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Abstract

We investigate the relationship between global offensive k-alliances
and some characteristic sets of a graph including r-dependent sets, τ -
dominating sets and standard dominating sets. In addition, we discuss
the close relationship that exist among the (global) offensive ki-alliance
number of Γi, i ∈ {1, 2} and the (global) offensive k-alliance number
of Γ1×Γ2, for some specific values of k. As a consequence of the study,
we obtain bounds on the global offensive k-alliance number in terms
of several parameters of the graph.

∗e-mail:sbernav@upo.es. Partially supported by Ministerio de Ciencia y Tecnoloǵıa,
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1 Introduction

The mathematical properties of alliances in graphs were first studied by P.
Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi [6]. They proposed
different types of alliances that have been extensively studied during the last
four years. These types of alliances are called defensive alliances [6, 9, 10, 14],
offensive alliances [3, 11, 15] and dual alliances or powerful alliances [1, 8].
A generalization of these alliances called k-alliances was presented by K. H.
Shafique and R. D. Dutton [12, 13]. We are interested in the study of the
mathematical properties of global offensive k-alliances.

We begin by stating the terminology used. Throughout this article, Γ =
(V,E) denotes a simple graph of order |V | = n. We denote two adjacent
vertices u and v by u ∼ v. For a nonempty set S ⊆ V , and a vertex v ∈ V ,
NS(v) denotes the set of neighbors v has in S: NS(v) := {u ∈ S : u ∼ v},
and the degree of v in S will be denoted by δS(v) = |NS(v)|. We denote the
degree of a vertex v ∈ V by δ(v), the minimum degree of Γ by δ and the
maximum degree by ∆. The complement of the set S in V is denoted by S

and the boundary of S is defined by ∂(S) :=
⋃

v∈S NS(v).

A set S ⊆ V is a dominating set in Γ if for every vertex v ∈ S, δS(v) > 0
(every vertex in S is adjacent to at least one vertex in S). The domination

number of Γ, denoted by γ(Γ), is the minimum cardinality of a dominating
set in Γ. For k ∈ {2 − ∆, ...,∆}, a nonempty set S ⊆ V is an offensive

k-alliance in Γ if
δS(v) ≥ δS(v) + k, ∀v ∈ ∂(S) (1)

or, equivalently,
δ(v) ≥ 2δS(v) + k, ∀v ∈ ∂(S). (2)

It is clear that if k > ∆, no set S satisfies (1) and, if k < 2 − ∆, all the
subsets of V satisfy it. An offensive k-alliance S is called global if it is a
dominating set. The offensive k-alliance number of Γ, denoted by aok(Γ), is
defined as the minimum cardinality of an offensive k-alliance in Γ. The global
offensive k-alliance number of Γ, denoted by γo

k(Γ), is defined as the minimum
cardinality of a global offensive k-alliance in Γ. Notice that γo

k(Γ) ≥ aok(Γ)
and γo

k+1(Γ) ≥ γo
k(Γ) ≥ γ(Γ).
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In addition, if every vertex of Γ has even degree and k is odd, k = 2l− 1,
then every global offensive (2l − 1)-alliance in Γ is a global offensive (2l)-
alliance. Hence, in such a case, γo

2l−1(Γ) = γo
2l(Γ). Analogously, if every

vertex of Γ has odd degree and k is even, k = 2l, then every global offensive
(2l)-alliance in Γ is a global offensive (2l+1)-alliance. Hence, in such a case,
γo
2l(Γ) = γo

2l+1(Γ).

2 The global offensive k-alliance number for

some families of graphs

The problem of finding the global offensive k-alliance number is NP-complete
[5]. Even so, for some graphs it is possible to obtain this number. For
instance, it is satisfied that for the family of the complete graphs, Kn, of
order n

γo
k(Kn) =

⌈

n+ k − 1

2

⌉

,

for any cycle, Cn, of order n

γo
k(Cn) =

{
⌈

n
3

⌉

, for k = 0,
⌈

n
2

⌉

, for k = 1, 2,

and for any path, Pn, of order n

γo
k(Pn) =

{
⌈

n
3

⌉

, for k = 0,
⌊

n
2

⌋

+ k − 1, for k = 1, 2.

Remark 2.1. Let Γ = Kr,t be a complete bipartite graph with t ≤ r. For

every k ∈ {2− r, ..., r},

(a) if k ≥ t + 1, then γo
k(Γ) = r.

(b) if k ≤ t and
⌈

r+k
2

⌉

+
⌈

t+k
2

⌉

≥ t, then γo
k(Γ) = t,

(c) if −t < k ≤ t and
⌈

r+k
2

⌉

+
⌈

t+k
2

⌉

< t, then γo
k(Γ) =

⌈

r+k
2

⌉

+
⌈

t+k
2

⌉

,

(d) if k ≤ −t and
⌈

r+k
2

⌉

+
⌈

t+k
2

⌉

< t, then γo
k(Γ) = min{t, 1 +

⌈

r+k
2

⌉

}.
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Proof. (a) Let {Vt, Vr} be the bi-partition of the vertex set of Γ. Since Vr

is a global offensive k-alliance, we only need to show that for every global
offensive k-alliance S, Vr ⊆ S. If v ∈ S it satisfies δS(v) ≥ δS(v) + k > t, in
consequence v ∈ Vt. Therefore, S ⊆ Vt or, equivalently, Vr ⊆ S. Thus, we
conclude that γo

k(Γ) = r.
(b) If k ≤ t, it is clear that Vt is a global offensive k-alliance, then

γo
k(Γ) ≤ t. We suppose that

⌈

r+k
2

⌉

+
⌈

t+k
2

⌉

≥ t and there exists a global
offensive k-alliance S = A∪B such that A ⊆ Vr, B ⊆ Vt and |S| < t. In such
a case, as S is a dominating set, B 6= ∅. Since S is a global offensive k-alliance,
2|B| ≥ t + k and 2|A| ≥ r + k. Then we have, t > |S| ≥

⌈

r+k
2

⌉

+
⌈

t+k
2

⌉

≥ t,
a contradiction. Therefore, γo

k(Γ) = t.
(c) In the proof of (b) we have shown that if there exists a global offensive

k-alliance S of cardinality |S| < t, then |S| ≥
⌈

r+k
2

⌉

+
⌈

t+k
2

⌉

. Taking A ⊂ Vr

of cardinality
⌈

r+k
2

⌉

and B ⊂ Vt of cardinality
⌈

t+k
2

⌉

we obtain a global
offensive k-alliance S = A ∪ B of cardinality |S| =

⌈

r+k
2

⌉

+
⌈

t+k
2

⌉

.
(d) Finally, if S = A ∪ B where A ⊆ Vr, B ⊆ Vt, |A| =

⌈

r+k
2

⌉

and
|B| = 1, then S is a global offensive k-alliance. Moreover, S is a minimum
global offensive k-alliance if and only if |S| = 1 +

⌈

r+k
2

⌉

≤ t.

3 Global offensive k-alliances and r-dependent

sets

A set S ⊆ V is an r-dependent set in Γ if the maximum degree of a vertex
in the subgraph 〈S〉 induced by S is at most r, i.e., δS(v) ≤ r, ∀v ∈ S. We
denote by αr(Γ) the maximum cardinality of an r-dependent set in Γ [4].

Theorem 3.1. Let Γ be a graph of order n, minimum degree δ and maximum

degree ∆.

(a) If S is an r-dependent set in Γ, r ∈
{

0, ..., ⌊ δ−1
2
⌋
}

, then S is a global

offensive (δ − 2r)-alliance.

(b) If S is a global offensive k-alliance in Γ, k ∈ {2−∆, ...,∆}, then S is

a
⌊

∆−k
2

⌋

-dependent set.

(c) Let Γ be a δ-regular graph (δ > 0). S is an r-dependent set in Γ,
r ∈

{

0, ..., ⌊ δ−1
2
⌋
}

, if and only if S is a global offensive (δ−2r)-alliance.
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Proof. (a) Let S be an r-dependent set in Γ, then δS(v) ≤ r for every v ∈ S.
Therefore, δS(v) + δ ≤ 2δS(v) + δS(v) ≤ 2r + δS(v). As a consequence,
δS(v) ≥ δS(v) + δ − 2r, for every v ∈ S. That is, S is a global offensive
(δ − 2r)-alliance in Γ.

(b) If S is a global offensive k-alliance in Γ, then δ(v) ≥ 2δS(v) + k for

every v ∈ S. As a consequence, δS(v) ≤
δ(v)−k

2
≤ ∆−k

2
for every v ∈ S, that

is, S is a
⌊

∆−k
2

⌋

-dependent set in Γ.
(c) The result follows immediately from (a) and (b).

Corollary 3.2. Let Γ be a graph of order n, minimum degree δ and maximum

degree ∆.

• For every k ∈ {2−∆, ...,∆}, n− α⌊∆−k

2 ⌋(Γ) ≤ γo
k(Γ).

• For every k ∈ {1, ..., δ}, γo
k(Γ) ≤ n− α⌊ δ−k

2
⌋(Γ).

• If Γ is a δ-regular graph (δ > 0), for every k ∈ {1, ..., δ}, γo
k(Γ) =

n− α⌊ δ−k

2
⌋(Γ).

4 Global offensive k-alliances and τ-dominating

sets

Let Γ be a graph without isolated vertices. For a given τ ∈ (0, 1], a set S ⊆ V

is called τ -dominating set in Γ if δS(v) ≥ τδ(v) for every v ∈ S. We denote
by γτ (Γ) the minimum cardinality of a τ -dominating set in Γ [2].

Theorem 4.1. Let Γ be a graph of minimum degree δ > 0 and maximum

degree ∆.

(a) If 0 < τ ≤ min{k+δ
2δ

, k+∆
2∆

}, then every global offensive k-alliance in Γ
is a τ -dominating set.

(b) If max{k+δ
2δ

, k+∆
2∆

} ≤ τ ≤ 1, then every τ -dominating set in Γ is a global

offensive k-alliance.

Proof. (a) If S is a global offensive k-alliance in Γ, then 2δS(v) ≥ δ(v) + k

for every v ∈ S. Therefore, if 0 < τ ≤ min{1
2
, k+δ

2δ
}, then δS(v) ≥

δ(v)+k

2
≥
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δ(v)+δ(2τ−1)
2

≥ τδ(v). Moreover, if 1
2
≤ τ ≤ k+∆

2∆
, then δS(v) ≥ δ(v)+k

2
≥

δ(v)+∆(2τ−1)
2

≥ τδ(v).
(b) Since δ > 0, it is clear that every τ -dominating set is a dominating set.

If τ ≥ 1
2
, then δ(2τ −1) ≤ δ(v)(2τ−1), for every vertex v in Γ. Hence, if S is

a τ -dominating set and k+δ
2δ

≤ τ , we have k ≤ (2τ − 1)δ(v) ≤ 2δS(v)− δ(v),
for every v ∈ S̄. Thus, S is a global offensive k-alliance in Γ.

On the other hand, if τ ≤ 1
2
, then ∆(2τ − 1) ≤ δ(v)(2τ − 1), for every

vertex v in Γ. Hence, if S is a τ -dominating set and k+∆
2∆

≤ τ , we have
k ≤ (2τ − 1)δ(v) ≤ 2δS(v) − δ(v), for every v ∈ S̄. Thus, S is a global
offensive k-alliance in Γ.

Corollary 4.2. S is a global offensive (0)-alliance in Γ if, and only if, S is

a (1
2
)-dominating set.

Corollary 4.3. S is a global offensive k-alliance in a δ-regular graph Γ if,

and only if, S is a (k+δ
2δ

)-dominating set in Γ.

Theorem 4.4. Let Γ be a graph of order n, minimum degree δ > 0 and

maximum degree ∆ ≥ 2. For every j ∈ {2 − ∆, ..., 0} and k ≤ − jδ

∆
it is

satisfied γo
k(Γ) + γo

j (Γ) ≤ n.

Proof. If j ∈ {2 − ∆, ..., 0}, then there exists τ ∈
[

1
∆
, 1
2

]

such that j =
∆(2τ − 1). Therefore, if S is a τ -dominating set, then (by Theorem 4.1 (b))
S is a global offensive j-alliance. In consequence, γo

j (Γ) ≤ γτ(Γ). Moreover,

if k ≤ − jδ

∆
= δ(1 − 2τ), then 1 − τ ≥ max{1

2
, k+δ

2δ
}. Hence, by Theorem 4.1

(b), we have that every (1−τ)-dominating set is a global offensive k-alliance.
Thus, γo

k(Γ) ≤ γ1−τ (Γ). Using that γτ (Γ) + γ1−τ (Γ) ≤ n for 0 < τ < 1 (see
Theorem 9 [2]), we obtain the required result.

Notice that from Theorem 4.4 we have the following result.

Corollary 4.5. If Γ is a graph of order n and minimum degree δ > 0, then
γo
0(Γ) ≤

n
2
.

5 Global offensive k-alliances and standard

dominating sets

We say that a global offensive k-alliance S is minimal if no proper subset
S ′ ⊂ S is a global offensive k-alliance.

6



Theorem 5.1. Let Γ be a graph without isolated vertices and k ≤ 1. If S is

a minimal global offensive k-alliance in Γ, then S is a dominating set in Γ.

Proof. We suppose there exists u ∈ S such that δS(u) = 0 and let S ′ =
S \ {u}. Since S is a minimal global offensive k-alliance, and Γ has no
isolated vertices, there exists v ∈ S ′ such that δS′(v) < δS′(v) + k. If v = u,
we have δS(u) = δS′(u) < δS′(u) + k = k, a contradiction. If v 6= u, we have
δS(v) = δS′(v) < δS′(v) + k = δS(v) + k, which is a contradiction too. Thus,
δS(u) > 0 for every u ∈ S.

In the following result Γ̄ = (V, Ē) denotes the complement of Γ = (V,E).

Lemma 5.2. Let Γ be a graph of order n. A dominating set S in Γ̄ is a

global offensive k-alliance in Γ̄ if and only if δS(v)− δS(v)+n+ k− 1 ≤ 2|S|
for every v ∈ S.

Proof. We know that a dominating set S in Γ̄ is a global offensive k-alliance
in Γ̄ if and only if δ̄S(v) ≥ δ̄S(v) + k for every v ∈ S, where δ̄S(v) and δ̄S(v)
denote the number of vertices that v has in S and S̄, respectively, in Γ̄. Now,
using that δ̄S(v) = |S|−δS(v) and δ̄S(v) = |S|−1−δS(v) = n−|S|−1−δS(v),
we get that S is a global offensive k-alliance in Γ̄ if and only if |S| − δS(v) ≥
n− |S| − 1 + k − δS(v) or, equivalently, if δS(v)− δS(v) + n + k − 1 ≤ 2|S|
for every v ∈ S.

Theorem 5.3. Let Γ be a graph of order n, minimum degree δ and maximum

degree ∆.

(a) Every dominating set in Γ̄ = (V, Ē), S ⊆ V , of cardinality |S| ≥
⌈

n+k+∆−1
2

⌉

is a global offensive k-alliance in Γ̄.

(b) Every dominating set in Γ = (V,E), S ⊆ V , of cardinality |S| ≥
⌈

2n+k−δ−2
2

⌉

is a global offensive k-alliance in Γ.

Proof. If S is a dominating set in Γ̄ and it satisfies |S| ≥
⌈

n+k+∆−1
2

⌉

, then

|S| ≥
n+ k +∆− 1

2
≥

δS(v)− δS(v) + n + k − 1

2

for every vertex v. Therefore, by Lemma 5.2 we have that S is a global
offensive k-alliance in Γ̄. Thus, the result (a) follows.

Analogously, by replacing Γ by Γ̄ and taking into account that the max-
imum degree in Γ̄ is n− 1− δ, the result (b) follows.
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6 The Cartesian product of k-alliances

In this section we discuss the close relationship that exist among the (global)
offensive ki-alliance number of Γi, i ∈ {1, 2} and the (global) offensive k-
alliance number of Γ1 × Γ2, for some specific values of k.

Theorem 6.1. Let Γi = (Vi, Ei) be a graph of minimum degree δi and max-

imum degree ∆i, i ∈ {1, 2}.

(a) If Si is an offensive ki-alliance in Γi, i ∈ {1, 2}, then, for k = min{k2−
∆1, k1 −∆2}, S1 × S2 is an offensive k-alliance in Γ1 × Γ2.

(b) Let Si ⊂ Vi, i ∈ {1, 2}. If S1×S2 is an offensive k-alliance in Γ1 ×Γ2,

then S1 is an offensive (k + δ2)-alliance in Γ1 and S2 is an offensive

(k + δ1)-alliance in Γ2, moreover, k ≤ min{∆1 − δ2,∆2 − δ1}.

Proof. If X = S1 × S2, then (u, v) ∈ ∂X if and only if, either u ∈ ∂S1 and
v ∈ S2 or u ∈ S1 and v ∈ ∂S2. We differentiate two cases:

Case 1: If u ∈ ∂S1 and v ∈ S2, then δX(u, v) = δS1
(u) and δX(u, v) =

δS1
(u) + δ(v).

Case 2: If u ∈ S1 and v ∈ ∂S2, then δX(u, v) = δS2
(v) and δX(u, v) =

δ(u) + δS2
(v).

(a) In Case 1 we have δX(u, v) = δS1
(u) ≥ δS1

(u) + k1 = δX(u, v)− δ(v) +
k1 ≥ δX(u, v) −∆2 + k1 and in Case 2 we obtain δX(u, v) = δS2

(v) ≥
δS2

(v)+k2 = δX(u, v)−δ(u)+k2 ≥ δX(u, v)−∆1+k2. Hence, for every
(u, v) ∈ ∂X , δX(u, v) ≥ δX(u, v) + k, with k = min{k2 −∆1, k1 −∆2}.
So, the result follows.

(b) In Case 1 we have δS1
(u) = δX(u, v) ≥ δX(u, v)+k = δS1

(u)+δ(v)+k =
δS1

(u)+ δ2 + k and in Case 2 we deduce δS2
(v) = δX(u, v) ≥ δX(u, v)+

k = δS2
(v) + δ(u) + k ≥ δS2

(v) + δ1 + k. Hence, for every u ∈ ∂S1,
δS1

(u) ≥ δS1
(u)+ δ1+k and for every v ∈ ∂S2, δS2

(v) ≥ δS2
(v)+ δ2+k.

So, the result follows.

Corollary 6.2. Let Γi be a graph of maximum degree ∆i, i ∈ {1, 2}. Then

for every k ≤ min{k1 −∆2, k2 −∆1}, a
o
k(Γ1 × Γ2) ≤ aok1(Γ1)a

o
k2
(Γ2).
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For the particular case of the graph C4 × K4, we have ao−3(C4 × K4) =
2 = ao0(C4)a

o
1(K4).

Theorem 6.3. Let Γ2 = (V2, E2) be a graph of maximum degree ∆2 and

minimum degree δ2.

(i) If S is a global offensive k-alliance in Γ1, then S×V2 is a global offensive

(k −∆2)-alliance in Γ1 × Γ2.

(ii) If S × V2 is a global offensive k-alliance in Γ1 × Γ2, then S is a global

offensive (k + δ2)-alliance in Γ1, moreover, k ≤ ∆1 − δ2, where ∆1

denotes the maximum degree of Γ1.

Proof.

(i) We first note that, as S is a dominating set in Γ1, X = S × V2 is a
dominating set in Γ1 × Γ2. In addition, for every xij = (ui, vj) ∈ X̄ we
have δX(xij) = δS(ui) and δS̄(ui) + ∆2 ≥ δS̄(ui) + δ(vj) = δX̄(xij), so
δX(xij) = δS(ui) ≥ δS̄(ui) + k ≥ δX̄(xij)−∆2 + k. Thus, X is a global
offensive (k −∆2)-alliance in Γ1 × Γ2.

(ii) From Theorem 6.1 (a) we obtain that S is an offensive (k+ δ2)-alliance
in Γ1 and k ≤ ∆1 − δ2. We only need to show that S is a dominating
set. As S × V2 is a dominating set in Γ1 × Γ2, we have that for every
u ∈ S and v ∈ V2 there exists (a, b) ∈ S×V2 such that (a, b) is adjacent
to (u, v), hence, b = v and a is adjacent to u, so the result follows.

It is easy to see the following result on domination, γ(Γ1×Γ2) ≤ n2γ(Γ1),
where n2 is the order of Γ2. An “analogous” result on global offensive k-
alliances can be deduced from Theorem 6.3 (i).

Corollary 6.4. For any graph Γ1 and any graph Γ2 of order n2 and maximum

degree ∆2, γ
o
k−∆2

(Γ1 × Γ2) ≤ n2γ
o
k(Γ1).

We emphasize the following particular cases of Corollary 6.4.

Remark 6.5. For any graph Γ,

(a) γo
k−2(Γ× Ct) ≤ tγo

k(Γ),
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(b) γo
k−2(Γ× Pt) ≤ tγo

k(Γ).

(c) γo
k−t+1(Γ×Kt) ≤ tγo

k(Γ).

Notice also that if Γ2 is a regular graph, Theorem 6.3 (i) can be simplified
as follow.

Corollary 6.6. Let Γ2 = (V2, E2) be a δ-regular graph. A set S is a global

offensive k-alliance in Γ1 if and only if S × V2 is a global offensive (k − δ)-
alliance in Γ1 × Γ2.

7 Bounding the global offensive k-alliance num-

ber

In general, the problem of finding the global offensive k-alliance number is
NP-complete [5]. In the following results we obtain some bounds on this
number involving some other parameters of the graphs.

Remark 7.1. For every k ∈ {4− n, ..., n− 1},

(a)
⌈

t(n+k−3)
2

⌉

≤ γo
k(Kn × Ct) ≤ t

⌈

n+k+1
2

⌉

,

(b)
⌈

t(n+k−3)+2
2

⌉

≤ γo
k(Kn × Pt) ≤ t

⌈

n+k+1
2

⌉

Proof. (a) Let S = ∪t
i=1Si ⊂ V (Kn × Ct), where each Si (1 ≤ i ≤ t)

is a subset of each one of the t copies of Kn, respectively. If S is a global
offensive k-alliance in Kn × Ct, then for every v ∈ S̄ we have, |Si| + 2 ≥
δS(v) ≥ δS̄(v) + k ≥ n− 1− |Si|+ k, where Si is the corresponding subset of
S included in the same copy of Kn containing v. Thus, |Si| ≥

n+k−3
2

. Hence,

for k > 3− n, we obtain that Si 6= ∅. Therefore, |S| =
∑t

i=1 |Si| ≥
t(n+k−3)

2
.

The upper bound is obtained directly from Remark 6.5. The proof of (b) is
completely analogous.

Theorem 7.2. Let Γ be a graph of order n, size m, minimum degree δ and

maximum degree ∆. For every k ∈ {2 − δ, ..., δ}, the following inequality

holds

γo
k(Γ) ≥

⌈

(n + 2∆+ k)−
√

(n + 2∆+ k)2 − 4(2m+ kn)

2

⌉

.
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Proof. To get the bound, we know that

2m =
∑

v∈S

δ(v) +
∑

v∈S

δS(v) +
∑

v∈S

δS(v)

≤ 2|S|∆+
∑

v∈S

(δS(v)− k)

≤ 2|S|∆+ (n− |S|)(|S| − k).

Then, the result follows by solving the inequality |S|2 − (n + 2∆ + k)|S| +
2m+ kn ≤ 0.

Notice the bound is tight, if we consider the cube Q3 we obtain γo
−1(Q3) =

γ(Q3) = 2 and γo
2(Q3) = γo

3(Q3) = 4.
The upper bound in the following theorem have been correctly obtained

in [5] but it appears in the article with a mistake, should be
⌊

δ−k+2
2

⌋

instead
of

⌈

δ−k+2
2

⌉

. So in this article we include the correct result without proof. The
lower bound is an immediate generalization of the previous results obtained
in [15] for k = 1 and k = 2.

Theorem 7.3. Let Γ be a graph of order n, size m and maximum degree ∆.

Then
⌈

2m+ kn

3∆ + k

⌉

≤ γo
k(Γ) ≤ n−

⌊

δ − k + 2

2

⌋

The bounds of Theorem 7.3 are tight. For instance, the lower bound
is attained in the case of the 3-cube, Q3, for every k. The upper bound is
attained, for instance, for the complete graph, Kn, for every k, i.e., γo

k(Kn) =
⌈

n+k−1
2

⌉

.

There are graphs in which Theorem 7.2 leads to better results than the
lower bound in Theorem 7.3 and viceversa. For instance, for k = 1 and
Γ = K5 the bound in Theorem 7.2 is attained but the lower bound in Theorem
7.3 is not. The opposite one occurs for the case of the 3-cube graph.

Corollary 7.4. Let L(Γ) be the line graph of a simple graph Γ of size m.

Let δ1 ≥ δ2 ≥ · · · ≥ δn be the degree sequence of Γ. Then

γo
k(L(Γ)) ≥

















n
∑

i=1

δ2i +m(k − 2)

3(δ1 + δ2 − 2) + k

















.
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Theorem 7.5. Let Γ be a graph of order n and maximum degree ∆. For all

global offensive k-alliance S in Γ such that the subgraph 〈S〉 has minimum

degree p, |S| ≥
⌈

(p+k)n
∆+p+k

⌉

.

Proof. The number of edges in the subgraph 〈S〉 satisfies m(〈S〉) ≥ (n−|S|)p
2

,
hence,

∆|S|≥
∑

v∈S

δS(v)≥
∑

v∈S

δS(v)+k(n−|S|)=2m(〈S〉)+k(n−|S|)≥(p+k)(n−|S|),

in consequence, |S| ≥ (p+k)n
∆+p+k

.

Notice the bound is attained for the minimal global offensive k-alliance
in the case of the 3-cube graph Q3 for k = −1, 2, 3. For k = −1 we have
|S| = 2 and p = 2, and for k = 2, 3 we have |S| = 4 and p = 0.
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