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Abstract

Given graphs G and H , the generalized Turán number ex(G,H) is the maximum
number of edges in an H-free subgraph of G. In this paper, we obtain an asymptotic
upper bound on ex(CTn, C2l) for any n ≥ 3 and l ≥ 2, where C2l is the cycle of length
2l and CTn is the complete transposition graph which is defined as the Cayley graph on
the symmetric group Sn with respect to the set of all transpositions of Sn.
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1 Introduction

Throughout this paper graphs are finite and undirected with no loops or multiple edges. The

vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively. The numbers

of vertices and edges of G are denoted by v(G) and e(G), respectively. The degree of a vertex

x ∈ V (G) in G is denoted by dG(x), and the edge joining vertices u and w are denoted as an

unordered pair {u,w}. A cycle with l edges is called an l-cycle or a cycle of length l, where

l ≥ 3. A path with length l is called an l-path, where l ≥ 1. As usual an l-cycle is denoted

by Cl and an l-path by Pl. Two graphs G and H are said to be isomorphic if there exists a

bijection f from V (G) to V (H) such that {x, y} ∈ E(G) if and only if {f(x), f(y)} ∈ E(H).

Let G and H be graphs. We say that G is H-free if there exists no subgraph of G which

is isomorphic to H. The generalized Turán number ex(G,H) is the maximum number of

edges in an H-free spanning subgraph of G. This invariant proposed by Erdős [10] is a

generalization of the well-known Turán number ex(n,H) which gives the maximum number

of edges in an H-free graph with n vertices. In the literature there is a huge amount of work
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on Turán numbers and generalized Turán numbers, beginning with Mantel [23] who proved

that ex(n,K3) = ⌊n2/4⌋ and Turán [26] who determined ex(n,Kr) for any r ≥ 3, where Kr

is the complete graph with r vertices. In [13], Erdős and Simonovits obtained an asymptotic

formula for ex(n,H) in terms of the chromatic number of H. But when H is bipartite the

situation is considerably more complicated, and we can only deduce that ex(n,H) = o(n2).

Herein and in the rest of this paper asymptotics are taken as n → ∞. In general, it is a

challenging problem to determine ex(G,H) whenH is a bipartite graph, especially whenH is

an even cycle. In this regard, two interesting functions that have received much attention are

ex(G,Ks,t) and ex(Qn, C2l), where Ks,t is the complete bipartite graph with s and t vertices,

respectively, in the biparts of its bipartition, and Qn is the n-dimensional hypercube. The

problem of determining ex(Km,n,Ks,t), proposed by Zarankiewicz in [28], is the analogue

of Turán’s original problem (the one of determining ex(Kn,Kr) = ex(n,Kr)) for bipartite

graphs, and an excellent survey on this problem can be found in [18]. Besides, some related

research was dedicated to showing ex(G,Kt,t), where G is some other certain restricted

graph. See e.g. [15, 16].

The study of ex(Qn, C2l) began with a problem raised by Erdős which asks for the

maximum number of edges in a C4-free spanning subgraph of Qn. In [10], Erdős conjectured

that
(
1
2 + o(1)

)
e(Qn) should be an upper bound for ex(Qn, C4), and he also asked whether

o(e(Qn)) edges of Qn would ensure the existence of a cycle C2l for l ≥ 3. The best known

upper bound for ex(Qn, C4), obtained by Balogn et al. [3] and improved slightly the bounds

of Chung [7] and Wagner [25], is (0.6068 + o(1))e(Qn). The problem of determining the

value of ex(Qn, C2l) when l = 3 or 5 is still open too, and progresses can be found in

[1, 2, 3, 7, 8]. For l ≥ 2, upper bounds for ex(Qn, C4l) and ex(Qn, C4l+6) were obtained by

Chung [7] and Füredi and Özkahya [17], respectively, and their results together imply that

ex(Qn, C2l′) = o(e(Qn)) for l
′ ≥ 6 or l′ = 4. In [9], Conlon proved that ex(Qn,H) = o(e(Qn))

for any graph H that admits a k-partite representation. This gives a unified approach to the

proof that ex(Qn, C2l) = o(e(Qn)) for all l 6= 5 no less than 4. The doubled Johnson graphs

J(n; k, k + 1), where 1 ≤ k ≤ (n − 1)/2, form an interesting family of spanning subgraphs

of Qn, and in particular the doubled odd graph Õk+1 := J(2k + 1; k, k + 1) is known to be

distance-transitive. Recently, Cao et al. [6] studied ex(J(n; k, k+1), C2l) and proved among

other things that ex(Õk+1, C2l) = o(e(Õk+1)) for l ≥ 6.

In this paper, we study the generalized Turán number ex(CTn, C2l) for the complete

transposition graph CTn, where n ≥ 3 and l ≥ 2. The complete transposition graphs are

an important family of Cayley graphs which share several interesting properties with hyper-

cubes. For example, both CTn and Qn are bipartite and arc-transitive, with only integral

eigenvalues, and both graphs are popular topologies for interconnection networks [20]. Over

the years several aspects of complete transposition graphs such as automorphisms, eigen-

values, connectivity and bisection width have been studied as one can find in, for example,

[19, 21, 22, 24, 27]. In general, given a group G with identity element 1 and an inverse-closed

subset S of G \ {1}, the Cayley graph Cay(G,S) on G with respect to the connection set

S is defined to be the graph with vertex set G such that x, y ∈ G are adjacent if and only

if yx−1 ∈ S. The complete transposition graph CTn is defined as the Cayley graph on the
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symmetric group Sn whose connection set is the set of all transpositions of Sn. That is,

V (CTn) = Sn,

E(CTn) = {{x, y} : x, y ∈ Sn and y = ux for some transposition u of Sn}.

It follows that CTn is a connected
(n
2

)
-regular bipartite graph with

v := v(CTn) = n!

vertices and

e(CTn) =
v

2

(
n

2

)

edges.

The main result in this paper is as follows.

Theorem 1.1. Let n and l be integers with n ≥ 3 and l ≥ 2.

(i) If l ≥ 4 and l is even, then ex(CTn, C2l) = O(n−1+ 2
l )e(CTn).

(ii) If l ≥ 4 and l is odd, then

ex(CTn, C2l) =

{
O(n− 1

l )e(CTn), if l = 7,

O(n
− 1

8
+ 1

4(l−3) )e(CTn), otherwise.

(iii) If l = 3, then ex(CTn, C2l) ≤ (
√
2− 1 + o(1))e(CTn).

(iv) If l = 2, then ex(CTn, C2l) ≤ 3
4e(CTn).

An immediate consequence of Theorem 1.1 is that ex(CTn, C2l) = o(e(CTn)) for l ≥ 4.

This leads to the following Ramsey-type result.

Corollary 1.2. Let t and l be integers with t ≥ 1 and l ≥ 4. If CTn is edge-partitioned into

t subgraphs, then one of the subgraphs must contain C2l provided that n is sufficiently large

(depending only on t and l).

In the next section we will prove some basic properties of cycles in the complete transpo-

sition graphs. Using these preparations we will prove parts (i)-(ii) and (iii)-(iv) of Theorem

1.1 in Sections 3 and 4, respectively.

2 Preliminaries

We assume that Sn is the symmetric group on {1, 2, . . . , n}, where n ≥ 3. The identity

element of Sn is denoted by id. The support of an element x ∈ Sn is defined as supp(x) =

{i ∈ {1, 2, . . . , n} | ix 6= i}.

Definition 2.1. The support of an edge {u, z} of CTn, denoted by supp({u, z}), is defined
to be the support of the transposition zu−1. That is, supp({u, z}) = supp(zu−1).
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Since CTn is a Cayley graph on the symmetric group Sn whose connection set consists of

all transpositions, we know that supp({u, z}) is a 2-subset of {1, 2, . . . , n} for any {u, z} ∈
E(CTn), and supp({u, z}) = supp({z, u}). Note that, for any two incident edges {x, u} and

{x, z} of CTn, we have |supp({x, u}) ∩ supp({x, z})| = 0 or 1. For any subgraph H of CTn,

we define

supp(H) :=
⋃

{u,z}∈E(H)

supp({u, z}).

Let P = (u1, u2, . . . , ut) be a path in CTn. Setting wi = uiu
−1
i−1 for i ∈ {2, 3, . . . , t}, we have

utu
−1
1 = wtwt−1 · · ·w3w2 and hence supp(utu

−1
1 ) ⊆ supp(P ).

Lemma 2.2. Let g and h be distinct transpositions of Sn. Then the only 4-cycles in CTn

passing through the 2-path (g, id, h) are (id, g, hg, h, id) and (id, g, gh, h, id). In particular,

if gh = hg, then these 4-cycles are identical and they are the only 4-cycle in CTn passing

through the 2-path (g, id, h).

Proof. Suppose gh = hg. Then |supp(g) ∩ supp(h)| = 0. Note that id, g and h are three

vertices in CTn. Let w be a common neighbor of the vertices g and h in CTn. Then there

exist transpositions x, y such that xg = yh = w, implying that gh = xy. Since the supports

of g and h are disjoint, the equation gh = xy holds if and only if g = x and h = y, or g = y

and h = x. Therefore, w is either the vertex id or the vertex gh. Thus, there exists a unique

4-cycle in CTn passing through g, id and h, which is (id, g, hg = gh, h, id).

Suppose gh 6= hg. Then |supp(g) ∩ supp(h)| = 1. Without loss of generality we may

assume g = (1, 2), and h = (1, 3). Let w be a common neighbor of the vertices g and h

in CTn. Then there exist transpositions x, y such that xg = yh = w, implying that xy =

gh = (1, 2)(1, 3) = (1, 2, 3). If we decompose (1, 2, 3) into the product of two transpositions

of Sn, then the supports of these two transpositions must lie in {1, 2, 3} and contain exactly

one common letter. Therefore, the only ways to decompose (1, 2, 3) into the product of two

transpositions of Sn are (1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3). Hence, we have

x = (1, 3) and y = (2, 3), or x = (2, 3) and y = (1, 2), or x = (1, 2) and y = (1, 3), yielding

w ∈ {id, (1, 3, 2), (1, 2, 3)}. Therefore, there are exactly two 4-cycles in CTn passing through

g, id and h, namely (id, g, hg, h, id) and (id, g, gh, h, id). ✷

It is well known that any permutation in Sn can be expressed as a product of transpo-

sitions, and for each g ∈ Sn the map ĝ : h 7→ hg, h ∈ Sn defines an automorphism of CTn.

Hence Lemma 2.2 implies the following result.

Corollary 2.3. Let (u, x, z) be a 2-path in CTn. If |supp({x, u}) ∩ supp({x, z})| = 0,

then there is a unique 4-cycle in CTn containing (u, x, z), namely (x, z, zx−1u, u, x); and

if |supp({x, u}) ∩ supp({x, z})| = 1, then there are exactly two 4-cycles in CTn containing

(u, x, z), namely (x, z, zx−1u, u, x) and (x, z, ux−1z, u, x).

Denote by n(C4) the number of 4-cycles in CTn. Lemma 2.2 and Corollary 2.3 together

imply the following result.

Corollary 2.4. The following hold.
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(i) The length of a shortest cycle in CTn is 4.

(ii) For any edge {u, z} of CTn, there are exactly 1
2 (n− 2)(n+1) cycles of length 4 in CTn

containing {u, z}.

(iii) n(C4) =
1
8(n − 2)(n + 1)e(CTn).

Proof. Since CTn is bipartite, it does not contain any 3-cycle. On the other hand, 4-cycles

exist in CTn by Lemma 2.2. So any shortest cycle in CTn has length 4 as stated in (i).

For any edge {u, z} of CTn, there are exactly
(
n−2
2

)
2-paths (u, z, w) such that |supp({u, z})∩

supp({z, w})| = 0, and there are exactly n − 2 2-paths (u, z, w) such that |supp({u, z}) ∩
supp({z, w})| = 1. Hence, by Corollary 2.3, the number of 4-cycles containing any given

edge of CTn is equal to
(
n−2
2

)
+2(n− 2) = 1

2(n− 2)(n+1) as claimed in (ii). We obtain (iii)

from (ii) immediately. ✷

Let

F0 = {all transpositions of Sn}
and

Fi = {x ∈ F0 | i ∈ supp(x)}
for each i ∈ {1, 2, . . . , n}. Clearly, in Sn any pair of transpositions with joint supports are

contained in one of F1,F2, . . . ,Fn. In addition, F1 ∪ · · · ∪ Fn contains all transpositions of

Sn and each transposition of Sn appears exactly three times in F0 ∪ F1 ∪ · · · ∪ Fn.

The following auxiliary graphs will play an important role in our proof of Theorem 1.1.

Definition 2.5. Let G be a spanning subgraph of CTn. For each i ∈ {0, 1, 2, . . . , n} and

each x ∈ Sn, define Gi
x to be the graph with vertex set V (Gi

x) = {yx ∈ Sn | y ∈ Fi} such

that for u, z ∈ V (Gi
x), u and z are adjacent if and only if |supp({x, u}) ∩ supp({x, z})| = δi

and there exists a vertex w with w 6= x such that (u,w, z) is a 2-path in G, where δ0 = 0

and δi = 1 for i ∈ {1, 2, . . . , n}.

By the definition of Gi
x, it is clear that

∑

x∈V (CTn)

n∑

i=0

v(Gi
x) = 3v ·

(
n

2

)
, (1)

where as before v = n! is the number of vertices of CTn. Since |V (Gi
x) ∩ V (Gj

x)| = 1 and

|E(G0
x) ∩ E(Gi

x)| = 0 for any i, j ∈ {1, 2, . . . , n} with i 6= j, we have |E(Gi
x) ∩ E(Gj

x)| = 0

for any i, j ∈ {0, 1, . . . , n} with i 6= j. Hence

∑

x∈V (CTn)

n∑

i=0

e(Gi
x) ≥

∑

w∈V (G)

(
dG(w)

2

)
, (2)

where the right-hand side gives the number of 2-paths in G.

Lemma 2.6. Let G be a spanning subgraph of CTn. Let l be an integer with l ≥ 3. If

there exists an l-cycle in Gi
x for some i ∈ {0, 1, . . . , n} and x ∈ V (CTn), then there exists a

2l-cycle in G.
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Proof. Assume that C = (u1, u2, . . . , ul, ul+1 = u1) is an l-cycle in Gi
x. By the definition

of Gi
x, for each j ∈ {1, 2, . . . , l} there exists wj ∈ V (CTn) such that (uj , wj , uj+1) is a 2-

path in G. By Corollary 2.3, we have wj = ujx
−1uj+1 = uj+1x

−1uj if i = 0, and wj ∈
{ujx−1uj+1, uj+1x

−1uj} if i ∈ {1, 2, . . . , n}.
We claim that w1, w2, . . . , wl are pairwise distinct. Suppose to the contrary that wj =

ws with j < s. Since there are at most two cycles of length 4 containing (x, uj , wj), we

have s = j + 1. If i = 0, then |supp({x, uj}) ∩ supp({x, uj+1})| = 0, which implies that

(xu−1
j )(uj+1x

−1) = (uj+1x
−1)(xu−1

j ) = uj+1u
−1
j and w−1

j wj+1 = u−1
j+1xu

−1
j uj+1x

−1uj+2 =

u−1
j uj+2 6= id, a contradiction. If i ∈ {1, 2, . . . , n}, then

{ujx−1uj+1, uj+1x
−1uj} ∩ {uj+1x

−1uj+2, uj+2x
−1uj+1} 6= ∅.

Assume that uj = (i, t0)x, uj+1 = (i, t1)x and uj+2 = (i, t2)x, where t0, t1, t2 are distinct

elements of {1, 2, . . . , n} \ {i}. Then
{(i, t0, t1)x, (i, t1, t0)x} ∩ {(i, t1, t2)x, (i, t2, t1)x} 6= ∅,

which is impossible.

Since CTn is a bipartite graph, we have {u1, u2, . . . , ul} ∩ {w1, w2, . . . , wl} = ∅. Since
w1, w2, . . . , wl are pairwise distinct and the 2-path (uj , wj , uj+1) is in G for j ∈ {1, 2, . . . , l},
it follows that (u1, w1, u2, w2, . . . , ul, wl, ul+1 = u1) is a 2l-cycle in G. ✷

3 Proof of the main result when l ≥ 4

We prove parts (i) and (ii) of Theorem 1.1 in this section.

3.1 4k-cycle-free subgraphs of CTn

Proof of Theorem 1.1 (i). Suppose G is a C4k-free spanning subgraph of CTn with maximum

number of edges, where k ≥ 2. Then dG(w) ≥ 1 for each w ∈ V (G). Since G is C4k-free, by

Lemma 2.6, Gi
x is C2k-free for any x ∈ V (CTn) and i ∈ {0, 1, . . . , n}. Thus from the main

theorem in [4] by Bondy and Simonovits it follows that Gi
x has at most ck(v(G

i
x))

1+ 1
k edges,

where ck is a positive constant relying on k only. Therefore, we have

∑

x∈V (CTn)

n∑

i=0

e(Gi
x) ≤ ckv ·

((
n

2

)1+ 1
k

+ n(n− 1)1+
1
k

)
≤ c′kv ·

(
n

2

)1+ 1
k

. (3)

On the other hand, by (2) and the Cauchy-Schwarz inequality, we have

∑

x∈V (CTn)

n∑

i=0

e(Gi
x) ≥

∑

w∈V (G)

(
dG(w)

2

)

=
1

2

∑

w∈V (G)

dG(w)
2 − 1

2

∑

w∈V (G)

dG(w)

≥ 1

2v




∑

w∈V (G)

dG(w)




2

− 1

2

∑

w∈V (G)

dG(w). (4)
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Since
∑

w∈V (G) dG(w) = 2e(G), it follows from (3) and (4) that

2e(G)2

v
− e(G) ≤ c′kv ·

(
n

2

)1+ 1
k

,

or equivalently,

e(G)2 ≤ 1

2
c′kv

2 ·
(
n

2

)1+ 1
k

+
e(G)v

2
.

Set π = e(G)/e(CTn). Observe that 0 < π < 1. Since e(CTn) =
v
2

(n
2

)
, the inequality above

yields

π2 ≤ 2c′k ·
(
n

2

)−1+ 1
k

+ π ·
(
n

2

)−1

.

So there exists a constant c depending on k such that

π ≤ cn−1+ 1
k .

Therefore, we have

ex(CTn, C4k) = e(G) = πe(CTn) ≤ cn−1+ 1
k e(CTn),

as desired in part (i) of Theorem 1.1. ✷

3.2 (4k + 2)-cycle-free subgraphs of CTn

In this subsection we assume that G is a C4k+2-free spanning subgraph of CTn and a and

b are integers with a, b ≥ 2 such that 4a + 4b = 4k + 4, where k ≥ 2. Note that a cycle of

length 4a in G can not intersect a cycle of length 4b in G at a single edge, for otherwise their

union would contain a cycle of length 4k + 2. In what follows we will give an upper bound

as well as a lower bound on the number of 4a-cycles in G. These bounds will be used in the

proof of part (ii) of Theorem 1.1 at the end of this subsection.

Lemma 3.1. For any 2l-cycle C in CTn, where l ≥ 2, we have |supp(C)| ≤ 2l.

Proof. Let C = (u0, u1, u2, . . . , u2l = u0) be a 2l-cycle in CTn. Set wi = uiu
−1
i−1 for i ∈

{1, 2, . . . , 2l}. Then supp({ui−1, ui}) = supp(wi) and supp(C) = ∪2l
i=1supp(wi). Observe

that w2lw2l−1 · · ·w2w1 = id. So for any x ∈ supp(C) there exist distinct i, j ∈ {1, 2, . . . , 2l}
such that x ∈ supp(wi) ∩ supp(wj). Hence |supp(C)| ≤ 2l. ✷

Lemma 3.2. Let C and C ′ be cycles of lengths 4a and 4b in G, respectively. If C and C ′

have at least one common edge, then |supp(C) ∩ supp(C ′)| ≥ 3.
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Proof. Suppose {u1, u2} is a common edge of C and C ′. Since G is a (4a+4b− 2)-cycle-free

subgraph of CTn, there exists a vertex u3 of G such that u3 ∈ (V (C) ∩ V (C ′)) \ {u1, u2}.
Since supp(u3u

−1
1 ) ⊆ supp(C) ∩ supp(C ′) and u3 6= u2, we have

supp({u1, u2}) 6= supp(u3u
−1
1 ).

This together with supp({u1, u2}) ⊆ supp(C)∩supp(C ′) implies that |supp(C)∩supp(C ′)| ≥
3. ✷

For any graphs H and L, define N(H,L) to be the number of subgraphs of H which are

isomorphic to L.

Lemma 3.3. We have

N(G,C4a) = O(n4a−3)e(G) +O(vn4a−1+ 1
b ).

Moreover, if a = b, then N(G,C4a) = O(n4a−3)e(G).

Proof. Denote by C the set of cycles of length 4a in G and Ce the set of cycles in C containing

a given edge e. Note that |C| = N(G,C4a). Let E = ∪C∈CE(C). Let E1 be the set of edges

in E that are contained in a cycle of length 4b in G, and let E2 := E \E1. Then E = E1∪E2

and

4aN(G,C4a) =
∑

e1∈E1

|Ce1 |+
∑

e2∈E2

|Ce2 |. (5)

Assume that e = {u1, u4a}. Observe that for any 4a-cycle (u1, u2, . . . , u4a, u1), there

is a unique sequence (A1, A2, . . . , A4a−1) of length 4a − 1 such that Ai = supp({ui, ui+1})
for any i ∈ {1, 2, . . . , 4a − 1}. For each B ∈ {supp(C∗) | C∗ ∈ Ce}, there are

(|B|
2

)4a−1

sequences (A1, A2, . . . , A4a−1) of length 4a − 1 such that Ai ⊆ B and |Ai| = 2 for each

i ∈ {1, 2, . . . , 4a − 1}, and hence there are at most
(|B|

2

)4a−1
4a-cycles C containing e such

that supp(C) = B.

For each e1 ∈ E1 (if E1 6= ∅), let C ′ be a fixed 4b-cycle with e1 ∈ E(C ′). For any 4a-cycle

C∗ ∈ Ce1 , we have supp(e1) ⊆ supp(C∗) and |supp(C∗) ∩ supp(C ′)| ≥ 3 by Lemma 3.2.

Hence, by Lemma 3.1, we have

|{supp(C∗) | C∗ ∈ Ce1}| ≤
4a−2∑

i=1

(|supp(C ′)| − 2

i

) 4a−2−i∑

j=0

(
n− |supp(C ′)|

j

)
,

which implies

|Ce1 | ≤
4a−2∑

i=1

(|supp(C ′)| − 2

i

) 4a−2−i∑

j=0

(
n− |supp(C ′)|

j

)(
i+ j + 2

2

)4a−1

= O(n4a−3). (6)
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For each e2 ∈ E2 (if E2 6= ∅), by Lemma 3.1 again, we have

|{supp(C∗) | C∗ ∈ Ce2}| ≤
4a−2∑

i=0

(
n− 2

i

)
,

which implies

|Ce2 | ≤
4a−2∑

i=0

(
n− 2

i

)(
i+ 2

2

)4a−1

= O(n4a−2). (7)

Note that |E1| ≤ e(G). Note also that |E2| ≤ ex(CTn, C4b) as the subgraph induced

by E2 is C4b-free. Using part (i) of Theorem 1.1 (which has been proved already), we have

|E2| ≤ cn−1+1/be(CTn) for some positive constant c. Combining (5), (6) and (7), we obtain

N(G,C4a) ≤
1

4a



∑

e∈E1

O(n4a−3) +
∑

e∈E2

O(n4a−2)




≤ O(n4a−3)e(G) +O(vn4a−1+ 1
b ).

In particular, if a = b, then |E2| = 0 and hence

N(G,C4a) ≤
1

4a

∑

e∈E1

O(n4a−3) ≤ O(n4a−3)e(G).

This completes the proof. ✷

Proposition 3.4. (Erdős and Simonovits [13]) Let L be a bipartite graph, where there exist

vertices x and y such that L \ {x, y} is a tree. Then there exist constants c1, c2 > 0 such

that if H is a graph containing more than c1v(H)
3
2 edges, then

N(H,L) ≥ c2
e(H)e(L)

v(H)2e(L)−v(L)
.

With the help of this proposition and the auxiliary graphs Gi
x as defined in Definition

2.5, we now prove a lower bound on N(G,C4a).

Lemma 3.5. We have

N(G,C4a) ≥ cv
d4a

n4a
−O(vn2a)

for some positive constant c depending on a, where d = 2e(G)/v.

Proof. By Lemma 2.6, we have

N(G,C4a) ≥
∑

x∈V (CTn)

n∑

i=0

N(Gi
x, C2a). (8)

9



Setting L = C2a in Proposition 3.4, there exist two positive constants c1 and c2 such that

N(Gi
x, C2a) ≥ c2

(
e(Gi

x)
2a

v(Gi
x)

2a
− (c1v(G

i
x)

3/2)2a

v(Gi
x)

2a

)
.

Combining this with (8), we obtain

N(G,C4a) ≥
∑

x∈V (CTn)

n∑

i=0

c2

(
e(Gi

x)
2a

v(Gi
x)

2a
− (c1v(G

i
x)

3/2)2a

v(Gi
x)

2a

)

≥
∑

x∈V (CTn)

(
c2e(G

0
x)

2a

(n
2

)2a +

n∑

i=1

c2e(G
i
x)

2a

(n− 1)2a

)
−

∑

x∈V (CTn)

n∑

i=0

c2a1 v(Gi
x)

a.

By Hölder’s inequality, we then have

N(G,C4a) ≥ c2
∑

x∈V (CTn)

(
e(G0

x)
2a

(n
2

)2a +

(∑n
i=1 e(G

i
x)
)2a

n2a−1(n− 1)2a

)
−O(vn2a)

≥ c2
n4a

∑

x∈V (CTn)


e(G0

x)
2a +

(
n∑

i=1

e(Gi
x)

)2a

−O(vn2a)

≥ ca
n4a

∑

x∈V (CTn)

(
n∑

i=0

e(Gi
x)

)2a

−O(vn2a)

≥ cav

n4a




∑

x∈V (CTn)

n∑

i=0

e(Gi
x)

v




2a

−O(vn2a)

≥ cav

n4a




∑

w∈V (G)

(dG(w)
2

)

v




2a

−O(vn2a),

where ca is a positive constant depending on a and inequality (2) is used in the last step.

Setting d = 2e(G)/v and applying Hölder’s inequality again, we obtain

N(G,C4a) ≥
cav

n4a

(∑
w∈V (G)

dG(w)
v

2

)2a

−O(vn2a)

=
cav

n4a

(
d

2

)2a

−O(vn2a)

≥ cv
d4a

n4a
−O(vn2a)

for some positive constant c depending on a. This completes the proof. ✷

Proof of Theorem 1.1 (ii). Suppose G is a C4k+2-free spanning subgraph of CTn with

maximum number of edges. Then ex(CTn, C2l) = e(G), where l = 2k + 1. Set d = 2e(G)/v.

10



Combining Lemma 3.3 and Lemma 3.5, we have

cv
d4a

n4a
≤ O(n4a−3)e(G) +O(vn4a−1+ 1

b ) +O(vn2a),

d4a ≤ O(n8a−3)d+O(n8a−1+ 1
b ) +O(n6a).

Hence d = max

{
O(n2− 1

4a−1 ), O(n2−
1− 1

b

4a )

}
. This bound is minimized when a = 2 and

b = k − 1, and this choice of (a, b) yields d = O(n
2− 1

8
+ 1

8(k−1) ). Since e(G) = vd/2 and

e(CTn) =
v
2

(n
2

)
, it follows that

e(G) = O(vn
2− 1

8
+ 1

8(k−1) )

= O(n
− 1

8
+ 1

8(k−1) )e(CTn)

= O(n
− 1

8
+ 1

4(l−3) )e(CTn). (9)

Consider the case when a = b = (k + 1)/2 with k odd. By Lemmas 3.3 and 3.5, we have

d4a ≤ O(n8a−3)d+O(n6a),

which yields

e(G) = O(n2− 1
4a−1 )

= O(vn2− 1
2k+1 )

= O(n− 1
2k+1 )e(CTn)

= O(n− 1
l )e(CTn). (10)

Observe that when k is odd we have n− 1
2k+1 ≤ n

− 1
8
+ 1

8(k−1) if and only if 0 < k < 4.9. So (10)

is a better bound than (9) when k = 3. Therefore, e(G) = O(n− 1
l )e(CTn) when l = 7. This

competes the proof. ✷

So far we have completed the proof of Theorem 1.1 (i) and (ii). These results imply that

ex(CTn, C2l) = o(e(CTn)) for any fixed positive integer l ≥ 4. Thus, for any t ≥ 1 and l ≥ 4,

there exists a positive integer n(t, l) such that for any n > n(t, l) and any edge-coloring of

CTn with t colors, CTn contains a monochromatic copy of C2l, as claimed in Corollary 1.2.

Remark. The theta graph Θi,j,k is the graph with i + j + k − 1 vertices which consists of

three internally vertex-disjoint paths between the same pair of vertices with lengths i, j and

k, respectively. As a by-product of the proof of Theorem 1.1 (i) and (ii), we obtain that

ex(CTn,Θ4a−1,1,4b−1) = o(e(CTn))

for any a, b ≥ 2.

11



(1) (2) (3) (4) (5) (6)

Figure 1: Possibilities for G ∩H when H ∈ C4.

4 Proof of the main result when l = 2, 3

In this section, C4 denotes the set of 4-cycles in CTn, and for each e ∈ E(CTn), (C4)e denotes

the set of 4-cycles in CTn containing e. Suppose G is a 2l-cycle-free spanning subgraph of

CTn with maximum number of edges. For any subgraphs H and L of CTn, let G∩H be the

graph with vertex set V (G) ∩ V (H) and edge set E(G) ∩ E(H).

Note that for any 4-cycle H ∈ C4, G∩H is isomorphic to one of the six graphs in Figure 1.

Denote by χ0, χ1, χ
1
2, χ

2
2, χ3, χ4 the ratio of the number of 4-cycles H with G∩H isomorphic

to the graphs (1)–(6) in Figure 1 to the total number of 4-cycles in CTn, respectively. Of

course we have

χ0 + χ1 + χ1
2 + χ2

2 + χ3 + χ4 = 1. (11)

By double counting the cardinality of {(e,H) | H ∈ C4, e ∈ E(G ∩H)}, we obtain

∑

H∈C4

e(G ∩H) =
∑

e∈E(G)

|(C4)e|,

which by Corollary 2.4 (ii) implies

(
χ1 + 2(χ1

2 + χ2
2) + 3χ3 + 4χ4

)
· n(C4) = e(G) · 1

2
(n− 2)(n + 1),

where as before n(C4) is the number of 4-cycles in CTn. Set π = e(G)/e(CTn). By Corol-

lary 2.4 (iii), we have

χ1 + 2(χ1
2 + χ2

2) + 3χ3 + 4χ4 = 4π. (12)

Proof of Theorem 1.1 (iv). Suppose G is a C4-free spanning subgraph of CTn with maximum

number of edges. Then dG(w) ≥ 1 for any w ∈ V (G) and χ4 = 0 as G is C4-free. Hence, by

(11) and (12), we have

π =
1

4

(
χ1 + 2(χ1

2 + χ2
2) + 3χ3

)
≤ 3

4

(
χ0 + χ1 + χ1

2 + χ2
2 + χ3

)
=

3

4
.

Thus ex(CTn, C4) = e(G) = πe(CTn) ≤ 3
4e(CTn) as desired in part (iv) of Theorem 1.1. ✷

Proof of Theorem 1.1 (iii). Suppose G is a C6-free spanning subgraph of CTn with maximum

number of edges. For each i ∈ {0, 1, 2, . . . , n} and each x ∈ V (CTn), let H
i
x be the subgraph

12



of Gi
x (see Definition 2.5) induced by the subset {u ∈ V (Gi

x) | {u, x} /∈ E(G)} of V (Gi
x).

Then
∑

x∈V (CTn)

n∑

i=0

v(H i
x) = 3

∑

x∈V (CTn)

((
n

2

)
− dG(x)

)
.

Since |E(H i
x) ∩ E(Hj

x)| = 0 for distinct i, j ∈ {0, 1, . . . , n}, we have

∑

x∈V (CTn)

n∑

i=0

e(H i
x) + (4χ4 + 2χ3) · n(C4) ≥

∑

w∈V (G)

(
dG(w)

2

)
. (13)

We claim that for any e ∈ E(CTn) there are at most two 4-cycles H in C4 containing e

such that (H∩G)−e is isomorphic to the graph (5) in Figure 1. Suppose to the contrary that

there exist three such 4-cycles in C4, say, C1, C2 and C3. Suppose e = {u, z}. Since G is C6-

free, we have (V (Ci) \ {u, z}) ∩ (V (Cj) \ {u, z}) 6= ∅ for any distinct i, j ∈ {1, 2, 3}. Setting

C1 = (u, z, x1, x2, u) and C2 = (u, z, x1, x3, u). If V (C3) = {u, z, x1, x4}, then there are

three 4-cycles containing the 2-path (u, z, x1), which contradicts Corollary 2.3. If V (C3) =

{u, z, x2, x3}, then there exists a triangle in G, a contradiction. This proves our claim. By

double counting the number of pairs (e,H) with e ∈ E(CTn) andH ∈ C4 such that (G∩H)−e

is isomorphic to the graph (5) in Figure 1, we obtain 2e(CTn) ≥ (χ3 + 4χ4) · n(C4). This

together with Corollary 2.4 (iii) implies χ3 + 4χ4 ≤ 2e(CTn)/n(C4) = 16/(n − 2)(n + 1).

Therefore,

2χ3 + 4χ4 = o(1). (14)

Since G is C6-free and H i
x is a subgraph of Gi

x, by Lemma 2.6, H i
x contains no 3-cycles

for any x ∈ V (CTn) and i ∈ {0, 1, . . . , n}. So by Mantel’s theorem [23] we have e(H0
x) ≤((

n
2

)
− dG(x)

)2
/4 and e(H i

x) ≤ (n − 1)2/4 for i ∈ {1, 2, . . . , n}. Since |E(H i
x) ∩ E(Hj

x)| = 0

for distinct i, j ∈ {0, 1, . . . , n}, we have

n∑

i=0

e(H i
x) ≤

1

4

((
n

2

)
− dG(x)

)2

+
1

4
n(n− 1)2

=
1

4

((
n

2

)2

+ n(n− 1)2 − 2

(
n

2

)
dG(x) + dG(x)

2

)
.

Since
∑

x∈V (G) dG(x) = 2e(G), it follows that

∑

x∈V (CTn)

n∑

i=0

e(H i
x) ≤

v

4

(
n

2

)2

−
(
n

2

)
e(G) +

vn(n− 1)2

4
+

1

4

∑

x∈V (CTn)

dG(x)
2. (15)

One the other hand, by (13) and (14), we have

∑

x∈V (CTn)

n∑

i=0

e(H i
x) ≥

∑

w∈V (G)

(
dG(w)

2

)
− o(n(C4)), (16)

≥ 1

2

∑

w∈V (G)

dG(w)
2 − e(G) − o(n(C4)).
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Combining (15) with (16), we have

v

4

(
n

2

)2

−
(
n

2

)
e(G) +

vn(n− 1)2

4
≥ 1

4

∑

w∈V (G)

dG(w)
2 − e(G) − o(n(C4))

≥ 1

4v




∑

w∈V (G)

dG(w)




2

− e(G) − o(n(C4))

=
e(G)2

v
− e(G) − o(n(C4)).

Dividing both sides by v
4

(n
2

)2
, we then obtain

1− 2e(G)

e(CTn)
+

4

n
− e(G)2

e(CTn)2
+

2e(G)

e(CTn)
(n
2

) + o(1) ≥ 0.

Recall that π = e(G)/e(CTn). Since 0 < π < 1, 4
n = o(1) and 2π/

(
n
2

)
= o(1), we have

1 − 2π − π2 + o(1) ≥ 0, which implies π ≤
√
2 − 1 + o(1). Therefore, we have e(G) =

πe(CTn) ≤ (
√
2− 1 + o(1))e(CTn) as desired in part (iii) of Theorem 1.1. ✷
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