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Abstract

The Smagorinsky model, unmodified, is often reported to severely
overdiffuse flows. Previous estimates of the energy dissipation rate of
the Smagorinsky model for shear flows are that

〈εS〉 ≃ [1 + C
2

S

(

δ

L

)2

(1 +Re
2)]

U3

L

reflecting a blow up of model energy dissipation as Re → ∞. This blow up
is consistent with the numerical evidence and leads to the question: Is the
over dissipation due to the influence of the turbulent viscosity in boundary

lauyers alone or is its action on small scales generated by the nonlinear-

ity through the cascade also a contributor? This report develops model
dissipation estimates for body force driven flow under periodic boundary
conditions (and thus only with nonlinearity generated small scales). It is
proven that the model’s time averaged energy dissipation rate, < εS >,
satisfies

< εS >≤ 3
U3

L
+

3

8
Re−1 U3

L
+ CS

(

δ

L

)2
U3

L
,

where U,L are global velocity and length scales and CS ≃ 0.1, δ << 1
are the standard model parameters. Since this estimate is consistent with
that observed for the NSE, it establishes that, without boundary layers,

the Smagorinsky model does not over dissipate.
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1 Introduction

This is an expanded version of a report with a similar title.

The Smagorinsky model1, from [S63] and used for of turbulent flow, e.g.,
[BIL06], [S01], [J04], [M97], [P94], [G97], is

ut + u · ∇u − ν△u−∇ ·
(

(CSδ)
2 |∇u|∇u

)

+∇p = f (x) (1)

and ∇ · u = 0 .

It is mathematically equivalent to the Ladyzhenskayamodel2 [S63], [L67], [DG91],
[P92] and the von Neumann Richtmyer artificial viscosity for shocks [vNR50].
In (1), ν is the kinematic viscosity, δ << 1 is a model length scale, the Reynolds
number is

Re =
LU

ν

where U,L denote global velocity and length scales given by (3) below and CS

is a model parameter. See [S84] for ranges of values around the value CS ≃ 0.1
determined by Lilly [L67]. Experience with the model, e.g., [S01], [BIL06],
strongly suggests it over dissipates, often severely (see Section 3 for some fixes).
Estimates of model energy dissipation rates for shear flows in [L02] are consistent
with this computational experience. Perhaps surprisingly, herein we show that
the time averaged energy dissipation rate for (1) balances the energy input
rate3, U3/L. Thus the Smagorinsky model does not over dissipate energy for

body force driven turbulence in a periodic box. In other words, the observed
over dissipation of the model is not due to the model’s action on small scales
generated by the nonlinear term in the turbulent cascade but rather it is due to

the action of the model viscosity in boundary layers.

1In its most precise realization, the term ∇ ·
(

(CSδ)
2 |∇u|∇u

)

is replaced by ∇ ·
(

2 (CSδ)
2 |∇su|∇su

)

where ∇su := (∇u + ∇uT )/2 is the deformation tensor. The anal-

ysis herein holds by the same argument.
2In the Smagorinsky model one has the viscous terms −ν△u−∇·

(

(CSδ)
2 |∇u|∇u

)

while

in the Ladyzhenskaya model the corresponding terms are −∇ ·

(

√

ν2 + (CSδ)
4 |∇u|2∇u

)

.

For both, the most precise realization replaces the velocity gradient with the deformation
tensor.

3The energy input rate at the large scales is U3/L. Briefly, the kinetic energy of the large
scales scales with dimensions U2. The ”rate” has dimensions 1/time. A large scale quantity
with this dimensions is formed by U/L which is the turn over time for the large eddies, i.e.,
the time iit takes a large eddy with velocity U to travel a distance L. Thus the ”rate of energy
input” has dimensions U3/L.
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How does the fluid velocity produced from a numerical simulation on a fixed

grid communicate with molecular viscosity? - J. Smagorinsky 1960
The motivation for the model can be described in a very general way as

follows. For high Reynolds numbers, dissipation occurs non-negligibly only at
very small scales, far smaller than typical meshes. The balance between energy
input at the largest scales and energy dissipation at the smallest is a criti-
cal selection mechanism for determining statistics of turbulent flows. Joseph
Smagorinsky was concerned with geophysical flow simulations and soon asked
the above question. Somehow, once a mesh is selected, to get accurate simu-
lations extra dissipative terms must be introduced to model the effect of the
unresolved fluctuations (smaller than the mesh width) upon the resolved veloc-
ity (representable on the mesh). Thus the extra term was in (1) was introduced
where the length scale δ was intended to reflect the underlying physical mesh
length.

Let Ω = (0, LΩ)
3 denote the periodic box in 3d and impose periodic (with

zero mean) conditions

u(x+ LΩej , t) = u(x, t) j = 1, 2, 3 and (2)
∫

Ω

φdx = 0 for φ = u, u0, f, p.

The data u0(x), f(x) are smooth, LΩ-periodic, have zero mean and satisfy

∇ · u0 = 0 , and ∇ · f = 0.

The model energy dissipation rate from (5) below is

εS(u) :=

∫

Ω

ν

|Ω| |∇u(x, t)|2 + (CSδ)
2

|Ω| |∇u(x, t)|3dx.

The long time average of a function φ(t) is defined, following [DF02], [DG95] by

〈φ〉 := lim sup
T→∞

1

T

∫ T

0

φ(t)dt.

We show herein that 〈εS〉 balances the energy input rate, U3/L. This estimate
is consistent as Re → ∞, δ → 0 with both phenomenology, e.g., [F95], [Po00],
[M97], and the rate proven for the Navier-Stokes equations in [CD92], [CKG01],
[W97], [DF02] and [CDP06]. The weak Re dependence in the second term (that
vanishes as Re → ∞) is consistent with the recent results in [MBYL15] derived
through structure function theories of turbulence.

Theorem 1 Suppose the data f(x) and u0(x) are smooth, divergence free, pe-

riodic with zero mean functions. Then

〈εS(u)〉 ≤ 3
U3

L
+

3

8
Re−1 U3

L
+ C2

S

(

δ

L

)2
U3

L
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1.1 Improving the constant multiplier

The multiplier ”3” of U3

L can be reduced to 1/(1−α) for any α > 0 , arbitrarily
close to ”1”, at the cost of a multipliers α−1 and α−2 of the other two terms
on the RHS by inserting parameters at various points in the argument. The
following is the precise result.

Theorem 2 〈εS〉 satisfies: for any 0 < α < 1,

〈εS(u)〉 ≤
1

1− α

U3

L
+

1

4α(1− α)
Re−1 U3

L
+

4

27(1− α)α2
C2

S

(

δ

L

)2
U3

L
.

1.2 Related work

The energy dissipation rate is a fundamental statistic in experimental and the-
oretical studies of turbulence, e.g., Sreenivasan [S84], Pope [Po00], Frisch [F95],
Lesieur [L97]. In 1968, Saffman [S68], addressing the estimate of energy dissi-
pation rates, 〈ε〉 ≃ U3/L , wrote that

”This result is fundamental to an understanding of turbulence and yet still

lacks theoretical support.” - P.G. Saffman 1968

In 1992 Constantin and Doering [CD92] made a fundamental breakthrough,
establishing a direct link between the phenomenology of energy dissipation and
that predicted for general weak solutions of shear flows directly from the NSE.
This work builds on Busse [B78], Howard [H72] (and others) and has developed
in many important directions. It has been extended to shear flows in Childress,
Kerswell and Gilbert [CKG01], Kerswell [K98] and Wang [W97]. For flows
driven by body forces extensions include Doering and Foias [DF02], Cheskidov,
Doering and Petrov [CDP06] (fractal body forces), and [L07] (helicity dissipa-
tion). The energy dissipation rates of discretized (so the smallest scale is lim-
ited by the mesh width and time step) flow equations was studied in [JLM07],
[JLK14]. Energy dissipation in models and regularizations studied in [L02],
[L07], [LRS10], [LST10]. Most recently, the time averaged energy dissipation
in statistical fluctuations has led to new models and a proof of the Boussinesq
conjecture in [JLK14],[JL15].

2 The proof

Let || · ||, (·, ·) denote the usual L2(Ω) norm and inner product. Other norms
are explicitly indicated by a subscript. With |Ω| the volume of the flow domain,
the scale of the body force, large scale velocity and length, F,U, L, are defined
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by

F =

(

1

|Ω| ||f ||
2

)
1

2

, (3)

U =

〈

1

|Ω| ||u||
2

〉
1

2

,

L = min{|Ω| 13 , F

||∇f ||L∞

,
F

( 1
|Ω| ||∇f ||2) 1

2

,
F

( 1
|Ω| ||∇f ||33)

1

3

}.

It is easy to check that L has units of length and satisfies the inequalities:

||∇f ||L∞ ≤ F
L ,

1
|Ω|

∫

Ω
|∇f(x)|2dx ≤ F 2

L2

1
|Ω|

∫

Ω
|∇f(x)|3dx ≤ F 3

L3 .











(4)

The proof is a synthesis of the model’s energy balance (5), the breakthrough ar-
guments of Doering and Foias [DF02] from the NSE case with careful treatment
of the Smagorinsky term.

Solutions to the Smagorinsky / Ladyzhenskaya model are known, e.g., [C98],
[DG91], [L69], [L67], [P92] [G89], to be unique strong solutions and satisfy the
energy equality

1

2|Ω| ||u(T )||
2 +

∫ T

0

εS(u)dt =
1

2|Ω| ||u0||2 +
∫ T

0

1

|Ω| (f, u(t)) dt. (5)

Here εS(u) = ε0(u) + εδ(u), where

ε0(u) :=
ν

|Ω| ||∇u(t)||2 and

εδ(u) :=
(CSδ)

2

|Ω| ||∇u(t)||3L3 .

From (5) and standard arguments it follows that

sup
t∈(0,∞)

||u(t)||2 ≤ C(data) < ∞ and (6)

1

T

∫ T

0

εS(u)dt ≤ C(data) < ∞.

Averaging (5) over [0, T ], applying the Cauchy-Schwarz inequality in time and
(6) yields

1

T

∫ T

0

εS(u)dt = O(
1

T
) +

1

T

∫ T

0

1

|Ω| (f, u(t)) dt

≤ O(
1

T
) + F

(

1

T

∫ T

0

1

|Ω| ||u||
2dt

)
1

2

. (7)
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To bound the RHS, take the inner product of (1) with f(x) , integrate by parts
and average over [0, T ]. This gives

F 2 =
(u(T )− u0, f)

T |Ω| − 1

T

∫ T

0

1

|Ω| (uu,∇f)dt+ (8)

+
1

T

∫ T

0

ν

|Ω| (∇u,∇f)dt+
1

T

∫ T

0

1

|Ω|
(

(CSδ)
2 |∇u|∇u,∇f

)

dt .

Of the four terms on the last RHS, by (6) the first term is O(1/T ). The second
and third terms are bounded using the Cauchy-Schwarz-Young inequality and
(4) by

∣

∣

∣

∣

∣

1

T |Ω|

∫ T

0

(uu,∇f)dt

∣

∣

∣

∣

∣

≤ ||∇f ||L∞

1

T |Ω|

∫ T

0

||u||2dt

≤ F

L

(

1

T

∫ T

0

1

|Ω| ||u||
2dt

)

,

∣

∣

∣

∣

∣

1

T

∫ T

0

ν

|Ω| (∇u,∇f)dt

∣

∣

∣

∣

∣

≤
(

1

T

∫ T

0

ν2

|Ω| ||∇u||2dt
)

1

2

(

1

T

∫ T

0

1

|Ω| ||∇f ||2dt
)

1

2

≤
(

1

T

∫ T

0

ε0(u)dt

)
1

2 √
ν
F

L

≤ 2

3
U−1F

1

T

∫ T

0

ε0(u)dt+
3

8
UF

ν

L2
.

The fourth, Smagorinsky, term, is estimated using Hölder’s inequality as follows

∣

∣

∣

∣

∣

1

T |Ω|

∫ T

0

(

(CSδ)
2 |∇u|∇u,∇f

)

dt

∣

∣

∣

∣

∣

≤ (CSδ)
2

|Ω|
1

T

∫ T

0

||∇u||2L3dt||∇f ||L3

≤ F

L
(CSδ)

2/3 1

T

∫ T

0

εδ(u)
2

3 dt.

Insert multipliers of U2/3 and U−2/3 in the two terms. Using4

ab ≤ (2/3)a3/2 + (1/3)b3

(conjugate exponents 3/2 and 3) gives

1

T

∫ T

0

(

U2/3

L
(CSδ)

2/3

)

(

U−2/3εδ(u)
2

3

)

dt ≤ 2

3

1

U

1

T

∫ T

0

εδ(u)dt+
U2

3

(CSδ)
2

L3
.

4More generally, for conjugate (1/p+1/q = 1) exponents and a > 0, b > 0: ab ≤ (1/p)ap +
(1/q)bq .
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Using these three estimates in (8) yields

F ≤ O(
1

T
) +

1

L

1

T

∫ T

0

1

|Ω| ||u||
2dt+

+
3

8

Uν

L2
+

2

3

1

U

1

T

∫ T

0

εS(u)dt+
U2

3

(CSδ)
2

L3
.

Using this estimate for F in (7) gives

1

T

∫ T

0

εS(u)dt ≤ O(
1

T
) + F

(

1

T

∫ T

0

1

|Ω| ||u||
2dt

)
1

2

≤ O(
1

T
) +

(

1

T |Ω|

∫ T

0

||u||2dt
)

1

2

×
(

1

LT |Ω|

∫ T

0

||u||2dt+ 3

8

Uν

L2
+

2

3

1

UT

∫ T

0

εS(u)dt+
U2 (CSδ)

2

3L3

)

.

Taking the limit superior, which exists by (6), as T → ∞ we obtain

〈εS(u)〉 ≤
U3

L
+

3

8

U3

L

ν

LU
+

2

3
〈εS(u)〉+

U3

3L

(CSδ)
2

L2
.

Thus, as claimed,

〈εS(u)〉 ≤ 3
U3

L
+

9

8
Re−1U

3

L
+

U3

L
C2

S

(

δ

L

)2

.

3 Conclusions for the Smagorinsky Model

Comparing the estimate

〈εS〉 ≃
U3

L

herein for periodic boundary conditions with

〈εS〉 ≃ [1 + C2
S

(

δ

L

)2

(1 +Re2)]
U3

L

in [L07] for shear flows with boundary layers strongly suggests the often re-
ported model over dissipation is

due to the action of the model viscosity in boundary layers

rather than in interior small scales generated by the turbulent cascade. Prac-
tice addresses this over dissipation with damping functions (e.g., van Driest
damping [vD12],[S01]), modelled boundary conditions called near wall models,
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e.g., [PB02], [JLS04], [JL06], restriction of the model induced dissipation to
the smallest resolved scales [HOM01] and Germano’s dynamic (self-adaptive)
selection of CS = CS(x, t) , [GPMC91], that also reduces CS near walls. Thus,
analysis of Smagorinsky model dissipation for shear flows including these mod-

ifications is therefore an important open problem.
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