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Abstract: Using the theory of orthogonal polynomials, their associated recursion relations 
and differential formulas we develop a method for evaluating new integrals. The method is 
illustrated by obtaining the following integral result that involves the Bessel function and 
associated Laguerre polynomial: 
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is the Gegenbauer (ultra-spherical) polynomial. 
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 The use of spherical Bessel functions+ in the theoretical physics literature is over-
whelming. One reason is that these functions are eigen-solutions of the three dimensional 
free wave operator (the Laplacian) in spherical coordinates [1]. Another is the fact that 
they make up the radial component of the wave functions for free particles in three 
dimensions [1,2]. These free-particle wave functions are the reference in scattering 
calculations for interactions with spherical symmetry. Consequently, the projection of the 
Bessel function onto various bases used in different numerical schemes is important. 
These weighted projections (typically, integrals) are necessary for computing the 
expectation values of selected observables to be compared with measurements. All 
integral formulas having the general form shown in the Abstract, which one could find in 
various tables of integration, are with the integration variable x being replaced by x  in 
the argument of the Bessel function [3]. This is useful for many applications where the 
Gaussian bases (a.k.a. “oscillator bases”) are widely used in the calculation [4]. The 
elements of such a basis could be written as 

2 2 2( )x
nx e L xν λ− , or a linear combination 

thereof. Nonetheless, an equally useful basis, which is sometimes referred to as the 
“Laguerre basis”, has elements of the form 2 ( )x

nx e L xν λ− . In typical scattering problems 
with x being the radial coordinate and 1ν = + , where  is the angular momentum 
quantum number, the former basis is orthogonal whereas the latter is not; it is 
“trithogonal” (i.e., the basis overlap matrix − the identity representation − is tridiagonal). 
In this Letter, we use the theory of orthogonal polynomials, their associated recursion 
relations and differential formulas to develop a method for evaluating a new integral that 
involves the Bessel function ( )J xν  and the associated Laguerre polynomials 2 ( )nL xν . In all 
subsequent developments we restrict our treatment to real spaces and fields. 
                                                 
+ If ( )J xν  is the Bessel function, then the spherical Bessel function is defined as 1
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 Since ( )J xν  is defined on the positive real line and the ( )

0 2lim ( ) ( 1)
x

xJ x
ν

ν ν
→

= Γ +  

then we could, in principle, expand it as an infinite series in terms of a complete set of 
basis functions which are compatible with the range of ( )J xν  and its limiting values. 
Therefore, we assume that we can make a separable expansion of ( )J xν µ  in the space 

spanned by the square integrable functions { } 0
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xφ ∞

=
 with real expansion coefficients 

{ } 0
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. That is, we set out to find real functions { } 0
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where 0µ ≥ , 0α > , and 1λ > − . Using the orthogonality property of the Laguerre 
polynomials [5] we can write 
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Therefore, we must impose the stronger constraint that 1 0α> > . The differential equation 
for the Bessel function could be written as the eigenvalue equation ( ) ( )J x J xν ν= −D , 

where D is the second order linear differential operator 2 2

22
1d d
x xdx dx

ν+ −  [5]. Using the 
differential equation of the Laguerre polynomials and their differential formula, 
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We define a conjugate space spanned by the real L2 functions { }
0
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∞
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 such that the 

basis overlap matrix (i.e., the inner product n mφ φ  with the integration measure dx) is 

tridiagonal. That is, 0n mφ φ =  if 2n m− ≥ . Thus, if we write ( ) ( )x
n nx x e L xρ β λφ −= , then 

the orthogonality of the Laguerre polynomials dictates that 
 1β α= −  and ρ ν λ δ= − + + ,        (4) 
where δ = 0 or 1. Now, the matrix representation of the eigenvalue equation ( )J xν µD  = 

2 ( )J xνµ µ−  could be written as 
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Additionally, we also require that the matrix representation of the differential operator D 
be at most tridiagonal. That is, 0n mφ φ =D  if 2n m− ≥ . Using the action of D on the 
basis given by Eq. (3) and the parameter relation (4) this requirement translates into 

2λ ν=  and δ = 1. Hence, we could write 
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Again, using the orthogonality relation of the Laguerre polynomials we obtain 
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Therefore, Eq. (5) results in a three-term recursion relation for the expansion coefficients 
which is written as , 1 1 , , 1 1 0n n n n n n n n nc c c− − + ++ + =I I I . In terms of the polynomials { } 0n n

P ∞

=
, 

which are defined as 
 ( 2 1)
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this recursion relation reads as follows 
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The two-parameter polynomial, , ( )nPα ν µ , which satisfies this recursion relation is, to the 
best of our knowledge, new. However, for 1

2α =  Eq. (9) reduces to the three-term 

recursion relation of the Gegenbauer (ultra-spherical) polynomial 
1
2 ( )nC yν +  [5], where 
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+= = ≡  and 0 θ π< ≤ . Consequently, we can write 
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where ( )fν µ  is an arbitrary real function of µ which is independent of the index n. 
Combining Eq. (2) with Eq. (8) we get 
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Therefore, what remains is only to evaluate ( )fν µ . To do that, we differentiate the above 
integral with respect to µ using the chain rule (in the sequence x xµ µ→ → ) and then 
integrate by parts since the integrand vanishes at the end points. The result is as follows: 
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In going from the first to the second line of this equation, we have used the differential 
formula and recursion relation for 2 ( )nL xν . Thus, Eq. (12) states that 
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On the other hand, differentiating the right side of Eq. (11) with respect to µ and using 
2(1 )d d

d dyyµµ = −  in the differential relation of the Gegenbauer polynomial, 
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Equating the right hand side of Eq. (13) with that of Eq. (15) and using the recursion 
relation of the Gegenbauer polynomial we conclude that 
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Defining ( ) ( )g y fν νµ µ= , this could be rewritten for gν as ( )2 1
2(1 ) d

dyy g y gν νν− = − +  

giving the solution 
1
21( ) (sin )f A ν

ν ν µµ θ += , where Aν  is a constant which is independent 

of µ and 2 1 4sin µ
µθ += . 

 
 Putting all of the above together, we obtain the following realization of the real 
expansion coefficients ( )nc µ : 

 
1 1
2 2( 1)

( 2 1)( ) (sin ) (cos )n n
n

n
Ac Cν νν

νµ θ θ
µ

+ +Γ +
Γ + += .      (17) 

To determine Aν  we substitute this in the expansion (1) and take the simultaneous limit 

0x →  and 0µ → . Using ( 2 )
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Using the generating function ( )1
0 1( ) (1 ) expn

nn
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= −= −∑ , which is valid for 

1 1t− ≤ <  [6], we get the following value for the constant ( )1
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this in the expression 
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ν ν µµ θ +=  and substituting in Eq. (11) we, finally, get 

the sought-after result 
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In conclusion, we summarize the method in the following steps: 

1) We write ( )J xν µ  as an infinite series of products of functions, { } 0
( )n n
xφ ∞

=
 and 

{ } 0
( )n n

c µ ∞

=
, that are compatible with the range of definition of ( )J xν  and its limit 

values: Eq. (1) 
2) Using the orthogonality property of the polynomials in the basis functions { }nφ  we 

write an integral expression for the expansion coefficients { }nc : Eq. (2) 

3) We construct the tridiagonal conjugate space spanned by { }
0

( )n n
xφ

∞

=
 and require 

that it also supports a tridiagonal matrix representation for the Bessel differential 
operator D: Eq. (6) 

4) The resulting three-term recursion relation is solved in terms of orthogonal 
polynomials giving the expansion coefficients { }nc  modulo an arbitrary real 
function ( )fν µ : Eq. (10) 

5) The function ( )fν µ  is determined (up to an overall constant factor Aν ) by solving 
a simple first order linear differential equation which is obtained by differentiating 
the resulting integral formula: Eqs. (11-15) 

6) The remaining constant Aν  is determined by taking the limit of the expansion of 
( )J xν µ  as ( , ) 0xµ → : Eq. (18) 
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One should also note that we needed knowledge of only two properties of the Bessel 
function to obtain the analytic closed-form result. These were the differential equation of 

( )J xν  and its values at the limits. This is a highly nontrivial observation that could have a 
major impact on the application of the method on a wider range of functions. It adds value 
to the method and could motivate its development into a powerful integration tool for such 
problems. 
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