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On the generalized shift-splitting preconditioner for saddle point

problems
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Abstract. In this paper, the generalized shift-splitting preconditioner is implemented for saddle point
problems with symmetric positive definite (1,1)-block and symmetric positive semidefinite (2,2)-block. The
proposed preconditioner is extracted form a stationary iterative method which is unconditionally conver-
gent. Moreover, a relaxed version of the proposed preconditioner is presented and some properties of the
eigenvalues distribution of the corresponding preconditioned matrix are studied. Finally, some numerical
experiments on test problems arisen from finite element discretization of the Stokes problem are given to
show the effectiveness of the preconditioners.

Keywords: Saddle point problem, preconditioner, shift-splitting, symmetric positive definite.
AMS Subject Classification: 65F10, 65F50, 65N22.

1 Introduction

Consider the saddle point linear system

Au ≡

(

A BT

−B C

)(

x

y

)

=

(

f

−g

)

≡ b, (1)

where A ∈ R
n×n is symmetric positive definite (SPD), C ∈ R

m×m is symmetric positive semidefinite and
B ∈ R

m×n, m ≤ n, is of full rank. Moreover, x, f ∈ R
n and y, g ∈ R

m. We also assume that the matrices A,
B and C are large and sparse. According to Lemma 1.1 in [9] the matrix A is nonsingular. Such systems
arise in a variety of scientific computing and engineering applications, including constrained optimization,
computational fluid dynamics, mixed finite element discretization of the Navier-Stokes equations, etc. (see
[1, 10, 14, 25]). Application-based analysis can be seen in [22, 26, 28].

In the last decade, there has been intensive work on development of the effective iterative methods for
solving matrix equations with different structures (see for example [4, 18, 19, 20, 21, 27]). Benzi and Golub
[9] investigated the convergence and the preconditioning properties of the Hermitian and skew-Hermitian
splitting (HSS) iterative method [4], when it is used for solving the saddle point problems. Bai et al. in [5]
established the preconditioned HSS (PHSS) iterative method, which involves a single parameter, and then,
Bai and Golub in [3] proposed its two-parameter acceleration, called the accelerated Hermitian and skew-
Hermitian splitting (AHSS) iterative method; see also [2]. Besides these HSS methods, Uzawa-type schemes
[6, 7, 13, 16, 23] and preconditioned Krylov subspace methods, such as MINRES and GMRES incorporated
with suitable preconditioners have also been applied to solve the saddle point problems (see [29, 30, 31, 32]
and the references therein as well as [11, 12]). The reader is also referred to [10] for a comprehensive survey.

To solve the saddle point problem (1) when C = 0, Cao et al., in [15], proposed the shift-splitting
preconditioner

PSS =
1

2
(αI +A) =

1

2

(

αI +A BT

−B αI

)

,
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which is a skillful generalization of the idea of the shift-splitting preconditioner initially introduced in [8] for
solving a non-Hermitian positive definite linear system where α > 0 and I is the identity matrix. Recently,
Chen and Ma in [17] studied the two-parameter generalization of the preconditioner PSS, say

PGSS =
1

2

(

αI +A BT

−B βI

)

,

for solving the saddle point linear systems (1) with C = 0, where α ≥ 0 and β > 0.
In this paper, we propose a modified generalized shift-splitting (MGSS) preconditioner for the saddle

point problem (1) with C 6= 0. The MGSS preconditioner is based on a splitting of the saddle point matrix
which results in an unconditionally convergent stationary iterative method. Moreover, a relaxed version of
the MGSS preconditioner is presented and the eigenvalues distribution of the corresponding preconditioned
matrix is studied.

The organization of the paper is as follows. In Section 2 we propose the MGSS preconditioner and its
relaxed version. Section 3 is devoted to some numerical experiments. Finally, in Section 4 we present some
concluding remarks.

2 The generalized shift-splitting preconditioner

Let α, β > 0. Consider the splitting A = Mα,β −Nα,β , where

Mα,β =
1

2

(

αI +A BT

−B βI + C

)

and Nα,β =
1

2

(

αI −A −BT

B βI − C

)

. (2)

This splitting leads to the following stationary iterative method (the MGSS iterative scheme) (1)

Mα,βu
(k+1) = Nα,βu

(k) + b (3)

for solving the linear system (1), where u(0) is an initial guess. Therefore, the iteration matrix of the MGSS
iterative method is given by Γα,β = M−1

α,βNα,β. In the sequel, the convergence of the proposed method

is studied. It is well known that the iterative method (3) is convergent for every initial guess u(0) if and
only if ρ(Γα,β) < 1, where ρ(.) denotes the spectral radius of Γ (see [1]). Let u = (x; y) be an eigenvector
corresponding to the eigenvalue λ of Γα,β . Then, we have Nα,βu = λMα,βu or equivalently

(αI −A)x −BT y = λ(αI +A)x+ λBT y, (4)

Bx + (βI − C)y = −λBx+ λ(βI + C)y. (5)

Lemma 1. Let α, β > 0. If λ is an eigenvalue of the matrix Γα,β, then λ 6= ±1.

Proof. If λ = 1, then from Eqs. (4) and (5) we obtain Au = 0 which is a contradiction, since u 6= 0 and the
matrix A is nonsingular ([9, Lemma 1.1]).

If λ = −1, then from Eqs. (4) and (5) it follows that 2αx = 0 and 2βx = 0. Since, α, β > 0, we get x = 0
and y = 0. This is a contradiction, because (x; y) is an eigenvector of A.

Theorem 1. Let λ be an eigenvalue of the matrix Γ and α, β > 0. Then |λ| < 1.

Proof. We first show that x 6= 0. If x = 0, then it follows from Eq. (4) that (1+λ)BTy = 0. Therefore, from
Lemma 1 we conclude that BT y = 0 and this yields y = 0, since B has full rank. This is a contradiction
because (x; y) is an eigenvector of Γα,β .

Without loss of generality let ‖x‖2 = 1. Multiplying both sides of (4) by x∗ yields

α− x∗Ax− (Bx)∗y = λ(α‖x‖22 + x∗Ax) + λ(Bx)∗y. (6)

We consider two cases Bx = 0 and Bx 6= 0. If Bx = 0, then Eq. (6) implies

|λ| =
|α− x∗Ax|

|α+ x∗Ax|
< 1.
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We now assume that Bx 6= 0. In this case, from Eq. (5) we obtain

Bx =
β(λ − 1)

λ+ 1
y + Cy. (7)

Substituting Eq. (7) in (6) yields

(1− λ)α − (1 + λ)x∗Ax = (1 + λ)

(

β
λ− 1

1 + λ
y∗y + y∗Cy

)

.

Letting p = x∗Ax, q = y∗y, and r = y∗Cy, it follows from the latter equation that

αω + βqω = p+ r, with ω =
1− λ

1 + λ
. (8)

Since α, β, p > 0 and q, r ≥ 0, form (8) we see that

ℜ(w) =
p+ r

α+ βq
> 0.

Hence, we have

|λ| =
|1− ω|

|1 + ω|
=

√

(1−ℜ(ω))2 + ℑ(ω)2

(1 + ℜ(ω))2 + ℑ(ω)2
< 1

which completes the proof.

Remark 1. Let C = 0. If α = β > 0 then MGSS iterative method is reduced to the shift-splitting method
presented by Cao et al. in [15] and when α and β are two positive parameters the method becomes the
generalized shif-splitting method proposed by Chen and Ma in [17].

Theorem 1 guarantees the convergence of the MGSS method, however the stationary iterative method (3)
is typically too slow for the method to be competitive. Nevertheless, it serves the preconditioner PMGSS =
Mα,β for a Krylov subspace method such as GMRES, or its restarted version GMRES(m) to solve system
(1). At each step of the MGSS iterative method or applying the shift-splitting preconditioner PMGSS within
a Krylov subspace method, we need to compute a vector of the form z = P−1

MGSSr for a given r = (r1; r2)
where r1 ∈ R

n and r2 ∈ R
m. It is not difficult to check that

PMGSS =
1

2

(

I BT (βI + C)
−1

0 I

)(

S 0
0 βI + C

)(

I 0

− (βI + C)
−1

B I

)

,

where S = αI +A+BT (βI + C)
−1

B. Hence,

P−1
MGSS = 2

(

I 0

(βI + C)
−1

B I

)(

S−1 0
0 (βI + C)−1

)(

I −BT (βI + C)
−1

0 I

)

. (9)

By using Eq. (9) we state Algorithm 1 to compute the vector z = (z1; z2) where z1 ∈ R
n and z2 ∈ R

m as
following.

Algorithm 1. Computation of z = P−1
MGSSr.

1. Solve (βI + C)w = 2r2 for w.

2. Compute w1 = 2r1 −BTw.

3. Solve
(

αI +A+BT (βI + C)−1B
)

z1 = w1 for z1.

4. Solve (βI + C)v = Bz1 for v.

5. Compute z2 = v + w.
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Obviously, the matrix S = αI +A+BT (βI +C)−1B is SPD. In practical implementation of Algorithm
1 one may use the conjugate gradient (CG) method or a preconditioned CG (PCG) method to solve the
system of Step 3. It is noted that, since the matrix βI + C is SPD and of small size in comparison to the
size of A, we use the Cholesky factorization of βI + C in Steps 1, 3 and 4.

In the sequel, we consider the relaxed MGSS (RMGSS) preconditioner

PRMGSS =

(

A BT

−B βI + C

)

.

for the saddle point problem (1). The next theorem discusses eigenvalues distribution of P−1
RMGSSA.

Theorem 2. The preconditioned matrix Ψ = P−1
RMGSSA has an eigenvalue 1 with multiplicity n and the

remaining eigenvalues are λi = µi

β+µi

, 1 ≤ i ≤ m, where µi’s are the eigenvalues of the matrix G =

C +BA−1BT .

Proof. By using Eq. (9) (with α = 0 and neglecting the pre-factor 2) we obtain

Ψ =

(

I A−1BT −A−1BTS−1BA−1BT −A−1BTS−1C

0 S−1G

)

where S = βI +G. Therefore, Ψ has an eigenvalue 1 with multiplicity n and the remaining eigenvalues are
the eigenvalues of T = (βI +G)

−1
G and this completes the proof.

Remark 2. Similar to Theorem 3.2 in [15] it can be shown that the dimension of the Krylov subspace
K(Ψ, b) is at most m+1. This shows that the GMRES iterative method to solve (1) in conjunction with the
preconditioner P−1

RMGSS terminates in most m + 1 iterations and provides the exact solution of the system
(see Proposition 6.2 in [27]). Obviously, the matrix G is SPD and as a result its eigenvalues are positive.
Therefore, from Theorem 2 we see that |λi− 1| = 0 or |λi− 1| = β

β+µi

. Hence, the eigenvalues of Ψ would be

well clustered with a nice clustering of its eigenvalues around the point (1, 0) for small values of β. In this
case, the matrix Ψ would be well conditioned.

3 Numerical Experiments

In this section, some numerical experiments are given to show the effectiveness of the MGSS and RMGSS
preconditioners. All the numerical experiments presented in this section were computed in double precision
using some MATLAB codes on a Laptop with Intel Core i7 CPU 1.8 GHz, 6GB RAM. We consider the
Stokes problem (see [25, page 221])

{

−△u+∇p = f,

∇.u = 0,
(10)

in Ω = [−1, 1]× [−1, 1], with the exact solution

u = (20xy3, 5x4 − 5y4), p = 60x2y − 20y3 + constant.

We use the interpolant of u for specifying Dirichlet conditions everywhere on the boundary. The test
problems were generated by using the IFISS software package written by Elman et al. [?]. The IFISS
package were used to discretize the problem (10) using stabilized Q1-P0 finite elements. We used β = 0.25
as the stabilization parameter. Matrix properties of the test problem for different sizes are given in Table 1.

We use GMRES(5) in conjunction with the preconditioners PMGSS and PRMGSS . We also compare the
results of the MGSS and RMGSS preconditioners with those of the Hermitian and skew-Hermitian (HSS)
preconditioner (see [9]). To show the effectiveness of the methods we also give the results of GMRES(5)
without preconditioning. We use a null vector as an initial guess and the stopping criterion ‖b−Ax(k)‖2 <

10−9‖b‖2. In the implementation of the preconditioners PMGSS and PRMGSS , in Algorithm 1, we use the
Cholesky factorization of βI + C and the CG method to solve the system of Step 3. It is noted that,
in the CG method, the iteration is terminated when the residual norm is reduced by a factor of 100 or
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Table 1: Matrix properties of the test problem.

Grid n m nnz(A) nnz(B) nnz(C)
16× 16 578 256 3826 1800 768

32× 32 2178 1024 16818 7688 3072

64× 64 8450 4096 70450 31752 12288

128× 128 33282 16384 288306 129032 49152

Table 2: Numerical results for the test problem.

GMRES(5) MGSS RMGSS HSS

Grid IT CPU (α,β) IT CPU β IT CPU α IT CPU

16 × 16 18 0.119 (0.01, 0.001) 6 0.048 0.001 6 0.048 0.085 12 0.051

(0.001, 0.001) 6 0.048

32 × 32 33 0.530 (0.01, 0.001) 6 0.152 0.001 5 0.145 0.050 18 0.199

(0.001, 0.001) 6 0.153

64 × 64 147 8.066 (0.01, 0.001) 14 1.305 0.001 7 1.021 0.020 27 2.449

(0.001, 0.001) 7 0.905

128 × 128 349 76.9 (0.01, 0.001) 27 10.492 0.001 15 10.016 0.020 41 24.633

(0.001, 0.001) 14 9.284

when the number of iterations exceeds 40. Numerical results are given in Table 2 for different sizes of the
problem. In this table “IT” denotes for the number of iterations for the convergence and “CPU” stands
for the corresponding CPU times (in seconds). For the HSS preconditioner we experimentally computed
the optimal value of the involving parameter (see [9]) of the method. For the MGSS method we present
the numerical results for (α, β) = (0.01, 0.001) and (α, β) = (0.001, 0.001) and in the RMGSS method for
β = 0.001. As the numerical results show the all the preconditioners are effective. We also observe that
the MGSS and RMGSS preconditioners are superior to the HSS preconditioners in terms of both iteration
count and CPU times. For more investigation the eigenvalues distribution of the matrices A, P−1

MGSSA with
α = β = 0.001 and P−1

RMGSSA with β = 0.001 are displayed in Figure 1. As we see the eigenvalues of
P−1
MGSSA and P−1

RMGSSA are more clustered than the matrix A.

4 Conclusion

We have presented a modification of the generalized shift-splitting method to solve the saddle point problem
with symmetric positive definite (1,1)-block and symmetric positive semidefinite (2,2)-block. Then the
resulted preconditioner and its relaxed version have been implemented to precondition the saddle point
problem. We have seen that both of the preconditioners are effective when they are combined with the
GMRES(m) algorithm. Our numerical results show that the proposed preconditioners are more effective
than the HSS preconditioner.
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Figure 1: Eigenvalues distribution of the saddle point matrix A (left) and the preconditioned matrix,
P−1
MGSSA where α = β = 0.001 (middle) and P−1

RMGSSA where β = 0.001 (right) with m = 32.
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