
Disproof of a conjecture on the minimum Wiener index
of signed trees

Songlin Guo Wei Wang∗ Chuanming Wang

School of Mathematics, Physics and Finance, Anhui Polytechnic University, Wuhu 241000, P. R. China

Abstract

The Wiener index of a connected graph is the sum of distances between all un-
ordered pairs of vertices. Sam Spiro [The Wiener index of signed graphs, Appl. Math.
Comput., 416(2022)126755] recently introduced the Wiener index for a signed graph
and conjectured that the path Pn with alternating signs has the minimum Wiener index
among all signed trees with n vertices. By constructing an infinite family of counterex-
amples, we prove that the conjecture is false whenever n is at least 30.
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1 Introduction

A signed graph is a graph where each edge has a positive or negative sign. We usually write
a signed graph as a pair (G, σ), where G is the underlying graph and σ : E(G) 7→ {+1,−1}
describes the sign of each edge. For a path P in (G, σ), the length of P (under the signing
σ) is `σ(P ) = |Σe∈E(P )σ(e)|. A path P in (G, σ) is called a uv-path if it has u and v as its
endvertices. For two distinct vertices u, v ∈ V (G), the signed distance [3] of u, v in (G, σ), is

dσ(u, v) = min{`σ(P ) : P is a uv-path in (G, σ)}.

Definition 1 ([3]). Let (G, σ) be a signed graph. The Wiener index of (G, σ), denoted
by Wσ(G), is

∑
dσ(u, v), where the summation is taken over all unordered pairs {u, v} of

distinct vertices in G.

Let (G,+) denote a signed graph where each edge is positive. It is easy to see that the
Wiener index W+(G) coincides with the classic Wiener index W (G) of the ordinary graph
G, introduced by Harry Wiener [5] in 1947. As the oldest topological index of a molecule,
Wiener index has many applications in molecular chemistry, see the monograph [4].

∗Corresponding author. Email: wangwei.math@gmail.com

1

ar
X

iv
:2

20
8.

01
98

4v
1 

 [
m

at
h.

C
O

] 
 3

 A
ug

 2
02

2



A tree is a connected graph with no cycles. There are numerous studies of properties
of the Wiener indices of trees, see the survey paper [1]. Entringer, Jackson and Snyder [2]
proved that, among all trees of any fixed order n, the path Pn (resp. the star K1,n) has the
maximum (resp. minimum) Wiener index. Note that for any connected graph G together
with any signing σ, we have Wσ(G) ≤ W+(G) = W (G). Consequently, the above result of
Entringer et al. indicates that Wσ(T ) ≤ W (Pn) for any signed n-vertex tree (T, σ).

Let σ be a signing of the path Pn. We call σ (or (Pn, σ)) alternating if any two adjacent
edges have opposite signs. We usually use α to denote an alternating signing of a path. The
following interesting conjecture was proposed recently by Spiro [3].

Conjecture 1 ([3]). Among all signed trees of order n, the alternating path (Pn, α) has the
minimum Wiener index.

In this short note, we disprove Conjecture 1 by constructing infinite counterexamples.

Theorem 1. Conjecture 1 fails for every n ≥ 30.

The proof of Theorem 1 is given at the end of the next section.

2 An infinite family of counterexamples

Let k ≥ 0 and a1, a2, . . . , ak be k nonnegative integers. Let T (a1, a2, . . . , ak) denote a rooted
tree with 1 + k +

∑k
i=1 ai vertices constructing by the following two rules:

(i) The root vertex has k neighbors u1, u2, . . . , uk; such k vertices will be called branch
vertices.
(ii) For each i ∈ {1, 2, . . . , k}, the branch vertex ui has ai neighbors other than the root
vertex; such ai neighbors will be called leaf vertices.

Definition 2. Let σ be a signing of a rooted tree T (a1, a2, . . . , ak). We call σ nice if it
satisfies the following two conditions:
(i) Among k edges incident to the root vertex, the numbers of positive edges and negative
edges differ by at most one.
(ii) For each branch vertex u, all edges connecting u and leaf vertices have the same sign
which is opposite to the sign of the edge connecting u and the root vertex.

Figure 1 illustrates a nice signing for the rooted tree T (3, 4, 4, 4, 4, 4), where we use
dashed (resp. solid) lines to represent negative (resp. positive) edges.

Theorem 2. If σ is a nice then

Wσ(T (a1, a2, . . . , ak)) = 2
k∑
i=1

(
ai
2

)
+ 2

(
bk
2
c

2

)
+ 2

(
dk
2
e

2

)
+ k

(
1 +

k∑
i=1

ai

)
.

Proof. Write T = T (a1, a2, . . . , ak) and let P be any path in (T, σ). Clearly, P contains at
most four edges. Since σ is nice, one easily sees from Definition 2(ii) that any path in (T, σ)
with 4 edges have exactly 2 positive edges and hence satisfies `σ(P ) = 0. Similarly, if P has
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Figure 1: T (3, 4, 4, 4, 4, 4) with a nice signing.

exactly 2 edges and `σ(P ) > 0 then the two endvertices of P must be either two leaf vertices
adjacent to a common branch vertex, or two branch vertices adjacent to the root vertex by
two edges sharing the same sign. Note that the numbers of positive edges and negative edges
are bk

2
c and dk

2
e (or in reverse order) by Definition 2(i). Thus, the contribution of such paths

to Wσ(T ) is

2
k∑
i=1

(
ai
2

)
+ 2

(
bk
2
c

2

)
+ 2

(
dk
2
e

2

)
.

Furthermore, noting that each path P with exactly one or three edges satisfies `σ(P ) = 1
and there exists such a path between branch vertices and the remaining vertices, we see that
the contribution of path with one or three edges is exactly

k

(
1 +

k∑
i=1

ai

)
.

Adding the above two expressions completes the proof.

Lemma 1. Let α be an alternating signing of Pn. Then Wα(Pn) = bn
2
cdn

2
e.

Proof. Let (U, V ) be the bipartition of Pn as a bipartite graph, where we assume |U | ≤ |V |.
Then |U | = bn

2
c and |V | = dn

2
e. Let u, v be any two vertices of Pn. It is easy to see

that dα(u, v) = 0 if u and v are in the same part, and dα(u, v) = 1 otherwise. Thus,
Wα(Pn) = |U ||V | = bn

2
cdn

2
e, as desired.

Noting that T (3, 4, 4, 4, 4, 4) has exactly 30 vertices, the following proposition gives a
counterexample to Conjecture 1.

Proposition 1. Let α be an alternating signing of P30 and σ be a nice signing of T =
T (3, 4, 4, 4, 4, 4). Then Wσ(T ) < Wα(P30).

Proof. Using Theorem 2 and Lemma 1, we find that Wσ(T ) = 222 while Wα(P30) = 225.
Thus Wσ(T ) < Wα(P30), as desired.

We shall show that for any n ≥ 30, there exists a counterexample to Conjecture 1.

Definition 3.

Tk =
⋃

0≤s≤k

T (k − 1, . . . , k − 1︸ ︷︷ ︸
k−s

, k, . . . , k︸ ︷︷ ︸
s

), T (k, . . . , k︸ ︷︷ ︸
k−s

, k + 1, . . . , k + 1︸ ︷︷ ︸
s

)

 .

3



Note that Tk contains exactly 2k + 1 rooted trees of consecutive orders from k2 + 1 to
(k + 1)2, see Figure 2 for the five rooted trees in T2.

T (1, 1) T (1, 2) T (2, 2)

T (2, 3) T (3, 3)

1

Figure 2: The family T2.

Lemma 2. Let k ≥ 10 and T be any rooted tree in Tk. Let n = |V (T )|. Then Wσ(T ) <
Wα(Pn) where σ is nice while α is alternating.

Proof. Write m = k2 + 1 and M = (k + 1)2. By Theorem 2 and Lemma 1, it is not difficult
to see that both Wσ(T ) and Wα(Pn) are increasing as a function of n = |V (T )|. Thus we
are done if we can show that Wσ(TM) < Wα(Pm) where TM = T (k + 1, . . . , k + 1︸ ︷︷ ︸

k

).

By Theorem 2 we have

Wσ(TM) = 2k

(
k + 1

2

)
+ 2

(
bk
2
c

2

)
+ 2

(
dk
2
e

2

)
+ k(1 + k(k + 1)) (1)

< 2k

(
k + 1

2

)
+ 2

(
k
2

2

)
+ 2

(
k+1
2

2

)
+ k(1 + k(k + 1))

= 2k3 +
5

2
k2 +

1

2
k − 1

4
.

On the other hand, by Lemma 1, we have

Wα(Pm) =
⌊m

2

⌋ ⌈m
2

⌉
=

⌊
k2 + 1

2

⌋⌈
k2 + 1

2

⌉
>

1

4
k4.

It follows that

Wσ(TM)

Wα(Pm)
<

8

k
+

10

k2
+

2

k3
− 1

k4
<

8

k
+

10

k2
+

2

k3
≤ 8

10
+

10

102
+

2

103
< 1.

Thus Wσ(TM) < Wα(Pm), as desired. The proof is complete.

Proof of Theorem 1. Let T = ∪∞k=0Tk. It is clear that T contains exactly one n-vertex
(rooted) tree for every positive integer n. We use Tn to denote the unique n-vertex tree
in the family T . Let σ be a nice signing of Tn and α be an alternating signing of Pn. By
Lemma 2, we see that Wσ(Tn) < Wα(Pn) whenever n ≥ 102 + 1. On the other hand, we
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know from Proposition 1 that there does exist a 30-vertex tree T (with a nice signing σ)
such that Wσ(T ) < Wα(P30). It remains to consider the case that n ∈ {31, 32, . . . , 100}.

We claim that Wσ(Tn) < Wα(Pn) for each n ∈ {31, 32, . . . , 100}. This can be checked
directly using Theorem 2 and Lemma 1. Take n = 31 as an example. As 31 ∈ [52+1, (5+1)2],
we find that T31 ∈ T5 and moreover T31 = T (5, 5, 5, 5, 5). Using Theorem 2 for T31, we
obtain that Wσ(T31) = 238. By Lemma 1, we have Wα(P31) = b31

2
cd31

2
e = 240. Thus

Wσ(Tn) < Wα(Pn) for n = 31. The proof is complete.

We remark that the counterexamples constructed in this note also disprove another
conjecture of Spiro. For a graph G, the minimal signed Wiener index of G, denoted by
W∗(G), is the minimum of Wσ(G) for all possible signings σ. Spiro [3] conjectured that
W∗(T ) ≥ W∗(Pn) for any n-vertex tree T . Let n ≥ 30 and Tn be the tree used in the
proof of Theorem 1. Clearly, W∗(Tn) ≤ Wσ(Tn), where σ is a nice signing of Tn. On the
other hand, it is easy to see that W∗(Pn) = Wα(Pn). Since Wσ(Tn) < Wα(Pn), we obtain
W∗(Tn) < W∗(Pn), disproving this conjecture.

3 Asymptotic property

It is still unknown which signed trees have the minimum Wiener index among all signed trees
of a fixed order n. We use (T̂n, σ̂) to denote an n-vertex signed tree whose Wiener index is
minimum among all signed trees of order n. And let (Tn, σ) be the n-vertex tree in ∪∞k=0Tk
with a nice signing σ. One referee kindly points out that (Tn, σ) is optimal up to a constant
factor. Precisely,

lim sup
n→∞

Wσ(Tn)

Wσ̂(T̂n)
≤ C,

for some constant C.

Lemma 3. Wσ(Tn) = (2 + o(1))n
3
2 .

Proof. Let k = b
√
n− 1c, m = k2 + 1 and M = (k + 1)2. Then we have m ≤ n ≤ M . Note

that Tm = T (k, . . . , k︸ ︷︷ ︸
k

) and TM = T (k + 1, . . . , k + 1︸ ︷︷ ︸
k

). Using Theorem 2, we have

Wσ(Tm) = 2k

(
k

2

)
+ 2

(
bk
2
c

2

)
+ 2

(
dk
2
e

2

)
+ k(1 + k2) = (2 + o(1))k3 (2)

and

Wσ(TM) = 2k

(
k + 1

2

)
+ 2

(
bk
2
c

2

)
+ 2

(
dk
2
e

2

)
+ k(1 + k(k + 1)) = (2 + o(1))k3. (3)

Noting that k3 ∼ n
3
2 and Wσ(Tm) ≤ Wσ(Tn) ≤ Wσ(TM), we have Wσ(Tn) = (2 + o(1))n

3
2 by

Squeeze Theorem.

The following lower bound is due to Sam Spiro.

Lemma 4. Wσ̂(T̂n) ≥ (
√

2 + o(1))n
3
2 .
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Proof. Let U, V be the bipartition of T̂n with |U | ≤ |V |. Label vertices in U as u1, u2, . . . , uk,
where k = |U |. Let d+i (resp. d−i ) denote the number of positive (resp. negative) edges
incident with ui for each i. It is not too difficult to show that

Wσ̂(T̂n) ≥ |U ||V |+ 2
k∑
i=1

((
d+i
2

)
+

(
d−i
2

))
. (4)

Indeed, the first term comes from all paths of odd length and the term
(
d+i
2

)
+
(
d−i
2

)
comes

from the paths of length 2 between two neighbors of ui with the same sign. As the function(
x
2

)
= 1

2
x(x− 1) is convex, we have

k∑
i=1

((
d+i
2

)
+

(
d−i
2

))
≥ 2k

(
1
2k

∑k
i=1(d

+
i + d−i )

2

)
, (5)

by Jensen’s Inequality. As |U | = k, |V | = n − k and
∑k

i=1(d
+
i + d−i ) equals n − 1, which is

the number of edges in T̂n, we obtain from Eqs. (4) and (5) that

Wσ̂(T̂n) ≥ k(n− k) + 4k

(
n−1
2k

2

)
= kn+

n2

2k
− k2 +

1

2k
((2k + 1)− (2k + 2)n)

≥ kn+
n2

2k
− k2 − 2n. (6)

Using the basic inequality a+ b ≥ 2
√
ab for a, b > 0, we have

kn+
n2

2k
≥ 2

√
n3

2
=
√

2n
3
2 . (7)

Recall that k ≤ n/2. Thus n − k ≥ n/2. If k ≥ 2
√

2n then from the trivial inequality
Wσ̂(T̂n) ≥ k(n− k) we obtain

Wσ̂(T̂n) ≥ (2
√

2n) · n
2

=
√

2n
3
2 .

Now assume k < 2
√

2n. Then by (6) and (7), we find

Wσ̂(T̂n) ≥
√

2n
3
2 − k2 − 2n ≥

√
2n

3
2 − 10n = (

√
2 + o(1))n

3
2 .

Thus we always have Wσ̂(T̂n) ≥ (
√

2 + o(1))n
3
2 , as desired.

The following theorem is a direct consequence of Lemmas 3 and 4.

Theorem 3.
lim sup
n→∞

Wσ(Tn)

Wσ̂(T̂n)
≤
√

2.

We end this note by leaving the following problem suggested by one referee.

Problem 1. Is it true that
lim
n→∞

Wσ(Tn)

Wσ̂(T̂n)
= 1?
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