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Abstract. We develop precise bounds on the growth rates and fluctuation sizes of unbounded solutions

of deterministic and stochastic nonlinear Volterra equations perturbed by external forces. The equation

is sublinear for large values of the state, in the sense that the state–dependence is negligible relative to
linear functions. If an appropriate functional of the forcing term has a limit L at infinity, the solution

of the differential equation behaves asymptotically like the underlying unforced equation when L = 0,

like the forcing term when L = +∞, and inherits properties of both the forcing term and underlying
differential equation for values of L ∈ (0,∞). Our approach carries over in a natural way to stochastic

equations with additive noise and we treat the illustrative cases of Brownian and Lévy noise.
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3.2. Lévy Noise 16

3.3. Stochastic Examples 17

4. Proofs of Results for Deterministic Volterra Equations 19

5. Proofs of Results for Stochastic Volterra Equations 31

References 38

Appendix A. Examples & Numerical Experiments 40

E-mail addresses: john.appleby@dcu.ie, denispatterson@princeton.edu.

Date: November 4, 2020.

1

ar
X

iv
:1

61
2.

00
51

5v
2 

 [
m

at
h.

C
A

] 
 3

 N
ov

 2
02

0



2 PERTURBED NONLINEAR VOLTERRA EQUATIONS

1. Introduction

1.1. Problem Overview. We analyse the long–run dynamics of solutions to the scalar Volterra integro-
differential equation

x′(t) =

∫
[0,t]

µ(ds)f(x(t− s)) + h(t), t > 0, x(0) = ψ ∈ R. (1.1)

In particular, we concentrate on the behaviour of unbounded but non-explosive solutions, i.e. x ∈
C(R+;R) but lim supt→∞ |x(t)| =∞. The nonlinearity f is assumed to be sublinear in the state variable
in the sense that limx→∞ f(x)/x = 0, guaranteeing global existence of solutions. We draw a distinction
between when solutions of (1.1) grow, limt→∞ x(t) = ∞, and when solutions can be said to fluctuate
asymptotically, lim inft→∞ x(t) = −∞ and lim supt→∞ x(t) = +∞. When solutions grow it is natural
to ask at what rate they grow and when they fluctuate to ask if the size of these fluctuations can be
captured in an appropriate sense; these are the primary goals of this paper.

Nonlinear equations with after effect, such as (1.1), appear naturally in a myriad of diverse applications
from models of nuclear reactors to heat flow or even financial management [21, 22]. In the present
work, we are especially motivated by economic applications, such as to vintage capital models; in this
context the sublinear response of the system represents saturated growth or diminishing returns to
scale. This analogy further motivates our study of (1.1) in the presence of random forcing as (1.1)
encompasses a broad class of continuous time nonlinear time-series models when h is replaced by an
appropriate stochastic process [16, 27]. The measure µ can be thought of as weighting the contributions
of capital of different ages to the current growth in the economy, as well as “time-to-build lags” and
other delay inducing effects [10]. Hence we assume µ to be a finite measure so that the influence of older
capital becomes negligible as time advances (see [8] for further discussion and motivation with regard to
applications). Precisely, µ is a finite Borel–measure on R+ := [0,∞), i.e.

µ(E) ≥ 0 for all E ∈ B(R+), µ(R+) ∈ (0,∞), (1.2)

where B(R+) denotes the σ-algebra generated by the open sets of R+. We also define m(t) = µ([0, t]) so
that limt→∞m(t) = µ(R+) and H(t) :=

∫
[0,t]

h(s) ds for t ≥ 0.

In the framework outlined above, the following is a convenient sufficient condition to guarantee a
positive, growing solution to (1.1) (see [8, Theorem 1]):

f ∈ C(R+; (0,∞)), H ∈ C(R+;R+). (1.3)

After developing results regarding the qualitative behaviour of solutions to (1.1) we extend our deter-
ministic analysis to consider the asymptotic behaviour of the related stochastic Volterra equation

dX(t) =

∫
[0,t]

µ(ds)f(X(t− s)) dt+ dZ(t), t > 0, (1.4)

where Z is a semimartingale. We establish an appropriate existence and uniqueness theorem for equation
(1.4) and specialise to the cases of Brownian and Lévy noise in order to prove precise asymptotic results.

Equations (1.1) and (1.4) can both be viewed as perturbations of the underlying Volterra integro-
differential equation

y′(t) =

∫
[0,t]

µ(ds)f(y(t− s)), t > 0, y(0) = ψ. (1.5)

When f is positive and sublinear at infinity, the solution y(t) of (1.5) obeys y(t) → ∞ as t → ∞ and
grows asymptotically like the solution of the ODE z′(t) = µ(R+)f(z(t)), i.e. the corresponding ODE
with the mass of the measure concentrated at zero [8]. It is natural to ask how large the forcing terms
h in (1.1) and Z in (1.4) can become while the solutions x of (1.1) and X of (1.4) continue to grow in
the same manner as solutions to z′(t) = µ(R+)f(z(t)). Furthermore, can we identify a new asymptotic
regime or growth rate if the forcing terms exceed this critical rate? The main goal of this paper is to
identify such critical rates of growth on h and Z, and to determine precise estimates on the growth rate
of solutions, or the rate of growth of the partial maxima when solutions fluctuate.

The analysis in our paper [8] deals with growth estimates for the unperturbed version of (1.1) (i.e.
h ≡ 0) and can be thought of as demonstrating the asymptotic sharpness of Bihari’s inequality (and
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related retarded integral inequalities) for a large class of functional differential equations [14, 23]. It
is a well-established, but still active, area of work to determine the interplay between the properties
of perturbations and fundamental solutions or unperturbed equations. In the context of linear and
quasilinear integral equations, the following formulation has proven fruitful: If the perturbation belongs
to a function class C, and the equation (operator) is stable in an appropriate sense, then the solution also
belongs to the class C. This phenomenon is referred to as admissibility, and an excellent account by one
the most important contributors and initiators of this theory is given in Corduneanu [17]. In the linear
case, properties of the fundamental solution and variations of constants formulae are especially helpful in
obtaining these admissibility results, but naturally nonlinear equations require entirely different methods.

A central contribution of this paper is to prove results in the spirit of classical linear admissibility
theory, exploiting methods more suited to dealing with nonlinear equations in which the state-dependence
is sublinear. We give precise estimates on the asymptotic behaviour of solutions whether perturbations
are large or small. In doing this, we bear in mind that the great bulk of research focuses on bounded
perturbations with different properties or exploits the theory of Lp weighted spaces [19]. In the latter
case, p = +∞ (which is our focus here) tends to attract relatively little attention. Our work treats,
in a unified manner, large or rapidly fluctuating perturbations which may be either deterministic or
stochastic in nature. For many classes of linear differential equations with additive forcing (with or
without memory) the asymptotic behaviour of solutions tends to be in one of two regimes. When the
perturbation is sufficiently small, the solution tracks that of the unperturbed equation asymptotically;
this can even extend to precise quantitative measures, such as Lyapunov exponents, being preserved (see
[20, Ch. 10] and the references therein, [33] and Proposition 1 below). The second typical regime is
when the perturbation becomes so large that the perturbed solution no longer behaves at all like the
fundamental solution and instead the forcing term dominates the dynamics (cf. [4]). The challenge is
to characterise precisely the appropriate quantities that are preserved in the case of small perturbations
and the critical perturbation size at which the regime shift occurs. There may be interesting dynamics
at the critical transition between the small and large perturbative regimes which can sometimes also be
characterised; we show that this can be achieved for (1.1), as well as it’s stochastic counterpart (1.4).

There is an extensive literature regarding existence, uniqueness and regularity results for stochastic
Volterra equations subject to additive Brownian forcing [11, 13]. More recently, there has been consider-
able progress in developing stability theory for linear stochastic Volterra equations [2, 3, 26, 36, 38] and
stochastic delay differential equations [6, 25, 30, 31], particularly with an instantaneous diffusion term
(i.e. delays are confined to the drift term). Moreover, several authors have extended the stability theory
to certain classes of nonlinear equations, typically using Lyapunov methods [7, 22, 37, 39]. There has
also been some limited exploration of global estimates on solutions in the absence of asymptotic stability
for the small noise regime [32, 40]. In contrast, we explicitly explore both the case where the noise term
is small relative to the nonlinear drift term in (1.4) and the situation in which the state-independent
noise term dominates the dynamics. This is an important first step towards understanding the dynamics
of (1.4) with state dependent noise, e.g. dZ(t) = G(t, X(t)) dB(t) where B denotes Brownian motion.
There are relatively few results in the extant literature concerning the qualitative or asymptotic behaviour
of stochastic Volterra equations with non-Brownian noise, although some authors have considered linear
equations with quite general noisy driving processes [29]. Hence the combination of nonlinearity, general
stochastic noise and memory in (1.4) is especially novel; in particular, we will prove asymptotic results
with α-stable noise, in which case the solution to (1.4) is a non-Markovian jump process with nonlinear
state dependence.

1.2. Outline & Motivation. Much of our analysis flows from the simple matter of integrating (1.1) to
obtain the forced Volterra integral equation

x(t) = x(0) +

∫ t

0

m(t− s)f(x(s)) ds+H(t), t ≥ 0. (1.6)

Since stochastic “differential” equations must be rigorously formulated in integral form, it is perhaps
even more natural to treat (1.4) similarly; this leads us to consider

X(t) = X(0) +

∫ t

0

m(t− s)f(X(s)) ds+ Z(t), t ≥ 0. (1.7)
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Equation (1.6) shows that the solution to (1.1) is a functional of the aggregate behaviour of the forcing
term h purely through H and hence it is natural to formulate asymptotic results in terms of H. When
studying the asymptotic behaviour of many forced differential systems, hypotheses on the aggregate or
average behaviour of the forcing terms are preferable to more restrictive pointwise conditions. When
studying stochastic equations pointwise estimates become unrealistically restrictive and it is more natural,
perhaps even necessary, to consider average behaviour. In this spirit, Proposition 1 below illustrates how
hypotheses on the averaged behaviour of perturbations can be used to classify the behaviour of the
elementary perturbed linear ordinary differential equation (ODE) x′(t) = ax(t) + h(t) shown in (1.9);
the proof is a simple matter of applying the variation of constants formula and integration by parts
multiple times (see Section 4 for details). The asymptotic behaviour of the solution to this linear ODE
is characterized via the functional

L = lim
t→∞

H(t)

a
∫ t

0
H(s) ds

, H(t) =

∫ t

0

h(s) ds, (1.8)

quantifies size of the perturbation term. When L = 0, the perturbation is small (in some appropriate
sense), and the solution to (1.9) is asymptotic to the unperturbed solution in case (i.). On the other hand,
when perturbations grow more rapidly than some critical rate, the solution can track the perturbation
asymptotically; this is case (iii.) of Proposition 1 when L = ∞ and the solution is asymptotic to the
perturbation term as t→∞.

Proposition 1. Consider the nonautonomous linear ordinary differential equation given by

x′(t) = a x(t) + h(t), x(0) > 0, a > 0. (1.9)

Suppose H(t) :=
∫ t

0
h(s) ds ≥ 0 for all t ≥ 0 and let L be defined as in (1.8).

(i.) If L = 0, then x(t)/eat → ξ∗ ∈ (0,∞) as t→∞.

(ii.) If L ∈ (0,∞), then
• L < 1 implies x(t)/eat → ξ∗ ∈ (0,∞) as t→∞,

• L = 1 implies x(t)/H(t)→∞ and log(x(t))/t→ a as t→∞,

• L > 1 implies x(t)/H(t)→ L/(L− 1) as t→∞.

(iii.) If L =∞, then x(t)/H(t)→ 1 as t→∞.

When the perturbation is precisely at some “critical size”, there is often an intermediate regime where
the solution to a perturbed differential system inherits properties of both the unperturbed solution and
the perturbation term (cf. [4, Corollary 1]). This regime requires a certain asymptotic balance in the
sense that the perturbation term and the unperturbed solution should be of roughly the same order of
magnitude. We observe this situation even for the simple linear ordinary differential equation (1.9) in
Proposition 1 case (ii.); we prove results of a similar character for (1.1), even for stochastic perturbations.

We now specify our hypotheses on the nonlinearity and outline typical results for the nonlinear Volterra
equation (1.1). For solutions of the unperturbed Volterra equation (1.5) to behave similarly to those of
the corresponding nonlinear ordinary differential equation with the measure concentrated at zero, i.e.

z′(t) = µ(R+)f(z(t)), t > 0, z(0) > 0, (1.10)

it is important that f be sublinear. In previous work we showed that if f is asymptotic to a C1 function
φ which is increasing and obeys φ′(x)→ 0 as x→∞ (a hypothesis implying sublinearity of f), then the
solution to (1.5) obeys

lim
t→∞

F (y(t))

µ(R+)t
= 1, (1.11)

where F is the function defined by

F (x) =

∫ x

1

1

f(u)
du, x > 0 (1.12)

(see [8] for further details). Sublinearity is crucial to this result since, for example, the linear Volterra
equation of the form (1.5) does not share the exponential rate of growth of the linear ODE with all of the
mass of µ concentrated at zero (cf. [19, Theorem 7.2.3]). However, the distribution of the measure µ, as
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opposed to simply it’s total mass, can impact rates of asymptotic growth when f is sublinear in the case
wherem(t)→∞ as t→∞ [5]. We retain the aforementioned hypothesis on f and occasionally strengthen
it so that φ′(x) decays monotonically to 0 as x→∞; the implications and technical motivations for such
hypotheses are discussed in Section 2.

Before stating our main results precisely we give a heuristic argument as to their likely validity. In this
discussion we consider the simple (deterministic) case in which both the solution and the perturbation
are positive. If the unperturbed equation (1.5) is integrated as above, H ≡ 0. In this case, the solution y
of the integral equation is roughly of order F−1(µ(R+)t), like the solution z(t) = F−1 (µ(R+)t+ F (ψ))
to the nonlinear ODE (1.10). This leads to the naive idea that if H is of smaller order than y (i.e., smaller
than F−1(µ(R+)t)), then H on the right–hand side of (1.6) could be absorbed into x on the left–hand
side, without changing the leading order asymptotic behaviour of x. However, if H dominates y, or is of
comparable order, such an outcome is improbable and the asymptotic behaviour of x is unlikely to be
determined by y. Since the asymptotic behaviour of (1.5) is described well by the asymptotic relation
F (y(t))/µ(R+)t → 1 as t → ∞, and F−1 is increasing, it is natural to characterise the forcing term as
“small” or “large” according as to whether F (H(t))/µ(R+)t tends to a small or large limit as t→∞ (if
such a limit exists). Hence we define the dimensionless parameter L ∈ [0,∞] by

lim
t→∞

F (H(t))

µ(R+)t
= L. (1.13)

In some sense L = 1 is critical; for L < 1, H is dominated by the solution of (1.5). But for L > 1, H
dominates the solution of (1.5). The cases L = 0 and L = +∞ are especially decisive; in these cases it is
very clear whether the solution of the unperturbed equation or the perturbation dominates. A condition
which implies (1.13), and turns out to be very useful in classifying asymptotic behaviour, is

lim
t→∞

H(t)

µ(R+)
∫ t

0
f(H(s))ds

= L. (1.14)

If L = 0 in (1.14), then

lim
t→∞

F (x(t))

µ(R+)t
= 1, lim

t→∞

x(t)

H(t)
= +∞,

so small perturbations give rise to asymptotic behaviour as in (1.5), and the solution dominates the
perturbation. If L = +∞, then

lim
t→∞

x(t)

H(t)
= 1, lim

t→∞

F (x(t))

µ(R+)t
= +∞,

so large perturbations cause the solution to grow at exactly the same rate as H, and the solution grows
much faster than the original unperturbed Volterra equation. When the perturbation is of a scale
comparable to the solution of (1.5), in the sense that L ∈ (0,∞),

1 ≤ lim inf
t→∞

F (x(t))

µ(R+)t
≤ lim sup

t→∞

F (x(t))

µ(R+)t
≤ 1 + L, lim inf

t→∞

x(t)

H(t)
≥ 1 +

1

L
. (1.15)

Examples show that the limits in the first part of (1.15) are not, in general, equal to 1 or 1 +L. Further
investigation for finite and positive L leads to better estimates, especially when L > 1. The critical
character of the case when L = 1 is demonstrated by the following result: if L ∈ (1,∞) then

1 ≤ lim inf
t→∞

x(t)

H(t)
≤ lim sup

t→∞

x(t)

H(t)
≤ L

L− 1
. (1.16)

This provides sharper estimates for large L than the asymptotic bounds given for L ∈ (0,∞) above and
identifies that x is of order H. We also show by means of examples that when L ∈ (0, 1], the limit

lim
t→∞

x(t)

H(t)
= +∞

can result, so that x can only be expected to be exactly of the order of H for L > 1 (see Example 2.14).
However, if L ∈ (0, 1], it is not necessarily the case that x(t)/H(t) → ∞ as t → ∞ (see Example 2.13).
As L → ∞, equation (1.16) correctly anticipates that x(t)/H(t) → 1 as t → ∞, which is what pertains
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when L = +∞. To generalise the analysis above to stochastic equations, and for notational convenience,
we define the following functional for later use:

Lf (γ) = lim
t→∞

γ(t)

µ(R+)
∫ t

0
f(γ(s)) ds

, (1.17)

for all functions f and γ ∈ C(R+; (0,∞)) such that the above limit is well defined. For deterministic
equations we will typically choose γ = H in (1.17) but other choices will prove advantageous when
considering stochastic perturbations.

The rest of the paper is organized as follows: in Section 2 we provide the mathematical framework
for studying solutions to (1.1), state our main theorems for both growing and fluctuating solutions, and
provide examples to illustrate the strengths and limitations of our results. Section 3 contains results for
the stochastic Volterra equation (1.7); we first prove a general existence theorem for solutions to (1.7)
and then proceed to extend our deterministic results to cover Brownian and α-stable Lévy noise. We
also present some applications and numerical simulations to illustrate our stochastic results. Section 4
contains the proofs for Section 2 on deterministic Volterra equations and Section 5 contains the proofs
for Section 3 on stochastic Volterra equations. The interested reader can find detailed justification of all
examples and an outline of the numerical scheme used to produce Figure 1 in Appendix A.

2. Deterministic Volterra Equations

2.1. Mathematical Preliminaries. We briefly recall the relevant existence and uniqueness theory for
the deterministic Volterra equation (1.1) in order to keep the presentation self contained.

Definition 2.1. A function solves the initial value problem (1.1) if it obeys (1.1) almost everywhere on
an interval containing zero and is absolutely continuous on that interval. A solution which obeys (1.1)
for almost every t ≥ 0 is called a global solution. A solution which obeys (1.1) for almost every t ∈ [0, T ]
for some T > 0 is called a local solution.

The following result guarantees the existence of a local solution to (1.1) in the sense of Definition
2.1 [19, Corollary 12.3.2].

Theorem 2.2 (Local Existence Theorem). Suppose µ is a Borel measure on R+, h ∈ L1
loc(R+;R), and

f ∈ C(R;R). Then, for each ψ ∈ R, there exists a locally absolutely continuous solution x to (1.1) on
an interval [0, T ] for some T > 0. Moreover, every solution to (1.1), defined on some interval [0, T ],
can be continued to a noncontinuable solution on [0, Tmax) for some Tmax > T . If Tmax < ∞, then
lim supt→T−max |x(t)| =∞.

We assume throughout that lim|x|→∞ f(x)/x = 0 (or stronger hypotheses implying this) and hence f
will always obey a global linear bound of the form

|f(x)| ≤ A+B|x|, for all x ∈ R, for some positive constants A and B.

Therefore solutions to (1.1) are always globally defined in the present framework. Moreover, Gripenberg
at al. [19, Theorem 13.5.1] guarantees that solutions to equation (1.1) are unique under the hypotheses
of Theorem 2.2 if f is locally Lipschitz continuous.

We next define a useful equivalence relation on the space of positive continuous functions; in essence,
two functions are equivalent if they have the same leading order asymptotic behaviour.

Definition 2.3. f, φ ∈ C((0,∞); (0,∞)) are asymptotically equivalent if limx→∞ f(x)/φ(x) = 1; written
f(x) ∼ φ(x) as x→∞ for short.

f(x) ∼ φ(x) implies 1/f(x) ∼ 1/φ(x) as x → ∞ and limx→∞ f(x)/x = 0 implies that F , defined by
(1.12), obeys limx→∞ F (x) =∞. Hence the following convenient lemma can be proven immediately by
asymptotic integration.

Lemma 2.4. If f, φ ∈ C((0,∞); (0,∞)) are asymptotically equivalent and obey

lim
x→∞

f(x)

x
= lim
x→∞

φ(x)

x
= 0, lim

x→∞
f(x) = lim

x→∞
φ(x) =∞,
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then F (x) ∼ Φ(x) as x→∞, where F is defined by (1.12) and Φ(x) is defined by

Φ(x) =

∫ x

1

1

φ(u)
du, x > 0. (2.1)

We impose the following sublinearity hypothesis on the nonlinear function f :

f ∼ φ ∈ C1 such that lim
|x|→∞

φ(x) =∞, φ′(x) > 0 for all x ∈ R and φ′(x)→ 0 as |x| → ∞. (2.2)

In many cases the following slightly stronger hypothesis is necessary

f ∼ φ ∈ C1 such that lim
|x|→∞

φ(x) =∞, φ′(x) > 0 for all x ∈ R and φ′(x) ↓ 0 as |x| → ∞. (2.3)

If f is an increasing, sublinear function, then lim infx→∞ f ′(x) = 0 but it is still possible that
lim supx→∞ f ′(x) = ∞ in the “worst” case. In previous work we provided an example of such a patho-
logical f but such nonlinearities are unlikely to arise naturally in applications so condition (2.2) is a
relatively mild strengthening of sublinearity in this context [8]. Assuming further that φ′ tends to zero
monotonically, as in (2.3), one can establish the following lemmata which often prove crucial in the
asymptotic analysis of (1.1) and (1.4).

Lemma 2.5. If (2.3) holds, then φ obeys

lim sup
x→∞

xφ′(x)

φ(x)
≤ 1, lim sup

x→∞

φ(Λx)

φ(x)
≤ Λ, Λ ∈ [1,∞). (2.4)

The conclusions of Lemma 2.4 are remarkably close to some of the key properties enjoyed by the
class of regularly varying functions with unit index, denoted RV∞(1). Namely, φ ∈ RV∞(1) implies
limx→∞ φ(Λx)/φ(x) = Λ for all Λ > 0 and limx→∞ xφ′(x)/φ(x) = 1 [15]. The next lemma shows that
the auxiliary function φ from (2.3) preserves asymptotic equivalence (cf. [18, Ch. 3, Problem 2]) and
hence Lf (γ) = Lφ(γ), if the limit exists.

Lemma 2.6. If (2.3) holds, then the function φ preserves asymptotic equivalence, i.e. if x, y ∈
C(R+, (0,∞)) obey limt→∞ x(t) = limt→∞ y(t) = ∞, and x(t) ∼ y(t) as t → ∞, then φ(x(t)) ∼ φ(y(t))
as t→∞.

The connection between the “natural” size hypothesis on H, (1.13), and the functional condition,
(1.17), is supplied by the following result.

Proposition 2. Suppose φ ∈ C(R+; (0,∞)) is increasing and continuous with Φ defined by (2.1). Let
γ ∈ C(R+; (0,∞)). If Lφ(γ) from (1.17) is well defined, then

lim
t→∞

Φ(γ(t))

µ(R+)t
= Lφ(γ).

Occasionally, we employ the standard Landau “O” and “o” notation. For a and b in C(R+;R),
b is O(a) if |b(t)| ≤ Ka(t) for some K ∈ (0,∞) and t sufficiently large, and b is o(a) if b(t)/a(t) → 0 as
t→∞.

2.2. Growth Results. With the requisite preliminaries in hand, we now turn to the computation of
explicit growth estimates for solutions to (1.1). Suppose that (1.3) holds so that 0 < x(t)→∞ as t→∞,
subject to a positive initial condition. Our first result provides an easy to check sufficient condition on
H which guarantees solutions of (1.1) retain the rate of growth of solutions to the ordinary differential
equation (1.10). This sufficient condition is of a different character to conditions involving the functional
Lf (·) and expresses more explicitly the idea that the perturbation term, H, should be small relative to
the solution of (1.10).

Theorem 2.7. Suppose (1.2), (1.3), and (2.2) hold and ψ > 0. If

lim
t→∞

H(t)

F−1 (µ(R+)(1 + ε)t)
= 0 for each ε ∈ (0, 1), (2.5)
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then solutions of (1.1) obey

lim
t→∞

F (x(t))

µ(R+)t
= 1, lim

t→∞

x(t)

H(t)
=∞. (2.6)

Now we formulate a sufficient condition for limt→∞ F (x(t))/µ(R+)t = 1 to hold in terms of Lf (·). We
also prove that when the solution of (1.1) retains the growth rate of solutions of (1.10) it is of a strictly
larger order of magnitude than the perturbation term, H.

Theorem 2.8. Suppose (1.2), (1.3), and (2.2) hold and ψ > 0. If Lf (H) = 0, then solutions of (1.1)
obey

lim
t→∞

F (x(t))

µ(R+)t
= 1, lim

t→∞

x(t)

H(t)
=∞. (2.7)

Notably, we do not assume that H(t) → ∞ as t → ∞ in Theorem 2.8; this is in the case where
Lf (H) = 0. However, if Lf (H) ∈ (0,∞], then limt→∞H(t) =∞. The rationale is as follows in the case
Lf (H) ∈ (0,∞), with the case of Lf (H) =∞ being similar. By hypothesis H(t) > 0 for t > 0 and as f

is a positive function, t 7→
∫ t

0
f(H(s))ds is increasing. Therefore, H either tends to∞ or to a finite limit.

In the former case, H(t)→∞ as t→∞ automatically. If, to the contrary, the limit is finite, then H(t)

tends to a finite positive limit as t→∞. But this forces
∫ t

0
f(H(s)) ds→∞ as t→∞, a contradiction.

When Lf (H) is nonzero but finite we expect the solution of (1.1) to inherit properties of both the
ODE (1.10) and the perturbation term. Our next theorem investigates results of the type (1.11) when
Lf (H) ∈ (0,∞); we show that the growth of solutions to (1.1) is at least as fast as that of solutions to
the ODE (1.10) and we prove an upper bound on the growth rate. The resulting upper bound is linear
in Lf (H) and this is intuitively appealing as a “larger” H should speed up growth. However, this upper
estimate on the growth rate is not sharp in general. Without additional hypotheses this upper bound
is hard to improve but can be shown to be suboptimal for specific classes of nonlinearity, for example
when f is regularly varying with less than unit index. We will demonstrate this possible improvement
in further work.

Theorem 2.9. Suppose (1.2), (1.3), and (2.2) hold and ψ > 0. If Lf (H) ∈ (0,∞), then solutions of
(1.1) obey

1 ≤ lim inf
t→∞

F (x(t))

µ(R+)t
≤ lim sup

t→∞

F (x(t))

µ(R+)t
≤ 1 + Lf (H).

If (2.2) is strengthened to (2.3), solutions of (1.1) also obey

lim inf
t→∞

x(t)

H(t)
≥ 1 +

1

Lf (H)
.

The asymptotic lower bound on the quantity x(t)/H(t) in the result above agrees with Theorem 2.8
as Lf (H) → 0+ since it correctly predicts that limt→∞ x(t)/H(t) = ∞ when Lf (H) = 0. In some
sense, the case where Lf (H) ∈ (0,∞) is special since the perturbation term is approximately the same
order of magnitude as the solution to the unperturbed equation (1.5). More precisely, Lf (H) ∈ (0,∞)
implies that limt→∞ F (H(t))/µ(R+)t = Lf (H). Furthermore, if F−1 preserves asymptotic equivalence
(see Lemma 2.6) and Lf (H) ∈ (0,∞), then H(t) ∼ F−1(µ(R+)Lf (H)t) as t → ∞ where F−1(µ(R+)t)
is the leading order behaviour of the solution to (1.5). In many practical cases of interest, such as when
f ∈ RV∞(β) for β ∈ (0, 1), F−1 inherits the asymptotic preserving property from f (see [8, Theorem 5]).

When Lf (H) > 1, we can additionally provide upper bounds on the quantity x(t)/H(t). Moreover,
these bounds are sharp in the limit as Lf (H)→∞.

Theorem 2.10. Suppose (1.2), (1.3), (2.3) hold and that ψ > 0. Let x denote a solution of (1.1).

(a.) If Lf (H) ∈ (1,∞), then

GL := 1 +
1

Lf (H)
≤ lim inf

t→∞

x(t)

H(t)
≤ lim sup

t→∞

x(t)

H(t)
≤ Lf (H)

Lf (H)− 1
=: GU .
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(b.) If Lf (H) =∞, then

lim
t→∞

x(t)

H(t)
= 1, lim

t→∞

F (x(t))

µ(R+)t
=∞. (2.8)

Albeit under stronger hypotheses, Theorem 2.10 provides more refined conclusions than Theorems
2.11 and 2.12 (see Section 2.3 on fluctuation results). In particular, case (a.) establishes bounds which
demonstrate that x will closely track the asymptotic behaviour of H and case (b.) establishes that when
the forcing term, H, is sufficiently large x(t) ∼ H(t) as t → ∞. Furthermore, when x(t) ∼ H(t) as
t → ∞, x is of a strictly larger order of magnitude than the solution of the corresponding ODE (1.10).
This result allows us to pick up fluctuations in the solution even when H is nonnegative. Even though the
solution grows to infinity, it may not do so monotonically and the conclusion of Theorem 2.10 identifies
upper and lower rates of growth of the solution (GLH(t) and GUH(t) respectively) when Lf (γ) ∈ (1,∞).
When Lf (γ) =∞, the fluctuations are entirely determined by H.

The main results of this section are all proven by comparison arguments and the careful asymptotic
analysis of the resulting differential inequalities. Since we assume positivity of H to ensure asymptotic
growth of solutions, it is straightforward to show that lim inft→∞ F (x(t))/µ(R+)t ≥ 1; this is proven by
a translation argument and appealing to [8, Corollary 2]. The proof of the corresponding upper bound,
lim supt→∞ F (x(t))/µ(R+)t <∞, is more involved but can be roughly summarized as follows:

Step 1: Use monotonicity and finiteness of the measure to construct the crude upper inequality

x(t) < Hε(t) + (1 + ε)µ(R+)

∫ t

T

φ(x(s)) ds, t ≥ T, (2.9)

where Hε includes constants and lower order terms, φ is a monotone function asymptotic to f

and we define Iε(t) =
∫ t
T
φ(x(s)) ds for t ≥ T .

Step 2: Using hypotheses on the size of the perturbation term, show that Hε is o(Iε) or O(Iε).

Step 3: Conclude the argument via a variation on Bihari’s inequality.

Results in this section can be restated with positivity assumptions on f and H replaced by (2.12) below
and

H ∈ C(R+;R). (2.10)

With this modification one obtains upper bounds on the rate of growth of solutions to (1.1), i.e. results
of the type lim supt→∞ F (|x(t)|)/µ(R+)t <∞.

2.3. Fluctuation Results. The existence of the limit Lf (H) (even when it takes the value +∞) is too
strong a condition if we hope to apply our deterministic arguments to related equations with stochastic
perturbations. We weaken the hypothesis Lf (H) ∈ (0,∞) as follows: assume that there exists a function
γ such that

γ ∈ C((0,∞); (0,∞)) is increasing and obeys lim
t→∞

γ(t) =∞ and lim sup
t→∞

|H(t)|
γ(t)

= 1. (2.11)

As we no longer restrict ourselves to positive solutions, we ask for a degree of symmetry in the problem
to simplify the analysis. We ask for “asymptotic oddness” of the nonlinearity in the following sense:

f ∈ C(R;R) and lim
|x|→∞

|f(x)|
φ(|x|)

= 1 for some φ ∈ C1(R+; (0,∞)). (2.12)

We now make hypotheses on Lf (γ), as opposed to Lf (H). We take lim supt→∞ |H(t)|/γ(t) = 1, rather
than positive and finite since we can always normalise this quantity while keeping the properties of γ
unchanged. Since Lf (γ) ∈ (0,∞) forces γ to be eventually increasing, we suppose that γ is always
increasing for ease of exposition but there is strictly no need to make this assumption. Under (2.11) we
can permit highly irregular behaviour in H as long as we can capture some underlying regularity in the
asymptotics of H via a well-behaved auxiliary function, γ. For example, in applications to stochastic
equations, H could be a stochastic process whose partial maxima are described in terms of a deterministic
function; this is the case for classes of processes obeying so-called iterated logarithm laws for instance.
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The following result illustrates the immediate utility of the hypothesis (2.11) for deterministic equations
and furthermore details how this hypothesis carries over to the case when Lf (γ) =∞.

Theorem 2.11. Suppose (1.2), (2.12), (2.10), (2.3) and (2.11) hold. Let x denote the solution to (1.1).

(a.) If Lf (γ) ∈ (1,∞), then

lim sup
t→∞

|x(t)|
γ(t)

∈
[
0,

Lf (H)

Lf (H)− 1

)
.

(b.) If Lf (γ) =∞, then

lim sup
t→∞

|x(t)|
γ(t)

= 1, lim
t→∞

x(t)−H(t)

γ(t)
= 0.

Case (a.) of the result above indicates that when the perturbation is of intermediate size, in the
sense that Lf (γ) ∈ (1,∞), solutions of (1.1) are at most the same order of magnitude as H, modulo a
multiplier. In case (b.), when the perturbation is so large that Lf (γ) =∞, solutions of (1.1) have partial
maxima of exactly the same order as those of H. This conclusion is strongly hinted at in case (a.) of
Theorem 2.11 if one lets Lf (γ)→∞ in that result.

The restriction Lf (γ) > 1 is crucial to the proof of Theorem 2.10 and cannot be relaxed within the
framework of the current argument; we make this comment precise at the relevant moment during the
proof itself (see Remark 4.2). In fact, Lf (γ) > 1 is not a purely technical contrivance but is also essential
to the validity of our result. In Example 2.14 we demonstrate that when Lf (γ) ∈ (0, 1] it is possible to
have limt→∞ |x(t)|/γ(t) =∞.

If lim supt→∞ |H(t)|/γ(t) = 0 in (2.11) we can use the following hypothesis and the arguments from
Theorem 2.11 to extend the scope of the result above:

lim sup
t→∞

|H(t)|
γ+(t)

= 0, lim sup
t→∞

|H(t)|
γ−(t)

=∞. (2.13)

Theorem 2.12. Suppose (1.2), (2.12), (2.10) and (2.3) hold. Furthermore, suppose there exist increasing
functions γ± ∈ C((0,∞); (0,∞)) obeying limt→∞ γ±(t) =∞ such that (2.13) holds and let x denote the
solution of (1.1).

(a.) If Lf (γ±) ∈ (1,∞], then

lim sup
t→∞

|x(t)|
γ+(t)

∈
[
0,

1

Lf (γ+)

]
, lim sup

t→∞

|x(t)|
γ−(t)

=∞.

(b.) If Lf (γ±) =∞, then

lim
t→∞

|x(t)|
γ+(t)

= 0, lim sup
t→∞

|x(t)|
γ−(t)

=∞, (2.14)

where it is understood that 1/Lf (γ+) = 0 if Lf (γ+) =∞.

In the presence of limited information about the behaviour of H, in the sense that (2.13) holds, the
result above tells us that the solution of (1.1) is roughly the same order of magnitude as H, in the
sense that x also obeys (2.13), when Lf (γ±) = ∞. When Lf (γ±) ∈ (1,∞] we are still left with a weak
conclusion and we are tempted to ask if this is an artifact of the method of proof. Example 2.17 shows
that we cannot expect to conclude that lim supt→∞ |x(t)|/γ+(t) = 0 in general in this case. However, in
attempting to apply this result it is likely that the user would actually seek to refine their choice of γ+

in order to obtain a γ+ obeying Lf (γ+) =∞ and hence make the stronger conclusion that x is o(γ+).

Theorem 2.12 could equally well be stated as follows: Lf (γ+) ∈ (1,∞] implies that
lim supt→∞ |x(t)|/γ+(t) ≤ 1/Lf (γ+) and Lf (γ−) ∈ (1,∞] implies lim supt→∞ |x(t)|/γ+(t) = ∞. These
two statements are proved independently of one another but we chose to present them as part of a single
result as we feel this is the manner in which they would prove most useful in practice; choosing γ+ and
γ− “close together” can give useful bounds on the size of the solution but using either bound in isolation
only gives very crude information (see Example 3.14 for an illustration of this comment).
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The results of this section are proven via the usual machinery of comparison and asymptotic analysis
but also rely crucially on the construction of a linear differential inequality to achieve sharp results. The
key steps in the argument can be understood as follows:

Step 1: Using (2.9), derive the nonlinear differential inequality

I ′ε(t) < φ
(
Hε(t) + µ(R+)(1 + ε)Iε(t)

)
, t ≥ T,

where Iε(t) =
∫ t
T
φ(x(s)) ds.

Step 2: Use (2.3) to derive the linear differential inequality

I ′ε(t) < φ(Hε(t)) +
φ(Hε(t))

Hε(t)
µ(R+)(1 + ε)2Iε(t), t ≥ T1 > T. (2.15)

Since we can solve this inequality directly, there is no additional loss of sharpness here.
Step 3: Careful asymptotic analysis of the solution to the inequality (2.15) using hypotheses on Lf (H)

yield upper bounds on the size of the solution to (1.1).
Step 4: The upper bounds achieved in Step 3 are recycled and further estimation yields the conclusions

shown in the results above.

Essentially the same steps outlined above are successful with random forcing, as we demonstrate below.

2.4. Deterministic Examples. The following examples illustrate both the limitations and sharpness
of some of the results outlined above. Consider the Volterra integro-differential equation given by

x′(t) =

∫ t

0

e−(t−s)f(x(s)) ds+ h(t), t > 0; x(0) = ψ > 0.

In the notation of (1.6), m(t) =
∫ t

0
e−sds = 1− e−t and µ(R+) = 1. Hence

H(t) = x(t)− x(0)−
∫ t

0

f(x(s)) ds+

∫ t

0

e−(t−s)f(x(s)) ds, t ≥ 0. (2.16)

We construct examples by choosing a solution x, up to asymptotic equivalence, and then using (2.16) to
figure out how large the perturbation term, H, must have been to generate a solution of this size. The
calculations relevant to this section can be found in Appendix A. For simplicity we forego any mention of
hypotheses of the form (2.11) in this section and concentrate on the special case γ = H with H positive.

Example 2.13. The limits in Theorem 2.9 are not always equal to 1 or 1 + Lf (H) and furthermore
Lf (H) ∈ (0, 1] does not in general imply that limt→∞ x(t)/H(t) =∞. If f(x) = xβ , β ∈ (0, 1), then

F (x) ∼ 1

1− β
x1−β and F−1(x) ∼ [(1− β)x]

1
1−β , as x→∞. (2.17)

Suppose A ∈ [1,∞) and take x(t) = A[(1− β)t]
1

1−β , for all t ≥ 0. Thus H(t) ∼ (A− Aβ)[(1− β)t]
1

1−β

as t→∞. If H(t) ∼ [Lf (H)(1− β)t]
1

1−β as t→∞, then

lim
t→∞

H(t)

µ(R+)
∫ t

0
f(H(s))ds

= Lf (H).

Now suppose that A − Aβ = Lf (H)
1

1−β so we can choose an advantageous value of Lf (H). For the
purposes of this example it is sufficient to take Lf (H) = 1 and β = 1/2. With these choices

1 < lim
t→∞

F (x(t))

µ(R+)t
=

1 +
√

5

2
≈ 1.618 < 2 = 1 + Lf (H),

and the reader can compare this with the conclusion of Theorem 2.9. Finally, note that

lim
t→∞

x(t)

H(t)
= A ∈ (0,∞).
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Example 2.14. If f(x) = (x+ e)/ log(x+ e), then

F (x) ∼ 1

2
log2(x+ e) and F−1(x) ∼ e

√
2x, as x→∞. (2.18)

This example highlights the potential problems that emerge when one attempts to address the case
Lf (H) ∈ (0, 1] (resp. Lf (γ)) in the context of Theorem 2.11. In particular, one cannot extend the
conclusion of Theorem 2.11 to cover Lf (H) ∈ (0, 1] without additional hypotheses because when Lf (H) ∈
(0, 1] it is possible to have limt→∞ x(t)/H(t) =∞.

Choose x(t) = exp
(
λ(t) +

√
2(t+ 1)

)
− e = exp(P (t))− e for t ≥ 0 and let λ(t) = (1 + t)α for some

α ∈ (0, 1/2). In this case H(t) ∼ K P (t)2α−1 exp(P (t)). Furthermore, H obeys Lf (H) = 1 and by
construction limt→∞ x(t)/H(t) =∞. However, we still have limt→∞ F (x(t))/µ(R+)t = 1.

Example 2.15. The bounds on limt→∞ x(t)/H(t) and lim inft→∞ F (x(t))/µ(R+)t obtained in Theorems
2.9 and 2.10 can be attained. Once more suppose that f(x) = (x+ e)/ log(x+ e).

Suppose Lf (H) ∈ (1,∞) and choose x(t) = exp
(√

2Lf (H)(t+ 1)
)
− e for t ≥ 0. This gives H(t) ∼

((Lf (H)− 1)/Lf (H)) exp
(√

2Lf (H)(t+ 1)
)

as t→∞ and

lim
t→∞

H(t)

µ(R+)
∫ t

0
f(H(s))ds

= Lf (H) ∈ (1,∞).

Hence limt→∞ x(t)/H(t) = Lf (H)/(Lf (H)− 1), achieving the upper bound predicted by Theorem 2.10.
Futhermore, a simple calculation reveals that limt→∞ F (x(t))/µ(R+)t = 1, achieving the lower bound
from Theorem 2.9.

Example 2.16. We present a simple example illustrating the case when the solution to (1.1) is asymp-
totic to H and the functional Lf (H) takes the value +∞. Let f(x) = (x+ e)/ log(x+ e).

Suppose x(t) = exp ([2(t+ 1)]α) − e, α ∈ (1/2, 1), t ≥ 0. It follows easily from equation (2.16) that
x(t) ∼ H(t) as t→∞ and hence that Lf (H) =∞ as in Theorems 2.11 and 2.10, case (b.).

Example 2.17. In case (a.) of Theorem 2.12 it is possible to have lim supt→∞H(t)/γ+(t) = 0 but
lim supt→∞ x(t)/γ+(t) > 0 when Lf (γ+) ∈ (1,∞). Hence there is no straightforward improvement of
the conclusion of Theorem 2.12 when Lf (γ+) ∈ (1,∞).

Let f(x) = xβ with β ∈ (0, 1), H = 0, and γ+(t) = F−1(αµ(R+)t) with α ∈ (1,∞). This implies
that x(t) ∼ F−1(µ(R+)t) as t → ∞, where the asymptotics of F−1 are given by (2.17), and hence
limt→∞ x(t)/γ+(t) = α−1/(1−β) > 0, as required. It is straightforward to verify that Lf (γ+) = α ∈
(1,∞).

3. Stochastic Volterra Equations

We now study the pathwise asymptotic behaviour of solutions to (1.4). Our approach is to treat
(1.4) as a perturbed version of (1.1) where the forcing term is now stochastic and hence to leverage
our deterministic results as much as possible. After proving a strong existence theorem for solutions to
(1.4), we use the pathwise asymptotic theory for continuous Brownian martingales and α–stable Lévy
processes to show that the main results from the previous section are sufficiently general that we can
extend them to provide asymptotic estimates on the pathwise growth and fluctuation of solutions. We
also explain how our results provide a programme for establishing similar pathwise bounds for broader
classes of admissible stochastic noise.

We henceforth work on a given probability space (Ω,F ,P, (Ft)t≥0) which is complete and has a right
continuous filtration. We ask that the nonlinear function f : R 7→ R obeys the following local Lipschitz
condition: for each d > 0 there exists Kd > 0 such that

|f(x)− f(y)| ≤ Kd |x− y|, for each x and y ∈ [−d, d], (3.1)

and that f obeys a global linear bound of the form

|f(x)| ≤ K + η |x|, for each x ∈ R, (3.2)
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where K and η are positive constants.

In order to leverage the framework of Métivier and Pellaumail [28] we make a slight modification to
the formulation of (1.4) and consider the stochastic integral equation

X(t) = X(0) +

∫ t

0

(∫
(0,s]

µ(du)f(X(s− u)) + µ({0})f(X(s−))

)
ds+ Z(t), t ≥ 0. (3.3)

By applying Fubini’s Theorem and making a suitable change of variable, (3.3) can be written as

X(t) = X(0) + µ({0})
∫

[0,t]

f(X(s−))ds+

∫
[0,t)

m−(t− s)f(X(s)) ds+ Z(t), t ≥ 0, (3.4)

where X(t−) = X(lims↑t) and m−(t) = µ((0, t]). This adjustment is necessary for the functional

a(s, ω,X) =

∫
(0,s]

µ(du)f(X(s− u)) + µ({0})f(X(s−)), s ≥ 0, (3.5)

to define a predictable process (measurable with respect to the filtration generated by adapted, left
continuous processes) and hence be integrable with respect to general semimartingales (see Protter [34]
for details).

In order to define the notion of a strong solution for stochastic equations such as (3.4), we recall some
standard terminology from the theory of stochastic processes: a regular process is one which is adapted
and has right continuous paths with left hand limits (RCLL). A process X is called P–null if P almost
surely the paths t 7→ X(t) are identically zero functions.

Definition 3.1. A process X defined on [0, τ) is said to be a strong solution to equation (3.4) on [0, τ)
with initial value X(0) if the process

µ({0})
∫

[0,t]

f(X(s−))ds+

∫
[0,t)

m−(t− s)f(X(s)) ds+ Z(t)

is well–defined on [0, τ) as a regular process and differs from X(t)−X(0) by a P–null process.

The solution to (3.4) is unique if for any two processes X and Y obeying Definition 3.1, X − Y is a
P–null process.

Theorem 3.2. Let (1.2) hold and let Z be a cadlag semimartingale. If f : R 7→ R is measurable and
obeys (3.1), and (3.2), then there exists a unique, strong solution to (3.4). Moreover, this solution exists
for all t ≥ 0 as a real-valued process with probability 1.

Proof. This theorem is a natural specialisation of a result of Métivier and Pellaumail [28, Theorem 5].
In order to apply the aforementioned result we must check that the functional from (3.5) and also the
constant functional a(s, ω,X) = 1 obey the following pair of conditions: firstly for any regular processes
(adapted with cadlag paths) X and Y , for each d > 0 there exists a constant Ld > 0 such that

|a(t, ω,X)− a(t, ω, Y )| ≤ Ld sup
0≤s<t

|X(s)− Y (s)| (3.6)

for each t ∈ R+, sup0≤s<t |X(s)| ≤ d and sup0≤s<t |Y (s)| ≤ d. Secondly, for any regular process X there
exists C > 0 such that

|a(t, ω,X)| ≤ C sup
0≤s<t

(|X(s)|+ 1) (3.7)

for each t ∈ R+.

When the functional a is constant the conditions above are trivially satisfied so suppose now that a is
given by (3.5) and proceed to verify condition (3.6). Let X and Y be any two regular processes satisfying
sup0≤s<t |X(s)| ≤ d (resp. Y ), fix t ∈ R+ and estimate as follows:

|a(t, ω,X)− a(t, ω, Y )| ≤ µ({0})|f(X(t−))− f(Y (t−))|+
∫

(0,t]

µ(ds)|f(X(t− s))− f(Y (t− s))|

≤ µ(R+)Kd, sup
0≤s<t

|X(s)− Y (s)|,



14 PERTURBED NONLINEAR VOLTERRA EQUATIONS

where we have used both (1.2) and (3.1). Now check (3.7); assume X is a regular process and fix t ∈ R+.
The following inequality is a straightforward consequence of (1.2) and (3.2):

|a(t, ω,X)| ≤ µ({0})|f(X(t−))|+
∫

(0,t]

µ(ds)|f(X(t− s))| ≤ C∗ sup
0≤s<t

(|X(s)|+ 1) ,

where C∗ = µ(R+)K. Thus there exists a unique, strong solution to (3.4), at least locally in time (i.e.
we could have τ <∞ with positive probability in Definition 3.1). Moreover, (3.2) can be used to bound
the solution to (3.4) below the solution to the corresponding linear equation, which exists for all t ≥ 0
with probability 1. Hence finite-time blow-up occurs with probability zero and the second part of the
claim is proven. �

Remark 3.3. The condition (3.2) will always be satisfied in this section since the hypotheses (2.12) and
(2.3) will be imposed throughout. The assumption (1.2) is also present throughout so the only additional
hypothesis imposed by Theorem 3.2 is that of local Lipschitz continuity on the nonlinear function f (which
is only required to guarantee uniqueness of solutions).

We pause now to consider the method by which the results of this section are proven and to illustrate
that this presents a framework for generating similar pathwise asymptotic results for a wide range
of suitable stochastic forcing terms. Our method of proof relies principally on building appropriate
comparison equations so we are not concerned about the pathwise regularity of the solution to (1.4) and
hence can treat quite irregular forcing processes.

If Z = {Z(t) : t ≥ 0} denotes the forcing term in (1.4), then our general approach is as follows:

Step 1: Prove pathwise asymptotic bounds on the size of the process Z in terms of a well-behaved
deterministic function, say γ, on which we can formulate functional hypotheses in terms of
Lf (·). These bounds should be in the spirit of (2.11) or (2.13).

Step 2: Construct an upper comparison solution (pathwise) in terms of γ which majorizes the solution
to the (1.4); this essentially reduces the stochastic problem to a deterministic one.

Step 3: Conclude the argument using suitable hypotheses on Lf (γ) and the results of Section 2.

The steps outlined above also highlight how one can approach the important, and more challenging, case
of state-dependent noise, i.e. equations of the form

dX(t) =

∫
[0,t]

µ(ds)f(X(t− s)) dt+G (t, X(t)) dZ(t), t > 0.

In particular, hypotheses involving the functional Lf (·) will still allow completion of Step 1, but now the
function γ will involve the process X itself. Thus Step 2 will now necessitate further analysis of how this
state-dependent perturbation interacts with the drift term

∫
[0,t]

µ(ds)f(X(t− s)).

3.1. Brownian Noise. Throughout this section X denotes the unique, strong solution to (3.4),

Z(t) =

∫ t

0

σ(s) dB(s), where B is a standard 1-D Brownian motion and σ ∈ C(R+,R), (3.8)

and

Σ(t) =

√
2

(∫ t

0

σ2(s) ds

)
log log

(∫ t

0

σ2(s) ds

)
, t ≥ 0.

Analogous to the deterministic case, we classify the behaviour of solutions to (1.4) according to whether
the number Lf (Σ) is zero, finite or infinite.

The existence and uniqueness of solutions of (1.4) is naturally simpler in the case of Brownian noise.
In particular, there is a unique, continuous (strong) solution to (1.4) with Brownian noise if (1.2) holds
and the nonlinearity is locally Lipschitz continuous with a global linear bound (see Mao [25, Ch. 5]).

When formulating functional conditions on (1.4) to preserve growth of the type (1.11) it is necessary
to distinguish between the cases σ ∈ L2(0,∞) and σ /∈ L2(0,∞). When σ ∈ L2(0,∞) the martingale
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term in (1.7),
∫ t

0
σ(s)dB(s), will tend to an a.s. finite random variable and in this case we clearly expect

to retain the growth rate of solutions to (1.10). However, when σ /∈ L2(0,∞) the martingale term is
recurrent on R and has large fluctuations of order Σ(t) [35]. Our first result shows that when σ /∈ L2(0,∞)
and Lf (Σ) = 0, the solution to (1.4) cannot grow faster than that of the ordinary differential equation
(1.10).

Theorem 3.4. Let (1.2), (2.12), (2.2), and (3.8) hold. Suppose additionally that limx→∞ f(x) =∞. If

lim
t→∞

Σ(t)

F−1 (µ(R+)(1 + ε)t)
= 0, for each ε ∈ (0, 1), (3.9)

then

lim sup
t→∞

F (|X(t)|)
µ(R+)t

≤ 1 a.s.

Our next result mirrors the conclusion of Theorem 3.4 but uses hypotheses on the functional Lf (Σ)
instead of the condition (3.9).

Theorem 3.5. Let (1.2), (2.12), (2.2), and (3.8) hold. Suppose additionally that limx→∞ f(x) =∞.

(a) If σ /∈ L2(0,∞) and Lf (Σ) = 0, then

lim sup
t→∞

F (|X(t)|)
µ(R+)t

≤ 1 a.s.

(b) If σ ∈ L2(0,∞), then Lf (Σ) = 0 and

lim sup
t→∞

F (|X(t)|)
µ(R+)t

≤ 1 a.s.

An interesting special case of Theorem 3.5, which is likely to be important in applications, is when
the function σ is a nonzero constant. In this case, solutions to (1.4) are unbounded with probability one.

Corollary 3.6. Let (1.2), (2.12), (2.2), and (3.8) hold. Suppose additionally that limx→∞ f(x) =∞. If
σ(t) = σ ∈ R/{0} for all t ≥ 0, then

lim sup
t→∞

|X(t)| =∞ a.s. and lim sup
t→∞

F (|X(t)|)
µ(R+)t

≤ 1 a.s.

As in the deterministic case when the perturbation is of intermediate or critical magnitude, in the
sense that Lf (Σ) ∈ (0,∞), we expect the solution to inherit characteristics of both the perturbation and
the ordinary differential equation (1.10). Our next result demonstrates that this is indeed the case by
showing that if the solution to (1.4) grows, then its growth rate is at most the same order of magnitude
as the solution to (1.10).

Theorem 3.7. Let (1.2), (2.12), (2.3) and (3.8) hold. Suppose additionally that limx→∞ f(x) =∞ and
σ /∈ L2(0,∞). If Lf (Σ) ∈ (0,∞), then

lim sup
t→∞

F (|X(t)|)
µ(R+)t

≤ 1 + Lf (Σ) a.s.

When Lf (Σ) ∈ (1,∞) we show that if the the solution to (1.4) fluctuates, then these fluctuations are
at most of order Σ(t) times a multiplier which we can bound in terms of Lf (Σ). As in Theorem 2.10 we
are unable to extend this argument to Lf (Σ) ∈ (0, 1) for technical reasons which become apparent in the
relevant construction. While this bound is practically useful, it appears that it is not sharp in general
(see Figure 1, right).

Nonnegativity of the measure µ no longer plays an important role in the results above; primarily
because we are reduced to proving upper bounds on the growth rate of solutions once solutions are no
longer necessarily of one sign. For ease of exposition we have left the hypothesis (1.2) in place but it
could equally well be replaced by the hypothesis that µ is a Borel measure with finite total variation
norm, i.e. |µ| = µ(R+) ∈ (0,∞), with the results above unchanged.
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Figure 1. Left: s(t) = (1 + t)−3 and thus according to Theorem 3.8, the quantity
s(t)X(t)/Σ(t) fluctuates between the bounds ±s(t)Lf (Σ)/(Lf (Σ) − 1) as it tends to
zero a.s. (for Lf (Σ) > 1). This plot numerically illustrates these fluctuations and shows
that the quantitative bounds given on the fluctuations appear to be approximately sharp.
Right: Theorem 3.7 provides an almost sure bound on the quantity F (|X(t)|)/µ(R+)t
for large t. In this plot we observe that the linear bound in terms of Lf (Σ) indeed holds
but does not appear to be sharp in general. See Appendix A for details.

Theorem 3.8. Let (1.2), (2.12), (2.3) and (3.8) hold. Suppose additionally that limx→∞ f(x) =∞ and
σ /∈ L2(0,∞). If Lf (Σ) ∈ (1,∞), then

−Lf (Σ)

Lf (Σ)− 1
≤ lim inf

t→∞

X(t)

Σ(t)
≤ lim sup

t→∞

X(t)

Σ(t)
≤ Lf (Σ)

Lf (Σ)− 1
a.s.

Under the hypotheses of Theorem 3.8 we can additionally conclude that

lim inf
t→∞

X(t)

Σ(t)
≤ 2− Lf (Σ)

Lf (Σ)− 1
a.s., lim sup

t→∞

X(t)

Σ(t)
≥ Lf (Σ)− 2

Lf (Σ)− 1
a.s.

Hence, when Lf (Σ) > 2, X(t) is recurrent on R. This leaves open the question of recurrence, or in other
words, whether or not the process actually fluctuates, for Lf (Σ) ∈ (1, 2). In Figure 1 (left) we show
simulations of the process in which (a scaled version of) the quantity X(t)/Σ(t) fluctuates between the
quantitative bounds predicted by Theorem 3.8. These numerical experiments further illustrate that our
bounds appear to be approximately sharp (at least for some classes of examples).

Finally, when the perturbation term is so large that Lf (Σ) = ∞ we expect this exogenous force to
dominate the system and this intuition is confirmed by our next result. In particular, we prove that the
solution to (1.4) is recurrent on R and that its fluctuations are precisely of order Σ.

Theorem 3.9. Let (1.2), (2.12), (2.3) and (3.8) hold. Suppose additionally that limx→∞ f(x) =∞ and
σ /∈ L2(0,∞). If Lf (Σ) =∞, then

lim inf
t→∞

X(t)

Σ(t)
= −1 a.s. and lim sup

t→∞

X(t)

Σ(t)
= 1 a.s.,

and furthermore

lim
t→∞

X(t)−
∫ t

0
σ(s)dB(s)

Σ(t)
= 0 a.s. (3.10)

3.2. Lévy Noise. We now assume that the semimartingale Z in (1.4) is an α–stable Lévy process; the
results which follow further emphasize the fact that our methods do not rely on the path continuity of
the process in any essential way. For the readers convenience we recall the relevant definitions from the
theory of Lévy processes.

Definition 3.10. If Z = {Z(t) : t ≥ 0} is a Lévy process, it’s characteristic function FZ is given by

FZ(λ) = e−Ψ(λ), λ ∈ R,
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where Ψ : R 7→ C is of the form

Ψ(λ) = iaλ+
1

2
σ2λ2 +

∫
R

(
1− eixλ + ixλ1{|x|<1}

)
Π(dx), (3.11)

with a ∈ R, σ ∈ R+ and Π a measure on R/{0} satisfying
∫
R(1 ∧ |x|2)Π(dx) <∞.

Ψ is called the characteristic exponent of the process Z.

The number a in (3.11) corresponds to the linear “drift” coefficient of the Lévy process in question, σ
is called the Gaussian coefficient and corresponds to the Brownian or continuous random component; Π
is called the Lévy measure and represents the pure jump part of the process. A Lévy process is uniquely
specified by the triple (a, σ,Π).

Definition 3.11. For each α ∈ (0, 2], a Lévy process with characteristic exponent Ψ is called a stable
process with index α (α–stable for short) if Ψ(kλ) = kαΨ(λ) for each k > 0, λ ∈ Rd.

Stable processes are closely related to the class of stable distributions which gain their importance
as “attractors” for normalised sums of independent and identically distributed random variables. In
particular, a sum of random variables with power law decay in the tails, proportional to |x|−1−α, will
tend to a stable distribution if 0 < α < 2 and to a normal distribution if α ≥ 2. Integrability of the
Lévy measure forces us to consider α ∈ (0, 2] and in this section we also ignore the case α = 2 since this
corresponds to the case of Brownian noise (which was considered in detail in Section 3.1). We tacitly
exclude the degenerate case when Z is a pure drift process and assume for the remainder of this section
that

Z is an α–stable process with α ∈ (0, 2). (3.12)

Let X denote the unique, strong solution to (1.4) throughout.

Our first result is a stochastic analogue of Theorem 2.8 and provides a sufficient condition to retain
growth to infinity no faster than the solution of (1.10) in the presence of α–stable noise.

Theorem 3.12. Let (1.2), (2.12), (2.2) and (3.12) hold. If limx→∞ f(x) = ∞ and there exists an

increasing function γ ∈ C((0,∞); (0,∞)) such that Lf (γ) = 0 and
∫∞

0
γ(s)

−α
ds <∞, then

lim sup
t→∞

F (|X(t)|)
µ(R+)t

≤ 1 a.s.

The next results provides a direct stochastic analogue of Theorem 2.12.

Theorem 3.13. Let (1.2), (2.12), (2.3) and (3.12) hold. Suppose additionally that limx→∞ f(x) = ∞
and γ ∈ C((0,∞); (0,∞)) is an increasing function such that Lf (γ) ∈ (1,∞]. If

∫∞
0
γ(s)

−α
ds <∞, then

lim sup
t→∞

|X(t)|
γ(t)

≤ 1

Lf (γ)
a.s.,

where we interpret 1/Lf (γ) = 0 if Lf (γ) =∞. If
∫∞

0
γ(s)

−α
ds =∞, then

lim sup
t→∞

|X(t)|
γ(t)

=∞ a.s.

3.3. Stochastic Examples.

Example 3.14. To illustrate the practical application of the results in Section 3.1 we present an example

with power type nonlinearity and Brownian noise, i.e. Z(t) =
∫ t

0
σ(s) dB(s). Suppose

f(x) = sign(x)|x|β , x ∈ R, β ∈ (0, 1),

σ(t) = tα, t ≥ 0, for some α > 0, and µ is a measure obeying (1.2). In this framework

Σ(t) ∼ tα+1/2A(t, α) as t→∞, where A(t, α) =

√
2 log log t

2α+ 1
, (3.13)

and

F (x) ∼ 1

1− β
x1−β as x→∞.
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Clearly, Σ(t) → ∞ as t → ∞ and therefore Lf (Σ) = limt→∞Σ′(t)/µ(R+)f(Σ(t)). It is straightforward
to show that

Σ′(t) = tα−1/2

(
2

2α+ 1

)−1/2(
log log

(
t2α+1

2α+ 1

))1/2
{

1 +

(
log

(
t2α+1

2α+ 1

)
log log

(
t2α+1

2α+ 1

))−1
}
,

for t ≥ 0 and hence

Lf (Σ) =

{
0, 0 < α < (1 + β)/2(1− β),

∞, α ≥ (1 + β)/2(1− β).

By Theorem 3.5 we conclude that the unique, strong solution of (1.4) obeys

lim sup
t→∞

F (|X(t)|)
µ(R+)t

= lim sup
t→∞

|X(t)|1−β

µ(R+)(1− β)t
≤ 1 a.s. for 0 < α <

1 + β

2(1− β)
.

Similarly, by Theorem 3.9,

lim inf
t→∞

X(t)

A(t, α) tα+1/2
= −1 a.s. and lim sup

t→∞

X(t)

A(t, α) tα+1/2
= 1 a.s. for α ≥ 1 + β

2(1− β)
,

where the function A(t, α) is given by (3.13).

Example 3.15. Let Z be an α–stable process with index α ∈ (0, 2) and, as in the previous example,
suppose we have a power–type nonlinearity given by

f(x) = sign(x)|x|β , x ∈ R, β ∈ (0, 1).

Let µ be a measure obeying (1.2) and suppose the function γ+ is given by

γ+(t) = (1 + t)ε, t ≥ 0, ε >
1

α
> 0.

By construction, γ+ is increasing, positive and satisfies
∫∞

0
γ+(t)

−α
dt <∞. Furthermore,

Lf (γ+) =


0, 1/α < ε < 1/(1− β),

ε/µ(R+), 1/α < ε = 1/(1− β),

∞, ε > max (1/α, 1/(1− β)) .

If the interval (1/α, 1/(1− β)) is nonempty, then we can take γ in the statement of Theorem 3.12 to be
γ+ with ε ∈ (1/α, 1/(1− β)). Hence the solution of (1.4) obeys

lim sup
t→∞

F (|X(t)|)
µ(R+)t

≤ 1 a.s., when β > 1− α.

This essentially means that if the nonlinearity is sufficiently strong we cannot experience growth in the
solution of (1.4) faster than that seen in (1.10) (with positive probability). The restriction β > 1− α is
intuitive in the following sense: the smaller α is, the more mass there is in the tail of the Lévy measure
associated with Z and hence the partial maxima of Z will tend to grow faster the smaller the value of α;
when α is small we require a stronger nonlinearity (larger value of β) to retain the unperturbed growth
rate. When α ≥ 1 we always retain the growth rate of the unperturbed equation.

If we take ε = 1/(1− β), then Lf (γ+) = 1/µ(R+)(1− β) and we can apply Theorem 3.13 to yield

lim sup
t→∞

|X(t)|
t1/(1−β)

≤ µ(R+)(1− β) a.s., when β > max

(
1− α, µ(R+)− 1

µ(R+)

)
, (3.14)

where we require β > (µ(R+)− 1)/µ(R+) to ensure that Lf (γ+) > 1. Theorem 3.13 also yields

lim sup
t→∞

|X(t)|
tε

= 0 a.s., for each ε > max

(
1

α
,

1

1− β

)
.

In other words, the solution of (1.4) is o(tε) with probability one for ε sufficiently large (in terms of both
the noise and nonlinearity). Define the function γ− by

γ−(t) = (1 + t)δ, t ≥ 0, 0 < δ ≤ 1

α
.
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Note that γ− is positive, increasing and obeys
∫∞

0
γ−(t)

−α
dt =∞. Since we aim to apply Theorem 3.13

we are only interested in the case Lf (γ−) ∈ (1,∞]. It is straightforward to show that

Lf (γ−) =

{
δ/µ(R+), δ = 1/(1− β) ≤ 1/α,

∞, 1/(1− β) < δ ≤ 1/α.

Hence Theorem 3.13 yields

lim sup
t→∞

|X(t)|
t1/(1−β)

=∞ a.s., when
µ(R+)− 1

µ(R+)
< β ≤ 1− α, i.e.

1

1− β
= δ ≤ 1

α
, (3.15)

and

lim sup
t→∞

|X(t)|
tδ

=∞ a.s. for each δ such that
1

1− β
< δ ≤ 1

α
.

This example highlights a limitation of Theorem 3.13 (and it’s deterministic counterpart Theorem 2.12).
By comparing (3.14) and (3.15) the reader can see that it is not possible to have both Lf (γ+) ∈ (1,∞)
and Lf (γ−) ∈ (1,∞) simultaneously in this example; indeed this case is difficult to engineer and only
possible in limited circumstances (such as when the nonlinearity is regularly varying with unit index).

4. Proofs of Results for Deterministic Volterra Equations

To improve readability of the proofs, we let m̄ := limt→∞m(t) = µ(R+) in the following sections.

Proof of Proposition 1. Let H1(t) =
∫ t

0
H(s) ds for t ≥ 0 so that

L = lim
t→∞

H(t)

aH1(t)
= lim
t→∞

H ′1(t)

aH1(t)
.

Case (iii.): If L = ∞, then H(t) → ∞ and H1(t) → ∞ as t → ∞ due to positivity. Furthermore,
H ′1(t)/H(t)→∞ as t→∞ and asymptotic integration of that limit shows that

lim
t→∞

1

t
logH1(t) =∞.

Moreover, since H1(t) is o(H(t)) as t → ∞, limt→∞ logH(t)/t = ∞ as well. Applying the variation of
parameters formula to the linear ODE (1.9) gives

x(t) = x(0)eat + eat
∫ t

0

e−ash(s) ds, t ≥ 0.

Let J(t) = eat
∫ t

0
e−asH(s) ds and K(t) = eat

∫ t
0
e−asH1(s) ds. Now apply integration by parts to show

that

x(t) = x(0)eat +H(t) + aeat
∫ t

0

e−asH(s) ds = x(0)eat +H(t) + aJ(t), t ≥ 0. (4.1)

Note that limt→∞ J(t) =∞ since limt→∞H(t) =∞. Another application of integration by parts yields

J(t) = H1(t) + aK(t). (4.2)

L =∞ implies that limt→∞H1(t)/H(t) = 0 and hence there exists T (ε) > 0 such that

H1(t) < εH(t), t ≥ T (ε).

Thus

K(t) ≤ eat
∫ T

0

e−asH1(s) ds+ eat
∫ t

T

e−asεH(s) ds ≤ eat
∫ T

0

e−asH1(s) ds+ εJ(t), t > T (ε). (4.3)

Divide by J(t) to obtain

K(t)

J(t)
≤ ε+

∫ T
0
e−asH1(s) ds∫ t

0
e−asH1(s) ds

and since limt→∞ logH1(t)/t = ∞, it follows that limt→∞K(t)/J(t) = 0. Thus from (4.3) we have
that J(t) ∼ H1(t) as t → ∞ and limt→∞ J(t)/H(t) = 0. Combining these limits with (4.1) shows that
x(t) ∼ H(t) as t→∞.
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Case (i.): Suppose L = 0 so that

lim
t→∞

H(t)

aH1(t)
= lim
t→∞

H ′1(t)

aH1(t)
= 0.

Apply integration by parts to (4.1) to obtain

x(t) = x(0)eat +H(t) + aH1(t) + a2eat
∫ t

0

e−asH1(s) ds, t ≥ 0. (4.4)

Since L = 0 we have

lim
t→∞

logH1(t)

t
= lim
t→∞

logH(t)

t
= 0.

It is thus clear from (4.4) that

lim
t→∞

e−atx(t) = x(0) + lim
t→∞

a2

∫ t

0

e−asH1(s) ds

= x(0) + lim
t→∞

a2

∫ t

0

e−as
∫ s

0

H(u) du ds =: ξ∗ ∈ (0,∞), (4.5)

where t 7→ e−atH1(t) ∈ L1(0,∞) because limt→∞ logH1(t)/t = 0.

Case (ii.): If L ∈ (0,∞), then H(t)→∞ as t→∞ and

lim
t→∞

logH(t)

t
= lim
t→∞

logH1(t)

t
= L.

If L < 1, then

lim
t→∞

e−at (H(t) + aH1(t)) = 0 and t 7→ e−atH1(t) ∈ L1(0,∞).

Hence we can let t→∞ in (4.5) to once more show that limt→∞ x(t)/eat = ξ∗ ∈ (0,∞).

If L > 1, then H1(t) ∼ H(t)/aL as t→∞ and hence

K(t) ∼ eat
∫ t

0

e−as
H(s)

aL
ds =

J(t)

aL

as t→∞. Now since J(t) = H1(t) + aK(t), it follows that

H1(t) = J(t)− aK(t) ∼
(

1− 1

L

)
J(t) as t→∞.

Use the asymptotic relation between H and H1 to show that limt→∞ aJ(t)/H(t) = 1/(L− 1). Further-
more, since L > 1, limt→∞ eat/H(t) = 0. Now from (4.1) we have

x(t)

H(t)
=
x(0)eat

H(t)
+ 1 +

aJ(t)

H(t)
→ L

L− 1
as t→∞,

as claimed.

Finally, if L = 1, H1(t) ∼ H(t)/a and aK(t) ∼ J(t) as t→∞. It follows that limt→∞H1(t)/J(t) = 0
and hence that limt→∞ J(t)/H1(t) =∞. Thus using a lower estimate from (4.1) shows that

lim
t→∞

x(t)

H1(t)
≥ lim
t→∞

aJ(t)

H1(t)
=∞

which in turn establishes that limt→∞ x(t)/H(t) = ∞. It follows that limt→∞ x′(t)/x(t) = a and hence
that limt→∞ log x(t)/t = a. �

Proof of Lemma 2.5. Suppose that x ≥ a > 0. φ(x)− φ(a) =
∫ x
a
φ′(u)du ≥ φ′(x)(x− a). Thus

lim sup
x→∞

φ′(x)x

φ(x)
= lim sup

x→∞

φ′(x)(x− a)

φ(x)

x

x− a
≤ lim sup

x→∞

φ(x)− φ(a)

φ(x)
= 1, (4.6)
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establishing the first part of (2.4). To prove the second claim estimate as follows

φ(Λx)

φ(x)
=

∫ Λx

a
φ′(u)du+ φ(a)

φ(x)
=

∫ x
a
φ′(u)du+

∫ Λx

x
φ′(u)du+ φ(a)

φ(x)
= 1 +

∫ Λx

x
φ′(u)du

φ(x)

≤ 1 + (Λ− 1)
φ′(x)x

φ(x)
.

Taking the limsup and using the first claim completes the proof. �

Proof of Lemma 2.6. By hypothesis, for all ε > 0 there exists T (ε) > 0 such that for all t ≥ T (ε)

(1− ε)y(t) < x(t) < (1 + ε)y(t).

Monotonicity of φ immediately yields

φ((1− ε)y(t))

φ(y(t))
<
φ(x(t))

φ(y(t))
<
φ((1 + ε)y(t))

φ(y(t))
, t ≥ T.

By Lemma 2.5, and the divergence of y, there exists T ′ > T such that φ((1 + ε)y(t)) < (1 + ε)2φ(y(t))
for all t ≥ T ′. Hence lim supt→∞ φ(x(t))/φ(y(t)) ≤ 1. Reversing the roles of x and y in the argument
above we have that lim supt→∞ φ(y(t))/φ(x(t)) ≤ 1, or equivalently, lim inft→∞ φ(x(t))/φ(y(t)) ≥ 1,
completing the proof. �

Proof of Proposition 2. Define J(t) =
∫ t

0
φ(γ(s))ds, t ≥ 0. Then, because φ is increasing and invertible,

J ′(t) = φ(γ(t)) and γ(t) = φ−1(J ′(t)). We begin by considering the case Lφ(γ) ∈ (0,∞), so

lim
t→∞

φ−1(J ′(t))

J(t)
= Lφ(γ)m̄.

Thus for any ε ∈ (0, 1) there exists T (ε) > 0 such that

Lφ(γ)m̄(1− ε) < φ−1(J ′(t))

J(t)
< Lφ(γ)m̄(1 + ε), t ≥ T.

Now since φ is increasing

φ (Lφ(γ)m̄(1− ε)J(t)) < J ′(t) < φ (Lφ(γ)m̄(1 + ε)J(t)) , (4.7a)

Lφ(γ)m̄(1− ε)J(t) < γ(t) < Lφ(γ)m̄(1 + ε)J(t), (4.7b)

for all t ≥ T (ε). From integrating (4.7a) we obtain∫ t

T

J ′(s)ds

φ (Lφ(γ)m̄(1− ε)J(s))
≥ t− T ;

∫ t

T

J ′(s)ds

φ (Lφ(γ)m̄(1 + ε)J(s))
≤ t− T,

for all t ≥ T (ε). If a is a positive constant then∫ t

T

J ′(s)ds

φ(aJ(s))
=

∫ aJ(t)

aJ(T )

du

aφ(u)
=

1

a
{Φ(aJ(t))− Φ(aJ(T ))} .

With a = Lφ(γ)m̄(1± ε) this yields

1

Lφ(γ)m̄(1− ε)
{Φ(Lφ(γ)m̄(1− ε)J(t))− Φ(Lφ(γ)m̄(1− ε)J(T ))} ≥ t− T,

1

Lφ(γ)m̄(1 + ε)
{Φ(Lφ(γ)m̄(1 + ε)J(t))− Φ(Lφ(γ)m̄(1 + ε)J(T ))} ≤ t− T.

Thus for t ≥ T
Φ(Lφ(γ)m̄(1− ε)J(t)) ≥ Lφ(γ)m̄(1− ε)(t− T ) + Φ(Lφ(γ)m̄(1− ε)J(T )),

Φ(Lφ(γ)m̄(1 + ε)J(t)) ≤ Lφ(γ)m̄(1 + ε)(t− T ) + Φ(Lφ(γ)m̄(1 + ε)J(T )).

Applying the monotone function Φ to (4.7b), for t ≥ T , we have

Φ(γ(t)) > Lφ(γ)m̄(1− ε)(t− T ) + Φ(Lφ(γ)m̄(1− ε)J(T )),

Φ(γ(t)) < Lφ(γ)m̄(1 + ε)(t− T ) + Φ(Lφ(γ)m̄(1 + ε)J(T )).
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Taking limits across the final two sets of inequalities above we obtain

lim inf
t→∞

Φ(γ(t))

t
≥ m̄Lφ(γ)(1− ε); lim sup

t→∞

Φ(γ(t))

t
≤ Lφ(γ)m̄(1 + ε).

Letting ε→ 0+ gives the desired result. When Lφ(γ) = 0 we will have

γ(t) = φ−1(J ′(t)) < εJ(t), t ≥ T1(ε).

Thus J ′(t) < φ(εJ(t)) for all t ≥ T1(ε). Integrating we obtain

Φ(εJ(t)) < ε(t− T1) + Φ(εJ(T1)), t ≥ T1.

Hence

lim sup
t→∞

Φ(γ(t))

t
≤ lim sup

t→∞

Φ(εJ(t))

t
≤ ε.

It follows immediately that limt→∞Φ(γ(t))/t = 0. Similarly, when Lφ(γ) =∞, we have

γ(t) = φ−1(J ′(t)) > NJ(t), t ≥ T2(N), N ∈ R+.

Integrating by substitution yields Φ(NJ(t)) ≥ N(t− T1)− Φ(NJ(T1)), t ≥ T1. Hence

lim inf
t→∞

Φ(γ(t))

t
≥ lim inf

t→∞

Φ(NJ(t)

t
≥ N,

and letting N →∞ completes the proof that limt→∞Φ(γ(t))/t =∞. �

Proof of Theorem 2.7. With Φ defined by (2.1), condition (2.2) and Lemma 2.4 imply F (x) ∼ Φ(x) as
x→∞. Therefore, for every ε ∈ (0, 1), there exists x1(ε) such that

1

1 + ε
Φ(x) < F (x) < (1 + ε)Φ(x), x > x1(ε).

Thus F−1(x) > x1(ε) implies 1
1+εΦ(F−1(x)) < x or x > F (x1(ε)) = x2(ε) implies F−1(x) < Φ−1((1 +

ε)x). By hypothesis, for every ε ∈ (0, 1) and η ∈ (0, 1), there is T (ε, η) such that

H(t) < ηF−1(m̄(1 + ε)t), t ≥ T (ε, η).

Define T1(ε) = T (ε, ε). For t ≥ T1(ε), H(t) < εF−1(m̄(1 + ε)t). Now let T2(ε) = x2(ε)/(m̄(1 + ε)) and
T3 = T1 + T2. Hence

F−1(m̄(1 + ε)t) < Φ−1(m̄(1 + ε)2t), t ≥ T3.

But since t ≥ T3 ≥ T1, we also have H(t) < εΦ−1(m̄(1 + ε)2t) < εΦ−1(m̄(1 + 3ε)t). Next, because
f(x) ∼ φ(x) as x→∞, there exists x3(ε) > 0 such that

1

1 + 4ε
<
f(x)

φ(x)
< 1 + 4ε, x > x4(ε).

Since limt→∞ x(t) =∞, there is T4(ε) > 0, so x(t) > x3(ε) for t ≥ T4. If T ∗ = T4 + T3, then

x(t) = x(0) +H(t) +

∫ T∗

0

m̄(t− s)f(x(s))ds+

∫ t

T∗
m̄(t− s)f(x(s))ds

≤ x(0) +H(t) + m̄

∫ T∗

0

f(x(s))ds+ (1 + 4ε)m̄

∫ t

T∗
φ(x(s))ds

≤ x(0) + εΦ−1(m̄(1 + 3ε)t) + x∗(ε) + (1 + 4ε)m̄

∫ t

T∗
φ(x(s))ds, t ≥ T ∗, (4.8)

where x∗(ε) = m̄
∫ T∗

0
f(x(s))ds. For t ≥ T ∗, define the function zε by

zε(t) = 1 + x∗(ε) + εΦ−1(m̄(1 + 3ε)t) + (1 + 4ε)m̄

∫ t

T∗
φ(zε(s))ds.

By construction x(t) < zε(t) for all t ≥ T ∗. Since zε is differentiable we have

z′ε(t) = εm̄(1 + 3ε)φ(Φ−1(m̄(1 + 3ε)t)) + (1 + 4ε) m̄ φ(zε(t)), t ≥ T ∗,
zε(T

∗) = 1 + x∗(ε) + εΦ−1(m̄(1 + 3ε)T ∗) = z∗(ε).

Define
z+(t) = Φ−1(A(ε) + m̄(1 + 8ε)(t− T ∗)), t ≥ T ∗,
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where A(ε) > Φ(z∗(ε)) + m̄(1 + 8ε)T ∗. Then z′+(t) = m̄(1 + 8ε)φ(z+(t)) for t ≥ T ∗ or z′+(t) = m̄(1 +
4ε)φ(z+(t)) + 4m̄εφ(z+(t)). Choosing ε ∈ (0, 1) guarantees that

4m̄εφ(z+(t)) > 4m̄εφ(Φ−1(m̄(1 + 7ε)t)) > 4m̄εφ(Φ−1(m̄(1 + 3ε)t)) > εm̄(1 + 3ε)φ(Φ−1(m̄(1 + 3ε)t)).

Hence

z′+(t) > m̄(1 + 4ε)φ(z+(t)) + εm̄(1 + 3ε)φ(Φ−1(m̄(1 + 3ε)t)), t ≥ T ∗,
and z+(T ∗) = Φ−1(A(ε)) > z∗(ε) = z(T ∗). From the preceding construction it follows that z+(t) >
zε(t) > x(t) for all t ≥ T ∗. Hence, from the definition of z+,

Φ(x(t)) < A(ε) + m̄(1 + 8ε)(t− T ∗), t ≥ T ∗.

It follows that lim supt→∞Φ(x(t))/t ≤ m̄(1 + 8ε) and letting ε→ 0+ shows that

lim sup
t→∞

Φ(x(t))

m̄t
≤ 1.

The lower bound is proved similarly and we refer the reader to Theorem 2.8. Since F ∼ Φ, we will have
limt→∞ F (x(t))/m̄t = 1, as claimed.

We now establish the second part of (2.6), namely that limt→∞ x(t)/H(t) = ∞. By hypothesis and
the first part of (2.6), for an arbitrary ε ∈ (0, 1) (chosen so small that m̄(1 − ε)/ε > 1), there exists
T0(ε) > 0 such that

F (x(t)) > m̄(1− ε)t, F (H(t)) < εt, t ≥ T0(ε).

Therefore, for t ≥ T0(ε),

x(t)

H(t)
>
F−1(m̄(1− ε)t)

F−1(εt)
.

Hence with K = K(ε) = m̄(1− ε)/ε > 1, and with y defined by y′(t) = f(y(t)) for t > 0 and y(0) = 1,

lim inf
t→∞

x(t)

H(t)
≥ lim inf

t→∞

F−1(m̄(1− ε)t)
F−1(εt)

= lim inf
τ→∞

F−1(Kτ)

F−1(τ)
= lim inf

τ→∞

y(Kτ)

y(τ)
.

We show momentarily that

lim inf
τ→∞

y(Nτ)

y(τ)
≥ N, for any N ≥ 1. (4.9)

Using (4.9) yields

lim inf
t→∞

x(t)

H(t)
≥ lim inf

τ→∞

y(Kτ)

y(τ)
≥ K =

m̄(1− ε)
ε

.

Since ε was chosen arbitrarily, letting ε→ 0 yields lim inft→∞ x(t)/H(t) = +∞, as required.

Now we return to the proof of (4.9). Clearly, limt→∞ y(t) = ∞ and therefore there exists T1(ε) > 0
such that f(y(t)) > (1 − ε)φ(y(t)) for all t ≥ T1(ε). Let t ≥ T1(ε) and N > 1, then by using the
monotonicity of φ we obtain

y(Nt) = y(t) +

∫ Nt

t

f(y(s)) ds ≥ y(t) +

∫ Nt

t

(1− ε)φ(y(s)) ds ≥ y(t) + (N − 1)t(1− ε)φ(y(t)).

Since y(t) = F−1(t) for t ≥ 0, we have for t ≥ T1(ε)

y(Nt)

y(t)
≥ 1 + (1− ε)(N − 1)

t φ(F−1(t))

F−1(t)
.

Letting t→∞ yields

lim inf
t→∞

y(Nt)

y(t)
≥ 1 + (1− ε)(N − 1) lim inf

x→∞

F (x)φ(x)

x
= 1 + (1− ε)(N − 1) lim inf

x→∞

Φ(x)φ(x)

x
,

since Φ(x) ∼ F (x) as x→∞. Finally, as φ is increasing Φ(x) =
∫ x

1
1

φ(u) du ≥ x− 1/φ(x), so

lim inf
t→∞

y(Nt)

y(t)
≥ 1 + (1− ε)(N − 1).

Since ε ∈ (0, 1) was chosen arbitrarily, letting it tend to zero gives the desired bound (4.9). �
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Proof of Theorem 2.8. Firstly, with ε ∈ (0, 1) arbitrary, rewrite (1.1) as follows

x(t) ≤ x(0) +H(t) + m̄

∫ T

0

f(x(s))ds+ m̄

∫ t

T

f(x(s))ds

≤ Hε(t) + (1 + ε)m̄

∫ t

T

φ(x(s))ds, t ≥ T,

where Hε(t) = x(0) +H(t) + m̄
∫ T

0
f(x(s))ds. Define Iε(t) =

∫ t
T
φ(x(s))ds for t ≥ T , so

x(t) ≤ Hε(t) + (1 + ε)m̄Iε(t), t ≥ T. (4.10)

Hence
I ′ε(t) = φ(x(t)) < φ (Hε(t) + m̄(1 + ε)Iε(t)) , t ≥ T. (4.11)

Note that limt→∞ Iε(t) =∞. We claim

lim
t→∞

Hε(t)

Iε(t)
= 0. (4.12)

Suppose first that lim supt→∞H(t) < ∞. In this case lim supt→∞Hε(t) < ∞, but limt→∞ Iε(t) = ∞,
and (4.12) holds.

Suppose next that lim supt→∞H(t) = +∞. Since f(x) ∼ φ(x) as x → ∞, there is x1(ε) > 0 such
that f(x) < (1 + ε)φ(x) for all x ≥ x1(ε). By the continuity of f and φ the number K = K0(ε) given by
K0(ε) = infx∈(0,x1(ε)) φ(x)/f(x) is well–defined, and in (0,∞), even in the case when f(0) = 0. Therefore,
with K1(ε) = min(K0(ε), 1/(1 + ε)), we have φ(x) ≥ K1(ε)f(x) for all x > 0. Since H(t) > 0 for t > 0,
the estimate ∫ t

T

φ(H(s)) ds ≥ K1(ε)

∫ t

T

f(H(s)) ds

holds for t ≥ T . Therefore,

H(t)∫ t
T
φ(H(s)) ds

≤ 1

K1(ε)
· H(t)∫ t

0
f(H(s)) ds

·
∫ t

0
f(H(s)) ds∫ t

T
f(H(s)) ds

, t ≥ T. (4.13)

Since f and H are positive, t 7→
∫ t

0
f(H(s)) ds tends to some L ∈ (0,∞) or infinity as t→∞. Suppose

the former pertains. Then, because Lf (H) = 0, H(t) → 0 as t → ∞, contradicting the hypothesis that

lim supt→∞H(t) =∞. Thus,
∫ t

0
f(H(s)) ds→∞ as t→∞, and the last quotient on the righthand side

of (4.13) is an indeterminate limit as t→∞. But by l’Hôpital’s rule, and because Lf (H) = 0,

lim
t→∞

H(t)∫ t
T
φ(H(s)) ds

= 0.

To complete the proof of (4.12) note that positivity of H implies φ(x(t)) > φ(x(0) + H(t)) > φ(H(t)).

Thus Iε(t) =
∫ t
T
φ(x(s))ds ≥

∫ t
T
φ(H(s))ds. Hence, because Iε(t)→∞ as t→∞,

lim sup
t→∞

Hε(t)

Iε(t)
= lim sup

t→∞

{
x(0) + m̄

∫ T
0
f(x(s))ds

Iε(t)
+
H(t)

Iε(t)

}
≤ lim sup

t→∞

H(t)∫ t
T
φ(H(s))ds

= 0,

and (4.12) holds.

Equation (4.12) implies that for every η ∈ (0, 1) there is T ′(η, ε) > 0 such that Hε(t) < ηIε(t) for all
t ≥ T ′(η, ε). Hence for t ≥ T ′(ε, ε), Hε(t) < m̄εIε(t). Then for t ≥ T2 = T + T ′,

I ′ε(t) < φ(Hε(t) + m̄(1 + ε)Iε(t)) < φ(m̄(1 + 2ε)Iε(t)).

Integrating we obtain ∫ t

T2

I ′ε(s)ds

φ(m̄(1 + 2ε)Iε(t))
≤ t− T2, t ≥ T2.

Integrating by substitution with u = m̄(1 + 2ε)Iε(s)

Φ (m̄(1 + 2ε)Iε(t))− Φ (m̄(1 + 2ε)Iε(T2)) ≤ m̄(1 + 2ε)(t− T2), t ≥ T2.

Letting Φε = Φ (m̄(1 + 2ε)Iε(T2)), we have

Iε(t) ≤
1

m̄(1 + 2ε)
Φ−1(Φε + m̄(1 + 2ε)(t− T2)), t ≥ T2.
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From (4.10) we have x(t) ≤ Hε(t) + m̄(1 + ε)Iε(t) for t ≥ T and for t ≥ T ′ we have Hε(t) < m̄εIε(t).
Hence

x(t) ≤ m̄εIε(t) + m̄(1 + ε)Iε(t) = m̄(1 + 2ε)Iε(t) ≤ Φ−1(Φε + m̄(1 + 2ε)(t− T2)), t ≥ T2.

Therefore Φ(x(t)) < Φε+m̄(1+2ε)(t−T2) and hence lim supt→∞ Φ(x(t))/t ≤ m̄(1+2ε). Letting ε→ 0+

we have Φ(x(t))/m̄t ≤ 1 and, since F (x) ∼ Φ(x) as x→∞ by Lemma 2.4, this implies

lim sup
t→∞

F (x(t))

m̄t
≤ 1.

We now proceed to compute the corresponding lower bound. Since limt→∞m(t) = m̄ <∞, there exists
T3 > 0 such that m(t) > m̄(1− ε), for all t ≥ T3, with ε ∈ (0, 1) arbitrary. For t ≥ 2T3

x(t) ≥ x(0) +

∫ T3

0

m(t− s)f(x(s))ds+

∫ t

T3

m(t− s)f(x(s))ds

≥ x(0) + (1− ε)
∫ t

T3

m(t− s)φ(x(s))ds ≥ x(0) + (1− ε)2m̄

∫ t

T3

φ(x(s))ds.

Letting y(t) = x(t+ T ) for t ≥ 2T3, it is straightforward to show that

y(t) ≥ x(0) + m̄(1− ε)2

∫ t−T3

0

φ(y(u))du, t ≥ T3.

Now define the lower comparison solution

z(t) = z∗ + m̄(1− ε)2

∫ t−T3

0

φ(z(u))du, t ≥ T3,

and z(t) = z∗ = 1
2 mint∈[0,2T3] x(t), t ∈ [0, T3]. Thus for t ∈ [0, T3],

y(t) = x(t + T3) > z∗ = z(t) and z∗ < x(0). Now suppose that y(t) > z(t) for t ∈ [0, T̄ ), T̄ > T3, but

y(T̄ ) = z(T̄ ). Then s ∈ [0, T̄ − T3] implies φ(y(s)) > φ(z(s)) and
∫ T̄−T3

0
φ(y(s))ds ≥

∫ T̄−T3

0
φ(z(s))ds.

Therefore

y(T̄ ) ≥ x(0) + m̄(1− ε)2

∫ T̄−T3

0

φ(y(s))ds ≥ x(0) + m̄(1− ε)2

∫ T̄−T3

0

φ(z(s))ds

> z∗ + m̄(1− ε)2

∫ T̄−T3

0

φ(z(s))ds = z(T̄ ) = y(T̄ ),

a contradiction. Hence x(t + T3) = y(t) > z(t) for all t ≥ 0. For t ≥ T3, z′(t) = m̄(1 − ε)2φ(z(t − T3))
and thus by [8, Corollary 2], limt→∞Φ(z(t))/t = m̄(1− ε)2, under (2.2). Hence

lim inf
t→∞

Φ(x(t+ T3))

t
≥ lim inf

t→∞

Φ(z(t))

t
≥ m̄(1− ε)2.

Thus

m̄(1− ε)2 ≤ lim inf
t→∞

Φ(x(t))

t− T3
= lim inf

t→∞

Φ(x(t))

t
.

Recall Lemma 2.4 and let ε→ 0+ to obtain lim inft→∞ F (x(t))/m̄t ≥ 1, proving the first limit in (2.7).

The proof of the second limit in (2.7) is identical to the proof of the same statement in Theorem 2.7. �

Proof of Theorem 2.9. The required lower bound, lim inft→∞ F (x(t))/m̄t ≥ 1, can be derived exactly as
in Theorem 2.8. For the upper bound, recall the estimate (4.11) from the proof of Theorem 2.8:

I ′ε(t) < φ (Hε(t) + m̄(1 + ε)Iε(t)) , t ≥ T,

where Iε(t) =
∫ t
T
φ(x(s)) ds for t ≥ T and Hε(t) = x(0) +H(t) + m̄

∫ T
0
f(x(s)) ds.
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Remark 4.1. The stronger hypothesis (2.3) can be used to improve the estimate above . We state this
improvement here for convenience. Using the mean value theorem, (2.3) and the first part of Lemma 2.5,
estimate as follows:

I ′ε(t) ≤ φ(Hε(t) + m̄(1 + ε)Iε(t)) = φ(Hε(t)) + φ′(Hε(t) + m̄(1 + ε)Iε(t)θt)m̄(1 + ε)Iε(t)

≤ φ(Hε(t)) + φ′(Hε(t))m̄(1 + ε)Iε(t) ≤ φ(Hε(t)) +
φ(Hε(t))

Hε(t)
m̄(1 + ε)2Iε(t), (4.14)

where θt ∈ [0, 1] results from using the Mean Value Theorem. The differential inequality above is now
linear in Iε(t) and can be solved explicitly; we will return to this estimate frequently.

Next, since x(t) > H(t), φ(x(t)) > φ(H(t)) and

Hε(t)

m̄Iε(t)
=
Hε(t)

H(t)

H(t)

m̄
∫ t
T
φ(x(s))ds

≤ Hε(t)

H(t)

H(t)

m̄
∫ t

0
φ(H(s))ds

∫ t
0
φ(H(s))ds∫ t

T
φ(H(s))ds

, t ≥ T.

Hence

lim sup
t→∞

Hε(t)

m̄Iε(t)
≤ Lφ(H) lim sup

t→∞

{
Hε(t)

H(t)

∫ t
0
φ(H(s))ds∫ t

T
φ(H(s))ds

}
= Lφ(H).

Thus Hε(t) < m̄Lφ(H)(1 + ε)Iε(t) for t ≥ T ′ > T . Combine this estimate with (4.11) to obtain

I ′ε(t) ≤ φ(Hε(t) + m̄(1 + ε)Iε(t)) ≤ φ((m̄+ m̄Lφ(H))(1 + ε)Iε(t)), t ≥ T ′.
Integrated the inequality above reads∫ t

T ′

I ′ε(s)ds

φ((m̄+ m̄Lφ(H))(1 + ε)Iε(s))
≤ t− T ′, t ≥ T ′.

Make the substitution u = (m̄+ m̄Lφ(H))(1 + ε)Iε(s) to obtain

Φ((m̄ + m̄Lφ(H))(1 + ε)Iε(t)) − Φ((m̄ + m̄Lφ(H))(1 + ε)Iε(T
′)) ≤ (m̄ + m̄Lφ(H))(1 + ε)(t − T ′).

Define Φε = (m̄+ m̄Lφ(H))(1 + ε)Iε(T
′), so

m̄(1 + Lφ(H))(1 + ε)Iε(t) ≤ Φ−1(Φε + (m̄+ m̄Lφ(H))(1 + ε)(t− T ′)).
Now combine equation (4.10) with the inequality above as follows:

x(t) ≤ Hε(t) + m̄(1 + ε)Iε(t) < m̄(1 + ε)(1 + Lφ(H))Iε(t)

< Φ−1(Φε + m̄(1 + Lφ(H))(1 + ε)(t− T ′)),

for all t ≥ T ′. Thus
Φ(x(t)) < Φε + m̄(1 + Lφ(H))(1 + ε)(t− T ′), t ≥ T ′,

and letting t→∞ yields lim supt→∞ Φ(x(t))/m̄t ≤ (1+Lφ(H))(1+ε). Recall Lemma 2.4 and let ε→ 0+

to obtain

lim sup
t→∞

F (x(t))

m̄t
≤ 1 + Lf (H).

Now assume that (2.3) holds and show that lim inft→∞ x(t)/H(t) ≥ 1 + 1/Lf (H). Since t 7→ m(t) is
increasing there exists T2(ε) > 0 such that m(t) > (1 − ε)m̄ for all t ≥ T2(ε). Also, f(x) > (1 − ε)φ(x)
for all x ≥ x1(ε) and owing to the divergence of x(t) there exists T1(ε) such that x(t) > x1(ε) for all
t ≥ T1(ε). Therefore, by positivity of x(t),

x(t) > H(t) + m̄(1− ε)2

∫ t−T2

T1

φ(x(s)) ds, t > T1 + T2.

Then, since x(t) > H(t) for all t ≥ 0,

x(t) > H(t) + m̄(1− ε)2

∫ t−T2

T1

φ(H(s))ds, t ≥ T1 + T2,

and it follows immediately that

x(t)

H(t)
> 1 +

1

Lf (H)

Lf (H) m̄(1− ε)2
∫ t−T2

T1
φ(H(s))ds

H(t)
, t ≥ T1 + T2. (4.15)
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By hypothesis H(t) ∼ Lf (H) m̄
∫ t

0
φ(H(s))ds as t→∞ and consequently

max
t−T2≤s≤t

H(s) ∼ max
t−T2≤s≤t

Lf (H) m̄

∫ s

0

φ(H(u))du = Lf (H) m̄

∫ t

0

φ(H(s))ds.

Furthermore, because φ preserves asymptotic equivalence (see Lemma 2.6 and note that it requires (2.3)),

φ

(
max

t−T2≤s≤t
H(s)

)
∼ φ

(
Lf (H) m̄

∫ t

0

φ(H(s))ds

)
∼ φ(H(t)) as t→∞.

Hence

lim sup
t→∞

∫ t
t−T2

φ(H(s))ds

φ(H(t))
≤ lim sup

t→∞

T2 φ (maxt−T2≤s≤tH(s))

φ(H(t))
= T2.

Using the facts collected above compute as follows

lim sup
t→∞

∫ t
t−T2

φ(H(s))

H(t)
= lim sup

t→∞

∫ t
t−T2

φ(H(s))ds

φ(H(t))

φ(H(t))

H(t)
≤ T2 lim sup

t→∞

φ(H(t))

H(t)
= 0.

Similarly, because limt→∞H(t) =∞, limt→∞
∫ T1

0
φ(H(s))ds/H(t) = 0. Thus

lim
t→∞

Lf (H) m̄
∫ t−T2

T1
φ(H(s))ds

H(t)
= 1.

Returning to (4.15) and using the limit above yields

lim inf
t→∞

x(t)

H(t)
≥ 1 +

(1− ε)2

Lf (H)
.

Finally, let ε→ 0+ to give the desired conclusion. �

Proof of Theorem 2.10 (a.). Case (a.) follows from Theorem 2.9 and by taking γ = H in Theorem
2.11. Similarly, the first limit in (2.8) is obtained by choosing γ = H in Theorem 2.11. Note that
Lf (H) ∈ (1,∞) and our positivity assumptions imply that H is asymptotically increasing. �

Proof of Theorem 2.10 (b.). The first limit in (2.8) follows from positivity of H, which implies
lim inft→∞ x(t)/H(t) ≥ 1 directly from (1.1), and setting γ = H in case (b.) of Theorem 2.11. The proof
of the second limit in (2.8) is straightforward. By hypothesis and Proposition 2, F (H(t))/t → ∞ as
t → ∞. Therefore, for every N > 1 there is T (N) > 0 such that H(t) > F−1(Nt) for t ≥ T (N). But
H positive implies x(t) > H(t). Thus x(t) > F−1(Nt), or F (x(t))/t > N , for all t ≥ T (N). Hence
lim inft→∞ F (x(t))/t ≥ N . Letting N →∞ gives the second part of (2.8). �

Proof of Theorem 2.11 (a.) The hypotheses (2.12) and (2.3) imply that there exists φ ∈ C1(R+;R+)
and K(ε) > 0 such that

|f(x)| < K(ε) + (1 + ε)φ(|x|), for all x ∈ R. (4.16)

Now use equation (4.16) to derive the following preliminary upper estimate on the size of the solution:

|x(t)| < |x(0)|+ |H(t)|+ m̄K(ε) t+ m̄(1 + ε)

∫ t

0

φ(|x(s)|)ds, t ≥ 0.

By L’Hôpital’s rule, limx→∞Φ(x)/x = limx→∞ 1/φ(x) = 0 and hence limt→∞Φ(γ(t))/γ(t) = 0. By
Proposition 2.4, and since Lf (γ) ∈ (1,∞) by hypothesis,

lim
t→∞

A+Bt

γ(t)
= lim
t→∞

A+Bt

Φ(γ(t))

Φ(γ(t))

γ(t)
= 0, (4.17)

for any nonnegative constants A and B. Thus there exists T (ε) > 0 such that for all t ≥ T (ε) we have
|x(0)|+ m̄K(ε) t < ε γ(t). By (2.11), and the previous estimate, there exists T2(ε) > T (ε) such that for
all t ≥ T2(ε), |x(0)|+ m̄K(ε) t+ |H(t)| < (1 + ε)γ(t). Combining this with our initial estimate we obtain

|x(t)| < (1 + ε)γ(t) + m̄(1 + ε)

∫ t

0

φ(|x(s)|)ds, t ≥ T2(ε).
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To ensure our comparison solution majorizes the true solution take x∗ = max0≤s≤T2
φ(|x(s)|), so∫ T2

0
φ(|x(s)|)ds ≤ T2 x

∗. Hence

|x(t)| < T2 x
∗ + (1 + ε)γ(t) + m̄(1 + ε)

∫ t

T2

φ(|x(s)|)ds, t ≥ T2.

Define the upper comparison solution, x+, as follows:

x+(t) = 1 + T2 x
∗ + (1 + ε)γ(t) + m̄(1 + ε)

∫ t

T2

φ(x+(s)) ds = γε(t) + m̄(1 + ε)Iε(t), t ≥ T2, (4.18)

where γε(t) = 1 + T2 x
∗ + (1 + ε)γ(t) and Iε(t) =

∫ t
T2
φ(x+(s)) ds. By construction, |x(t)| < x+(t) for

all t ≥ T2 (this follows immediately via a “time of the first breakdown” argument). Applying the same
estimation procedures as in Theorems 2.8 and 2.9 to x+, and in particular to the quantity Iε(t), we
obtain an estimate analogous to (4.14):

I ′ε(t) < φ(γε(t)) + ãε(t)Iε(t), t ≥ T3(ε), (4.19)

where ãε(t) = m̄(1 + ε)2φ(γε(t))/γε(t). Note once more that the hypothesis (2.3) is needed to obtain the
differential inequality (4.19). Before proceeding further with the line of argument from Theorem 2.9 we
need to refine the estimate above. Lf (γ) ∈ (0,∞) implies that limt→∞ γ(t) =∞ and hence, by Lemma
2.5, lim supt→∞ φ(γε(t))/φ(γ(t)) ≤ (1 + ε). Therefore there exists a T4(ε) > T3(ε) such that for all t ≥ T4

we have φ(γε(t)) < (1 + ε)2φ(γ(t)). Hence

I ′ε(t) < (1 + ε)2φ(γ(t)) + m̄(1 + ε)4φ(γ(t))

γε(t)
Iε(t), t ≥ T4.

γε(t) ∼ (1 + ε)γ(t) as t→∞ implies that there exists T5(ε) > T4(ε) such that γε(t) > (1− ε)(1 + ε)γ(t)
for all t ≥ T5. Taking reciprocals of the previous inequality and apply it to the previous estimate of I ′ε(t)
to obtain

I ′ε(t) < (1 + ε)2φ(γ(t)) + m̄(1 + ε)3 φ(γ(t))

(1− ε)γ(t)
Iε(t), t ≥ T5.

Now let

αε = (1 + ε)2, aε(t) = m̄(1 + ε)3 φ(γ(t))

(1− ε)γ(t)
,

to obtain the consolidated estimate

I ′ε(t) ≤ αε φ(γ(t)) + aε(t) Iε(t), t ≥ T5. (4.20)

Let T ′ > T5 and solve the differential inequality above as follows

d

dt

(
Iε(t)e

−
∫ t
T ′ aε(s)ds

)
= I ′ε(t)e

−
∫ t
T ′ aε(s)ds − aε(t)Iε(t)e−

∫ t
T ′ aε(s)ds

= e−
∫ t
T ′ aε(s)ds {I ′ε(t)− aε(t)Iε(t)} ≤ αε φ(γ(t))e−

∫ t
T ′ aε(s)ds, t ≥ T ′.

Integration yields

Iε(t)e
−

∫ t
T ′ aε(s)ds ≤ Iε(T ′) + αε

∫ t

T ′
φ(γ(s))e−

∫ s
T ′ aε(u)duds, t ≥ T ′.

Hence

Iε(t)∫ t
T ′
φ(γ(s))ds

≤ Iε(T
′)∫ t

T ′
φ(γ(s))ds e−

∫ t
T ′ aε(s)ds

+
αε
∫ t
T ′
φ(γ(s))e−

∫ s
T ′ aε(u)duds∫ t

T ′
φ(γ(s))ds e−

∫ t
T ′ aε(s)ds

, t ≥ T ′. (4.21)

In the analysis which is required to show that the second term on the right-hand side of (4.21) is bounded
it emerges that the first term on the right-hand side is also bounded so we immediately focus on the
second term. Define

Cε(t) = αε

∫ t

T ′
φ(γ(s))e−

∫ s
T ′ aε(u)du ds, Bε(t) =

∫ t

T ′
φ(γ(s)) ds e−

∫ t
T ′ aε(s)ds,

and restate (4.21) as
Iε(t)∫ t

T ′
φ(γ(s))ds

≤ Iε(T
′)

Bε(t)
+
Cε(t)

Bε(t)
, t ≥ T ′.
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By inspection C ′ε(t) > 0, so either limt→∞ Cε(t) = ∞ or limt→∞ Cε(t) = C(ε) ∈ (0,∞). Differentiating
Bε we obtain

B′ε(t) = φ(γ(t))e−
∫ t
T ′ aε(s)ds − aε(t)e−

∫ t
T ′ aε(s)ds

∫ t

T ′
φ(γ(s)) ds

= e−
∫ t
T ′ aε(s)ds

{
φ(γ(t))− aε(t)

∫ t

T ′
φ(γ(s)) ds

}
= C ′ε(t)

{
1

αε
− aε(t)

∫ t
T ′
φ(γ(s)) ds

αε φ(γ(t))

}
= C ′ε(t)

{
1

αε
− m̄ (1 + ε)4

(1− ε)

∫ t
T ′
φ(γ(s)) ds

αε γ(t)

}
.

Hence

B′ε(t)

C ′ε(t)
=

1

αε
− (1 + ε)3

(1− ε)
m̄
∫ t
T
φ(γ(s))ds

αε γ(t)
, t ≥ T ′. (4.22)

Therefore, for ε sufficiently small,

lim
t→∞

B′ε(t)

C ′ε(t)
=

1

αε
− (1 + ε)3

(1− ε)αε Lφ(γ)
> 0. (4.23)

Remark 4.2. Note that the hypothesis Lφ(γ) > 1 implies that Bε(t) is eventually increasing and hence
has a limit B(ε) ∈ (0,∞] at infinity. If limt→∞ Cε(t) = ∞ and Lφ(γ) ∈ (0, 1], Bε(t) is eventually
decreasing and limt→∞Bε(t) ∈ [0,∞). In this case limt→∞Bε(t) = 0 for all ε ∈ (0, 1) and we will be
unable to obtain the required estimates to continue the proof.

From (4.23), by asymptotic integration, the convergence and divergence of Bε and Cε are equivalent.
Hence

lim
t→∞

Cε(t)

Bε(t)
=

{(
1/αε − (1 + ε)3/(1− ε)αε Lφ(γ)

)−1
, limt→∞ Cε(t) =∞,

Cε/Bε, limt→∞ Cε(t) = C(ε).

In both cases

lim sup
t→∞

Iε(t)∫ t
T ′
φ(γ(s))ds

= K(ε) <∞.

Therefore there exists T̄ > T ′ such that Iε(t) < K(ε)(1 + ε)
∫ t
T ′
φ(γ(s))ds for all t ≥ T̄ . Thus, recalling

(4.18),

x+(t) = γε(t) + m̄(1 + ε)Iε(t) ≤ (1 + 2ε)γ(t) + m̄(1 + ε)2K(ε)

∫ t

T ′
φ(γ(s)) ds, t ≥ T̄ .

Hence

lim sup
t→∞

x+(t)

γ(t)
≤ 1 + 2ε+ m̄(1 + ε)2K(ε) lim sup

t→∞

∫ t
T ′
φ(γ(s))ds

γ(t)
= 1 + 2ε+

(1 + ε)2K(ε)

Lφ(γ)
<∞.

Therefore, since |x(t)| < x+(t) for all t ≥ T2, lim supt→∞ |x(t)|/γ(t) <∞. Now let

lim sup
t→∞

|x(t)|
γ(t)

= λ ∈ [0,∞), (4.24)

One can compute a definite upper bound on λ in terms of the problem parameters as follows. Define

J(t) =
∫ t

0
m(t− s)f(x(s))ds and estimate as above

|J(t)| ≤ m̄
∫ t

0

K(ε) + (1 + ε)φ(|x(s)|)ds

≤ m̄K(ε) t+ m̄ T2 (1 + ε) sup
s∈[0,T2]

φ(|x(s)|) + m̄(1 + ε)

∫ t

T2

φ(|x(s)|)ds, t ≥ T2. (4.25)

Using (4.24) there exists a T̄ (ε) > T2 such that

lim sup
t→∞

|J(t)|
γ(t)

≤ m̄(1 + ε) lim sup
t→∞

∫ t
T̄
φ((λ+ ε)γ(s))ds

γ(t)
≤ max(1, λ+ ε)

Lφ(γ)
.
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Return to (1.1), take absolute values and apply the estimates above as follows

λ = lim sup
t→∞

|x(t)|
γ(t)

≤ lim sup
t→∞

|x(0)|
γ(t)

+ lim sup
t→∞

|H(t)|
γ(t)

+ lim sup
t→∞

|J(t)|
γ(t)

≤ 1 +
max(1, λ)

Lf (γ)
. (4.26)

Solving the inequalities above yields λ ≤ max ((1 + Lf (γ))/Lf (γ), Lf (γ)/(Lf (γ)− 1)). In fact the sec-
ond quantity is always larger so lim supt→∞ |x(t)|/γ(t) ≤ Lf (γ)/(Lf (γ)− 1). �

Proof of Theorem 2.11 (b.) Follow the argument of Theorem 2.11 (a.) exactly to equation (4.22), which
we recall below.

B′ε(t)

C ′ε(t)
=

1

αε
− (1 + ε)3

(1− ε)
m̄
∫ t
T
φ(γ(s))ds

αε γ(t)
, t ≥ T ′.

Now Lf (γ) = ∞ implies limt→∞B′ε(t)/C
′
ε(t) = 1/αε. Thus 0 < C ′ε(t) ∼ αεB

′
ε(t) as t → ∞. Recall

equation (4.21)
Iε(t)∫ t

T ′
φ(γ(s))ds

≤ Iε(T
′)

Bε(t)
+
Cε(t)

Bε(t)
, t ≥ T ′.

If limt→∞ Cε(t) = ∞, then limt→∞Bε(t) = ∞ and Cε(t) ∼ αεBε(t) as t → ∞. Thus, when Cε(t) → ∞
as t→∞,

lim sup
t→∞

Iε(t)∫ t
T ′
φ(γ(s))ds

≤ αε.

Alternatively, if limt→∞ Cε(t) = C(ε), limt→∞Bε(t) = B(ε) ∈ (0,∞), then

lim sup
t→∞

Iε(t)∫ t
T ′
φ(γ(s))ds

≤ Iε(T
′) + C(ε)

B(ε)
.

In both cases

lim sup
t→∞

Iε(t)∫ t
T ′
φ(γ(s))ds

≤ K(ε) <∞.

Once more we conclude that lim supt→∞ x+(t)/γ(t) < ∞ and hence that lim supt→∞ |x(t)|/γ(t) < ∞.
By an argument exactly analogous to that which completes the proof of Theorem 2.11 case (a.) we can
show that limt→∞ |J(t)|/γ(t) = 0. Now write

x(t)

γ(t)
=
x(0)

γ(t)
+
J(t)

γ(t)
+
H(t)

γ(t)
, t ≥ 0. (4.27)

Because lim supt→∞ |H(t)|/γ(t) = 1, lim supt→∞H(t)/γ(t) = 1 or lim inft→∞H(t)/γ(t) = −1. Then,
since limt→∞ J(t)/γ(t) = 0, taking the limsup and liminf across (4.27) gives lim supt→∞ x(t)/γ(t) = 1
or lim inft→∞ x(t)/γ(t) = −1. In both cases lim supt→∞ |x(t)|/γ(t) = 1. Noting that J(t)/γ(t) ∼
(x(t)−H(t))/γ(t) as t→∞ yields the second part of the conclusion. �

Proof of Theorem 2.12 (a.). The argument of Theorem 2.11 (a.) yields lim supt→∞ |x(t)|/γ+(t) < ∞.
Let λ+ = lim supt→∞ |x(t)|/γ+(t) ∈ [0,∞) and estimate as before to obtain lim supt→∞ |J(t)|/γ+(t) ≤
max(1, λ+)/Lf (γ+). Calculating as in (4.26) then yields λ ≤ max(1, λ)/Lf (γ+). Upon inspection we
find that in all cases lim supt→∞ |x(t)|/γ(t) ∈ [0, 1/Lf (γ+)].

For the second part of the claim suppose to the contrary that lim supt→∞ |x(t)|/γ−(t) = λ− < ∞.
Now argue, as in Theorem 2.11, that lim supt→∞ |J(t)|/γ−(t) < max(1, λ−)/Lφ(γ−), where J(t) =∫ t

0
m̄(t− s)f(x(s)) ds. However, by rearranging (1.1) and taking absolute values

|H(t)| ≤ |x(0)|+ |x(t)|+ |J(t)|, t ≥ 0.

Dividing across by γ− and taking the limsup immediately yields lim supt→∞ |H(t)|/γ−(t) < ∞, in con-
tradiction to (2.13). Hence λ− =∞, as claimed. �

Proof of Theorem 2.12 (b.). As with case (a.), the proof is a consequence of Theorem 2.11 and the
stronger conclusion, limt→∞ |x(t)|γ+(t) = 0, holds because in (4.26) we have lim supt→∞ |H(t)|/γ+(t) = 0
and lim supt→∞ |J(t)|/γ+(t) = 0. The proof that lim supt→∞ |x(t)|/γ−(t) =∞ is essentially unchanged.

�
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5. Proofs of Results for Stochastic Volterra Equations

Proof of Theorem 3.4. The proof of this result follows directly from the argument used in the proof of
Theorem 3.5 and the law of the iterated logarithm for continuous local martingales. �

Proof of Theorem 3.5. We start by proving part (a), which covers the case when σ 6∈ L2(0,∞). Let
ε, η ∈ (0, 1) be arbitrary, rewrite (1.4) in integral form and estimate as follows

|X(t)| ≤ |X(0)|+
∫ t

0

m(t− s)|f(X(s))|ds+

∣∣∣∣∫ t

0

σ(s)dB(s)

∣∣∣∣ , t ≥ 0. (5.1)

Denote by Ω1 the a.s. event on which t 7→ X(t)(ω) is continuous. We now recall the law of the iterated
logarithm for continuous local martingales (see Revuz and Yor [35, Ch. V, Ex. 1.15]) which states that
if N = {Nt, t ≥ 0} is a continuous local martingale with 〈N,N〉∞ =∞, then

lim sup
t→∞

Nt√
2〈N,N〉t log log〈N,N〉t

= 1 a.s.,

where 〈N,N〉 = {〈N,N〉t, t ≥ 0} denotes the quadratic variation process of N . In our case〈∫ ·
0

σ(s)dB(s),

∫ ·
0

σ(s)dB(s)

〉
t

=

∫ t

0

σ2(s)ds

and thus σ /∈ L2(0,∞) implies lim supt→∞

∣∣∣∫ t0 σ(s)dB(s)
∣∣∣ /Σ(t) = 1 a.s.

Let η > 0 be arbitrary. By hypothesis there exists φ ∈ C1 such that

|f(x)| ≤ K(η) + (1 + η)φ(|x|), x ∈ R. (5.2)

Define Hη(t) = m̄K(η)t + (1 + η)Σ(t) for t ≥ 0. Note that Lf (Σ) = 0 and Proposition 2 imply
limt→∞Φ(Σ(t))/t = 0. Therefore, for every ε ∈ (0, 1) there exists T2(ε) > 0 such that

Σ(t) < Φ−1(εt), t ≥ T2(ε). (5.3)

Similarly, by L’Hôpital’s rule,

lim
t→∞

m̄K(η)t∫ t
0
φ(m̄K(η)s)ds

= lim
t→∞

m̄K(η)

φ(m̄K(η)t)
= 0.

Thus, again appealing to L’Hôpital’s rule, limt→∞Φ(m̄K(η)t)/t = 0 and moreover, for any η ∈ (0, 1),
limt→∞Φ (m̄K(η)t/η) /t = 0. Hence for every ε ∈ (0, 1) there exists T3(ε, η) such that

m̄K(η)t < ηΦ−1(εt), t ≥ T3(ε, η). (5.4)

Combining (5.3) and (5.4) yields

Hη(t) = m̄K(η)t+ (1 + η)Σ(t) < (1 + 2η)Φ−1(εt), t ≥ T4(ε, η) = T2 + T3.

Rearrange this inequality, let t→∞, and then let ε→ 0+ to obtain limt→∞ Φ(Hη(t)/(1 + 2η))/m̄t = 0.
Thus, by proceeding as above, for every ε ∈ (0, 1) there is T ′4(ε, η) > 0 such that

Hη(t) < (1 + 2η)Φ−1(εm̄t), t ≥ T ′4(ε, η). (5.5)

Since Φ is concave, Φ−1 is convex and Φ−1(εm̄t) ≤ εΦ−1(m̄t) + (1− ε)Φ−1(0). Therefore,

lim sup
t→∞

Φ−1(εm̄t)/Φ−1(m̄t) ≤ ε.

Take limits in (5.5) to give

lim sup
t→∞

Hη(t)

Φ−1(m̄t)
≤ (1 + 2η)ε,

and then let ε → 0 to yield limt→∞Hη(t)/Φ−1(m̄t) = 0. Therefore, for every ε ∈ (0, 1) there exists
T ′5(ε, η) > 0 such that Hη(t) < εΦ−1(m̄t) for t ≥ T ′5(ε, η). Now, let T5(η) = T ′5(η, η), so

Hη(t) < ηΦ−1(m̄t), t ≥ T5(η). (5.6)
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On the other hand, because lim supt→∞

∣∣∣∫ t0 σ(s)dB(s)
∣∣∣ /Σ(t) = 1 a.s., there exists an almost sure event

Ω2 such that for all ω ∈ Ω2 ∣∣∣∣∫ t

0

σ(s)dB(s)(ω)

∣∣∣∣ ≤ (1 + η)Σ(t), t ≥ T1(η, ω).

Now let T (η, ω) = max(T1(η, ω), T5(η)). Thus for all ω ∈ Ω∗ = Ω1 ∩ Ω2 and t ≥ T (η, ω),

|X(t)| ≤ |X(0)|+
∫ t

0

m(t− s)|f(X(s))|ds+ (1 + η)Σ(t).

Using the estimate (5.2) on f and the finiteness of limt→∞ m̄(t) we have

|X(t)| ≤ |X(0)|+ m̄K(η)t+ m̄(1 + η)

∫ t

0

φ(|X(s)|)ds+ (1 + η)Σ(t)

≤ X∗0 +Hη(t) + m̄(1 + η)

∫ t

T

φ(|X(s)|)ds, t ≥ T (η, ω), ω ∈ Ω∗, (5.7)

where X(0)∗ = |X(0)|+ m̄T sups∈[0,T ] φ(|X(s)|).

Now since t ≥ T (η, ω) ≥ T5(η), we have from (5.6) that for all ω ∈ Ω∗

|X(t)| ≤ X(0)∗ + ηΦ−1(m̄t) + m̄(1 + η)

∫ t

T

φ(|X(s)|)ds, t ≥ T (η, ω). (5.8)

At this point we note that we are in the same position as in the proof of Theorem 2.7 at equation (4.8).
From here a calculation exactly analogous to that which completes the proof of Theorem 2.7 will yield

lim sup
t→∞

F (|X(t)|)
m̄t

≤ 1 a.s.

To prove part (b), let ε, η ∈ (0, 1) be arbitrary and rewrite (1.4) in integral form as before and take
absolute values to obtain

|X(t)| ≤ |X(0)|+
∫ t

0

m(t− s)|f(X(s))|ds+

∣∣∣∣∫ t

0

σ(s)dB(s)

∣∣∣∣ , t ≥ 0.

Let Ω1 be as before. By the Martingale Convergence Theorem (see Revuz and Yor [35, Ch. V, Prop.
1.8]), if N = {Nt, t ≥ 0} is a continuous local martingale with 〈N,N〉∞ < +∞, then

lim
t→∞

Nt ∈ (−∞,∞), a.s..

In our case, 〈∫ ·
0

σ(s)dB(s),

∫ ·
0

σ(s)dB(s)

〉
t

=

∫ t

0

σ2(s)ds

and thus σ ∈ L2(0,∞) implies that limt→∞Nt exists and is finite a.s. Therefore, as t 7→ Nt is a.s.
continuous, there exists an almost sure event Ω2 such that for all ω ∈ Ω2

sup
t≥0

∣∣∣∣∫ t

0

σ(s)dB(s)(ω)

∣∣∣∣ ≤ N∗(ω) < +∞.

Thus for all ω ∈ Ω∗ = Ω1 ∩ Ω2 and t ≥ 0,

|X(t)| ≤ |X(0)|+N∗ +

∫ t

0

m(t− s)|f(X(s))|ds.

Using the estimate (5.2) on f and the finiteness of limt→∞m(t), we have

|X(t)| ≤ |X(0)|+N∗ + m̄K(η)t+ m̄(1 + η)

∫ t

0

φ(|X(s)|))ds, t ≥ 0.

Lastly, define X(0)∗ = |X(0)|+N∗ and Hη(t) = m̄K(η)t so that

|X(t)| ≤ X(0)∗ +Hη(t) + m̄(1 + η)

∫ t

0

φ(|X(s)|))ds, t ≥ 0.
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Note that this estimate is in precisely the form of (5.7). It is easy to show, as above, that Hη(t) = m̄K(η)t
obeys an estimate of the form (5.6) for all t ≥ T5(η). Hence for all t ≥ T (η) = T5(η) and for all ω ∈ Ω∗,
the estimate

|X(t)| ≤ X(0)∗ + ηΦ−1(m̄t) + m̄(1 + η)

∫ t

T

φ(|X(s)|)ds, t ≥ T (η), (5.9)

holds. At this point we note that we are in the same position as in the proof of part (a) after (5.8), and
exactly analogous calculations yield

lim sup
t→∞

F (|X(t)|)
m̄t

≤ 1 a.s.

�

Proof of Corollary 3.6. We first prove that lim supt→∞ |X(t)| = ∞ a.s. by showing that X cannot be
bounded with positive probability. Suppose there exists an event A, with positive probability, such that
|X(t)| ≤ N <∞ for all t ≥ 0 on A. Now consider the linear SDE

dY (t) = −Y (t)dt+ σdB(t), t > 0, Y (0) = 0.

The solution to the SDE above is given by Y (t) = σ
∫ t

0
e−(t−s)dB(s). Furthermore, it can be shown that

Y obeys lim supt→∞ |Y (t)| = ∞ a.s. and lim inft→∞ |Y (t)| = 0 a.s. (see Appleby et al. [1, Theorem
4.1]). Write (1.4) as

dX(t) = −X(t)dt+ {X(s) +

∫ t

0

µ(ds)f(Xt−s)}dt+ σdB(t), t > 0.

Applying the variation of constants formula we obtain

X(t) = e−tX(0) +

∫ t

0

e−(t−s)
{
X(s) +

∫ s

0

µ(du)f(Xs−u)

}
ds+ σ

∫ t

0

e−(t−s)dB(s)

= e−tX(0) +

∫ t

0

e−(t−s)
{
X(s) +

∫ s

0

µ(du)f(Xs−u)

}
ds+ Y (t), t ≥ 0.

With some simple estimation it follows that, on A, lim supt→∞X(t) = ∞, a contradiction. To show
that lim supt→∞ F (|X(t)|)/m̄t ≤ 1 a.s. we check σ(t) = σ ∈ R/{0} obeys Lf (Σ) = 0, so we can apply
Theorem 3.5. By L’Hôpital’s rule

lim
t→∞

Σ(t)∫ t
0
f(Σ(s))ds

= lim
t→∞

Σ′(t)

f(Σ(t))
,

assuming the limit on the right–hand side exists. In fact

Σ′(t) =
σ2

log(tσ2)
√

2tσ2 log log(tσ2)
+

σ2 log log(tσ2)√
2tσ2 log log(tσ2)

.

Hence limt→∞Σ′(t) = 0 and Lf (Σ) = 0. �

Proof of Theorem 3.7. Let ε ∈ (0, 1) be arbitrary and follow the line of argument from the proof of
Theorem 3.8 to obtain

|X(t)| ≤ Aε + (1 + 2ε)Σ(t) + m̄(1 + ε)

∫ t

T

φ(|X(s)|)ds, t ≥ T, ω ∈ Ω,

where Aε = m̄ T sups∈[0,T1] |X(s)|. We define the upper comparison solution Xε as in (5.15) by

Xε(t) = 1 +Aε + (1 + 2ε)Σ(t) + m̄(1 + ε)

∫ t

T

φ(Xε(s))ds, t ≥ T.

Now by (5.12) there exists T1(ε) > T such that

Xε(t) ≤ (1 + 3ε)Σ(t) + m̄(1 + ε)

∫ t

T

φ(Xε(s))ds, t ≥ T1(ε). (5.10)
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Let Iε(t) =
∫ t
T
φ(Xε(s))ds; monotonicity yields

lim
t→∞

Σ(t)

m̄ Iε(t)
≤ lim
t→∞

Σ(t)

m̄
∫ t
T
φ(Σ(s))ds

= Lφ(Σ) ∈ (0,∞).

Hence there exists T2(ε) > T1 such that

Σ(t) ≤ Lφ(Σ)m̄(1 + ε)Iε(t), t ≥ T2. (5.11)

For t ≥ T2, using (5.11), calculate as follows

I ′ε(t) = φ(Xε(t)) ≤ φ ((1 + 3ε)Σ(t) + m̄(1 + ε)Iε(t))

≤ φ (Lφ(Σ)m̄(1 + 3ε)(1 + ε)Iε(t) + m̄(1 + ε)Iε(t)) ≤ φ ((1 + 7ε)(m̄+ Lφ(Σ)m̄)Iε(t)) .

Integrating the previous inequality we obtain∫ t

T2

I ′ε(s)ds

φ ((1 + 7ε)(m̄+ Lφ(Σ)m̄)Iε(s))
≤ t− T2, t ≥ T2.

Hence making the substitution u = (1 + 7ε)(m̄+ Lφ(Σ)m̄)Iε(s) yields

Φ ((1 + 7ε)(m̄+ Lφ(Σ)m̄)Iε(t)) ≤ (t− T2)(1 + 7ε)(m̄+ Lφ(Σ)m̄) + Φε, t ≥ T2,

where Φε = Φ ((1 + 7ε)(m̄+ Lφ(Σ)m̄)Iε(T2)). Thus

(1 + 7ε)(m̄+ Lφ(Σ)m̄)Iε(t) ≤ Φ−1 ((t− T2)(1 + 7ε)(m̄+ Lφ(Σ)m̄) + Φε) , t ≥ T2.

Returning to (5.10) and using the estimate above we obtain, for t ≥ T2,

Xε(t) ≤ (1 + 3ε)Lφ(Σ)m̄(1 + ε)Iε(t) + m̄(1 + ε)Iε(t) ≤ (1 + 7ε)(m̄+ Lφ(Σ)m̄)Iε(t)

≤ Φ−1 ((t− T2)(1 + 7ε)(m̄+ Lφ(Σ)m̄) + Φε) .

It immediately follows that

lim sup
t→∞

Φ(Xε(t))

m̄t
≤ (1 + Lφ(Σ))(1 + 7ε).

Let ε→ 0+ and note that by construction |X(t)| ≤ Xε(t) for all t ≥ T . Therefore,

lim sup
t→∞

Φ(|X(t)|)
m̄t

≤ 1 + Lφ(Σ) a.s.,

as required. �

Proof of Theorem 3.8. By L’Hôpital’s rule, limx→∞ Φ(x)/x = limx→∞ 1/φ(x) = 0 and hence
limt→∞Φ(Σ(t))/Σ(t) = 0. Therefore, using Proposition 2,

lim
t→∞

A+Bt

Σ(t)
= lim
t→∞

A+Bt

Φ(Σ(t))

Φ(Σ(t))

Σ(t)
= 0, (5.12)

for any nonnegative constants A and B. Arguing as in the proof of Theorem 3.5, with T and Ω defined
analogously, we have the initial estimate

|X(t)| ≤ |X(0)|+ m̄K(ε)t+ (1 + ε)Σ(t) + m̄(1 + ε)

∫ t

0

φ(|X(s)|)ds, t ≥ T (ε, ω), ω ∈ Ω,

where P[Ω] = 1. By (5.12) there is T1(ε, ω) > T (ε, ω) such that for all t ≥ T1(ε, ω) |X(0)| + m̄K(ε)t <
εΣ(t). Hence

|X(t)| ≤ (1 + 2ε)Σ(t) + m̄(1 + ε)

∫ t

0

φ(|X(s)|)ds (5.13)

≤ Aε + (1 + 2ε)Σ(t) + m̄(1 + ε)

∫ t

T1

φ(|X(s)|)ds, t ≥ T1, ω ∈ Ω, (5.14)

where Aε = m̄ T1 sups∈[0,T1] φ(|X(s)|). Now define the function Xε(t) for t ≥ T1 by

Xε(t) = 1 +Aε + (1 + 2ε)Σ(t) + m̄(1 + ε)

∫ t

T1

φ(Xε(s))ds. (5.15)
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By construction |X(t)| ≤ Xε(t) for all t ≥ T1(ε). Let Iε(t) =
∫ t
T1
φ(Xε(s))ds, so

I ′ε(t) = φ(Xε(t)) = φ(1 +Aε + (1 + 2ε)Σ(t) + m̄(1 + ε)Iε(t)), t ≥ T1(ε).

Since φ is increasing and there exists a T2(ε) > T1(ε) such that 1 +Aε < εΣ(t) for all t ≥ T2 we have

I ′ε(t) ≤ φ((1 + 3ε)Σ(t) + m̄(1 + ε)Iε(t)), t ≥ T2.

By the Mean Value Theorem there exists θt ∈ [0, 1] such that

I ′ε(t) = φ((1 + 3ε)Σ(t)) + φ′((1 + 3ε)Σ(t) + θtm̄(1 + ε)Iε(t)) m̄(1 + ε)Iε(t)

≤ φ((1 + 3ε)Σ(t)) + φ′((1 + 3ε)Σ(t)) m̄(1 + ε)Iε(t)

≤ φ((1 + 3ε)Σ(t)) + m̄(1 + ε)2φ((1 + 3ε)Σ(t))

(1 + 3ε)Σ(t)
Iε(t), t ≥ T2, (5.16)

where the final inequality follows from Lemma 2.5. Once more we exploit the Mean Value Theorem and
the first part of Lemma 2.5 as follows

φ((1 + 3ε)Σ(t)) = φ(Σ(t)) + φ′(Σ(t) + ρt3εΣ(t)) 3εΣ(t), ρt ∈ [0, 1]

≤ φ(Σ(t)) + φ′(Σ(t)) 3εΣ(t) = φ(Σ(t))

{
1 + 3ε

φ′(Σ(t))Σ(t)

φ(Σ(t))

}
≤ φ(Σ(t))(1 + 4ε), t ≥ T ∗ > T2. (5.17)

Hence (5.16) becomes

I ′ε(t) ≤ (1 + 4ε)φ(Σ(t)) + m̄(1 + ε)2 (1 + 4ε)

(1 + 3ε)

φ(Σ(t))

Σ(t)
Iε(t), t ≥ T ∗.

Let

aε(t) = m̄(1 + ε)2 (1 + 4ε)

(1 + 3ε)

φ(Σ(t))

Σ(t)
and Hε(t) = Σ(t).

Now apply the argument from the proof of Theorem 2.10 beginning at (4.19). Following this line of
argument shows that

lim sup
t→∞

Iε(t)∫ t
T1
φ(Σ(s))ds

≤ N(ε) <∞.

Returning to (5.15) this yields

Xε(t) < 1 +Aε + (1 + 2ε)Σ(t) + m̄(1 + ε)2N(ε)

∫ t

T1

φ(Σ(s))ds, t ≥ T ∗.

Therefore

Xε(t)

Σ(t)
< 1 + 2ε+

1 +Aε
Σ(t)

+
m̄(1 + ε)2N(ε)

∫ t
T1
φ(Σ(s))ds

Σ(t)
, t ≥ T ∗.

Thus

lim sup
t→∞

Xε(t)

Σ(t)
≤ 1 + 2ε+

m̄(1 + ε)2N(ε)

Lφ(Σ)
<∞.

Hence we have that lim supt→∞ |X(t)|/Σ(t) <∞ a.s.

Suppose that lim supt→∞ |X(t)|/Σ(t) = 0 on an event Ωp of positive probability, then there exists

T̄ (ε) > 0 such that |X(t)| < εΣ(t) for all t ≥ T̄ , ω ∈ Ωp. Let J(t) =
∫ t

0
m̄(t− s)f(X(s))ds and estimate

as before. For all ω ∈ Ωp, we obtain

|J(t)| ≤ m̄
∫ t

0

C(ε) + (1 + ε)φ(|X(s)|)ds

≤ m̄C(ε) t+ m̄ T̄ (1 + ε) sup
s∈[0,T̄ ]

φ(|X(s)|) + m̄(1 + ε)

∫ t

T̄

φ(|X(s)|)ds, t ≥ T̄ . (5.18)

Hence

lim sup
t→∞

|J(t)|
Σ(t)

≤ m̄(1 + ε) lim sup
t→∞

∫ t
T̄
φ(εΣ(s))ds

Σ(t)
≤ 1 + ε

Lφ(Σ)
, for all ω ∈ Ωp and ε ∈ (0, 1).
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Therefore, because Lf (Σ) > 1, lim supt→∞ |J(t)|/Σ(t) = λ ∈ [0, 1) on Ωp. It follows that there exists
T ′ > T̄ such that J(t)/Σ(t) > −λ− ε for all t ≥ T ′. Consider the stochastic integral equation

X(t) = X(0) +

∫ t

0

m̄(t− s)f(X(s))ds+

∫ t

0

σ(s)dB(s), t ≥ 0.

For all t ≥ T ′ and ω ∈ Ωp,

X(t)

Σ(t)
=
X(0)

Σ(t)
+
J(t)

Σ(t)
+

∫ t
0
σ(s)dB(s)

Σ(t)
≥ X(0)

Σ(t)
+

∫ t
0
σ(s)dB(s)

Σ(t)
− λ− ε.

This implies that lim supt→∞X(t)/Σ(t) ≥ 1 − λ − ε for all ω ∈ Ωp and for all ε ∈ (0, 1). Hence
lim supt→∞X(t)/Σ(t) ≥ 1− 1/Lφ(Σ) on Ωp and similarly lim inft→∞X(t)/Σ(t) ≤ −1 + 1/Lφ(Σ) on Ωp,
a contradiction. Hence P[Ωp] = 0 and

lim sup
t→∞

|X(t)|
Σ(t)

= Λ ∈ (0,∞) a.s.

From (5.18) we obtain the following a.s. estimate

|J(t)| ≤ m̄C(ε) t+ m̄ T̄ (1 + ε) sup
s∈[0,T̄ ]

φ(|X(s)|) + m̄(1 + ε)

∫ t

T̄

φ((Λ + ε)Σ(s))ds, t ≥ T̄ .

If we have Λ ∈ (0, 1), then we can choose ε > 0 sufficiently small that Λ + ε < 1 and monotonicity of φ
and Σ will yield lim supt→∞ |J(t)|/Σ(t) ≤ Λ/Lφ(Σ), as before. If Λ ∈ [1,∞), we can estimate via the
second part of Lemma 2.5. Suppose Λ ∈ [1,∞), then

lim sup
t→∞

|J(t)|
Σ(t)

≤ m̄(1 + ε)(Λ + ε)

∫ t
T̄
φ(Σ(s))ds

Σ(t)
= (1 + ε)

Λ + ε

Lφ(Σ)
,

and letting ε→ 0+ we obtain lim supt→∞ |J(t)|/Σ(t) ≤ Λ/Lφ(Σ) a.s. Therefore

lim sup
t→∞

X(t)

Σ(t)
≤ Λ ≤ lim sup

t→∞

|X(0)|
Σ(t)

+ lim sup
t→∞

|J(t)|
Σ(t)

+ lim sup
t→∞

|
∫ t

0
σ(s)dB(s)|

Σ(t)
≤ Λ

Lφ(Σ)
+ 1 a.s.

Finally Λ ≤ Lf (Σ)/(Lf (Σ) − 1). Thus, lim supt→∞X(t)/Σ(t) ≤ Lf (Σ)/(Lf (Σ) − 1) a.s. and similarly
lim inft→∞X(t)/Σ(t) ≥ −Lf (Σ)/(Lf (Σ)− 1) a.s. �

Proof of Theorem 3.9. We follow closely the line of argument from the proof of Theorem 3.8. First we
establish the required analogue of (5.12). Lf (Σ) = ∞, so by Proposition 2 limt→∞Φ(Σ(t))/Σ(t) = ∞.
Hence, for any nonnegative constants A and B,

lim
t→∞

A+Bt

Σ(t)
= lim
t→∞

A+Bt∫ t
0
f(Σ(s))ds

∫ t
0
f(Σ(s))ds

Σ(t)
= 0.

With this result in hand we can proceed with the argument from Theorem 3.8 to obtain

|X(t)| ≤ Aε + (1 + 2ε)Σ(t) + m̄(1 + ε)

∫ t

T1

φ(|X(s)|)ds, t ≥ T1, ω ∈ Ω,

where Aε = m̄ T1 sups∈[0,T1] |X(s)|. Define Xε(t) as in (5.15) and with the same estimation as before

lim supt→∞
∫ t
T
φ(Xε(s))ds/

∫ t
T
φ(Σ(s))ds < N(ε) <∞. Therefore, since Lf (Σ) =∞,

lim sup
t→∞

Xε(t)

Σ(t)
≤ 1 + 2ε+ m̄(1 + ε)2N(ε) lim sup

t→∞

∫ t
T
φ(Σ(s))ds

Σ(t)
= 1 + 2ε.

Note that |X(t)| ≤ Xε(t) a.s for all t ≥ T and let ε→ 0+ to conclude that

lim sup
t→∞

|X(t)|
Σ(t)

≤ 1 a.s.

The event on which lim supt→∞ |X(t)|/Σ(t) = 0 is shown to have probability zero by exactly the line
of argument which concludes the proof of Theorem 3.8. Hence lim supt→∞ |X(t)|/Σ(t) = λ ∈ (0, 1] a.s.
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and |X(t)| ≤ (λ + ε)Σ(t) for all t ≥ T (ε) on an event of probability one. Once more using the notation

that J(t) =
∫ t
T
m(t− s)f(X(s)) ds we recall the a.s. estimate (5.18)

|J(t)| ≤ m̄C(ε) t+ m̄ T̄ (1 + ε) sup
s∈[0,T ]

φ(|X(s)|) + m̄(1 + ε)

∫ t

T

φ(|X(s)|)ds, t ≥ T.

Using the monotonicity of φ, an estimate of the form (5.17) and the hypothesis that Lφ(Σ) =∞,

lim sup
t→∞

|J(t)|
Σ(t)

≤ m̄(1 + ε) lim sup
t→∞

∫ t
T
φ((λ+ ε)Σ(s))ds

Σ(t)
≤ m̄(1 + ε) lim sup

t→∞

∫ t
T
φ((1 + ε)Σ(s))ds

Σ(t)

≤ m̄(1 + ε)(1 + 2ε) lim sup
t→∞

∫ t
T
φ(Σ(s))ds

Σ(t)
= 0 a.s.

Hence limt→∞ J(t)/Σ(t) = 0 a.s. and the claim (3.10) is proven. Now compute lim supt→∞X(t)/Σ(t)
as follows

lim sup
t→∞

X(t)

Σ(t)
= lim sup

t→∞

{
X(0)

Σ(t)
+
J(t)

Σ(t)
+

∫ t
0
σ(s)dB(s)

Σ(t)

}
= 1 a.s.

Taking the liminf, rather than the limsup, in the equation above yields lim inft→∞X(t)/Σ(t) = −1 a.s.,
concluding the proof. �

Proof of Theorem 3.12. First note that
∫∞

0
γ(s)

−α
ds < ∞ implies lim supt→∞ |Z(t)|/γ(t) = 0 a.s. (see

Bertoin [12, Theorem 5, Ch. VIII]). This proof follows by applying the argument used to establish
Theorem 3.5 with Σ replaced by γ as appropriate. �

Proof of Theorem 3.13. Suppose that γ+ and γ− both satisfy the hypotheses on γ with
∫∞

0
γ+(s)

−α
ds <

∞ and
∫∞

0
γ−(s)

−α
ds =∞. It follows that

lim sup
t→∞

|Z(t)|
γ+(t)

= 0 a.s. and lim sup
t→∞

|Z(t)|
γ−(t)

=∞ a.s.. (5.19)

Relevant properties of α–stable processes can be found in Bertoin [12, Theorem 5, Ch. VIII].

We first deal with the claim that lim supt→∞ |X(t)|/γ+(t) ≤ 1/Lf (γ+) a.s. when Lf (γ+) ∈ (1,∞).
Analogous to the beginning of the proof of Theorem 3.8 use Proposition 2 to show that

lim
t→∞

A+Bt

γ+(t)
= lim
t→∞

A+Bt

Φ(γ+(t))

Φ(γ+(t))

γ+(t)
= 0,

for any nonnegative constants A and B. With the estimate above in hand and the proof proceeds as in
that of Theorem 3.8 but we arrive at a slightly different initial upper estimate to that derived in equation
(5.13) since we employ (5.19) for the asymptotics of Z. In this case

|X(t)| ≤ Aε + 3ε γ+(t) + m̄(1 + ε)

∫ t

T1

φ(|X(s)|)ds, t ≥ T1, ω ∈ Ω1, (5.20)

where Aε = m̄ T1 sups∈[0,T1] φ(|X(s)|). Now we are free to define the comparison solution

Xε(t) = 1 +Aε + 3ε γ+(t) + m̄(1 + ε)

∫ t

T1

φ(Xε(s))ds, t ≥ T1. (5.21)

By following exactly the steps from the proof of Theorem 3.8 we obtain lim supt→∞ |Xε(t)|/γ+(t) < ∞
with probability one and hence

lim sup
t→∞

|X(t)|
γ+(t)

<∞ a.s. (5.22)

With the usual notation that J(t) =
∫ t

0
m̄(t− s)f(X(s)) ds write

|X(t)|
γ+(t)

≤ |X(0)|
γ+(t)

+
|J(t)|
γ+(t)

+
|Z(t)|
γ+(t)

.

To finally derive the required bound on lim supt→∞ |X(t)|/γ+(t) estimate |J(t)| using (5.22) (as was done
in the proof of Theorem 3.8, for example); conclude by plugging in this estimate above and using (5.19).
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The proof is essentially the same when Lf (γ+) = ∞. To show that lim supt→∞ |X(t)|/γ+(t) =
0 a.s. proceed as before in applying the argument of Theorem 3.8 but note now that this will give
lim supt→∞Xε(t)/γ+(t) ≤ 3ε for the comparison solution. The conclusion now follows readily.

It remains to show that lim supt→∞ |X(t)|/γ−(t) = ∞ a.s. Begin by assuming to the contrary that
there exists an event Ω2 with positive probability on which lim supt→∞ |X(t)|/γ−(t) =: L ∈ [0,∞). We
first show that lim supt→∞ |J(t)|/γ−(t) <∞ on an event of positive probability; work on Ω2 and estimate
as follows

|J(t)| ≤ m̄
∫ t

0

{K + (1 + ε)φ(|X(s))|} ds

≤ m̄Kt+ m̄(1 + ε)T sup
s∈[0,T ]

φ(|X(s)|) + m̄(1 + ε)

∫ t

T

φ((1 + ε)Lγ−(s)) ds

≤ m̄Kt+ m̄(1 + ε)T sup
s∈[0,T ]

φ(|X(s)|) + m̄(1 + ε)2 max(1, L)

∫ t

T

φ(γ−(s)) ds, (5.23)

for T sufficiently large and t ≥ T (the last inequality uses Lemma 2.5). Divide by γ− and take the
limsup across (5.23); the final term on the right–hand side can be dealt with using the hypothesis
Lf (γ−) ∈ (1,∞], the first two terms are o(γ−) and hence we obtain

lim sup
t→∞

|J(t)|
γ−(t)

<∞ with positive probability.

Therefore the following holds on an event of positive probability

lim sup
t→∞

|Z(t)|
γ−(t)

≤ lim sup
t→∞

{
|X(0)|
γ−(t)

+
|X(t)|
γ−(t)

+
|J(t)|
γ−(t)

}
<∞,

in contradiction of the fact that lim supt→∞ |Z(t)|/γ−(t) =∞ a.s. �
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[18] J. A. Dieudonné. Infinitesimal calculus. Hermann, 1971.



PERTURBED NONLINEAR VOLTERRA EQUATIONS 39

[19] G. Gripenberg, S.-O. Londen, and O. Staffans. Volterra integral and functional equations, volume 34. Cambridge

University Press, 1990.
[20] P. Hartman. Ordinary Differential Equations. SIAM, 2nd edition edition, 2002.

[21] V. Kolmanovskii and A. Myshkis. Applied Theory of Functional Differential Equations, volume 85. Springer Science
& Business Media, 2012.

[22] V. Kolmanovskii and A. Myshkis. Introduction to the theory and applications of functional differential equations,

volume 463. Springer Science & Business Media, 2013.
[23] O. Lipovan. Integral inequalities for retarded Volterra equations. Journal of Mathematical Analysis and Applications,

322(1):349–358, 2006.

[24] X. Mao. Exponential stability of equidistant Euler–Maruyama approximations of stochastic differential delay equations.
Journal of Computational and Applied Mathematics, 200(1):297–316, 2007.

[25] X. Mao. Stochastic Differential Equations and Applications. Horwood Publishing, 2nd edition, 2007.

[26] X. Mao and M. Riedle. Mean square stability of stochastic Volterra integro-differential equations. Systems & Control
Letters, 55(6):459–465, 2006.

[27] T. Marquardt and R. Stelzer. Multivariate CARMA processes. Stochastic Process and their Applications, 117(1):96–

120, 2007.
[28] M. Métivier and J. Pellaumail. On a stopped Doob’s inequality and general stochastic equations. The Annals of

Probability, pages 96–114, 1980.
[29] S.-E. A. Mohammed and M. K. Scheutzow. Lyapunov exponents of linear stochastic functional differential equations

driven by semimartingales. Part I: the multiplicative ergodic theory. In Annales de l’IHP Probabilités et statistiques,

volume 32, pages 69–105, 1996.
[30] S.-E. A. Mohammed and M. K. Scheutzow. The stable manifold theorem for non-linear stochastic systems with memory.

I. existence of the semiflow. Journal of Functional Analysis, 205(2):271–305, 2003.

[31] S.-E. A. Mohammed and M. K. Scheutzow. The stable manifold theorem for non-linear stochastic systems with
memory: Ii. the local stable manifold theorem. Journal of Functional Analysis, 206(2):253–306, 2004.

[32] D. Nualart and C. Rovira. Large deviations for stochastic Volterra equations. Bernoulli, pages 339–355, 2000.

[33] M. Pituk. The Hartman–Wintner theorem for functional differential equations. Journal of Differential Equations,
155(1):1–16, 1999.

[34] P. E. Protter. Stochastic integration and differential equation. Stochastic Modeling and Applied Probability, 21, 2004.

[35] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293. Springer Science & Business Media,
1999.

[36] D. Reynolds and J. Appleby. Decay rates of solutions of linear stochastic Volterra equations. Electronic Journal of

Probability, 13:922–943, 2008.
[37] L. Shaikhet. Lyapunov functionals and stability of stochastic functional differential equations. Springer Science &

Business Media, 2013.
[38] F. Wu and S. Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay.

Discrete & Continuous Dynamical Systems-A, 32(3):1065, 2012.

[39] F. Wu, S. Hu, and C. Huang. Robustness of general decay stability of nonlinear neutral stochastic functional differential
equations with infinite delay. Systems & Control Letters, 59(3-4):195–202, 2010.

[40] X. Zhang. Euler schemes and large deviations for stochastic Volterra equations with singular kernels. Journal of

Differential Equations, 244(9):2226–2250, 2008.



40 PERTURBED NONLINEAR VOLTERRA EQUATIONS

Appendix A. Examples & Numerical Experiments

Example 2.14. x(t) = exp
(
λ(t) +

√
2(t+ 1)

)
− e = exp(P (t)) − e for t ≥ 0, with λ(t) = (1 + t)α for

some α ∈ (0, 1/2). We first show that limt→∞H(t)/x(t) = 0 which, combined with positivity of H,
yields limt→∞ x(t)/H(t) =∞.

lim
t→∞

x(t)− x(0)−
∫ t

0
f(x(s))ds

x(t)
= 1− lim

t→∞

∫ t
0
f(x(s))ds

x(t)
= 1− lim

t→∞

f(x(t))

x′(t)

= 1− lim
t→∞

(
α(1 + t)α−1 + [2(t+ 1)]−1/2

)−1

(1 + t)α +
√

2(t+ 1)
= 0.

Similarly,

lim
t→∞

∫ t
0
e−(t−s)f(x(s))ds

x(t)
= lim
t→∞

f(x(t))

x(t)
= 0,

and it then follows from (2.16) that limt→∞H(t)/x(t) = 0. Thus

H(t) = x(t)− x(0)−
∫ t

0

f(x(s))ds+

∫ t

0

e−(t−s)f(x(s))ds

∼ eP (t) −
∫ t

0

eP (s)

P (s)
ds+ f(x(t)) ∼ eP (t) −

∫ t

0

eP (s)

P (s)
ds+

eP (t)

P (t)
, as t→∞. (A.1)

We make the substitution u = P (s) in the integral term and define Q(s) = P (s)P ′(s). Now estimate as
follows ∫ t

0

eP (s)

P (s)
ds =

∫ P (t)

P (0)

eu

Q(P−1(u))
du =

∫ P (t)

P (0)

Q(P−1(u))− 1

Q(P−1(u))
eudu+

∫ P (t)

P (0)

eu du

= eP (t) − eP (0) +

∫ P (t)

P (0)

Q(P−1(u))− 1

Q(P−1(u))
eu du.

Combining this with (A.1) we obtain

H(t) ∼ eP (t)

P (t)
+

∫ P (t)

P (0)

Q(P−1(u))− 1

Q(P−1(u))
eudu, as t→∞. (A.2)

It remains to make an asymptotic estimate of the integral term on the right–hand side of equation (A.2).
Expanding Q yields

Q(s) = λ(s)λ′(s) + λ(s)[2(s+ 1)]−1/2 + λ′(s)[2(s+ 1)]1/2 + 1

∼ 1 +
(

2−1/2 + α
√

2
)
sα−1/2 + o

(
sα−1/2

)
, as s→∞.

Hence lims→∞Q(s) = 1 + lims→∞
(
2−1/2 + α

√
2
)
sα−1/2 = 1 and since P (s) ∼

√
2s, P−1(s) ∼ s2/2, as

s→∞. Therefore

lim
u→∞

Q(P−1(u))− 1

Q(P−1(u))
∼
(

2−1/2 + α
√

2
)(1

2

)α−1/2

u2α−1 = 0.

It is straightforward to show that
∫ x

1
u2α−1eudu ∼ x2α−1ex as x→∞ and thus∫ P (t)

P (0)

Q(P−1(u))− 1

Q(P−1(u))
eu du ∼ K P (t)2α−1eP (t), as t→∞,

with K a positive constant. Combining this with (A.2) yields

H(t) ∼ eP (t)

P (t)
+K P (t)2α−1eP (t) ∼ K P (t)2α−1eP (t).

Before calculating limt→∞H(t)/
∫ t

0
f(H(s)) ds we note that

f(H(t)) ∼ K P (t)2α−1eP (t)

log
(
K P (t)2α−1eP (t)

) ∼ K P (t)2α−2eP (t), as t→∞.
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Hence, by L’Hôpital’s rule,

LF (H) = lim
t→∞

H(t)∫ t
0
f(H(s))ds

= lim
t→∞

(2α− 1)P ′(t)P (t)2α−2eP (t) + P (t)α−1P ′(t)eP (t)

P (t)2α−2eP (t)

= lim
t→∞

(2α− 1)P ′(t) + P ′(t)P (t) = lim
t→∞

Q(t) = 1.

Thus Lf (H) = 1 and limt→∞ x(t)/H(t) =∞, as claimed. �

Example 2.13. Write

H(t) = x(t)− x(0)−
∫ t

0

f(x(s))ds+

∫ t

0

e−(t−s)f(x(s))ds, t ≥ 0,

in order to work out the asymptotics of H. Firstly,∫ t

0

f(x(s))ds = Aβ (1− β)
β

1−β
∫ t

0

s
β

1−β ds = Aβ [(1− β)t]
1

1−β .

Next ∫ t

0

e−(t−s)f(x(s))ds ∼ f(x(t)) = Aβ [(1− β)t]
β

1−β , as t→∞,

and hence this term will not affect the asymptotics of H. Thus

H(t) ∼ x(t)− f(x(t)) = (A−Aβ)[(1− β)t]
1

1−β , as t→∞.

Now suppose instead that we had

H(t) = [Lf (H)(1− β)t]
1

1−β , t ≥ 0.

In this case

lim
t→∞

H(t)∫ t
0
f(H(s))ds

= lim
t→∞

H ′(t)

f(H(t))
= lim
t→∞

Lf (H)
1

1−β [(1− β)t]
β

1−β

Lf (H)
β

1−β [(1− β)t]
β

1−β
= Lf (H).

In order to choose Lf (H) freely in this example we must solve A − Aβ = Lf (H)1/(1−β) for A ∈ [1,∞),
for a given Lf (H) ∈ (0,∞). To simplify the calculation choose Lf (H) = 1 and β = 1/2, so we must

solve A − A1/2 = 1, or equivalently, x2 − x − 1 = 0, where x2 = A. It follows that x = (1 ±
√

5)/2

and since we require A ≥ 1 select the solution x = (1 +
√

5)/2 (the so–called golden ratio). This yields
A ≈ 2.618. Finally,

lim
t→∞

F (x(t))

µ(R+)t
= A1−β = A1/2 =

1 +
√

5

2
≈ 1.618.

�

Example 2.15. Suppose Lf (H) ∈ (1,∞) and let x(t) = exp
(√

2Lf (H)(t+ 1)
)
− e for t ≥ 0, we have

f(x(t)) = [2(t+ 1)]−1/2 e
√

2Lf (H)(t+1).

Integrating we obtain∫ t

0

f(x(s))ds =
1

Lf (H)

∫ √2Lf (H)(t+1)

√
2Lf (H)

eu du =
1

Lf (H)
e
√

2Lf (H)(t+1) − 1

Lf (H)
e
√

2Lf (H).

Therefore,

x(t)− x(0)−
∫ t

0

f(x(s)) ds ∼
(
Lf (H)− 1

Lf (H)

)
e
√

2Lf (H)(t+1), as t→∞.

Using the fact that f ◦ x is sub-exponential and increasing we have∫ t

0

e−(t−s)f(x(s))ds ∼ f(x(t)) =
e
√

2Lf (H)(t+1)√
2Lf (H)(t+ 1)

, as t→∞.
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Now, from (2.16), we haveH(t) ∼ ((Lf (H)− 1)/Lf (H)) e
√

2Lf (H)(t+1). It follows that limt→∞ x(t)/H(t) =
Lf (H)/(Lf (H)− 1). Finally,

lim
t→∞

H(t)∫ t
0
f(H(s))ds

= lim
t→∞

H ′(t)

f(H(t))
= lim
t→∞

(
Lf (H)−1
Lf (H)

)
e
√

2Lf (H)(t+1)Lf (H)√
2Lf (H)(t+ 1)f(H(t))

= lim
t→∞

(
Lf (H)− 1

Lf (H)

)
Lf (H) e

√
2Lf (H)(t+1)

(
Lf (H)
Lf (H)−1

)√
2Lf (H)(t+ 1)√

2Lf (H)(t+ 1)e
√

2Lf (H)(t+1)
= Lf (H).

�

Example 2.16. With x(t) = exp ([2(t+ 1)]α)− e, α ∈
(

1
2 , 1
)
, t ≥ 0, we have

f(x(t)) = [2(t+ 1)]−α exp ([2(t+ 1)]α) .

Hence

lim
t→∞

∫ t
0
f(x(s))ds

x(t)
= lim
t→∞

f(x(t))

x′(t)
= lim
t→∞

1

2α[2(t+ 1)]2α−1
= 0.

Similarly,

lim
t→∞

∫ t
0
e−(t−s)f(x(s))ds

x(t)
= lim
t→∞

f(x(t))

x(t)
= 0,

since f ◦ x is sub-exponential and f is sublinear. It follows from (2.16) that x ∼ H and hence

lim
t→∞

H(t)∫ t
0
f(H(s))ds

= lim
t→∞

x(t)∫ t
0
f(x(s))ds

=∞,

by the argument above for the limit of the reciprocal. �

Figure 1: Numerical Experiments

To investigate further the results from Section 3 numerically we consider the following test equation

dX(t) =

(∫ t

0

e−(t−s)f(X(s))ds

)
dt+ σ(t)dB(t), t > 0, X(0) = ψ ∈ R. (A.3)

Hence m̄ = 1 throughout this section. Let I(t) =
∫ t

0
e−(t−s)f(X(s)) ds and rewrite (A.3) as a coupled

system as follows

dI(t) = (−I(t) + f(X(t))) dt, t > 0, I(0) = 0,

dX(t) = I(t)dt+ σ(t)dB(t), t > 0, X(0) = ψ.

Various authors have shown that an explicit one step Euler–Maruyama discretisation reliably approx-
imates solutions to equations of the type (A.3) in a mean–square sense for both fixed time lags and
Volterra equations [9, 24]. In particular, we can have confidence in such a numerical scheme if we assume
global Lipschitz and linear growth conditions on both f and σ. Using an Euler–Maruyama discretisation
of the coupled form of (A.3) we obtain, for h > 0,

In+1 = In + h (In − f(Xn)) , n ≥ 1, I0 = 0,

Xn+1 = Xn + h In + σ(nh)∆Wn, n ≥ 1, X0 = ψ,

where ∆Wn is a normal random variable with mean zero and variance h for each n ≥ 1. We take

f(x) = sign(x)|x|β , x ∈ R, β ∈ (0, 1),

so that f obeys a global linear bound and lim|x|→∞ |f(x)|/f(|x|) = 1. We choose

σ(t) =
Lf (Σ)1/(1−β) [(1− β)t]

(1+β)/(2−2β)√
log log(t+ e)

, t ≥ 0,

so that σ /∈ L2(0,∞) and Lf (Σ) ∈ (0,∞) is a free parameter. It is straightforward to show that

Σ(t) ∼ (Lf (Σ)(1− β)t )
1/1−β

, as t→∞.
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In Figure 1 (left) we take s(t) = (1 + t)−3, β = 0.5, Lf (Σ) = 2 and plot s(t)X(t)/Σ(t). The scaled
process s(t)X(t)/Σ(t) fluctuates between ±s(t)Lf (Σ)/(Lf (Σ)−1) as it tends to zero a.s. As predicted by
Theorem 3.8, the largest values of the scaled process are well approximated by ±s(t)Lf (Σ)/(Lf (Σ)− 1).
We also make a nonlinear transformation of the coordinates so that the convergence does not take place
too quickly to observe. The co-ordinate transformation is given by (x, y) 7→ (sign(x)|x|ε, sign(y)|y|ε) with
ε = 0.08; this nonlinear transformation is intended to be analogous to a log-log plot, typically used with
non-negative data.

In Figure 1 (right) we plot the quantity F (|X(t)|)/µ(R+)t for various values of β and Lf (Σ) = 1
(without any scaling or coordinate transformations). We observe that F (|X(t)|)/µ(R+)t appears to be
pathwise bounded by 1 + Lf (Σ) for large t, as guaranteed by Theorem 3.7.
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