−1+ 1+y
2

+

∫ y

y−τϕ1(y)
+

∫ y+τϕ1(y)

y

+

∫ y+ 1+y
2

y+τϕ1(y)
+

∫ 1

y+ 1+y
2

)

u−1(x)|∆τϕ1(y)kx(y)|dx =:
6
∑

k=1

Sk(y).

Since for x < y − τ
2ϕ1(y) ([41, (13.5.3)])

|∆τϕ1(y)kx(y)| ≤ τϕ1(y)
(

y − τ

2
ϕ1(y)− x

)µ−1
, (72)

and for y ∈ [−1 + 4τ2, 0], by µ − 1 < 0,
(

y − τ
2ϕ1(y)− x

)µ−1 ≤
(

1+y
4

)µ−1
,

we have

S1(y) ≤ Cτ(1 + y)δ+µ

∫ −1+ 1+y

2

−1
(1 + x)−δdx ≤ Cτ(1 + y)µ+1 ≤ Cτ,

being µ+ 1 > 0. By (72) again

S2(y) ≤ Cτ(1 + y)δ+1

∫ y−τϕ1(y)

−1+ 1+y

2

(

y − τ

2
ϕ1(y)− x

)µ−1
(1 + x)−δdx.

Then, by (1 + x) ≥ 1+y
2 and setting y − x = u

√
1 + y, it follows

S2(y) ≤Cτ(1 + y)1+
µ

2

∫

√
1+y

2

τ

(

u− τ

2

)µ−1
dx=Cτ (1 + y)1+

µ

2

µ

[(√
1 + y

2
− τ

2

)µ

−τµ
]

and, using
√
1+y
2 ≥ τ , we can conclude S2(y) ≤ Cτ1+µ. Similar estimates hold

for S5 and S6. To estimate S3 we use |∆τϕ1(y)kx(y)| ≤
∣

∣y − τ
2ϕ1(y)− x

∣

∣

µ

and by 1 + x ∼ 1 + y,

S3(y) ≤ C(1 + y)
1

2

∫ y

y−τϕ1(y)

∣

∣

∣
y − τ

2
ϕ1(y)− x

∣

∣

∣

µ

dx

and by the change of variable y − x− τ
2

√
1 + y = θ it follows

S3(y) ≤ C(1 + y)
1

2

∫ τ
2

√
1+y

− τ
2

√
1+y

|θ|µdθ = Cτµ+1(1 + y)
3

2
+µ ≤ Cτµ+1.
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Similarly we estimate S4 by using |∆τϕ1(y)kx(y)| ≤
∣

∣y + τ
2ϕ1(y)− x

∣

∣

µ
, and

the lemma is proved for y ∈ [−1 + 4τ2, 0]. We omit the proof in the case
y ∈ [0, 1 − 4τ2], since it follows by similar arguments.

6 Conclusions

In this paper we have proposed a numerical scheme based on Lagrange
projection for solving integral equations of the kinds (17) and (18). The
approximate solution has been obtained by solving a system of algebraic
equations, whose conditioning has been studied. Stability and convergence
have been proved, giving estimates of the errors in Zygmund norm. We
have illustrated various aspects of the theory by means of some examples,
evaluating the efficiency of the proposed scheme from different points of
view. In the first test we have compared our results with those reached by
the procedure proposed in [15], by showing that our method faster converges.
Examples 2 and 3 have been devoted especially to test the agreement of the
predicted orders of convergence with the numerical EOCs, choosing for this
goal functions of different smoothness. In both examples numerical evidence
shows also that the condition numbers of the linear systems diverge at most
like m log3m. This fact encourages us to believe that the norms in (34) and
(38) do not increase w.r.t. m. Moreover, in Example 2 we have compared
the condition numbers of the linear systems of our procedures with those of
the procedure in [16], showing the substantial different behaviors between
them (see Table 3). The better conditioning in our procedure is ascribable to
the choice of the basis to represent the Lagrange polynomials (see [25, 26]).

Finally we have considered the application of our method in solving the
Prandtl’s equation governing the circulation air flow along the contour of a
plane wing profile, for two different wing-shapes. Also in these cases we have
shown that our experimental results are more accurate than those obtained
in [8], [9], highlighting once again the efficiency of our approach.
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