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A NOTE ON THE STABILITY FOR KAWAHARA-KDV TYPE EQUATIONS.
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Abstract. In this paper we establish the nonlinear stability of solitary traveling-wave solutions for the
Kawahara-KdV equation

ut + uux + uxxx − γ1uxxxxx = 0,

and the modified Kawahara-KdV equation

ut + 3u2ux + uxxx − γ2uxxxxx = 0,

where γi ∈ R is a positive number when i = 1, 2. The main approach used to determine the stability of
solitary traveling-waves will be the theory developed by Albert in [1].

1. Introduction.

This work presents the existence of a smooth branch of solitary traveling wave solutions as well as
the orbital stability related to Kawahara-Korteweg-de Vries and modified Kawahara-Korteweg-de Vries
equations (Kawahara and modified Kawahara equations respectively, henceforth),

ut + uux + uxxx − γ1uxxxxx = 0, (1.1)

and
ut + 3u2ux + uxxx − γ2uxxxxx = 0, (1.2)

where γi > 0 when i = 1, 2 and u := u(x, t) is a real function. Here, we consider x ∈ R and t ∈ R. These
equations model the propagation on nonlinear water-waves in the long-wavelength as in the case KdV’s
equations. Roughly speaking, such a model-scenario is expected because, if u be a smooth solution of
(1.1) and (1.2), then for γi → 0 uniformly, i = 1, 2 we obtain that u is a solution of the Korteweg-de
Vries and modified Korteweg-de Vries equations,

ut + uux + uxxx = 0, (1.3)

ut + 3u2ux + uxxx = 0, (1.4)

respectively, in a convenient sense. Results of orbital stability for equations (1.3) and (1.4) has been
studied by many researchers in the case of solitary waves, for example see [1], [2], [3], [5], [6], [13] and
[18]. Moreover, Kawahara equation is a model for small-amplitude gravity-capillary waves on water of a

finite depth when the Weber number is close to
1

3
(for details, see [16]). In this case, we have a break

down when the Weber number is close to
1

3
. If the Weber number is larger than

1

3
, this equation has

solitary waves just as the KdV approximation (see [9]).
Regarding the stability of solitary waves solutions, we can mention some contributors. In fact, Angulo
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in [4] showed the instability of solitary traveling-wave solutions associated with the generalized fifth-order
KdV equation of the form

ut + uxxxxx + buxxx = (G(u, ux, uxx))x, (1.5)

where G(q, r, s) = Fq(q, r)−rFqr(q, r)−sFrr(q, r) for some F (q, r) which is homogeneous of degree p+1 for
some p > 1, but the solitary wave was obtained by solving a constrained minimization problem in H2(R)
which is based on results obtained by Levandosky (see [15]). The instability of this class of solitary-wave
solutions is determined for b 6= 0, and it is obtained by making use of the variational characterization of
the solitary waves and a modification of the theories of instability established by Shatah&Strauss [17],
Bona&Souganidis&Strauss [6] and Gonçalves Ribeiro [12]. Levandosky’s method in [15], was also used by
Bridges&Derks [8] to show a result of the linear instability of solitary waves associated with the equation
(1.5). However, the authors make use of a geometric approach.

We recall, from the results of Albert in [1], the solitary wave

u(x, t) = ϕ(x − c0t) = sech4
(
x− 12

35
t

)
(1.6)

where c0 =
12

35
, is a stable solution of the Kawahara equation,

ut + uux +
13

420
uxxx −

1

1680
uxxxxx = 0.

In this result, the author used the nontrivial polynomials of Gegenbauer to determine the sign (strictly
negative) of the quantity I = (χ, ϕ)L2(R). Here, χ ∈ L2(R) is such that Lχ = ϕ (see Theorem 3.1 in
Section 3).

Now, for more general dispersive evolution equations of the general form

ut + upux −Mux = 0, (1.7)

an important study of sufficient conditions for the stability was established by Albert in [1] (see also [2])
about solitary traveling waves of the form u(x, t) = ϕ(x − ct), for the equation

(M+ c)ϕ− 1

p+ 1
ϕp+1 = 0. (1.8)

In (1.7) (and consequently in (1.8)), p ≥ 1 is an integer and M is a Fourier multiplier operator defined by

M̂g(k) = δ(k)ĝ(k), k ∈ R, (1.9)

where the symbol δ is a measurable, locally bounded, even function on R and satisfies that A1|k|ν ≦

δ(k) ≦ A2(1 + |k|)µ for ν ≦ µ, |k| ≥ k0, δ(k) > b for all k ∈ R and Ai > 0. In [1] sufficient conditions
were determined to obtain that the linear, closed, unbounded, self-adjoint operator L : D(L) → L2(R),
defined on a dense subspace of L2(R) by

Lζ = (M+ c)ζ − ϕpζ (1.10)

where M+ c is a positive operator, it will have exactly one negative eigenvalue which is simple and zero

is simple with eigenfunction
d

dx
ϕ. These specific spectral properties of L were obtained provided ϕ is a

positive solitary wave satisfying that ϕ̂ > 0 and ϕ̂p ∈ PF (2) class defined by Karlin in [14].
In this work, we will show two new explicit families of stable solitary traveling-wave solutions for the

Kawahara and modified Kawahara equations (1.1) and (1.2) respectively. Such solitary waves are given,
in the case of the Kawahara equation, by

ϕω(ξ) = β1sech
2(bξ) + λ1sech

4(bξ), (1.11)
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where ω > 0 is the wave-speed and β1, λ1, b > 0 depending smoothly of ω. In the case of the modified
Kawahara, we have

φc(ξ) = β2sech
2(αξ) (1.12)

where c > 0 is the wave speed with α and β2 > 0 are parameters which depends smoothly of the wave-
speed ω. However, in this specific case, we cannot obtain the nontrivial solitary traveling-wave solution
associated with the modified Korteweg-de Vries equation (1.4) as γ2 → 0, namely the solitary traveling-

wave solution gω(x) = 3ωsech

(√
ωx

2

)
associated with the equation (1.4). Note that in (1.11), if λ1 → 0

then, we could expect a profile solitary wave associated with the KdV equation (1.3).
For both cases, we will use the following conditions that imply the stability (see [5], [6], [13], and [18]):

(P0) there is a non-trivial smooth curve of solutions for (1.8) of the form,

c ∈ I ⊆ R → ϕc ∈ H2(R);
(P1) L has a unique negative eigenvalue λ, and which is simple;
(P2) the eigenvalue 0 is simple;
(P3)

d
dc

∫
R
ϕ2
c(x)dx > 0.

(1.13)

Therefore, by using conditions in (1.13) we are capable to investigate the nonlinear stability of the
traveling-wave solutions of the forms (1.11) and (1.12) for the Kawahara (1.1) and modified Kawahara
(1.2) equations, by using the theory developed by Albert [1] (see also Albert et al. [2]). Our stability
result is derived from the ideas of Benjamin&Bona&Weinstein&Grillakis&Shatah&Strauss (see [5], [6],
[13] and [18]).

In order to show the current findings, the paper is organized as follows. Section 2 establishes the nota-
tion used in the body of the paper and well-posedness results for the Kawahara and modified Kawahara
equations. In Section 3 we present the general theory of stability and the main facts about the paper
written by Albert [1]. Section 4 will show the existence of a branch of solitary traveling waves for the
Kawahara equation and the respective proof of the stability. In Section 5 a branch of solitary traveling
waves will be presented for the equation (1.2) and the respective proof of the stability for this case.

2. Preliminaries and Well-Posedness Results.

We denote by f̂ the Fourier transform of f in R, which is defined as f̂(ξ) =

∫
∞

−∞

f(x)e−iξx dx. Symbol

|f |Lp denotes the Lp(R) norm of f , 1 ≤ p ≤ ∞. In particular, | · |L2 = ‖ · ‖ and | · |L∞ = | · |∞. The inner
product of two elements f, g ∈ L2(R) will be denoted by 〈f, g〉. We denote by Hs(R), s ∈ R, the Sobolev

space of all f (tempered distributions) for which the norm ‖f‖2Hs =

∫
∞

−∞

(1 + |ξ|2)s|f̂(ξ)|2 dξ is finite.

2.1. Well-Posedness Results. An interesting result of well-posedness of the Kawahara equation in
L2(R) is given by Cui&Deng&Tao in [10]. In the case of the modified Kawahara the result of well-
posedness is given by Cui&Tao [11]. For both cases, the authors make use of the techniques of the
Bourgain’s spaces. These results can be summarized by the followings Theorems,

Theorem 2.1. Let s ≥ 0. For each u0 ∈ Hs(R) there is a T > 0 and a unique solution u ∈
C([0, T ];Hs(R)) of the Kawahara equation (1.1). Moreover, the correspondence u0 7→ u is a continu-
ous function between the adequate spaces

Proof: See [10].

�
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Theorem 2.2. Let s ≥ 2. For each u0 ∈ Hs(R) there is a T > 0 and a unique solution u ∈
C([0, T ];Hs(R)) of the modified Kawahara equation (1.2). Moreover, the correspondence u0 7→ u is a
continuous function between the adequate spaces

Proof: See [11].

�

3. Stability Theorem and Positivity Properties.

We start with our definition of stability

Definition 3.1. Let ϕ be a solitary traveling-wave solution of the equation (1.1) (respectively 1.2) and
consider τrϕ(x) = ϕ(x+ r), x ∈ R and r ∈ R. We define the set Ωϕ ⊂ H2(R), called the orbit generated
by ϕ, as

Ωϕ = {g; g = τrϕ, for some r ∈ R}.
And for any η > 0, define the set Uη ⊂ H2(R) by

Uη =

{
f ; inf

g∈Ωϕ

||f − g||H2 < η

}
.

With this terminology, we say that ϕ is (orbitally) stable in H2(R) by the flow generated by equation
(1.1) (respectively (1.2)) if,
(i) the initial value problem associated with (1.1) (respectively (1.2)) is globally well-posed in H2(R) (see
Theorems 2.1 and 2.2).
(ii) For every ε > 0, there is δ > 0 such that for all u0 ∈ Uδ, the solution u of (1.1) (respectively (1.2))
with u(0, x) = u0(x) satisfies u(t) ∈ Uε for all t > 0.

The proof of the following general stability Theorem can be obtained by using the techniques given
by Benjamin [5], Bona [6], Weinstein [18] and Grillakis et al. [13].

Theorem 3.1. Let ϕ be a solitary traveling-wave solution of (1.8) and suppose that part (i) of the
definition of stability holds. Suppose also that the operator proceeding of the equation (1.8),

Lζ = (M + c)ζ − ϕpζ, (3.14)

determines that L has exactly a unique negative eigenvalue which is simple and zero is a simple eigenvalue

with eigenfunction
d

dx
ϕc. Choose χ ∈ L2(R) such that Lχ = ϕ and define I = (χ, ϕ)2. If I < 0, then ϕ

is stable.

�

Remark 3.1. (i) If condition (P0) in (1.13) holds, we have in our case that function χ will be defined

as χ = − d

dω
ϕω or χ = − d

dc
φc. Then, it is necessary to verify that

d

dω
‖ϕω‖2 > 0 or

d

dc
‖φc‖2 > 0.

(ii) The existence of eigenvalues (and as consequence, eigenfunctions) for the operator (3.14) is guaranteed
from the results contained in [3].

The main result of the paper in Albert [1] (see also [2]) will be presented as follows. Before this, we
need a preliminary definition

Definition 3.2. We say that a function g : R → R is in the class PF (2) if
i) g(x) > 0, ∀ x ∈ R,
ii) g(x1 − x2)g(x2 − x2)− g(x1 − x2)g(x2 − x1) > 0 for x1 < x2 and x1 < x2.
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Theorem 3.2. Let ϕ be an even positive solution of (1.8). Suppose that ϕ̂ > 0 and K = ϕ̂p ∈ PF (2)
discrete, then L in (1.10) has exactly a unique negative eigenvalue which is simple and zero is a simple

eigenvalue with eigenfunction
d

dx
ϕ.

�

4. Existence and Stability of Solitary Traveling-Wave Solutions for the Kawahara

Equation.

In this section we are interested in applying the theory developed by Albert in [1] to obtain the
stability of a specific branch of positive solitary traveling waves associated with the Kawahara equation
whose statements was presented in the previous section.

4.1. Existence of Solitary Traveling-Wave Solutions. In this subsection we establish the existence
of solitary traveling-wave solutions related to the Kawahara equation given by,

ut + uux + uxxx − γ1uxxxx = 0. (4.15)

In fact, let u(x, t) = ϕω(x−ωt) be a solitary traveling-wave solution associated with (4.15). Substituting
this form in the equation (4.15) we obtain, after integration, that

− ωϕω +
1

2
ϕ2
ω + ϕ′′

ω − γ1ϕ
′′′′

ω = 0, (4.16)

where ω ∈ R.
Next, we consider

ϕω(ξ) = β1sech
2(bξ) + λ1sech

4(bξ), (4.17)

where β1, λ1 and b > 0 a smooth solution for (4.16). By using Maple program, the following nonlinear
system is obtained,





λ1 − 1680b4γ1 = 0

−1

2
b2 + γ1b

4 +
1

16
ω = 0

240γ1b
4β1 − 512γ1b

4λ1 − 32λ1b
2 − 12β1b

2 + β2
1 − 2ωλ1 = 0

2080γ1b
4λ1 − 240γ1β1b

4 − 40λ1b
2 + 2β1λ1 = 0.

(4.18)

After some calculations, (4.18) boils down in a simple system as





b2 − λ1

840
− ω

8
= 0

26λ1 + 39β1 − 840b2 = 0

3λ1β1 − 32λ2
1 − 672λ1b

2 − 252β1b
2 + 21β2

1 − 42ωλ1 = 0

(4.19)

System (4.19) can be dropped in terms of λ1 and ω as

− 2023210

169
ωλ1 −

862463

507
λ2
1 +

797475

169
ω2 = 0. (4.20)
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Then, we discover λ1 in terms of ω

λ1(ω) = 105

(
− 4129

123209
+

546

123209

√
70

)
ω. (4.21)

where we can conclude that λ1(ω) > 0 and λ′

1(ω) > 0 for all ω > 0.
Further, from (4.19) and (4.21) we have

β1(ω) =
105ω

39
− 25λ1

39

=

(
609630− 36750

√
70
)
ω

123209
.

(4.22)

Therefore, we get β1(ω) > 0 and β′

1(ω) > 0 for all ω > 0.
Finally, we can find b in term of ω as

b(ω) =

√
123209

√
(59540 + 273

√
70)ω

246418
(4.23)

and we have b(ω) > 0 and b′(ω) > 0 for all ω > 0.
Next, from (4.21), (4.22) and (4.23) we deduce that

ω ∈ (0,+∞) 7→ ϕω ∈ Hn(R) is smooth for all n ∈ N. (4.24)

4.2. Stability of Solitary Traveling-Wave Solutions. We have the following Theorem of stability

Theorem 4.1. The smooth branch of solutions ϕω obtained in (4.24) is orbitally stable in H2(R) by the
flow of the Kawahara equation since ω > 0.

Proof: First of all we wish to determine the behavior of the first two eigenvalues associated with the
operator

L = γ1
d4

dx4
− d2

dx2
+ ω − ϕω,

by utilizing the theory developed by Albert in [1]. In fact, since the kernel K = ϕ̂ω belongs to the PF (2)
continuous case from the Lemma 10 in [2], it is necessary to show that the symbol δ(z) associated with

the linear operator M = γ1
d4

dx4
− d2

dx2
satisfies the properties in (1.9). Indeed, since δ(z) = M̂u(z) =

(γ1|z|4 + |z|2)û(z) for all z ∈ R, the properties are verified.

Next, from Theorem 3.1 and Remark 3.1-(i) we calculate
d

dω
||ϕω||2, where ϕω(ξ) = β1sech

2(bξ) +

λ1sech
4(bξ) and ω > 0. In fact

||ϕω ||2 =
β2
1

b

∫

R

sech4(x)dx +
2β1λ1

b

∫

R

sech6(x)dx +
λ2
1

b

∫

R

sech8(x)dx

=
4β2

1

3b
+

32β1λ1

15b
+

32λ2
1

35b

Since
β2
1

b
= M1ω

3/2,
β1λ1

b
= M2ω

3/2,
λ2
1

b
= M3ω

3/2, where Mi, i = 1, 2, 3 are positive constants

obtained from (4.21), (4.22) and (4.23) we deduce that d′′(ω) > 0, for all ω > 0.

�
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5. Existence and Stability of Solitary Traveling-Wave Solutions for the modified

Kawahara Equation.

This section is concerned to proof the existence and stability of solitary traveling-wave solutions for
the modified Kawahara equation

− cφc + φ3
c + φ′′

c − γ2φ
′′′′

c = 0, (5.25)

where γ2 > 0.
To prove the existence, let φc(ξ) = β2sech

2(αξ) be a solitary traveling-wave solution for the equation

(5.25). If we substitute this φc into (5.25) we obtain after some calculations β2 = 6α and α =

√
5c

4
.

Therefore for all c > 0 we have,

φc(ξ) =
3
√
5c

2
sech2

(√
5c

4
ξ

)
. (5.26)

5.1. Stability of Solitary Traveling-Wave Solutions. In this subsection we are interested in applying
the theory in Section 3 to obtain the stability of the smooth branch of positive solitary traveling waves
obtained in the last subsection, associated to the modified Kawahara equation. In fact, our intention can
be summarized in the following theorem,

Theorem 5.1. The branch of solutions φc given by (5.26) is orbitally stable in H2(R) by the flow of the
modified Kawahara equation for all c > 0.

Proof: First of all, we note clearly that φ̂c > 0. Lemma 10 in [2], also shows that φ̂2
c belongs

to the PF (2) class and therefore the properties (P1) and (P2) in (1.13) are satisfied for the operator

L = γ2
d4

dx4
− d2

dx2
+ c − 3φ2

c , associated with the equation (5.25). Moreover, the linear operator M =

γ2
d4

dx4
− d2

dx2
, satisfies the properties required in (1.9) by the same arguments seen in the proof of the

Theorem 4.1. It remains for us to calculate the quantity
d

dc
||φc||2. In fact, since

∫

R

φc(ξ)
2dξ =

45
√
c√

5

∫

R

sech4(y)dy =
60

√
c√

5
,

we have
d

dc
||φc||2 > 0. This argument shows the theorem.

�
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