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Abstract
We developed a series of models for the label decay in cell proliferation assays when the
intracellular dye carboxyfluorescein succinimidyl ester (CFSE) is used as a staining agent. Data
collected from two healthy patients were used to validate the models and to compare the models
with the Akiake Information Criteria. The distinguishing features of multiple decay rates in the
data are readily characterized and explained via time dependent decay models such as the logistic
and Gompertz models.
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1 Introduction
The use of the intracellular dye carboxyfluorescein succinimidyl ester (CFSE) in
proliferation assays has become an essential tool in mapping cellular division histories since
its introduction in 1994 [17, 18, 19, 20, 23]–see also the recent surveys in [6, 12, 27]. The
dye is first introduced into cell cultures in the minimally fluorescent form of
carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) which is able to freely diffuse
across cell membranes and is readily taken up by cells. Once inside the cell, enzyme
reactions with cellular esterases produce a stable fluorescent label within cells [23]. In vivo,
measurable concentrations of the label remain within viable cells, regardless of type or
activation, for several weeks, providing uniform labeling with little adverse effects on the
cell’s intracellular machinery [6, 24, 27].

The importance of these techniques has led to a recent and intensive effort to develop and
understand mathematical models for use in analysis of cell proliferation data [6, 12]. Among
these are partial differential equation (PDE) structured population models which have been
shown to accurately fit histogram data obtained from CFSE flow cytometry experiments [4,
5, 15, 16]. Recently one such model is the fragmentation equation which relates the
structured population density n(t, x) to the rates of proliferation α(t, x) and death β(t, x)

under the assumption of label decay with velocity  given by
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(1)

The structure variable x is the fluorescence intensity (FI) (in arbitrary units of intensity, UI)
of the cells. Because this fluorescence intensity arises primarily from CFSE within the cell,
we refer to this as a label structured population model (with label FI as opposed to age or
size structure, etc. [22]). It is known that cells lose FI in time even in the absence of division
as a result of the natural decay of CFSE and the turnover of intracellular proteins to which
the fluorescent conjugates bind. The advection term in the equation above accounts for this
phenomenon; it was shown in [4] that using a Gompertz [14] decay velocity yields an
accurate description of the biphasic decay [21, 23, 28] of CFSE FI observed in data sets. The
parameter xa represents the natural autofluorescence intensity of cells in the absence of
CFSE, assumed in (1) to be constant across the cell population.

A flow cytometer can be used to measure the fluorescence intensity (FI) of individual cells.
The ability to make such measurements allows for the quantitative analysis of cell division,
which has potential applications in areas ranging from cancer to immunosuppression
therapies for transplant patients. Current mathematical models, such as those described
above, allow one to estimate proliferation and death rates in terms of a CFSE FI structure
variable as a surrogate for division number, so the manner in which CFSE naturally decays

directly affects the cell turnover parameter estimates. Thus, the loss rate function, ,
is of vital importance to the PDE formulations such as (1) and subsequently developed
models.

The goal of such a mathematical model is to provide biologists with simple yet intuitive and
meaningful parameters with which a population of dividing cells can be described. In
particular, information such as average rates of division and cell viability are essential to the
analysis of the effects of changing experimental conditions (e.g., differences in donors,
differences between diseased and healthy cells) on proliferative behavior. The motivation
for the use of FI as a structure variable is that the serial dilution of CFSE by cell division
creates a correlation between measured FI and the number of divisions a cell has undergone.
Thus the proliferation and death rate functions α(t, x) and β(t, x), which are estimated in
terms of the structure variable x as well as time, can be used to compute average division
rates in terms of the number of divisions undergone [4]. While the model (1) is
advantageous in being able to estimate average proliferation and death rates without any
deconvolution [13] of the data into cell numbers, it cannot be used to accurately assess the
number of cells in a particular generation. To better understand rates at the generation
number cohort or division number cohort level, one should attempt to develop individual
(cohort) dynamics to investigate the CFSE data.

Fortunately, a simple reformulation of (1) allows such an approach and permits both the
accurate quantification of total cells per division number and the accurate estimation of
proliferation and death rates in terms of division number in such a framework. Rather than
modeling the population with a single differential equation, one can model each individual
generation of cells with a single equation,

(2)

with the generations linked through the division mechanism Ri(t, x) as a source term (see [7,
12, 26]). Because each generation of cells is assigned to a particular compartment (indexed
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by i) with unique proliferation and death rates, it is not necessary to estimate these rates in
terms of the structure variable x, so that peak overlap and label decay no longer affect the
accuracy of the estimated rates.

It was hypothesized in [5, 16] that an exponential rate of loss

(3)

is sufficient to model the label loss observed in the data, but later shown [4] that a Gompertz
decay velocity

(4)

gave a significantly better fit to the flow cytometry data sets. (We remark that (4) is a
generalization of (3), the latter being the limiting value (as k → 0) of the former.) It appears
from the data fits in Figure 1 that the rate of exponential decay of label may itself decrease
as a function of time. (This can be readily modeled by the Gompertz decay process.)

In order to investigate this assumption, a PBMC culture was taken from two donors and
stained with CFSE following the standard procedure. However, these cells were not
stimulated to divide. Because only viable cells are included when the cytometry data is
gated, any decrease in mean FI in the population must be the result of natural CFSE FI
decay. Over the course of 160 hours, cells from each donor were measured at 24 distinct
time points in triplicate and the mean total FI of each sample was recorded. These data were
used for the studies reported on here and are depicted in detail in [10].

We would like to determine the most appropriate functional forms which might be used in
order to quantify the label loss observed in the data and that would also correspond to
plausible biological assumptions. Through examination of the chemical properties and
biological processes associated with CFDA-SE and its derivatives, namely CFSE, CF-R1,
and CF-R2, we attempt to understand and model natural label decay in a cell treated with
CFDA-SE. This allows us to test hypotheses regarding underlying mechanisms and
formulate new assumptions about CFSE decay, future data, and the larger biological process
of cell division. This also answers to a large extent the question raised in the recent overview
[12, p.2695] regarding the need for basic understanding of label decay and appropriate forms
for its mathematical representations in general proliferation assay models.

We first summarize our biological understanding of mechanisms related to CFSE labeling
and subsequent loss in cells. Several biological models (increasing in simplicity) as
formulated in [10] are given and findings with the corresponding mathematical models are
discussed. In the final type of biological models tested, we consider decay represented by a
single velocity term for total fluorescence loss and model these with exponential, logistic,
and Gompertz decay mechanism fits-to-data, respectively.

2 Mechanistic Models of Growth and Decay
In the recent report [10], we examined and explained the characteristic features of several
main types of differential equation representations that are frequently used to model growth
and decay in dynamical systems of equations. The first is an exponential (also called

Malthusian) growth and decay model ( ) , for which a population is assumed to grow
at a rate proportional to the size of the population at any given time [2, 3, 11, 14, 25]. The

Banks et al. Page 3

Appl Math Lett. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



second is Michaelis-Menten kinetics [2, 25], which emulates enzyme mediated kinetics with

velocity terms of the form . Finally, we use the Gompertz and logistic (also called
Verhulst-Pearl) rate laws, which both involve time dependent growth/decay rates of the

forms  and , respectively.

In order to better understand the process of label decay in cells treated with CFSE, we
carried out a series of ordinary least squares (OLS) inverse problems (see [3]) for the
different models of interest. Each of these models was evaluated according to its ability to
provide fits to the experimental data. Although we have run the inverse problem on each
model with every data set, we have only included here a summary of our results, referring
the reader to [10] for further details. In this project, we assumed a constant variance
statistical model [3] and thus focused on the ordinary least squares method.

3 Biological Models
Due in part to the presence of two acetate esters in its structure, CFDA-SE has a high
lipophilicity which allows it to passively diffuse across cell membranes [23], suggesting that
both an inflow rate and an outflow rate should be accounted for. However, the data sets we
are examining are the result of a particular procedure where, after initial exposure to CFDA-
SE, the cell culture was flushed with water, eliminating any excess label [27]. Thus, the only
source of CFDA-SE inflow would be re-entering CFDA-SE, which the data suggests is
insignificant. Therefore, we considered it reasonable to assume that there is no continuing
flow of CFDA-SE into the cell, but rather that all CFDA-SE is present inside the cell at the
start of the procedure, as depicted in Figure 2.

Once inside the cell, CFDA-SE reacts with intracellular esterases, resulting in the formation
of the highly fluorescent carboxyfluorescein succinimidyl ester (CFSE). At this point, our
knowledge of the reaction is limited. Nonetheless, we know a great deal about the structure
of the product, CFSE. The structure of CFSE lacks the two acetate esters present in CFDA-
SE [23, 27, 29]. This absence decreases the lipophilicity of CFSE and renders it less
membrane permeable. As before, this knowledge necessitates both inflow and outflow rates,
but the data suggests that the mass of re-entering CFSE is insignificant in comparison to the
mass of CFSE leaving the cell. Therefore, only the outflow of CFSE from the cell is
assumed in our model. Additionally, the succinimidyl ester present in the structure of
CFDA-SE is also present in CFSE. This succinimidyl moiety of CFSE is highly reactive
with amino groups and can covalently couple 5-6-carboxyfluorescein (CF) to intracellular
molecules [23]. Our knowledge of this reaction and its products is currently limited, but we
are aware that two types of coupling can occur, yielding two types of products. One type of
coupling occurs when CF is bound to a type of intracellular molecule, which we arbitrarily
call R1-NH2 that results in the conjugate CF-R1 which is unstable and quickly exits the cell
or is degraded. The second type of coupling occurs when CF is bound to a type of long lived
intracellular molecule, which we arbitrarily call R2-NH2 that results in the conjugate CF-R2
that is stable and essentially membrane impermeable, maintaining a fluorescent label [23]. A
initial schematic of this process within a cell is depicted in Figure 2 and is designated as the
Basic Biological Model. The compartments x1, x2, x3, x4 represent concentrations of CFDA-
SE, CFSE, CF-R1, CF-R2, respectively. In a subsequent model below we combined the
compartments for CF-R1 and CF-R2 into a composite compartment x5 representing the total
concentration CF-R1 + CF-R2. Implementing the inverse problem processes in [3], we were
able to calculate the parameters that produced the lowest cost functionals for the numerous
models discussed below.
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3.1 Basic Model: Exponential Decay
To begin with this basic biological model, we used law of mass action to obtain the system
of equations

(5)

where k4,1 and k4,2 represent the rates of conversion to CF-R1 and CF-R2, respectively. The
solution for the Basic Model versus the data set are presented in Figure 3. We obtained
similar results with models using Michaelis-Menten kinetics for the conversion from x1 to
x2 (which are thought to be enzyme regulated) as well as for subsequent models using
bounded growth/decay Michaelis-Menten kinetics for all conversion rates.

3.2 Biological Model R1
Upon further consideration, we embraced the hypothesis that CFDA-SE is converted to
CFSE through the catalyzed hydrolysis of its acetyl esters by acetylesterase. It is generally
accepted that intracellular esterases are responsible for the conversion of CFDA-SE to CFSE
[23, 29]. These esterases are hydrolase enzymes that cleave the acetyl esters present in
CFDA-SE into their parent carboxylic acid, acetate, and an alcohol [9]. The particular
esterase which specializes in removing acetyl groups is called acetylesterase [1]. Further
biological consideration [10] raised questions about the importance of the diffusion of
CFDA-SE out of the cell, leading to the creation of a third biological model. Although we
were comfortable with the assumption that there is no significant inflow of CFDA-SE into
cells, previous models showed an efficient transfer of CFDA-SE to CFSE. This is consistent
with the notion that catalyzed reactions occur quickly, so in the next model (denoted as the
Biological Model R1 and depicted in Figure 4), all CFDA-SE was assumed to have already
been converted to CFSE at t = 0 without any CF-R1 or CF-R2 yet present. Based on the
assumption that CFDA-SE is immediately converted to CFSE, our original exponential
system was altered to only depend on five rate parameters instead of seven, yielding a
reduced system of equations. A three state mathematical model (x2, x3, x4) for this
biological model with exponential rates (or Michaelis-Menten rates) also produced
reasonable fits-to-data similar to that depicted in Figure 3.

3.3 Biological Models R2 and R3
Encouraged by our success in simplifying our model from four to three components, we
decided to test simplification even further with several two-component systems. The first
such system combines both of the CF-R1 and CF-R2 terms together as one single
component. A schematic, depicted as the Biological Model R2, for this model is shown in
Figure 5. Again a two state model with compartments (x2, x5) produced good fits to data
with either exponential or Michaelis-Menten rates, comparable to those depicted in Figure 3.

For the Biological Model R3, there is only one loss function needed, and the differential
equations can (as is the case for a number of our models) be solved analytically very easily.
Accordingly, the equation for the fluorescence loss is given by

(6)
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where the c term, 0 ≤ c ≤ 1, allows both components (x3, x4) to receive some of the initial
fluorescence, denoted by x0, with the loss rates of k5, k6, respectively. Simulation results for
this model were similar to those for the Biological Model R2.

3.4 Simple Decay Models
In order to test ultimate simplification in our models, we carried out the inverse problem for
the data sets using models with only one differential rate mechanism for label loss

( ) instead of a system with multiple loss rates. These models only deal with the
label loss, revealing the rate of change in the total fluorescence in the cell in the absence of
cell division. We used exponential, logistic and Gompertz rates with sample results for
exponential and Gompertz fits-to-data given in Figure 1. Results similar to those depicted in
Figure 1 were found with the logistic model, giving fits-to-data virtually indistinguishable
from those for the Gompertz model.

4 Results and Summary Remarks
In our efforts in [10], numerous different label loss models were investigated. Several
questions related to model comparison were raised: How do we determine which of these
models is the most efficient fit to the data? Is a model with fewer parameters and a larger
cost function (poorer fit-to-data) better or worse than a model with more parameters and a
lower cost function? How certain can one be that the model they deem to be the best is
actually the best model? We used the Akaike Information Criterion (AIC) [8], which
provides an approximately unbiased estimate of the Kullback-Leibler distance, or a measure
of the distance between a model and the “truth” to analyze our findings. For details
including our analysis of models, see [10].

After careful examination of related chemical processes and biological processes, twelve
different mathematical models were formulated and analyzed for the rate of label decay in a
cell treated with carboxyfluorescein diacetate succinimidyl ester (CDSA-SE). The first
model, the Basic Biological Model, represents our best understanding of label staining,
internal biochemistry and loss. It is important to note that CFDA-SE was disregarded after
investigations of the Basic Biological Model; this was based on the assumption that CFDA-
SE is converted to CFSE at a quickly catalyzed rate. The esterase reaction was hypothesized
to specifically involve the enzyme acetylesterase, which binds to acetic ester and water,
yielding alcohol and acetate as products. This knowledge led us to incorporate Michaelis-
Menten kinetics to support the hypothesis that inflow of CFDA-SE and the rate of its
conversion to CFSE can be ignored in model fitting to the data. Simple exponential, logistic
and Gompertz decay rates were also used to model the decay of the total fluorescence.
Although no specific model was the best fit for every data set, our AIC results suggest that
any models which have multiple loss rate mechanisms are the models that most closely
match the data. All of these models involve either multiple rates of label leaking/decay or a
time-dependent rate for the decay of a single label quantity. These findings provide a
reasonable explanation in support of the need for multiple or time variable decay rates
involving CFSE labeling based on current best biological understanding of the labeling and
loss processes.
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Figure 1.
Results of fitting the exponential model (3) and the Gompertz model (4) to the mean CFSE
data. For both Donor 1 (top) and Donor 2 (bottom), we see that the Gompertz model is more
capable of accurately replicating the observed data.
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Figure 2.
A schematic of the Basic Biological Model, with independent reaction rates from CFSE to
CF-R1 and CF-R2.
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Figure 3.
A plot of the solution to the Basic Biological Model against the first data set from Donor 1.
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Figure 4.
A schematic of the Biological Model R1, assuming all CFDA-SE has already been
converted to CFSE at t = 0.
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Figure 5.
Left: A schematic of the Biological Model R2, in which the two CF-R1 and CF-R2
components combined as a single component; Right: Schematic of the Biological Model R3,
which only accounts for the fluorescence loss given by CF-R1 and CF-R2.
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