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Abstract

A variable-coefficient forced Korteweg-de Vries equation with spacial inhomogeneity is

investigated in this paper. Under constraints, this equation is transformed into its bilinear

form, and multi-soliton solutions are derived. Effects of spacial inhomogeneity for soliton

velocity, width and background are discussed. Nonlinear tunneling for this equation is

presented, where the soliton amplitude can be amplified or compressed. Our results might

be useful for the relevant problems in fluids and plasmas.
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I. Introduction

In this paper, we will investigate the following variable-coefficient forced KdV equation [1–10]

with the aid of symbolic computation [11–13],

ut + a(t) u ux + b(t) uxxx + c(t) u+ d(t) ux = f(x, t) , (1)

where u is a function of the scaled spacial coordinate x and temporal coordinate t, a(t), b(t), c(t)

and d(t) are the analytic functions of t, and f(x, t) is the analytic function of x and t. These

variable coefficients respectively represent the nonlinear, dispersive, line-damping, dissipative and

external-force effects, which are caused by the inhomogeneities of media and boundaries [1–10].

Here, we assume that the spacial inhomogeneity is linear and take the following form

f(x, t) = f1(t)x+ f2(t) . (2)

When coefficients are taken with different cases, Eq. (1) has been seen to describe nonlinear

waves in a fluid-filled tube [1–3], weakly nonlinear waves in the water of variable depth [4, 5],

trapped quasi-one-dimensional Bose-Einstein condensates [6], internal gravity waves in lakes

with changing cross sections [7], the formation of a trailing shelf behind a slowly-varying solitary

wave [8], dynamics of a circular rod composed of a general compressible hyperelastic material

with the variable cross-sections and material density [9], and atmospheric and oceanic dynamical

systems [10].

If the the spacial inhomogeneity is ignored, i.e., f1(t) = 0, Eq. (1) has been transformed into

its several KdV-typed ones with simpler forms [14–17], and has also been solved directly via

the bilinear method [18]. The effects of the dispersive, line-damping, dissipative, and external-

force terms on the solitonic velocity, amplitude and background have been discussed [18] with

the characteristic-line method [19, 20]; Besides, Wronskian form are derived based on the given

bilinear expression [21].

However, since the spacial inhomogeneity in external-force term brings into more difficulties in

solving, to our knowledge, the multi-soliton solutions for Eq. (1) in the explicit bilinear forms have

not been constructed directly, and the effects of spacial inhomogeneity on solitonic propagation

and interaction have not been discussed.

In addition, nonlinear tunneling for the nonautonomous nonlinear Schrödinger equations has

attracted attention in recent years [22–25]. The concept of the nonlinear tunneling effect comes

from the wave equations steming from the nonlinear dispersion relation, which has shown that

the soliton can pass lossless through the barrier/well under special conditions which depend on

the ratio between the amplitude of the soliton and the height of the barrier/well [22–25]. In this

paper, we will apply such concept to Eq. (1), a KdV-typed equation. In section II, a dependent

variable transformation and two constraints will be proposed, Eq. (1) will be transformed into

its bilinear form, and the multi-soliton solutions in the explicit forms will be constructed. In

section III, we will show that different from Ref. [18], the nonlinear coefficient can also affect the
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soliton width and amplitude for the existence of spacial inhomogeneity in the forced term. In

section IV, we will discuss nonlinear barrier/well of Eq. (1). Finally, Section V will present the

conclusions.

II. Soliton solutions

Through the dependent variable transformation

u = α(t)(logΦ)xx + β(t) + γ(t)x , (3)

and the coefficient constraints,

b(t) =
ρ a(t)

6
e
∫
[a(t)γ(t)−c(t)]dt , (4)

f1(t) = a(t)γ(t)2 + c(t)γ(t) + γ
′

(t) , (5)

where

α(t) = 2 ρ e
∫
[a(t)γ(t)−c(t)]dt , (6)

β(t) = e
∫
[−a(t)γ(t)−c(t)]dt

{

δ +

∫

e
∫
[a(t)γ(t)+c(t)]dt

[

f2(t)− d(t)γ(t)
]

dt
}

, (7)

Φ is a function of x and t, ρ and δ are constants, and ′ denotes the derivative with respect to t,

Eq. (1) can be transformed into the following bilinear form,

{

DxDt + b(t)D4
x +

[

d(t) + a(t)β(t) + a(t)γ(t)x
]

D2
x + a(t)γ(t)

∂

∂x

}

Φ · Φ = 0 , (8)

where Dm
x D

n
t is the bilinear derivative operator [26, 27] defined by

Dm
x D

n
t a · b ≡

(

∂

∂x
−

∂

∂x
′

)m (

∂

∂t
−

∂

∂t
′

)n

a(x, t) b(x
′

, t
′

)

∣

∣

∣

∣

x
′=x, t

′=t

, (9)

and

∂

∂x
Φ · Φ = 2ΦΦx . (10)

Note that the independence of f1(t) is transformed to that of γ(t) through constraint (5).

We expand Φ in the power series of a parameter ǫ as

Φ = 1 + ǫΦ1 + ǫ2Φ2 + · · · . (11)

Substituting Expansion (11) into Eq. (8) and collecting the coefficients of the same power of ǫ,

through the standard process of the Hirota bilinear method, we can derive the N -soliton-like

solutions for Eq. (1), which can be denoted as

u = α(t)
∂2

∂x2

{

log
[

∑

µ=0,1

exp
(

N
∑

j=1

µj ξj +

N
∑

1≤j<l

µj µl Aj l

)]}

+ β(t) + γ(t)x , (12)
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with

ξj = kj(t) x+ ωj(t) + ξ0j , (13)

kj(t) = e−
∫
a(t)γ(t)dtkj , (14)

ωj(t) = −

∫

k3
j (t)b(t)dt−

∫

kj(t)
[

d(t) + a(t)β(t)
]

dt , (15)

eAjl =
(kj − kl)

2

(kj + kl)2
, (16)

where kj and ξ0j (j = 1, 2, · · · , N) are arbitrary real constants,
∑

µ=0,1 is a summation over all

possible combinations of µ1 = 0, 1, µ2 = 0, 1, · · · , µN = 0, 1, and
∑N

1≤j<l means a summation

over all possible pairs (j, l) chosen from the set (1, 2, . . . , N), with the condition that 1 ≤ j <

l [27].

Specially, one soliton solution can be expressed as

Φ = 1 + exp
[

k1(t) x+ ω1(t) + ξ10

]

, (17)

and two soliton solution can be expressed as

Φ = 1 + exp
[

k1(t) x+ ω1(t) + ξ10

]

+ exp
[

k2(t) x+ ω2(t) + ξ20

]

+ exp
[

k1(t) x+ ω1(t) + ξ10 + k2(t) x+ ω2(t) + ξ20 + A12

]

. (18)

III. Spacial inhomogeneity

The coefficients a(t), b(t), c(t), d(t) and f2(t) have the similar influences on the soliton velocity,

amplitude and background, which have been discussed in Refs. [18, 21]. Thus, we will mainly

discuss the influence of the spacial inhomogeneity in the forced term.

As shown in Fig. 1, the soliton width broadens, amplitude increases, and position of soliton

raises. In expression (14), a(t) and γ(t) occur simultaneously, so nonlinear coefficient a(t) can

affect the soliton width and amplitude.
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Fig. 1. One soliton given by Expression (17) with parameters: k1 = 2, ρ = δ = 1, d(t) = a(t) = 1, c(t) = γ(t) = 0.1, ξ10 = −10; (b)

Profile of Fig.1 (a) at t = 0, t = 4, t = 6.

Fig. 2 presents a case that the soliton velocity, amplitude and background are periodic. Fig. 3

corresponds to the periodic two soliton solution.
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Fig. 2. One soliton given by Expression (17) with parameters: k1 = 2, ρ = 1, d(t) = f2(t) = δ = 0, ξ10 = −10, a(t) = [2 + sin(t)]−1,

e
∫
[−a(t)γ(t)]dt = 2 + sin(t), e

∫
−c(t)dt = 1; (b) Profile of Fig.2 (a) at t = −4, t = 0, t = 5.
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Fig. 3. Two solitons given by Expression (18) with parameters: k1 = 2, k2 = 1, ρ = 1, d(t) = f2(t) = δ = 0, ξ10 = −10,

a(t) = [2 + sin(t)]−1, e
∫
[−a(t)γ(t)]dt = 2 + sin(t), e

∫
−c(t)dt = 1; (b) Profile of Fig.3 (a) at t = −4, t = 0, t = 5.

IV. Nonlinear tunneling

Nonlinear tunneling has been discussed for the nonlinear Schrödinger equation [22–25]. Hereby,

we will investigate the nonlinear tunneling for the KdV equation.

Fig. 4 shows the one soliton through well with e
∫
−c(t)dt = 1 − 0.9sech(t), while Fig. 5 shows

the one soliton through barrier with e
∫
−c(t)dt = 1 + 0.9sech(t). In Fig. 6, the soliton passes

through multiple well or barrier with e
∫
−c(t)dt = 1+h1sech(t+ t1)+h2sech(t+ t2). Thereinto, h1

and h2 denote the height of the barrier/well, t1 and t2 denote the position, and | t1− t2 | denotes

the separation distance of the barrier/well.
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Fig. 4. One soliton given by Expression (17) with parameters: k1 = 2, ρ = δ = 1, d(t) = a(t) = 1, ξ10 = −10, f2(t) = 0,

e
∫
[−a(t)γ(t)]dt = 1, e

∫
−c(t)dt = 1− 0.9sech(t); (b) Profile of Fig.4 (a) at t = −3, t = 0, t = 3.
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Fig. 5. One soliton given by Expression (17) with parameters: k1 = 2, ρ = δ = 1, d(t) = a(t) = 1, ξ10 = −10, f2(t) = 0,

e
∫
[−a(t)γ(t)]dt = 1, e

∫
−c(t)dt = 1 + 0.9sech(t); (b) Profile of Fig.5 (a) at t = −3, t = 0, t = 2.
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Fig. 6. One soliton given by Expression (17) with parameters: k1 = 2, ρ = δ = 1, d(t) = a(t) = 1, ξ10 = −10, f2(t) = 0,

e
∫
[−a(t)γ(t)]dt = 1; (a) e

∫
−c(t)dt = 1− 0.9sech(t − 2) − 0.9sech(t + 2) ; (b) e

∫
−c(t)dt = 1 + 0.9sech(t − 2) + 0.9sech(t + 2).

Fig. 7 presents the one soliton through well with periodic background and characteristic line,

and Fig. 8 corresponds to the two soliton cases of Fig. 7.
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Fig. 7. One soliton given by Expression (17) with parameters:k1 = 2, ρ = 1, d(t) = f2(t) = δ = 0, ξ10 = −10, a(t) = {[2+ sin(t)][1−

0.9sech(t)]}−1, e
∫
[−a(t)γ(t)]dt = 2 + sin(t), e

∫
−c(t)dt = 1− 0.9sech(t); (b) Profile of Fig.7 (a) at t = −4, t = 0, t = 5.
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Fig. 8. Two solitons given by Expression (18) with parameters: k1 = 2, k2 = 1, ρ = 1, d(t) = f2(t) = δ = 0, ξ10 = −10,

a(t) = {[2 + sin(t)][1− 0.9sech(t)]}−1, e
∫
[−a(t)γ(t)]dt = 2+ sin(t), e

∫
−c(t)dt = 1− 0.9sech(t); (b) Profile of Fig.8 (a) at t = −4, t = 0,

t = 5.

V. Conclusions

In this paper, Eq. (1), a variable-coefficient model with spacial inhomogeneity in fluids [1–10],

is investigated with symbolic computation. Under coefficient constraints (4) and (5), Eq. (1) is

transformed into its bilinear form, and the multi-soliton solutions are constructed. The function

γ(t) corresponds to spacial inhomogeneity, and the nonlinear coefficient a(t) can also affect the

soliton width and amplitude for the existence of γ(t), as shown in Figs. 1- 3.

Nonlinear tunneling for Eq. (1) is a special state of amplitude, so it can be regarded as a kind

of variable coefficient effects. With e
∫
−c(t)dt taken as 1+

∑

hnsech(t+ tn), nonlinear tunneling in

Figs. 4- 6 is illustrated, where hn denotes the height of the barrier/well, tn denotes the position,

and | tn − tl | denotes the separation distance of the barrier/well. Finally, Figs. 7 and 8 display

the combination of nonlinear tunneling and variable coefficient effects.
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