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a b s t r a c t

The purpose of the present paper is to establish coincidence point theorem for two
mappings and fixed point theorem for one mapping in abstract metric space which satisfy
contractive conditions of Hardy–Rogers type. Our results generalize fixed point theorems
of Nemytzki [V.V. Nemytzki, Fixed point method in analysis, Uspekhi Mat. Nauk 1 (1936)
141–174], Edelstein [M. Edelstein, On fixed and periodic point under contractivemappings,
J. Lond. Math. Soc. 37 (1962) 74–79] and Huang, Zhang [L.G. Huang, X. Zhang, Cone metric
spaces and fixed point theorems of contractivemappings, J.Math. Anal. Appl. 332 (2) (2007)
1468–1476] from abstract metric spaces to symmetric spaces (Theorem 2.1) and to metric
spaces (Theorem2.4, Corollaries 2.6–2.8). Two examples are given to illustrate the usability
of our results.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Abstract (cone) metric spaces were introduced in [1], in which authors described convergence in abstract metric spaces
and introduced completeness. Then, they proved some fixed point theorems of contractivemappings on conemetric spaces.
Also, in [2–10], some common fixed point theorems were proved for maps on cone metric spaces.

ConsistentwithHuang and Zhang [1] andDeimling [11], the following definitions and resultswill be needed in the sequel.
Let E be a real Banach space. A subset P of E is called a cone if and only if

(a) P is closed, nonempty and P ≠ {θ};
(b) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax + by ∈ P;
(c) P ∩ (−P) = {θ}.

Given a cone P ⊂ E, we define a partial ordering ≼ with respect to P by x ≼ y if and only if y − x ∈ P . We shall write
x ≺ y to indicate that x ≼ y but x ≠ y, while x ≪ ywill stand for y − x ∈ int P (interior of P). A cone P ⊂ E is called normal
if there is a number K > 0 such that for all x, y ∈ E,

θ ≼ x ≼ y implies ‖x‖ ≤ K‖y‖. (1.1)
The least positive number satisfying the above inequality is called the normal constant of P . It is clear that K ≥ 1. Most of
ordered Banach spaces used in applications posses a cone with the normal constant K = 1, and if this is the case, proofs
of the corresponding results are much alike as in the metric setting. If K > 1, this is not the case. From [11], we know that
there exists ordered Banach space E with cone P which is not normal but with int P ≠ ∅.

The cone P is called regular if every increasing sequence in E which is bounded fromabove is convergent. That is, if (xn)n≥1
is a sequence in E such that x1 ≼ x2 ≼ · · · ≼ y for some y ∈ E, then there is x ∈ E such that limn→∞ ‖xn − x‖ = 0. Every
regular cone is normal [11], but the converse is not true.
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Definition 1.1 ([1]). Let X be a nonempty set. Suppose that the mapping d : X × X → E satisfies

(d1) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X .

Then, d is called a cone metric on X and (X, d) is called a cone metric space. The concept of a cone metric space is more
general than that of a metric space, because each metric space is a cone metric space where E = R and P = [0, +∞).

For basic properties of cone metric spaces, we refer to [1].

Definition 1.2 ([1]). Let (X, d) be a cone metric space. We say that {xn} is

(e) a Cauchy sequence if for every c in E with θ ≪ c , there is an N such that for all n,m > N, d(xn, xm) ≪ c;
(f) a convergent sequence if for every c in E with θ ≪ c , there is an N such that for all n > N, d(xn, x) ≪ c for some fixed

x in X .

A conemetric space X is said to be complete if every Cauchy sequence in X is convergent in X . In the case of normal cone,
it is known [1] that {xn} converges to x ∈ X if and only if ‖d(xn, x)‖ → 0 as n → ∞.

For the given cone metric space (X, d), one can construct a symmetric space (X,D) where ‘‘symmetric’’ (in sense
of [12–14]) D : X × X → R is given by D(x, y) = ‖d(x, y)‖ (for details see [15]). In the case when (X, d) is a cone metric
space with a normal cone P , then (1.1) implies

D(x, y) ≤ K(D(x, z) + D(z, y)),

x, y, z ∈ X, K is a normal constant of P .
We find it convenient to introduce the following definition.

Definition 1.3 (See [4]). Let (X, d) be a cone metric space and P a cone with nonempty interior. Suppose that the mappings
f , g : X → X are such that the range of g contains the range of f , and f (X) or g(X) is a complete subspace of X . In this case
we will say that the pair (f , g) is Abbas and Jungck’s pair, or shortly AJ’s pair.

Definition 1.4 (See [2]). Let f and g be self-maps of a set X (i.e., f , g : X → X). If ω = fx = gx for some x in X , then x is
called a coincidence point of f and g , andω is called a point of coincidence of f and g . Self-maps f and g are said to beweakly
compatible if they commute at their coincidence point, that is, if fx = gx for x ∈ X , then fgx = gfx.

Proposition 1.5 (See [2]). Let f and g be weakly compatible self-maps of a set X. If f and g have a unique point of coincidence
ω = fx = gx, then ω is the unique common fixed point of f and g.

In the following, we always suppose that E is a Banach space, P is a normal cone in E with int P ≠ ∅ and ≼ is the partial
ordering with respect to P .

The next example shows that the fixed point problem cannot be solved in symmetric spaces as in the metric setting.

Example 1.6. Let X = (0, ∞) and d(x, y) = (x − y)2. Obviously, (X, d) is a symmetric space. The mapping fx =
1
2x, x ∈ X

is a contraction in the Banach sense with 1
4 ≤ λ < 1, because

d(fx, fy) = (fx − fy)2 =
1
4
(x − y)2 =

1
4
d(x, y) ≤ λd(x, y),

for λ ∈ [
1
4 , 1). However, f has no fixed points.

However, symmetric space (X,D) obtained as associated with cone metric space (X, d) with a normal cone P has a
property that any contractive mapping possesses a fixed point (see [9]).

2. Main results

Theorem 2.1. Let (X, d) be a complete cone metric space, P a normal cone with normal constant K . Suppose that (f , g) is AJ’s
pair, and that there exist nonnegative constants ai, i = 1, 5 satisfying

∑3
i=1 ai + K(a4 + a5) < 1 such that, for every x, y ∈ X,

D(fx, fy) ≤ a1D(gx, gy) + a2D(gx, fx) + a3D(gy, fy) + a4D(gx, fy) + a5D(gy, fx). (2.1)

Then, f and g have a unique coincidence point in X. Moreover, if f and g are weakly compatible, f and g have a unique common
fixed point.
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Proof. Let x0 ∈ X be arbitrary and let x1 ∈ X be chosen such that y0 = f (x0) = g(x1). This can be done, since f (X) ⊆ g(X).
Let x2 ∈ X be such that y1 = f (x1) = g(x2). Continuing this process, having chosen xn ∈ X , we choose xn+1 in X such that

yn = f (xn) = g(xn+1).

We have to show that

D(yn, yn+1) ≤ λD(yn−1, yn) for some λ ∈ [0, 1), n ≥ 1. (2.2)

From

D(yn, yn+1) = D(fxn, fxn+1) ≤ a1D(gxn, gxn+1) + a2D(gxn, fxn)
+a3D(gxn+1, fxn+1) + a4D(gxn, fxn+1) + a5D(gxn+1, fxn)

= a1D(yn−1, yn) + a2D(yn−1, yn) + a3D(yn, yn+1) + a4D(yn−1, yn+1) + a5D(yn, yn)
≤ (a1 + a2 + Ka4)D(yn−1, yn) + (a3 + Ka4)D(yn, yn+1),

and from

D(yn+1, yn) = D(fxn+1, fxn) ≤ a1D(gxn+1, gxn) + a2D(gxn+1, fxn+1)

+a3D(gxn, fxn) + a4D(gxn+1, fxn) + a5D(gxn, fxn+1)

= a1D(yn, yn−1) + a2D(yn, yn+1) + a3D(yn−1, yn) + a4D(yn, yn) + a5D(yn−1, yn+1)

≤ (a1 + a3 + Ka5)D(yn−1, yn) + (a2 + Ka5)D(yn, yn+1),

we obtain

2D(yn+1, yn) ≤ (2a1 + a2 + a3 + K(a4 + a5))D(yn, yn−1) + (a2 + a3 + K(a4 + a5))D(yn+1, yn),

that is,

D(yn+1, yn) ≤ λD(yn, yn−1), λ =
2a1 + a2 + a3 + K(a4 + a5)
2 − (a2 + a3 + K(a4 + a5))

< 1, n = 1, 2, . . . .

Further, (2.2) implies that

D(yn, yn−1) ≤ λD(yn−1, yn−2) ≤ · · · ≤ λn−1D(y1, y0). (2.3)

Now we shall show that {yn} is a Cauchy sequence. By the triangle inequality, for n > m we have

d(yn, ym) ≼ d(yn, yn−1) + d(yn−1, yn−2) + · · · + d(ym+1, ym).

Hence, as P is a normal cone, we have

D(yn, ym) = ‖d(yn, ym)‖ ≤ K(‖d(yn, yn−1) + d(yn−1, yn−2) + · · · + d(ym+1, ym)‖)

≤ K(‖d(yn, yn−1)‖ + ‖d(yn−1, yn−2)‖ + · · · + ‖d(ym+1, ym)‖)

= KD(yn, yn−1) + KD(yn−1, yn−2) + · · · + KD(ym+1, ym).

Now by (2.3), it follows that

D(yn, ym) ≤ K(λn−1
+ λn−2

+ · · · + λm)D(y1, y0)

≤
Kλm

1 − λ
D(y1, y0) → 0, as m → ∞.

From [1, Lemma 4] follows that {yn} = {fxn} = {gxn+1} is a Cauchy sequence. Since g(X) is complete, there exists a q in g(X)
such that yn → q as n → ∞. Consequently, we can find p in X such that g(p) = q. We shall show that f (p) = q. Substituting
x = p, y = xn in (2.1), we get

D(fp, fxn) ≤ a1D(gp, gxn) + a2D(gp, fp) + a3D(gxn, fxn) + a4D(gp, fxn) + a5D(gxn, fp).

According to [1, Lemma 5], it follows

D(fp, q) ≤ a1D(q, q) + a2D(q, fp) + a3D(q, q) + a4D(q, q) + a5D(q, fp)
= (a2 + a5)D(fp, q) < D(fp, q),

because a2 + a5 ≤
∑3

i=1 ai + K(a4 + a5) < 1. Now, if we suppose that fp ≠ q, then we have a contradiction. Hence,
gp = fp = q.We shall show that f and g have a unique point of coincidence. For this, assume that there exists another point
of coincidence q1 ≠ q in X such that fp1 = gp1 = q1. Now,

D(q, q1) = D(fp, fp1) ≤ a1D(gp, gp1) + a2D(gp, fp) + a3D(gp1, fp1) + a4D(gp, fp1) + a5D(gp1, fp)
= a1D(q, q1) + a2D(q, q) + a3D(q1, q1) + a4D(q, q1) + a5D(q1, q)
= (a1 + a4 + a5)D(q1, q) < D(q1, q).
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As a1 + a4 + a5 ≤
∑3

i=1 ai + K(a4 + a5) < 1, we get D(q, q1) = 0, that is, q = q1. From the Proposition 1.5, it follows that f
and g have a unique common fixed point. �

Corollary 2.2. In Theorem 2.1. by setting E = R, P = [0, +∞), ‖x‖ = |x|, x ∈ E, g = IX , we get the main theorem of
Hardy–Rogers from [16].

Corollary 2.3. Putting a1 = λ, a2 = a3 = a4 = a5 = 0 (respect. a2 = a3 = λ, a1 = a4 = a5 = 0 that is,
a1 = a2 = a3 = 0, a4 = a5 = λ) in Theorem 2.1, we obtain Theorem 2.3 from [9].

Since the four points {x, y, fx, fy} determine six distances in X , the condition (2.4) in the following theorem to say that
the image distance d(fx, fy) never exceeds a fixed convex combination of the remaining five distances. Geometrically, this
type of condition is quite natural.

Theorem 2.4. Let (X, d) be a sequentially compact cone metric space, P a regular cone and f : X → X a continuous mapping
such that

d(fx, fy) ≺ a1d(x, y) + a2d(x, fx) + a3d(y, fy) + a4d(x, fy) + a5d(y, fx) (2.4)

for all x, y ∈ X, x ≠ y where ai ∈ [0, 1), i = 1, 5 and
∑5

i=1 ai = 1. Then, f has a unique fixed point.

In order to prove Theorem 2.4., we shall need the following lemma.

Lemma 2.5. Let (X, d) be a cone metric space, f : X → X a mapping satisfying (2.4) for all x, y ∈ X, x ≠ y where
ai ∈ [0, 1), i = 1, 5 and

∑5
i=1 ai = 1. Then

d(f 2x, fx) ≺ d(x, fx), for each x ∈ X with x ≠ fx.

Proof. Putting y = fx in (2.4), we have

d(fx, f 2x) ≺ a1d(x, fx) + a2d(x, fx) + a3d(fx, f 2x) + a4d(x, f 2x) + a5d(fx, fx)
≼ (a1 + a2 + a4)d(x, fx) + (a3 + a4)d(fx, f 2x),

that is,

d(fx, f 2x) ≺
a1 + a2 + a4
1 − a3 − a4

d(x, fx). (2.5)

By symmetry in (2.4), we have

d(fy, fx) ≺ a1d(y, x) + a2d(y, fy) + a3d(x, fx) + a4d(y, fx) + a5d(x, fy), (2.6)

i.e., putting y = fx in (2.6), we obtain

d(f 2x, fx) ≺ a1d(fx, x) + a2d(fx, f 2x) + a3d(x, fx) + a4d(fx, fx) + a5d(x, f 2x)
≼ (a1 + a3 + a5) d(x, fx) + (a2 + a5)d(fx, f 2x),

that is,

d(f 2x, fx) ≺
a1 + a3 + a5
1 − a2 − a5

d(x, fx). (2.7)

If k = min


a1+a2+a4
1−a3−a4

,
a1+a3+a5
1−a2−a5


∈ [0, 1), then

d(fx, f 2x) ≼ kd(x, fx) ≺ d(x, fx). � (2.8)

Proof of the Theorem 2.4. First, if u and v are two different fixed points of f , according to (2.4), we have

d(u, v) = d(fu, f v) ≺ a1d(u, v) + a2d(u, fu) + a3d(v, f v) + a4d(u, f v) + a5d(v, fu)
= a1d(u, v) + a4d(u, v) + a5d(u, v) = (a1 + a4 + a5)d(u, v) ≺ d(u, v).

This is a contradiction.
Let x0 ∈ X . We define the sequence xn = f nx0, n = 0, 1, 2, . . . . If xn+1 = xn for some n, then xn is a fixed point of f .

Suppose that xn+1 ≠ xn for each n. Then, we have

d(xn, xn+1) = d(f nx0, f n+1x0) = d(ff n−1x0, ff nx0)
≺ a1d(f n−1x0, f nx0) + a2d(f n−1x0, f nx0) + a3d(f nx0, f n+1x0)

+ a4d(f n−1x0, f n+1x0) + a5d(f nx0, f nx0)
≼ a1d(xn−1, xn) + a2d(xn−1, xn) + a3d(xn, xn+1) + a4d(xn−1, xn) + a4d(xn, xn+1),
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that is,

d(xn+1, xn) = d(f n+1x0, f nx0) = d(ff nx0, ff n−1x0)
≺ a1d(f nx0, f n−1x0) + a2d(f nx0, f n+1x0) + a3d(f n−1x0, f nx0)

+ a4d(f nx0, f nx0) + a5d(f n−1x0, f n+1x0)
≼ a1d(xn−1, xn) + a2d(xn, xn+1) + a3d(xn−1, xn) + a5d(xn−1, xn) + a5d(xn, xn+1).

Now, we obtain

2d(xn, xn+1) ≺ (2a1 + a2 + a3 + a4 + a5)d(xn−1, xn) + (a2 + a3 + a4 + a5)d(xn, xn+1),

i.e.,

d(xn, xn+1) ≺
2a1 + a2 + a3 + a4 + a5
2 − a2 − a3 − a4 − a5

d(xn−1, xn) =
a1 + 1
a1 + 1

d(xn−1, xn) = d(xn−1, xn).

Hence, the sequence dn = d(xn, xn+1) is strictly decreasing bounded below by θ . Since P is regular, there is d∗
∈ E such

that dn → d∗(n → ∞). From the sequence compactness of (X, d), there are subsequence {xni} of {xn} and x∗
∈ X such that

xni → x∗(i → ∞). Since mappings f and f 2 are continuous, we have

fxni → fx∗ and f 2xni → f 2x∗.

By using [1, Lemma 5], we have

d(fxni , xni) → d(fx∗, x∗) (i → ∞) and d(f 2xni , fxni) → d(f 2x∗, fx∗) (i → ∞).

It is obvious that

d(fxni , xni) = dni → d∗
= d(fx∗, x∗) (i → ∞) and

d(f 2xni , fxni) = dni+1 → d∗
= d(f 2x∗, fx∗) (i → ∞). (2.9)

Now we shall prove that fx∗
= x∗. If fx∗

≠ x∗, then d∗
≠ 0. From (2.9) and according to Lemma 2.5, it follows

d∗
= lim

i→∞

dni+1 = lim
i→∞

d(f 2xni , fxni) = d(f 2x∗, fx∗) ≺ d(fx∗, x∗) = d∗.

We have a contradiction, so fx∗
= x∗. That is, x∗ is a fixed point of f . This completes the proof of Theorem 2.4. �

We now list some corollaries of Theorem 2.4.

Corollary 2.6 ([17]). In Theorem 2.4 by setting E = R, P = [0, +∞), ‖x‖ = |x|, x ∈ E, a1 = 1, ai = 0, i = 2, 5, we get the
well-known Nemytzki’s result for contractive mappings on compact metric spaces.

Corollary 2.7 ([18]). In Theorem 2.4 by setting E = R, P = [0, +∞), ‖x‖ = |x|, x ∈ E, a1 = 1, ai = 0, i = 2, 5, we get the
well-known Edelstein’s result for contractive mappings on compact metric spaces.

Corollary 2.8. Putting a1 = 1, ai = 0, i = 2, 5 in Theorem 2.4, we get the result from [1, Theorem 2].

Remark 2.9. For contractive conditions (2.1) and (2.4) Hardy–Rogers type see also [5,16].

If the space (X, d) is not sequentially compact, condition (2.4) is not sufficient for the existence of a fixed point of the
mapping f .

Example 2.10. Let X = [1, +∞), E = R2, P = {(x, y) ∈ E : x ≥ 0, y ≥ 0} ⊂ R2 and d : X × X → E such that
d(x, y) = (|x−y|, α|x−y|), where α ≥ 0 is a constant. Consider themapping f : X → X defined as fx = x+

1
x . For arbitrary

x, y ∈ X , we have that

d(fx, fy) = (|fx − fy|, α|fx − fy|) =


|x − y|


1 −

1
xy


, α|x − y|


1 −

1
xy


≺ (|x − y|, α|x − y|) = d(x, y).

Obviously, the condition (2.4) holds, but f has not fixed points. The space (X, d) is a regular complete cone metric space
which is not sequentially compact.
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