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Abstract

In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian
depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for
the case when the interval of integration of the functional is different from the interval of the fractional
derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Fi-
nally, we determine optimality conditions for functionals depending not only on the admissible functions,
but on time also, and we present a necessary condition for a pair function–time to be an optimal solution
to the problem.
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1 Introduction

Fractional variational calculus deals with problems of minimizing functionals that involves some fractional deriva-
tives and/or fractional integrals. During the last few decades, fractional calculus has called the attention of many
researchers in different fields, not only on pure and applied mathematics, but also physics, chemistry, mechan-
ics, economics, electrical engineering, viscoelastic, robotics, etc. In fact, it is currently one of the most interdis-
ciplinary fields of mathematics. Just to mention some recent works on fractional variational calculus, see e.g.
[2, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20]. Most of the work done so far deals with Riemann-Liouville or Caputo
fractional derivatives, and a few with other types (modified Riemann-Liouville, Riesz, Riesz-Caputo, symmetric
fractional derivative, etc.). The study of variational optimal conditions, for functionals containing a Riesz-Caputo
fractional derivative type, was carried out in [1]. The basic variational problem was considered, with a fractional
Euler-Lagrange equation. Other problems, e.g. with free-end points, the problem of Lagrange and multiple integrals
are studied as well. We mention also [11], where a Noether’s type theorem is presented, within the Riesz-Caputo
fractional derivative context. The purpose of this paper is to present solutions to other fundamental problems, and
show how they can be obtained using standard techniques of variational calculus. The paper is organized in the fol-
lowing way. In section 2 we review some necessary definitions on fractional calculus, and results that will be needed
later; for more on this subject we refer to [17, 19, 21]. Section 3 deals with necessary optimality conditions for
the fundamental problem of fractional variational calculus. The problem is defined via the Riesz-Caputo fractional
derivative. We extend known results (see [1]) to the case when the interval of integration of the functional is a
subset of the domain of the admissible functions. In section 4 we consider the optimization problem in the presence
of an integral constraint. The constraint is given by a functional of the same type as the cost functional, i.e., it
depends on the Riesz-Caputo fractional derivative as well. The case where the interval of integration is not the
whole interval is also presented. In the last section we study a more general case, when we are not only interested
in finding the optimal admissible function, but also the time where the minimum is obtained.

2 Preliminaries

There exist numerous definitions of fractional integrals and fractional derivatives. This paper deals with the Riesz
and Riesz-Caputo fractional derivatives. Throughout the work, y : [a, b]→ R is a function of class C1 and α ∈ (0, 1).
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The left and right Riemann-Liouville fractional integrals of order α are defined respectively by

aI
α
x y(x) =

1

Γ(α)

∫ x

a

(x− t)α−1y(t)dt and xI
α
b y(x) =

1

Γ(α)

∫ b

x

(t− x)α−1y(t)dt.

The Riesz fractional integral Ra I
α
b y is given by

R
a I

α
b y(x) =

1

2
(aI

α
x y(x) + xI

α
b y(x)).

The left and right Riemann-Liouville fractional derivatives of order α are defined respectively by

aD
α
xy(x) =

1

Γ(1− α)

d

dx

∫ x

a

(x− t)−αy(t)dt and xD
α
b y(x) =

−1

Γ(1− α)

d

dx

∫ b

x

(t− x)−αy(t)dt.

The Riesz fractional derivative R
aD

α
b y is given by

R
aD

α
b y(x) =

1

2
(aD

α
xy(x)− xD

α
b y(x)).

The left and right Caputo fractional derivatives of order α are defined respectively by

C
aD

α
xy(x) =

1

Γ(1− α)

∫ x

a

(x− t)−α d

dx
y(t)dt and xD

α
b y(x) =

−1

Γ(1− α)

∫ b

x

(t− x)−α
d

dx
y(t)dt.

The Riesz-Caputo fractional derivative RC
a Dα

b y is given by

RC
a Dα

b y(x) =
1

2
(CaD

α
xy(x)− C

xD
α
b y(x)).

In the discussion to follow, we need a fractional integration by parts formula. For the Caputo derivative, we
have (cf. [1]) ∫ b

a

w(x) · CaDα
x z(x)dx =

∫ b

a
xD

α
b w(x) · z(x)dx+ xI

1−α
b w(x) · z(x)

∣∣x=b
x=a

,

and ∫ b

a

w(x) · CxDα
b z(x)dx =

∫ b

a
aD

α
xw(x) · z(x)dx− aI

1−α
x w(x) · z(x)

∣∣x=b
x=a

.

Thus, in the case of the Riesz-Caputo fractional derivative, one has∫ b

a

w(x) · RCa Dα
b z(x)dx = −

∫ b

a

R
aD

α
b w(x) · z(x)dx+ R

a I
1−α
b w(x) · z(x)

∣∣x=b
x=a

.

3 The Euler-Lagrange equation

The fundamental fractional variational problem is stated in the following way.
(P1) Among all C1 functions y : [a, b]→ R, with fixed values on x = a and x = b, say

y(a) = ya and y(b) = yb, ya, yb ∈ R,

find the ones for which the functional

J(y) =

∫ b

a

L
(
x, y(x),RCa Dα

b y(x)
)
dx

attains a minimum value.
We are assuming, here and from now on, that the Lagrange function L : [a, b] × R2 → R is a function with

continuous first and second partial derivatives with respect to all its arguments, and RC
a Dα

b y exists and is continuous
on the closed interval [a, b].

The possible extremizers for problem (P1) can be obtained by solving a fractional differential equation, the so
called fractional Euler-Lagrange equation.
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Theorem 1. [1] Let y be a solution to problem (P1). Then, y is a solution of the fractional Euler-Lagrange equation

∂L

∂y
− R
aD

α
b

∂L

∂RCa Dα
b y

= 0 (1)

for all x ∈ [a, b].

We remark that, when α = 1, equation (1) is the (standard) Euler-Lagrange equation: if y is a minimizer of

J(y) =

∫ b

a

L(x, y(x), y′(x))dx,

restricted to the boundary conditions
y(a) = ya and y(b) = yb,

then y is a solution of the differential equation

∂L

∂y
− d

dx

∂L

∂y′
= 0.

Definition 2. A function y that is a solution of equation (1) is called an extremal for J .

We first extend this result to functionals where the interval of integration is [A,B] ⊂ [a, b]. The idea comes from
[5, 6], where similar problems with a Lagrangian function depending on the Riemann-Liouville [6] or the Caputo
[5] fractional derivatives are considered.

The new problem (P2) deals with finding optimality conditions for functionals of type

J(y) =

∫ B

A

L(x, y(x),RCa Dα
b y(x))dx,

with the boundary conditions
y(a) = ya and y(b) = yb, ya, yb ∈ R.

Theorem 3. Let y be a solution of problem (P2). Then, y satisfies the following equations:

∂L

∂y
− R
AD

α
B

∂L

∂RCa Dα
b y

= 0, for all x ∈ [A,B] ,

xD
α
B

∂L

∂RCa Dα
b y
− xD

α
A

∂L

∂RCa Dα
b y

= 0, for all x ∈ [a,A] ,

BD
α
x

∂L

∂RCa Dα
b y
− AD

α
x

∂L

∂RCa Dα
b y

= 0, for all x ∈ [B, b].

Proof. To obtain the necessary conditions, we first consider variation functions of the type y+εη, where η : [a, b]→ R
is a function of class C1 such that η(a) = η(b) = 0. For convenience, we also assume that η(A) = η(B) = 0. Let
j(ε) = J(y + εη). Since j′(0) = 0, integrating by parts, we obtain

0 =

∫ B

A

[
∂L

∂y
η +

∂L

∂RCa Dα
b y

RC
a Dα

b

]
η dx

=

∫ B

A

∂L

∂y
η dx+

1

2

[∫ B

a

∂L

∂RCa Dα
b y

C
aD

α
xη dx−

∫ A

a

∂L

∂RCa Dα
b y

C
aD

α
xη dx

]

− 1

2

[∫ b

A

∂L

∂RCa Dα
b y

C
xD

α
b η dx−

∫ b

B

∂L

∂RCa Dα
b y

C
xD

α
b η dx

]

=

∫ B

A

∂L

∂y
η dx+

1

2

[∫ B

a
xD

α
B

∂L

∂RCa Dα
b y
η dx−

∫ A

a
xD

α
A

∂L

∂RCa Dα
b y
η dx

]

− 1

2

[∫ b

A
AD

α
x

∂L

∂RCa Dα
b y
η dx−

∫ b

B
BD

α
x

∂L

∂RCa Dα
b y
η dx

]

=

∫ B

A

[
∂L

∂y
− R
AD

α
B

∂L

∂RCa Dα
b y

]
η dx+

1

2

∫ A

a

[
xD

α
B

∂L

∂RCa Dα
b y
− xD

α
A

∂L

∂RCa Dα
b y

]
η dx

− 1

2

∫ b

B

[
BD

α
x

∂L

∂RCa Dα
b y
− AD

α
x

∂L

∂RCa Dα
b y

]
η dx.
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For appropriate choices of η, we prove the necessary conditions.

Obviously, in the case A = a and B = b, Theorem 3 reduces to Theorem 1. Other cases could be deduced from
Theorem 3, namely when A = a and B 6= b, or A 6= a and B = b.

4 The fractional isoperimetric problem

The original isoperimetric problem is addressed in the following way: among all closed plane curves, without self-
intersecting, such that the total length has a given value, find the ones for which the enclosed area is the greatest.
Nowadays, isoperimetric problems are the ones that involve some integral constraint on the dynamics, and have
become one of the classical problems of the calculus of variations. The fractional isoperimetric problem is stated as
follows.

(P3) Find a function y : [a, b]→ R of class C1, such that it minimizes the functional

J(y) =

∫ b

a

L(x, y(x),RCa Dα
b y(x))dx

when restricted to the boundary conditions

y(a) = ya and y(b) = yb, ya, yb ∈ R,

and to an integral constraint

I(y) =

∫ b

a

g(x, y(x),RCa Dα
b y(x))dx = l,

where l is a fixed real. As before, we assume that g : [a, b]×R2 → R is a function with continuous first and second
partial derivatives with respect to all its arguments.

Theorem 4. Let y be a solution to problem (P3). If y is not an extremal for I, then there exists a constant λ such
that y satisfies the equation

∂F

∂y
− R
aD

α
b

∂F

∂RCa Dα
b y

= 0

for all x ∈ [a, b], where F = L− λg.

Proof. Consider variations of y of the form
y + ε1η1 + ε2η2,

where ηi is a function of class C1, and ηi(a) = ηi(b) = 0, for each i ∈ {1, 2}. Define two functions j and i by

j(ε1, ε2) = J(y + ε1η1 + ε2η2) and i(ε1, ε2) = I(y + ε1η1 + ε2η2)− l.

Since y is not an extremal for I, there exists a function η2 for which

∂i

∂ε2

∣∣∣∣
(0,0)

6= 0.

Also, since i(0, 0) = 0, by the implicit function theorem, there exists a function ε2(·) satisfying the relation
i(ε1, ε2(ε1)) = 0. In other words, there exists a subfamily of variation functions satisfying the integral constraint.
Moreover, observe that j has a minimum at zero subject to the constraint i(·, ·) = 0, and we just proved that
∇i(0, 0) 6= (0, 0). Then, by the Lagrange multiplier rule, there exists a constant λ such that

∇(j(0, 0)− λi(0, 0)) = (0, 0).

Differentiating j and i with respect to ε1, at (ε1, ε2) = (0, 0), we prove the theorem.

We now shall present a more general result.

Theorem 5. Let y be solution to problem (P3). Then there exist two constants λ0 and λ, not both zero, such that
y satisfies the equation

∂K

∂y
− R
aD

α
b

∂K

∂RCa Dα
b y

= 0,

for all x ∈ [a, b], where K = λ0L− λg.
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Proof. It follows the same pattern as in the proof of Theorem 4, and using the abnormal Lagrange multiplier
rule.

The isoperimetric problem for functionals where the interval of integration is [A,B] ⊂ [a, b] can be solved in a
similar way. We sate problem (P4) as:

minimize J(y) =

∫ B

A

L
(
x, y(x),RCa Dα

b y(x)
)
dx,

when restricted to the constraints
y(a) = ya and y(b) = yb,

and subject to an integral constraint

I(y) =

∫ B

A

g(x, y(x),RCa Dα
b y(x))dx = l.

Similarly, we say that y is an extremal for I if

∂L

∂y
(x)− C

AD
α
B

∂L

∂RCa Dα
b y

= 0

for all x ∈ [A,B]. Using the same techniques as the ones presented in Theorems 3 and 4, the following two results
can be proven.

Theorem 6. If y is a solution to problem (P4), and if y is not an extremal for I, then there exists a constant λ
such that 

∂F

∂y
− R
AD

α
B

∂F

∂RCa Dα
b y

= 0 for all x ∈ [A,B] ,

xD
α
B

∂F

∂RCa Dα
b y
− xD

α
A

∂F

∂RCa Dα
b y

= 0 for all x ∈ [a,A] ,

BD
α
x

∂F

∂RCa Dα
b y
− AD

α
x

∂F

∂RCa Dα
b y

= 0 for all x ∈ [B, b],

with F = L− λg.

Theorem 7. If y is a solution to problem (P4), then there exist two constants λ0 and λ, not both zero, such that

∂K

∂y
− R
AD

α
B

∂K

∂RCa Dα
b y

= 0 for all x ∈ [A,B] ,

xD
α
B

∂K

∂RCa Dα
b y
− xD

α
A

∂K

∂RCa Dα
b y

= 0 for all x ∈ [a,A] ,

BD
α
x

∂K

∂RCa Dα
b y
− AD

α
x

∂K

∂RCa Dα
b y

= 0 for all x ∈ [B, b],

with K = λ0L− λg.

5 Optimal time problem

In this section, we are interested not only in finding an optimal admissible function for the variational problem, but
also the optimal time T . We state the problem in the following way: consider the functional

J(y, T ) =

∫ T

a

L(x, y(x),RCa Dα
b y(x))dx,

where
(y, T ) ∈ {C1[a, b]× [a, b] | y(a) = ya}.

Problem (P5) is the following one: find a pair (y, T ) for which J attains a minimum value.

Theorem 8. If (y, T ) is a solution to problem (P5), then it satisfies the following four conditions:
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1. L(T, y(T ),RCa Dα
b y(T )) = 0,

2.
∂L

∂y
− R
aD

α
T

∂L

∂RCa Dα
b y

= 0 for all x ∈ [a, T ],

3. aD
α
x

∂L

∂RCa Dα
b y

= TD
α
x

∂L

∂RCa Dα
b y

for all x ∈ [T, b],

4. aI
1−α
x

∂L

∂RCa Dα
b y

∣∣∣∣
x=b

= T I
1−α
x

∂L

∂RCa Dα
b y

∣∣∣∣
x=b

.

Proof. Let η : [a, b]→ R be a function of class C1 such that η(a) = 0, and let ∆T ∈ R. Define j as

j(ε) = J(y + εη, T + ε∆T ).

Since j′(0) = 0, we get∫ T

a

[
∂L

∂y
η +

∂L

∂RCa Dα
b y

RC
a Dα

b η

]
dx+ ∆T · L(T, y(T ),RCa Dα

b y(T )) = 0.

On the other hand, observe that∫ T

a

∂L

∂RCa Dα
b y

RC
a Dα

b η dx =
1

2

[∫ T

a

∂L

∂RCa Dα
b y

C
aD

α
xη dx−

∫ T

a

∂L

∂RCa Dα
b y

C
xD

α
b η dx

]

=
1

2

[∫ T

a

∂L

∂RCa Dα
b y

C
aD

α
xη dx−

∫ b

a

∂L

∂RCa Dα
b y

C
xD

α
b η dx+

∫ b

T

∂L

∂RCa Dα
b y

C
xD

α
b η dx

]
= ?

Integrating by parts each of the last three terms, we get

? =
1

2

[∫ T

a
xD

α
T

∂L

∂RCa Dα
b y
η dx+ xI

1−α
T

∂L

∂RCa Dα
b y
η

∣∣∣∣
x=T

−
∫ b

a
aD

α
x

∂L

∂RCa Dα
b y
η dx+ aI

1−α
x

∂L

∂RCa Dα
b y
η

∣∣∣∣
x=b

+

∫ b

T
TD

α
x

∂L

∂RCa Dα
b y
η dx− T I

1−α
x

∂L

∂RCa Dα
b y
η

∣∣∣∣
x=b

+ T I
1−α
x

∂L

∂RCa Dα
b y
η

∣∣∣∣
x=T

]
.

Some of the previous terms vanish (cf. [17, pag 46]):

xI
1−α
T

∂L

∂RCa Dα
b y
η

∣∣∣∣
x=T

= 0 and T I
1−α
x

∂L

∂RCa Dα
b y
η

∣∣∣∣
x=T

= 0.

Thus, we have proven the relation

0 =

∫ T

a

[
∂L

∂y
− R
aD

α
T

∂L

∂RCa Dα
b y

]
η dx+ ∆T · L(T, y(T ),RCa Dα

b y(T ))

+
1

2

∫ b

T

[
TD

α
x

∂L

∂RCa Dα
b y
− aD

α
x

∂L

∂RCa Dα
b y

]
η dx+

1

2

[
aI

1−α
x

∂L

∂RCa Dα
b y
− T I

1−α
x

∂L

∂RCa Dα
b y

]
η

∣∣∣∣
x=b

.

If we fix η ≡ 0, by the arbitrariness of ∆T , we obtain equation 1 of the theorem. If η is free on [a, T ) and zero on
[T, b], we obtain equation 2. To prove the two remaining conditions, choose first η free on ]T, b[ and zero on x = b,
and then η such that η(b) 6= 0.

The transversality condition obtained in [1] can be seen as a particular case of Theorem 8. Let T = b (time is
fixed), then ∆T = 0. Following the proof, equation 1 of Theorem 8 is no longer a necessary condition. Equation 2
becomes the fractional Euler-Lagrange equation as in Theorem 1. Equation 3 is obviously satisfied. About equation
4, it reads as (cf. [17, pag 46])

aI
1−α
x

∂L

∂RCa Dα
b y

∣∣∣∣
x=b

= 0,

which is equivalent to the one obtained in [1]:

R
a I

1−α
b

∂L

∂RCa Dα
b y

∣∣∣∣
x=b

= 0.
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