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Abstract- In a previous article (ref. [1]) the authors discussed the application of operator-splitting methods to the time-

discretization of those mathematical relations describing the behavior of elasto-dynamical systems with friction, focusing on

one-degree of freedom models. The main goal of the present article is to generalize the methodology discussed in ref. [1]; there

are no conceptual difficulty at doing so, the main issue being the computation of a vector-valued multiplier modeling the friction

forces (or part of them). An iterative method allowing the computation of this multiplier will be discussed and the results of

numerical experiments will be presented.
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1 Introduction

In a previous article (ref. [1]), the authors discussed the numerical simulation of elasto-dynamical systems
with friction, in the particular case of one degree of freedom models. The methodology they advocate in
ref. [1] relies on a time-discretization by operator-splitting, combined with an explicit-implicit scheme to
treat friction while elasticity is handled via a non-dissipative second order accurate centered scheme. This
approach is generalized to higher dimensions, using an equivalent formulation of the problem involving a
vector-valued multiplier modeling the friction forces (or part of them).

2 Modeling of friction constrained motions: Splitting of the model

Some remote manipulator system simulators use finite number of degrees of freedom models, like the one
below to describe friction constrained motions:{

MẌ + AX + C(sgn(Ẋ) − γ(Ẋ)) = f on (0, T ),
X(0) = X0, Ẋ(0) = V0,

(2.1)

where in equation (2.1): X is a displacement (here X(t) ∈ Rd), the mass matrix M is symmetric and positive
definite, the stiffness matrix A is symmetric and positive semi-definite, the friction matrix C is diagonal, i.e.
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C = diag(c1, · · · , cd), with ci ≥ 0, ∀i = 1, · · · , d and
∑d

i=1 ci > 0, sgn(V ) = {sgn(vi)}d
i=1, ∀ V = {vi}d

i=1 ∈
Rd, γ(V ) = {γi(vi)}d

i=1, ∀ V = {vi}d
i=1 ∈ Rd, γi being a nondecreasing Lipschitz continuous function

vanishing at 0 and such that limξ �→±∞ γi(ξ) = ±βi, with 0 < βi < 1 (typical functions βi are described in
[1], Section 2), f is an external force, X0, V0 ∈ Rd. A rigorous equivalent formulation of (2.1) is given by⎧⎪⎪⎨

⎪⎪⎩
Ẋ = V on (0, T ),
MV̇ + AX + C(λ − γ(V )) = f on (0, T ),
Cλ(t) · V (t) =

∑d
i=1 ci|vi(t)|, λ(t) ∈ Λ a.e. on (0, T ),

X(0) = X0, V (0) = V0,

(2.2)

with Λ the closed convex non-empty subset of Rd defined by

Λ = {μ|μ ∈ Rd, |μi| ≤ 1, ∀i = 1, · · · , d}
and a · b =

∑d
i=1 aibi, ∀a = {ai}d

i=1, b = {bi}d
i=1 ∈ Rd. The vector-valued function C(λ − γ(V )) models the

friction forces present in the system. Suppose that T is finite and let τ = T/N . In order to solve problem
(2.2), we advocate the following Lie’s scheme (where tn = nτ):

X0 = X0, V 0 = V0; (2.3)

for n = 1, · · · , N, Xn and V n being known, solve⎧⎪⎪⎨
⎪⎪⎩

MV̇ + C(λ − γ(V )) = f on (tn, tn+1),
Cλ(t) · V (t) =

∑d
i=1 ci|vi(t)|, λ(t) ∈ Λ a.e. on (tn, tn+1),

Ẋ = 0 on (tn, tn+1),
V (tn) = V n, X(tn) = Xn,

(2.4)

and set
V n+1/2 = V (tn+1), Xn+1/2 = Xn, (2.5)

next solve ⎧⎨
⎩

MV̇ + AX = 0 on (tn, tn+1),
Ẋ = V on (tn, tn+1),
V (tn) = V n+1/2, X(tn) = Xn+1/2,

(2.6)

and set

V n+1 = V (tn+1), Xn+1 = X(tn+1). (2.7)

Problem (2.6)(the elastic step), is equivalent to{
MẌ + AX = 0 on (tn, tn+1),
X(tn) = Xn+1/2, Ẋ(tn) = V n+1/2,

(2.8)

while (2.7) reads as

Xn+1 = X(tn+1), V n+1 = Ẋ(tn+1). (2.9)

Problems (2.6), (2.8) is a standard one whose numerical solution is a well-documented topic. On the other
hand, solving problem (2.4) (the friction step) is a more critical issue which is the main study of this article
and is addressed in the following section.

3 Time-discretization of problem (2.4)

Problem (2.4) is a special case of⎧⎨
⎩

MẆ + C(λ − γ(W )) = f on (t0, tf ),
Cλ(t) · W (t) =

∑d
i=1 ci|wi(t)|, λ(t) ∈ Λ a.e. on (t0, tf ),

W (t0) = W0.

(3.10)

2



In order to time-discretize (3.10), we advocate the following implicit-explicit scheme (with τf = (tf − t0)/P ):

W 0 = W0; (3.11)

for p = 1, · · · , P, W p−1 being known solve the following system of equations{
M W p−W p−1

τf
+ C λp = Cγ(W p−1) + fp,

C λp · W p =
∑d

i=1 ci|wp
i |, λp ∈ Λ,

(3.12)

where fp = f(t0 + pτf ) (or an approximation of it). Using compactness arguments we can show that

lim
τf→0

max1≤p≤P ‖W p − W (t0 + pτf )‖ = 0,

and weak-* convergence to λ in L∞(t0, tf ;Rd), for the sequence {{λp}p
p=1}p, where {W, λ} is the unique

solution of system (3.10). The iterative solution of system such as (3.12) will be briefly discussed in the
following section.

4 Iterative Solution of System (3.12)

Let bp = MW p−1 + τfCγ(W p−1) + τffp, then drop the superscript p in problem (3.12). It takes then the
following form: {

MW + τfC λ = b,

C λ · W =
∑d

i=1 ci|wi|, λ ∈ Λ.
(4.13)

If d = 1 computing the closed form solution of problem (4.13) is easy as shown in ref. [1]. On the other hand,
if d ≥ 2, then we must rely on iterative techniques. A simple one is provided by the following algorithm

λ0 given in Λ; (4.14)

for k ≥ 0, λk being known, solve
MW k = b − τfCλk (4.15)

and update λk via
λk+1 = PΛ(λk + ρCW k). (4.16)

In (4.16), the projection operator PΛ : Rd → Λ is defined by

PΛ(μ) = {min(1, max(−1, μi))}d
i=1, ∀μ = {μi}d

i=1 ∈ Rd. (4.17)

The set Λ being closed, convex (and non-empty), operator PΛ is a contraction. Concerning the convergence
of algorithm (4.14)-(4.16), we then have the following

Theorem 4.1 Suppose that

0 < ρ <
2

τfβd
, (4.18)

where βd is the largest eigenvalue of matrix M−1C2; we have then, ∀λ0 ∈ Λ,

lim
k→+∞

{W k, λk} = {W, λ}, (4.19)

where {W, λ} is the solution of system (4.13).

An estimate of the speed of convergence of (4.14)-(4.16) will be given in a forthcoming publication (ref. [2]).
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5 Numerical experiments

We will describe in this section the numerical results obtained when applying the methodology of the previous
sections to a 2-degree of freedom model problem (2.1), (2.2). We take T = 4 and

• the mass matrix M =
(

2 1
1 2

)
, the stiffness matrix A =

(
2 −1

−1 2

)
, the friction matrix C = I,

• γ = {γi}2
i=1 with βi = 1

3 and εi = 10−1, i = 1, 2. (see [1], Section 2),

• the forcing term f = {fi}2
i=1, where

f1(t) =

⎧⎪⎪⎨
⎪⎪⎩

2(t − t2

2 ) − 1 − γ1(1 − t) if 0 ≤ t ≤ 1,
1 + (t − 3

2 ) − γ1(0) if 1 ≤ t ≤ 2,
3t3 − 23t2 + 70t− 238

3 − γ1(4(t − 3)(t − 2)) if 2 ≤ t ≤ 3,
t3

3 − 3t2 + 6t − 17
6 − γ1(0) if 3 ≤ t ≤ 4,

and

f2(t) =

⎧⎪⎪⎨
⎪⎪⎩

t2

2 − 2t − γ2(0) if 0 ≤ t ≤ 1,
1
2 − t − γ2(0) if 1 ≤ t ≤ 2,
−2t3 + 16t2 − 36t + 163

6 − γ2(1 − (t − 3)2) if 2 ≤ t ≤ 3,
−2
3 t3 + 6t2 − 20t + 175

6 − γ2(1 − (t − 3)2) if 3 ≤ t ≤ 4.

For the above data, the solution of problem (2.1) is given by

v1(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 − t if 0 ≤ t < 1,
0 if 1 ≤ t < 2,
4(t − 3)(t − 2) if 2 ≤ t < 3,
0 if 3 ≤ t ≤ 4,

v2(t) =
{

0 if 0 ≤ t < 2,
1 − (t − 3)2 if 2 ≤ t ≤ 4,

and

x1(t) =

⎧⎪⎪⎨
⎪⎪⎩

t − t2

2 if 0 ≤ t < 1,
1
2 if 1 ≤ t < 2,
1
2 + 4[13 (t3 − 8) − 5

2 (t2 − 4) + 6(t − 2)] if 2 ≤ t < 3,
−1
6 if 3 ≤ t ≤ 4,

x2(t) =
{

0 if 0 ≤ t < 2,
(t − 2) − 1

3 ((t − 3)3 + 1) if 2 ≤ t ≤ 4,

while the corresponding function λ is given by

λ1(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 < t < 1,
t − 3

2 if 1 < t < 2,
−1 if 2 < t < 3,
−1
2 if 3 < t < 4,

and

λ2(t) =
{

1 − t if 0 < t < 2,
1 if 2 < t < 4.

To solve problem (2.1), we have used the splitting scheme (2.3)− (2.7). The subproblem (2.4) is solved via
scheme (3.11), (3.12), while the subproblem (2.6) is solved via a classical finite difference centered scheme.
The following results have been obtained with τ = 0.003. On Figs. 1-6, we have shown the graphs of the
approximation of Ẋ, X , λ, respectively. On Figs. 7-9, we have shown the L2-error, on Ẋ, X , λ, as functions
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of τ . We clearly have first order accuracy. We observe also that the computed discrete multipliers do not
exhibit spurious oscillations, as it is the case with other discretization schemes.
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