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Abstract

The view that altruistic punishment plays an important role in supporting public
cooperation among human beings and other species has been widely accepted by
the public. However, the positive role of altruistic punishment in enhancing co-
operation will be undermined if corruption is considered. Recently, behavioral
experiments have confirmed this finding and further investigated the effects of
the leader’s punitive power and the economic potential. Nevertheless, there are
relatively few studies focusing on how these factors affect the evolution of coop-
eration from a theoretical perspective. Here, we combine institutional punishment
public goods games with bribery games to investigate the effects of the above fac-
tors on the evolution of cooperation. Theoretical and numerical results reveal that
the existence of corruption will reduce the level of cooperation when cooperators
are more inclined to provide bribes. In addition, we demonstrate that stronger
leader and richer economic potential are both important to enhance cooperation.
In particular, when defectors are more inclined to provide bribes, stronger leaders
can sustain the contributions of public goods from cooperators if the economic
potential is weak.
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1. Introduction

Cooperation is the basis for the survival and reproduction of organisms, and its
phenomenon is very common in the real society [1–4]. However, how did cooper-
ative behavior evolve remains a major puzzle in scientific community [5]. Because
individuals who choose cooperative behavior need to bear the cost by themselves
but bring benefits to others, which makes them at a disadvantage in the process
of natural selection [6–15]. Previous researches have illuminated a number of
mechanisms including reputation to explain the evolution of cooperation [16–31].
Recent studies on strong reciprocity theory reveal that some individuals will not
hesitate to pay costs to punish those who do not cooperate, even if these costs can-
not be compensated [32–42]. The threat of punishment can limit the prevalence
of uncooperative individuals and thus support cooperation [43–45].

Although punishment plays a pivotal role in maintaining cooperation, it cannot
be ignored that punishment, especially institutional punishment, is vulnerable to
corruption. A number of studies support the finding that curruption might have
a destructive effect on the role of punishment in promoting cooperation [46–48,
50, 51]. Concretely, Abdallah et al. [46] studied how corruption affects the co-
evolution of cooperation and punishment in public goods games (PGG) and found
that the effectiveness of institutional punishment on promoting cooperation will
be undermined when bribery is an option. Subsequently, some studies based on
donation game [48] and PGG [50] revealed that cyclic behavior can be found when
bribe between enforcers and free-riders happens.

Previous theoretical studies have investigated how corruption affects the ef-
fect of punishment on cooperation from different perspectives [46–51]. However,
the impact of some important factors correlated with levels of corruption such as
institutional and economic factors on the results has not been explored. Recent
experimental research [52] constructed the institutional punishment public goods
game (IPGG) and bribery game (BG) where one individual is randomly selected
from the game group to act as leader who could use taxes collected from all indi-
viduals for punishment. In addition, each individual can choose whether to bribe
the leader or not, and the leader can choose to punish, accept bribes, or do noth-
ing. The experimental results reveal that corruption, the punishment multiplier
(the leader’s punitive power), and the pool multiplier (the expression of the eco-
nomic potential) play important roles in the evolution of cooperation. However, to
our knowledge, thus far few theoretical works have revealed the causal intercon-
nections among corruption, institutional punishment, and economic factors for the
evolution of cooperation. Accordingly, it is still unclear the quantitative effects of
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these elements on the evolution of cooperation from a theoretical perspective.
In view of the above statements, in this work we construct a game-theoretical

model by combing BG with IPGG to study the evolution of cooperation. We
focus on the impacts of the pool multiplier and the punishment multiplier on the
evolutionary results in an infinite populations. Through theoretical analysis, we
reveal that corruption will decrease the level of cooperation when cooperators are
more inclined to bribe, and stronger leaders and richer economic potential can
both enhance the level of contributions. Once when defectors are more willing to
provide bribe, a stronger leader can stimulate individual’s willingness to cooperate
under poor economic potential, while a richer economic environment requires a
weaker leader. We further numerically verify the above theoretical results.

2. Model

2.1. IPGG
We consider that N individuals are randomly sampled from an infinite well-

mixed population to play the PGG. According to the previous experimental setup
[52], we consider that every individual has an initial fund b and decides whether
or not to contribute c to the public goods pool. And the total contribution of
the public goods pool is multiplied by the pool multiplier F where 1 < F <
N and then distributed equally to all group members regardless of contribution.
Thus one cooperator (C) can obtain lower payoff than a defector (D) in the same
group. In order to solve the above cooperation problem, we consider institutional
punishment under the framework of PGG. Concretely, each individual needs to
pay a fixed tax τ to support such a punishment institution before contributing
to the PGG, and then one individual is randomly selected from the game group
as a leader. With probability β, the leader chooses to punish individuals in the
PGG by using taxes extracted from all individuals, with probability 1 − β he/she
does nothing. Here, we assume that one punishing leader will allocate the α ratio
of total taxes to punish cooperators, while the remainder (1 − α)Nτ is used for
equally punishing the defectors. Here the punishment multiplier is set as rp, which
describes the intensity of the selected leader to execute the punishment. Besides,
the pool multiplier F is used to characterize the economic potential. In our model,
the bigger the rp is, the stronger the punitive power of the leader is; The greater
the F , the richer the economic potential. Thus the payoffs of C and D individuals
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in the IPGG can be respectively written as

πC = b+
Fc(NC + 1)

N
− c− τ − (1− 1

N
)[

NC

N − 1

βαNτrp
NC

+
ND

N − 1

βαNτrp
NC + 1

] (1)

and

πD = b+
FcNC

N
− τ − (1− 1

N
)[

NC

N − 1

β(1− α)Nτrp
ND + 1

+
ND

N − 1

β(1− α)Nτrp
ND

], (2)

where 1 − 1
N

denotes the probability that the focus cooperator or defector is not
selected as the leader, NC and ND respectively refer to the number of C and D
individuals in the group. Besides, NC

N−1
denotes the probability that one cooperator

is selected as leader among the remaining N − 1 individuals, and βαNτrp
NC

denotes
the expected fine that the focus cooperator needs to bear when the leader is a coop-
erator. ND

N−1

βαNτrp
NC+1

represents the expected fine that the focus cooperator receives

from the defective leader. Similarly, NC

N−1

β(1−α)Nτrp
ND+1

+ ND

N−1

β(1−α)Nτrp
ND

represents
the expected fine that the focus defector needs to bear.

2.2. BG
Then we consider bribery under the framework of IPGG. In this case, allN−1

individuals and one leader respectively have one additional choice. Concretely,
the other N − 1 individuals can decide to use their endowment to contribute to
the common pool, retain for themselves, and offer bribes to the selected leader.
In turn, the leader can choose to punish other individuals, do nothing, or accept
the bribe. Here we set the probability that one cooperator (non-leader) chooses
to offer bribe h to the leader as p and the probability that one defector chooses to
offer bribe as q. Furthermore, the probability that the leader chooses to punish is
set as β, the probability of accepting bribe is γ, and hence the probability of doing
nothing is 1− β − γ. Then the payoffs of C and D individuals obtained from the
BG can be respectively rewritten as

πC = b+
Fc(NC + 1)

N
− c− τ +

1

N
(pγhNC + qhNDγ)

− (1− 1

N
)[phγ +

NC

N − 1

βαNτrp
NC

+
ND

N − 1

βαNτrp
NC + 1

] (3)
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and

πD = b+
FcNC

N
− τ +

1

N
(pγhNC + qhNDγ)

− (1− 1

N
)[qhγ +

NC

N − 1

β(1− α)Nτrp
ND + 1

+
ND

N − 1

β(1− α)Nτrp
ND

],(4)

where 1
N

denotes the probability that the focus individual is selected as leader,
pγhNC denotes the expected bribe amount that the leader receives from coopera-
tors, and qhNDγ denotes the expected bribe amount that the leader receives from
defectors. Besides, phγ and qhγ respectively denote the expected bribe amounts
provided by cooperator and defector for the leader.

We use social learning to describe the strategy selection process, that is, in-
dividuals tend to imitate other individuals’ strategies which can produce higher
payoffs [54]. In the following, we shall explore the replicator dynamics of coop-
eration and defection in an infinite population.

3. Results

In an infinite population, a general approach to investigate the evolutionary
dynamics of the fraction x of C individuals (and 1 − x of D individuals) in an
infinite population is the gradient of selection associated with the well-known
replicator equation [53, 54], given as

ẋ = x(1− x)(fC − fD), (5)

which describes the change in the frequency of cooperation in the population.
Here fC and fD are respectively the average payoffs of C and D individuals.
According to the system equation (5), C(D) individuals will increase in the pop-
ulation whenever ẋ > 0(ẋ < 0). Since the population is well-mixed, where each
individual can interact with each other. Then we can written the average payoffs
of C and D individuals as

fC =
N−1∑
NC=0

(
N − 1

NC

)
xNC (1− x)N−NC−1πC (6)

and

fD =
N−1∑
NC=0

(
N − 1

NC

)
xNC (1− x)N−NC−1πD. (7)
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Figure 1: Evolutionary dynamics of cooperation in IPGG. Panels (a), (b), and (c) show the gradient
of selection changing with the fraction of cooperators for different values of pool multiplier F .
Panel (d) shows the internal roots of G(x) as a function of F for different values of rp. Panel
(e) shows the internal roots of G(x) as a function of rp for different values of F . Open circles
represent unstable equilibrium points, and filled circles denote stable equilibrium points. The
arrow pointing to the right indicates that cooperation is favored over defection. Parameter values:
b = 12, N = 5, c = 1, τ = 1, F = 2, α = 0.5, β = 0.2, and rp = 1.4 in panel (a); N = 5, c =
1, b = 12, τ = 1, α = 0.5, F = 3, rp = 2, and β = 0.2 in panel (b); N = 5, F = 4.7, c = 1, b =
12, τ = 1, α = 0.15, β = 0.2, and rp = 4 in panel (c); N = 5, c = 1, b = 12, τ = 1, α = 0.5,
and β = 0.2 in panels (d) and (e).

For the convenience of theoretical analysis, we set that G(x) = x(1− x)Q(x)
where Q(x) = fC − fD.

Remark 3.1. The system equation (5) has two boundary equilibrium points, namely,
x = 1 (full cooperation) and x = 0 (full defection).

In the following, we will analyze the existence and stability of the interior
equilibrium points of equation (5) in the models of IPGG and BG, respectively.
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3.1. Evolutionary dynamics in IPGG
When bribery is not considered, by substituting equation (1) into equation (6),

we can calculate the average payoff of cooperators as

fC = b+
Fc[(N − 1)x+ 1]

N
− c− τ − βατrp − βατrp

(1− x)− (1− x)N

x
.

Similarly, by substituting equation (2) into equation (7), we can calculate the av-
erage payoff of defectors as

fD = b+
Fc(N − 1)x

N
− τ − β(1− α)τrp − β(1− α)τrp

x(1− xN−1)

1− x
.

Theorem 3.1. LetFmin = [c−βτrp+2αβτrp−β(1−α)τrp(N−1)]N

c
andFmax = [c−βτrp+βατrp(N+1)]N

c
.

Thus we have the following three conclusions:
(1) If F < Fmin, the system equation (5) does not have interior equilibrium point
for x ∈ (0, 1). Then the equilibrium point x = 0 is stable, while the equilibrium
point x = 1 is unstable.
(2) If Fmin < F < Fmax, the system equation (5) just has one interior equilib-
rium point x∗, which is unstable. The two boundary equilibrium points x = 1 and
x = 0 are stable.
(3) If F > Fmax, the system equation (5) has no interior equilibrium point in
(0, 1). Only x = 1 is a stable equilibrium point, while the equilibrium point x = 0
is unstable .

Proof. Considering that the difference between fC and fD determines the appear-
ance of interior equilibrium points of replicator equation, we can theoretically
analyze the existence of the interior equilibrium point. The difference between fC
and fD can be calculated as

Q(x) = fC − fD

=
Fc

N
− c− 2βατrp + βτrp − βατrp

1− x
x

[1− (1− x)N−1]

+
rpβ(1− α)τ

1− x
x(1− xN−1). (8)

Considering that 1 − xN−1 = (1 − x)(1 + x + · · · + xN−2), we can simplify
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equation (8) to

Q(x) =
Fc

N
− c− 2βατrp + βτrp − βατrp

N−2∑
k=0

(1− x)k+1

+ rpβ(1− α)τ
N−2∑
k=0

xk+1. (9)

Notice that

∂Q(x)

∂x
= βατrp

N−2∑
k=0

(k + 1)(1− x)k + rpβ(1− α)τ
N−2∑
k=0

(k + 1)xk. (10)

We can judge that Q(x) is an increasing function since ∂Q(x)
∂x

> 0 for x ∈ (0, 1)
when βτrp 6= 0. In addition, we know that

Q(0) =
Fc

N
− c+ βτrp − βατrp(N + 1), (11)

Q(1) =
Fc

N
− c+ βτrp − 2βατrp + β(1− α)τrp(N − 1). (12)

Then we can get the following conclusions:
(1) When Q(1) < 0, that is, F < Fmin, the system equation (5) has no inte-
rior equilibrium point in (0, 1). Since ∂G(x)

∂x
|x=1 = −Q(1) > 0 and ∂G(x)

∂x
|x=0 =

Q(0) < 0, we know that the equilibrium point x = 0 is stable, while another
boundary equilibrium point x = 1 is unstable.
(2) When Q(0) < 0 < Q(1), that is, Fmin < F < Fmax, the system equation
(5) has an unstable interior equilibrium point in (0, 1). Since ∂G(x)

∂x
|x=1 < 0 and

∂G(x)
∂x
|x=0 < 0, thus the boundary equilibrium points x = 1 and x = 0 are both

stable.
(3) When Q(0) > 0, that is, F > Fmax, the system equation (5) does not have in-
terior equilibrium point for all x ∈ (0, 1). Since ∂G(x)

∂x
|x=1 < 0 and ∂G(x)

∂x
|x=0 > 0,

thus the equilibrium point x = 0 is unstable, while another boundary equilibrium
point x = 1 is stable.

In order to verify the above theoretical analysis, we provide numerical calcula-
tions by presenting three typical dynamical outcomes for the gradient of selection
ẋ changing with the proportion of cooperators, as shown in Fig. 1. We find that
when parameter values satisfy F < Fmin, the values of the gradient of selection ẋ
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are negative, and thus cooperators will not survive in the population (Fig. 1 (a)).
When Fmin < F < Fmax, as shown in Fig. 1 (b), one unstable interior equilibrium
point can emerge, and thus the system can be divided into two basins of attraction.
Concretely, the system evolves towards full cooperation (x = 1) or full defection
(x = 0), depending on initial conditions. The existing two boundary equilibrium
points, namely, x = 0 and x = 1 are both stable. When F > Fmax, the gradient
of selection is always positive, and x = 1 is the only steady state of the system
(Fig. 1 (c)). In this case, cooperation can emerge and be maintained in the popu-
lation. To better understand the effects of the pool multiplier F and punishment
multiplier rp on evolutionary dynamics, in Fig. 1(d) and (e) we respectively show
how the value of internal root changes with F and rp. We find that the value of
the existing internal root monotonically decreases with increasing the pool mul-
tiplier F (Fig. 1 (d)) and punishment multiplier rp (Fig. 1 (e)). This means that
the advantage of cooperation expands with the increase of any one of these two
parameters (F and rp).

3.2. Evolutionary dynamics in BG
When bribery is possible, by substituting equation (3) into equation (6), we

can calculate the average payoff of cooperators as

fC = b+
Fc[(N − 1)x+ 1]

N
− c− τ − βατrp − βατrp

(1− x)− (1− x)N

x

− N − 1

N
pγh+

1

N
[pγh(N − 1)x+ qγh(N − 1)(1− x)].

By substituting equation (4) into equation (7), we can calculate the average payoff
of defectors as

fD = b+
Fc[(N − 1)x]

N
− τ − β(1− α)τrp − β(1− α)τrp

x(1− xN−1)

1− x

− N − 1

N
qγh+

1

N
[pγh(N − 1)x+ qγh(N − 1)(1− x)].
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Figure 2: Evolutionary dynamics of cooperation in BG. Panels (a)-(c) show the gradient of selec-
tion changing with the fraction of cooperators. Panels (d) and (e) respectively show the internal
roots of G(x) as functions of F and rp when γh(N − 1)(q− p)/N < 0. Panels (f) and (g) respec-
tively show the internal roots of G(x) as functions of F and rp when γh(N − 1)(q − p)/N > 0.
Parameter values: N = 5, F = 1.5, c = 1, b = 12, τ = 1, α = 0.6, h = 1, γ = 0.6, p = 0.3, q =
0.8, β = 0.2, and rp = 1.4 in panel (a); N = 5, c = 1, b = 12, F = 2, rp = 4, τ = 1, α =
0.6, h = 1, γ = 0.6, p = 0.6, q = 0.5, and β = 0.2 in panel (b); N = 5, F = 4, c = 1, b =
12, τ = 1, α = 0.15, β = 0.2, h = 1, γ = 0.6, p = 0.3, q = 0.8, and rp = 4 in panel (c);
N = 5, c = 1, b = 12, τ = 1, α = 0.6, β = 0.2, h = 1, γ = 0.6, p = 0.6, and q = 0.5 in panels
(d) and (e); N = 5, c = 1, b = 12, τ = 1, α = 0.6, β = 0.2, h = 1, γ = 0.6, p = 0.3, and q = 0.8
in panels (f) and (g).

Theorem 3.2. Let F̄min = Nc−(N−1)γh(q−p)−Nβτrp(1−2α)−N(N−1)rpβ(1−α)τ
c

and F̄max =
Nc−(N−1)γh(q−p)−Nβτrp+Nβατrp(N+1)

c
. Thus we have the following three conclu-

sions:
(1) If F < F̄min, the system equation (5) does not have interior equilibrium point
for x ∈ (0, 1). Then the boundary equilibrium point x = 0 is stable, while another
boundary equilibrium point x = 1 is unstable.
(2) If F̄min < F < F̄max, the system equation (5) has one interior equilibrium
point x∗, which is unstable. The existing two boundary equilibrium points (x = 1
and x = 0) are stable.
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(3) If F > F̄max, the system equation (5) has no interior equilibrium point in
(0, 1). Only the equilibrium point x = 1 is stable, while the equilibrium point
x = 0 is unstable.

Proof. In this case, the difference between fC and fD can be calculated as

Q(x) =
Fc

N
− c+

N − 1

N
γh(q − p)− 2βατrp + βτrp − βατrp

N−2∑
k=0

(1− x)k+1

+ rpβ(1− α)τ
N−2∑
k=0

xk+1. (13)

Considering that ∂Q(x)
∂x

> 0, we know that Q(x) is strictly increasing for all x ∈
(0, 1). Accordingly, we know

∂G(x)

∂x
|x=0 = Q(0)

=
Fc

N
− c+

N − 1

N
γh(q − p) + βτrp − βατrp(N + 1),

−∂G(x)

∂x
|x=1 = Q(1)

=
Fc

N
− c+

N − 1

N
γh(q − p) + βτrp − 2βατrp

+ β(1− α)τrp(N − 1).

We can get the following three conclusions:
(1) If Q(1) < 0, that is, F < F̄min, the system equation (5) has no interior equilib-
rium point for x ∈ (0, 1). Since ∂G(x)

∂x
|x=1 > 0 and ∂G(x)

∂x
|x=0 < 0, thus we know

that x = 0 is stable, while x = 1 is unstable.
(2) If Q(0) < 0 < Q(1), that is, F̄min < F < F̄max, the system equation (5) has
one interior equilibrium point x = x∗. Considering that ∂G(x)

∂x
|x=x∗ > 0, we know

that x = x∗ is unstable. Since ∂G(x)
∂x
|x=1 < 0 and ∂G(x)

∂x
|x=0 < 0, we know that the

existing two boundary equilibrium points are stable.
(3) If Q(0) > 0, that is, F > F̄max, the system equation (5) does not have interior
equilibrium point for x ∈ (0, 1). Since ∂G(x)

∂x
|x=1 < 0 and ∂G(x)

∂x
|x=0 > 0, we know

that x = 1 is stable, while x = 0 is unstable.
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Figure 3: Evolutionary dynamics of cooperation for different values of pool multiplier F and
punishment multiplier rp in IPGG and BG under two different scenarios. Panels (a)-(d) show the
basin of attraction of full cooperation state for different values of F and rp when γh(N − 1)(q −
p)/N < 0. Panels (e)-(h) show the evolutionary outcomes when γh(N − 1)(q − p)/N > 0.
Parameter values: N = 5, c = 1, b = 12, τ = 1, p = 0.6, q = 0.5, α = 0.6, h = 1, γ = 0.6, F =
2, β = 0.2, rp = 2.5 in panel (a), rp = 4 in panel (b); N = 5, c = 1, b = 12, τ = 1, α =
0.6, h = 1, γ = 0.6, p = 0.6, q = 0.5, F = 4, β = 0.2, rp = 2.5 in panel (c), rp = 4 in panel
(d); N = 5, c = 1, b = 12, τ = 1, α = 0.6, h = 1, γ = 0.6, p = 0.3, q = 0.8, F = 2, β = 0.2,
rp = 2.5 in panel (e), rp = 4 in panel (f); N = 5, c = 1, b = 12, τ = 1, α = 0.6, h = 1, γ =
0.6, p = 0.3, q = 0.8, F = 4, β = 0.2, rp = 2.5 in panel (g), rp = 4 in panel (h).

In Fig. 2, we provide three representative dynamical outcomes, namely, de-
fection dominance (Fig. 2 (a)), bistable state of cooperation and defection (Fig. 2
(b)), and cooperation dominance (Fig. 2 (c)) when the model parameter value re-
spectively satisfy F < F̄min, F̄min < F < F̄max, and F > F̄max. Besides, we show
how the internal root of the gradient of selection varies with the model parameters
rp and F when γh(N − 1)(q− p)/N < 0. As shown in Fig. 2(d) and (e), for fixed
rp, the value of the existing internal root of G(x) gradually decreases with the
increase of F , which means that increasing F can expand the basin of attraction
of full cooperation state (x = 1); for fixed F , the increase of rp will enlarge the
advantage of cooperators. Furthermore, Fig. 2(f) and (g) show the evolutionary
outcomes when γh(N − 1)(q − p)/N > 0. Concretely, for fixed rp, increasing
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F will expand the basin of attraction of full cooperation steady state. In addi-
tion, we notice that the larger the value of rp, the slower the value of the internal
root x∗ decreases with the increase of F (Fig. 2(f)). Fig. 2(g) shows that with the
increase of rp the internal root of G(x) monotonically decreases when F is not
large. While when the value of F is large, the value of the interior equilibrium
point will increase with the increase of rp.

In what follows, we respectively show how the basin of attraction of the full
cooperation steady state varies for two different rp values when the economic
potential is poor or rich under two different scenarios (Fig. 3). Concretely, when
γh(N − 1)(q − p)/N < 0, we show that corruption will reduce the advantage
of cooperation, and a stronger leader and stronger economic potential will both
help to enhance the level of cooperation (see Fig. 3(a)-(d)). While if γh(N −
1)(q − p)/N > 0, a rich economic potential environment is more conducive to
the evolution of cooperation than a poor economic potential environment. More
interestingly, when the economic potential is poor, stronger leaders can be more
favorable to expand the basin of attraction of full cooperation than a weak leader
(see Fig. 3(e) and (f)). While when the economic potential is strong, weaker
leaders can be more beneficial to expand the advantage of cooperation in BG (see
Fig. 3(g) and (h)).

Finally, it is worth pointing out that we just set N = 5 in Figs.1-3 following
previous related works [49–51], so that it will be more conducive to make the
comparison between our results and those in Refs. [49–51] where N is also fixed
at 5. Indeed the group size N plays an important role in evolution of cooperation
[55, 56]. However, we find that our main results remain valid if the value of N is
approximately changed.

4. Conclusions

In summary, we have constructed a mathematical model by introducing bribery
into the IPGG in an infinite population, so that we can study the interconnections
among corruption, economic potential, and leader’s punitive power and their ef-
fects on the replicator dynamics of cooperation and defection. We have found that
there exist three different evolutionary outcomes, namely, cooperation dominance,
bistable state of cooperation and defection, and defection dominance, and further
given the conditions for the emergence of the above three dynamic behaviors from
a theoretical perspective in both IPGG and BG. Furthermore, we have found that
when cooperators are more inclined to offer bribes than defectors, the existence of
corruption will reduce the advantage of cooperation, and richer economic poten-
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tial and stronger leaders are both better able to sustain public goods contributions.
On the contrary, when defectors are more willing to offer bribes, some nontrivial
results will appear: stronger leaders in poor economic potential environment in-
crease the advantage of cooperation, while reduce it in a rich economic potential
environment.

Previous behavioral experimental results show that the leader’s punitive power
and the economic potential are two important factors that may influence the ef-
fect of institutional punishment on public good provisioning [52]. Concretely,
Muthukrishna et al. [52] revealed that stronger leaders can better promote the
evolution of cooperation when the economic potential is weak and bribery is not
considered, but when bribery is allowed, strong leaders will reduce the level of
contribution. Furthermore, the existing of corruption will lead to the reduction
of public goods provisioning. Different from previous experimental observations,
our theoretical model predicts that whether corruption reduces the public goods
contribution depends on the bribery tendency of cooperators and defectors, and
whether strong leaders can promote cooperation depends on the economic poten-
tial. Our work may unveil more quantitative effects of interconnections among
corruption, institutional punishment, and economic factors for the evolution of
cooperation from theoretical perspective.

In the future work, we can thus consider different types of institutional incen-
tive strategies such as institutional reward and the combination of punishment and
reward. These incentives have been proved to be effective in solving social dilem-
mas [57, 58] and regulating technology safety [59, 60]. Thus it is worth studying
the interplay among different institutional incentives, corruption, and the evolu-
tion of cooperation, and further revealing how these incentives might influence
bribery decision making. Furthermore, it could be interesting to explore whether
these incentive strategies can promote the evolution of cooperation better than
institutional punishment.
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