Disproof of a conjecture on the minimum Wiener index of signed trees

School of Mathematics, Physics and Finance, Anhui Polytechnic University, Wuhu 241000, P. R. China

Abstract

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices. Sam Spiro [The Wiener index of signed graphs, Appl. Math. Comput., 416(2022)126755] recently introduced the Wiener index for a signed graph and conjectured that the path P_{n} with alternating signs has the minimum Wiener index among all signed trees with n vertices. By constructing an infinite family of counterexamples, we prove that the conjecture is false whenever n is at least 30 .

Keywords: Wiener index; signed tree; signed graph
AMS Classification: 05C09; 05C22

1 Introduction

A signed graph is a graph where each edge has a positive or negative sign. We usually write a signed graph as a pair (G, σ), where G is the underlying graph and $\sigma: E(G) \mapsto\{+1,-1\}$ describes the sign of each edge. For a path P in (G, σ), the length of P (under the signing $\sigma)$ is $\ell_{\sigma}(P)=\left|\Sigma_{e \in E(P)} \sigma(e)\right|$. A path P in (G, σ) is called a $u v$-path if it has u and v as its endvertices. For two distinct vertices $u, v \in V(G)$, the signed distance [3] of u, v in (G, σ), is

$$
d_{\sigma}(u, v)=\min \left\{\ell_{\sigma}(P): P \text { is a } u v \text {-path in }(G, \sigma)\right\}
$$

Definition 1 (3]). Let (G, σ) be a signed graph. The Wiener index of (G, σ), denoted by $W_{\sigma}(G)$, is $\sum d_{\sigma}(u, v)$, where the summation is taken over all unordered pairs $\{u, v\}$ of distinct vertices in G.

Let $(G,+)$ denote a signed graph where each edge is positive. It is easy to see that the Wiener index $W_{+}(G)$ coincides with the classic Wiener index $W(G)$ of the ordinary graph G, introduced by Harry Wiener [5] in 1947. As the oldest topological index of a molecule, Wiener index has many applications in molecular chemistry, see the monograph [4].

[^0]A tree is a connected graph with no cycles. There are numerous studies of properties of the Wiener indices of trees, see the survey paper [1]. Entringer, Jackson and Snyder [2] proved that, among all trees of any fixed order n, the path P_{n} (resp. the star $K_{1, n}$) has the maximum (resp. minimum) Wiener index. Note that for any connected graph G together with any signing σ, we have $W_{\sigma}(G) \leq W_{+}(G)=W(G)$. Consequently, the above result of Entringer et al. indicates that $W_{\sigma}(T) \leq W\left(P_{n}\right)$ for any signed n-vertex tree (T, σ).

Let σ be a signing of the path P_{n}. We call σ (or $\left.\left(P_{n}, \sigma\right)\right)$ alternating if any two adjacent edges have opposite signs. We usually use α to denote an alternating signing of a path. The following interesting conjecture was proposed recently by Spiro 3].

Conjecture 1 ([3]). Among all signed trees of order n, the alternating path $\left(P_{n}, \alpha\right)$ has the minimum Wiener index.

In this short note, we disprove Conjecture 1 by constructing infinite counterexamples.
Theorem 1. Conjecture 1 fails for every $n \geq 30$.
The proof of Theorem 1 is given at the end of the next section.

2 An infinite family of counterexamples

Let $k \geq 0$ and $a_{1}, a_{2}, \ldots, a_{k}$ be k nonnegative integers. Let $T\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ denote a rooted tree with $1+k+\sum_{i=1}^{k} a_{i}$ vertices constructing by the following two rules:
(i) The root vertex has k neighbors $u_{1}, u_{2}, \ldots, u_{k}$; such k vertices will be called branch vertices.
(ii) For each $i \in\{1,2, \ldots, k\}$, the branch vertex u_{i} has a_{i} neighbors other than the root vertex; such a_{i} neighbors will be called leaf vertices.

Definition 2. Let σ be a signing of a rooted tree $T\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. We call σ nice if it satisfies the following two conditions:
(i) Among k edges incident to the root vertex, the numbers of positive edges and negative edges differ by at most one.
(ii) For each branch vertex u, all edges connecting u and leaf vertices have the same sign which is opposite to the sign of the edge connecting u and the root vertex.

Figure 1 illustrates a nice signing for the rooted tree $T(3,4,4,4,4,4)$, where we use dashed (resp. solid) lines to represent negative (resp. positive) edges.

Theorem 2. If σ is a nice then

$$
W_{\sigma}\left(T\left(a_{1}, a_{2}, \ldots, a_{k}\right)\right)=2 \sum_{i=1}^{k}\binom{a_{i}}{2}+2\binom{\left\lfloor\frac{k}{2}\right\rfloor}{ 2}+2\binom{\left\lceil\frac{k}{2}\right\rceil}{ 2}+k\left(1+\sum_{i=1}^{k} a_{i}\right) .
$$

Proof. Write $T=T\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and let P be any path in (T, σ). Clearly, P contains at most four edges. Since σ is nice, one easily sees from Definition 2 (ii) that any path in (T, σ) with 4 edges have exactly 2 positive edges and hence satisfies $\ell_{\sigma}(P)=0$. Similarly, if P has

Figure 1: $T(3,4,4,4,4,4)$ with a nice signing.
exactly 2 edges and $\ell_{\sigma}(P)>0$ then the two endvertices of P must be either two leaf vertices adjacent to a common branch vertex, or two branch vertices adjacent to the root vertex by two edges sharing the same sign. Note that the numbers of positive edges and negative edges are $\left\lfloor\frac{k}{2}\right\rfloor$ and $\left\lceil\frac{k}{2}\right\rceil$ (or in reverse order) by Definition 2 (i). Thus, the contribution of such paths to $W_{\sigma}(T)$ is

$$
2 \sum_{i=1}^{k}\binom{a_{i}}{2}+2\binom{\left\lfloor\frac{k}{2}\right\rfloor}{ 2}+2\binom{\left\lceil\frac{k}{2}\right\rceil}{ 2} .
$$

Furthermore, noting that each path P with exactly one or three edges satisfies $\ell_{\sigma}(P)=1$ and there exists such a path between branch vertices and the remaining vertices, we see that the contribution of path with one or three edges is exactly

$$
k\left(1+\sum_{i=1}^{k} a_{i}\right) .
$$

Adding the above two expressions completes the proof.
Lemma 1. Let α be an alternating signing of P_{n}. Then $W_{\alpha}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.
Proof. Let (U, V) be the bipartition of P_{n} as a bipartite graph, where we assume $|U| \leq|V|$. Then $|U|=\left\lfloor\frac{n}{2}\right\rfloor$ and $|V|=\left\lceil\frac{n}{2}\right\rceil$. Let u, v be any two vertices of P_{n}. It is easy to see that $d_{\alpha}(u, v)=0$ if u and v are in the same part, and $d_{\alpha}(u, v)=1$ otherwise. Thus, $W_{\alpha}\left(P_{n}\right)=|U||V|=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$, as desired.

Noting that $T(3,4,4,4,4,4)$ has exactly 30 vertices, the following proposition gives a counterexample to Conjecture 1 .

Proposition 1. Let α be an alternating signing of P_{30} and σ be a nice signing of $T=$ $T(3,4,4,4,4,4)$. Then $W_{\sigma}(T)<W_{\alpha}\left(P_{30}\right)$.

Proof. Using Theorem 2 and Lemma 1, we find that $W_{\sigma}(T)=222$ while $W_{\alpha}\left(P_{30}\right)=225$. Thus $W_{\sigma}(T)<W_{\alpha}\left(P_{30}\right)$, as desired.

We shall show that for any $n \geq 30$, there exists a counterexample to Conjecture 1 .

Definition 3.

$$
\mathcal{T}_{k}=\bigcup_{0 \leq s \leq k}\{T(\underbrace{k-1, \ldots, k-1}_{k-s}, \underbrace{k, \ldots, k}_{s}), T(\underbrace{k, \ldots, k}_{k-s}, \underbrace{k+1, \ldots, k+1}_{s})\} .
$$

Note that \mathcal{T}_{k} contains exactly $2 k+1$ rooted trees of consecutive orders from $k^{2}+1$ to $(k+1)^{2}$, see Figure 2 for the five rooted trees in \mathcal{T}_{2}.

Figure 2: The family \mathcal{T}_{2}.

Lemma 2. Let $k \geq 10$ and T be any rooted tree in \mathcal{T}_{k}. Let $n=|V(T)|$. Then $W_{\sigma}(T)<$ $W_{\alpha}\left(P_{n}\right)$ where σ is nice while α is alternating.

Proof. Write $m=k^{2}+1$ and $M=(k+1)^{2}$. By Theorem 2 and Lemma 1 , it is not difficult to see that both $W_{\sigma}(T)$ and $W_{\alpha}\left(P_{n}\right)$ are increasing as a function of $n=|V(T)|$. Thus we are done if we can show that $W_{\sigma}\left(T_{M}\right)<W_{\alpha}\left(P_{m}\right)$ where $T_{M}=T(\underbrace{k+1, \ldots, k+1}_{k})$.

By Theorem 2 we have

$$
\begin{align*}
W_{\sigma}\left(T_{M}\right) & =2 k\binom{k+1}{2}+2\binom{\left\lfloor\frac{k}{2}\right\rfloor}{ 2}+2\binom{\left\lceil\frac{k}{2}\right\rceil}{ 2}+k(1+k(k+1)) \tag{1}\\
& <2 k\binom{k+1}{2}+2\binom{\frac{k}{2}}{2}+2\binom{\frac{k+1}{2}}{2}+k(1+k(k+1)) \\
& =2 k^{3}+\frac{5}{2} k^{2}+\frac{1}{2} k-\frac{1}{4}
\end{align*}
$$

On the other hand, by Lemma 1, we have

$$
W_{\alpha}\left(P_{m}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lceil\frac{m}{2}\right\rceil=\left\lfloor\frac{k^{2}+1}{2}\right\rfloor\left\lceil\frac{k^{2}+1}{2}\right\rceil>\frac{1}{4} k^{4} .
$$

It follows that

$$
\frac{W_{\sigma}\left(T_{M}\right)}{W_{\alpha}\left(P_{m}\right)}<\frac{8}{k}+\frac{10}{k^{2}}+\frac{2}{k^{3}}-\frac{1}{k^{4}}<\frac{8}{k}+\frac{10}{k^{2}}+\frac{2}{k^{3}} \leq \frac{8}{10}+\frac{10}{10^{2}}+\frac{2}{10^{3}}<1 .
$$

Thus $W_{\sigma}\left(T_{M}\right)<W_{\alpha}\left(P_{m}\right)$, as desired. The proof is complete.
Proof of Theorem 1. Let $\mathcal{T}=\cup_{k=0}^{\infty} \mathcal{T}_{k}$. It is clear that \mathcal{T} contains exactly one n-vertex (rooted) tree for every positive integer n. We use T_{n} to denote the unique n-vertex tree in the family \mathcal{T}. Let σ be a nice signing of T_{n} and α be an alternating signing of P_{n}. By Lemma 2, we see that $W_{\sigma}\left(T_{n}\right)<W_{\alpha}\left(P_{n}\right)$ whenever $n \geq 10^{2}+1$. On the other hand, we
know from Proposition 1 that there does exist a 30 -vertex tree T (with a nice signing σ) such that $W_{\sigma}(T)<W_{\alpha}\left(P_{30}\right)$. It remains to consider the case that $n \in\{31,32, \ldots, 100\}$.

We claim that $W_{\sigma}\left(T_{n}\right)<W_{\alpha}\left(P_{n}\right)$ for each $n \in\{31,32, \ldots, 100\}$. This can be checked directly using Theorem 2 and Lemma 1. Take $n=31$ as an example. As $31 \in\left[5^{2}+1,(5+1)^{2}\right]$, we find that $T_{31} \in \mathcal{T}_{5}$ and moreover $T_{31}=T(5,5,5,5,5)$. Using Theorem 2 for T_{31}, we obtain that $W_{\sigma}\left(T_{31}\right)=238$. By Lemma 1, we have $W_{\alpha}\left(P_{31}\right)=\left\lfloor\frac{31}{2}\right\rfloor\left\lceil\frac{31}{2}\right\rceil=240$. Thus $W_{\sigma}\left(T_{n}\right)<W_{\alpha}\left(P_{n}\right)$ for $n=31$. The proof is complete.

We remark that the counterexamples constructed in this note also disprove another conjecture of Spiro. For a graph G, the minimal signed Wiener index of G, denoted by $W_{*}(G)$, is the minimum of $W_{\sigma}(G)$ for all possible signings σ. Spiro [3] conjectured that $W_{*}(T) \geq W_{*}\left(P_{n}\right)$ for any n-vertex tree T. Let $n \geq 30$ and T_{n} be the tree used in the proof of Theorem 1. Clearly, $W_{*}\left(T_{n}\right) \leq W_{\sigma}\left(T_{n}\right)$, where σ is a nice signing of T_{n}. On the other hand, it is easy to see that $W_{*}\left(P_{n}\right)=W_{\alpha}\left(P_{n}\right)$. Since $W_{\sigma}\left(T_{n}\right)<W_{\alpha}\left(P_{n}\right)$, we obtain $W_{*}\left(T_{n}\right)<W_{*}\left(P_{n}\right)$, disproving this conjecture.

3 Asymptotic property

It is still unknown which signed trees have the minimum Wiener index among all signed trees of a fixed order n. We use $\left(\hat{T}_{n}, \hat{\sigma}\right)$ to denote an n-vertex signed tree whose Wiener index is minimum among all signed trees of order n. And let $\left(T_{n}, \sigma\right)$ be the n-vertex tree in $\cup_{k=0}^{\infty} \mathcal{T}_{k}$ with a nice signing σ. One referee kindly points out that $\left(T_{n}, \sigma\right)$ is optimal up to a constant factor. Precisely,

$$
\limsup _{n \rightarrow \infty} \frac{W_{\sigma}\left(T_{n}\right)}{W_{\hat{\sigma}}\left(\hat{T}_{n}\right)} \leq C
$$

for some constant C.
Lemma 3. $W_{\sigma}\left(T_{n}\right)=(2+o(1)) n^{\frac{3}{2}}$.
Proof. Let $k=\lfloor\sqrt{n-1}\rfloor, m=k^{2}+1$ and $M=(k+1)^{2}$. Then we have $m \leq n \leq M$. Note that $T_{m}=T(\underbrace{k, \ldots, k}_{k})$ and $T_{M}=T(\underbrace{k+1, \ldots, k+1}_{k})$. Using Theorem 2 , we have

$$
\begin{equation*}
W_{\sigma}\left(T_{m}\right)=2 k\binom{k}{2}+2\binom{\left\lfloor\frac{k}{2}\right\rfloor}{ 2}+2\binom{\left\lceil\frac{k}{2}\right\rceil}{ 2}+k\left(1+k^{2}\right)=(2+o(1)) k^{3} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{\sigma}\left(T_{M}\right)=2 k\binom{k+1}{2}+2\binom{\left\lfloor\frac{k}{2}\right\rfloor}{ 2}+2\binom{\left\lceil\frac{k}{2}\right\rceil}{ 2}+k(1+k(k+1))=(2+o(1)) k^{3} . \tag{3}
\end{equation*}
$$

Noting that $k^{3} \sim n^{\frac{3}{2}}$ and $W_{\sigma}\left(T_{m}\right) \leq W_{\sigma}\left(T_{n}\right) \leq W_{\sigma}\left(T_{M}\right)$, we have $W_{\sigma}\left(T_{n}\right)=(2+o(1)) n^{\frac{3}{2}}$ by Squeeze Theorem.

The following lower bound is due to Sam Spiro.
Lemma 4. $W_{\hat{\sigma}}\left(\hat{T}_{n}\right) \geq(\sqrt{2}+o(1)) n^{\frac{3}{2}}$.

Proof. Let U, V be the bipartition of \hat{T}_{n} with $|U| \leq|V|$. Label vertices in U as $u_{1}, u_{2}, \ldots, u_{k}$, where $k=|U|$. Let d_{i}^{+}(resp. d_{i}^{-}) denote the number of positive (resp. negative) edges incident with u_{i} for each i. It is not too difficult to show that

$$
\begin{equation*}
W_{\hat{\sigma}}\left(\hat{T}_{n}\right) \geq|U||V|+2 \sum_{i=1}^{k}\left(\binom{d_{i}^{+}}{2}+\binom{d_{i}^{-}}{2}\right) . \tag{4}
\end{equation*}
$$

Indeed, the first term comes from all paths of odd length and the term $\binom{d_{i}^{+}}{2}+\binom{d_{i}^{-}}{2}$ comes from the paths of length 2 between two neighbors of u_{i} with the same sign. As the function $\binom{x}{2}=\frac{1}{2} x(x-1)$ is convex, we have

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\binom{d_{i}^{+}}{2}+\binom{d_{i}^{-}}{2}\right) \geq 2 k\binom{\frac{1}{2 k} \sum_{i=1}^{k}\left(d_{i}^{+}+d_{i}^{-}\right)}{2} \tag{5}
\end{equation*}
$$

by Jensen's Inequality. As $|U|=k,|V|=n-k$ and $\sum_{i=1}^{k}\left(d_{i}^{+}+d_{i}^{-}\right)$equals $n-1$, which is the number of edges in \hat{T}_{n}, we obtain from Eqs. (4) and (5) that

$$
\begin{align*}
W_{\hat{\sigma}}\left(\hat{T}_{n}\right) & \geq k(n-k)+4 k\binom{\frac{n-1}{2 k}}{2} \\
& =k n+\frac{n^{2}}{2 k}-k^{2}+\frac{1}{2 k}((2 k+1)-(2 k+2) n) \\
& \geq k n+\frac{n^{2}}{2 k}-k^{2}-2 n . \tag{6}
\end{align*}
$$

Using the basic inequality $a+b \geq 2 \sqrt{a b}$ for $a, b>0$, we have

$$
\begin{equation*}
k n+\frac{n^{2}}{2 k} \geq 2 \sqrt{\frac{n^{3}}{2}}=\sqrt{2} n^{\frac{3}{2}} \tag{7}
\end{equation*}
$$

Recall that $k \leq n / 2$. Thus $n-k \geq n / 2$. If $k \geq 2 \sqrt{2 n}$ then from the trivial inequality $W_{\hat{\sigma}}\left(\hat{T}_{n}\right) \geq k(n-k)$ we obtain

$$
W_{\hat{\sigma}}\left(\hat{T}_{n}\right) \geq(2 \sqrt{2 n}) \cdot \frac{n}{2}=\sqrt{2} n^{\frac{3}{2}}
$$

Now assume $k<2 \sqrt{2 n}$. Then by (6) and (7), we find

$$
W_{\hat{\sigma}}\left(\hat{T}_{n}\right) \geq \sqrt{2} n^{\frac{3}{2}}-k^{2}-2 n \geq \sqrt{2} n^{\frac{3}{2}}-10 n=(\sqrt{2}+o(1)) n^{\frac{3}{2}}
$$

Thus we always have $W_{\hat{\sigma}}\left(\hat{T}_{n}\right) \geq(\sqrt{2}+o(1)) n^{\frac{3}{2}}$, as desired.
The following theorem is a direct consequence of Lemmas 3 and 4
Theorem 3.

$$
\limsup _{n \rightarrow \infty} \frac{W_{\sigma}\left(T_{n}\right)}{W_{\hat{\sigma}}\left(\hat{T}_{n}\right)} \leq \sqrt{2}
$$

We end this note by leaving the following problem suggested by one referee.
Problem 1. Is it true that

$$
\lim _{n \rightarrow \infty} \frac{W_{\sigma}\left(T_{n}\right)}{W_{\hat{\sigma}}\left(\hat{T}_{n}\right)}=1 ?
$$

Acknowledgments

The authors would like to thank the anonymous reviewer for her/his instructive suggestions. In particular, the results in the final section are suggested by the reviewer. We thank Sam Spiro for pointing out a preliminary version of Lemma 4. The second author is supported by the National Natural Science Foundation of China under the grant number 12001006.

References

[1] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66(2001) 211-249.
[2] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26(1976) 283-296.
[3] S. Spiro, The Wiener index of signed graphs, Appl. Math. Comput., 416(2022)126755.
[4] N. Trinajstić, Chemical Graph Theory, 2nd ed., CRC Press, 1992
[5] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.

[^0]: *Corresponding author. Email: wangwei.math@gmail.com

