FRACTIONAL KIRCHHOFF EQUATION WITH A GENERAL CRITICAL NONLINEARITY

HUA JIN AND WENBIN LIU

Abstract. In this paper, we study the fractional Kirchhoff equation with critical nonlinearity

$$
\left(a+b \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)(-\Delta)^{s} u+u=f(u) \text { in } \mathbb{R}^{N}
$$

where $N>2 s$ and $(-\Delta)^{s}$ is the fractional Laplacian with $0<s<1$. By using a perturbation approach, we prove the existence of solutions to the above problem without the AmbrosettiRabinowitz condition when the parameter b small. What's more, we obtain the asymptotic behavior of solutions as $b \rightarrow 0$.

1. Introduction and main result

In this paper, we are concerned with the following fractional Kirchhoff equation

$$
\begin{equation*}
\left(a+b \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)(-\Delta)^{s} u+u=f(u) \text { in } \mathbb{R}^{N}, \tag{1.1}
\end{equation*}
$$

where $N>2 s$ with $0<s<1, a, b$ are positive constants and $(-\Delta)^{s} u$ is the fractional Laplacian which arises in the description of various phenomena in the applied science, such as the phase transition [19], Markov processes [1] and fractional quantum mechanics [15]. When $a=1$ and $b=0$, (1.1) becomes the fractional Schrödinger equations which have been studied by many authors. We refer the readers to $[2,5-7]$ and the references therein for the details. When $s=1$, the problem (1.1) reduces to the well-known Kirchhoff equation

$$
\begin{equation*}
-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x\right) \Delta u+u=f(u) \text { in } \mathbb{R}^{N}, \tag{1.2}
\end{equation*}
$$

which has been studied in the last decade, see $[9,12,17]$. The equation (1.2) is related to the stationary analogue of the Kirchhoff equation $u_{t t}-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u)$ on $\Omega \subset \mathbb{R}^{N}$ bounded, which was proposed by Kirchhoff [13] in 1883 as a generalization the classic D'Alembert's wave equation for free vibrations of elastic strings.

Recently, in bounded regular domains of \mathbb{R}^{N}, Fiscella and Valdinoci [11] proposed the following fractional stationary Kirchhoff equation

$$
\left\{\begin{array}{l}
M\left(\int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}\right)(-\Delta)^{s} u=f(x, u), \text { in } \Omega, \tag{1.3}\\
u=0 \text { in } \mathbb{R}^{N} \backslash \Omega,
\end{array}\right.
$$

which models nonlocal aspects of the tension arising from nonlocal measurements of the fractional length of the string. Also in bounded domains, Autuori et al. [4] dealt with the existence and the asymptotic behavior of non-negative solutions of a class of fractional stationary Kirchhoff equation. In the whole of \mathbb{R}^{N}, Pucci et al. [18] established the existence and multiplicity of nontrivial non-negative entire solutions of a stationary Kirchhoff eigenvalue problem. In the

[^0]subcritical case, by using minimax arguments, Ambrosio et al. [3] obtained the multiplicity results for (1.2) in $H_{r}^{s}\left(\mathbb{R}^{N}\right)$ with b small. Also in the subcritical case, without the (AR)-condition, the authors [20] investigated the existence of radial solutions by using the variational methods combined with a cut-off function technique. More recently, without the (AR)-condition and monotonicity assumptions, in low dimension $(N=2, N=3)$, Z. Liu et al. [16] studied the existence of ground states in the critical case. To the best of our knowledge, there are few papers on the fractional Kirchhoff equations involving the critical growth in \mathbb{R}^{N} with $N>3$, because of the tough difficulties brought by the nonlocal term and the lack of compactness of the Sobolev embedding $H_{r}^{s}\left(\mathbb{R}^{N}\right) \rightarrow L^{2_{s}^{*}}\left(\mathbb{R}^{N}\right)$.

Motivated by the works above, we investigate the existence of the positive solutions of (1.1) in $\mathbb{R}^{N}(N>2 s)$ with the critical growth. Precisely, f satisfies the following conditions:
$\left(f_{1}\right) f \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}\right), \lim _{t \rightarrow 0} f(t) / t=0$ and $f(t) \equiv 0$ for $t \leq 0$,
(f_{2}) $\lim _{t \rightarrow \infty} f(t) / t^{2 *}-1=1$, where $2_{s}^{*}=\frac{2 N}{N-2 s}$,
$\left(f_{3}\right)$ there exist $D>0$ and $p<2_{s}^{*}$ such that $f(t) \geq t^{2_{s}^{*}-1}+D t^{p-1}$ for $t \geq 0$.
Our main result can read as
Theorem 1.1. Suppose that f satisfies $\left(f_{1}\right)-\left(f_{3}\right)$ and $\max \left\{2,2_{s}^{*}-2\right\}<p<2_{s}^{*}$, then for b small, (1.1) admits a nontrivial positive radial solution u_{b}. What's more, along a subsequence, u_{b} converges to u in $H_{r}^{s}\left(\mathbb{R}^{N}\right)$ as $b \rightarrow 0$, where u is a radial ground state to the limit problem

$$
\begin{equation*}
a(-\Delta)^{s} u+u=f(u), \quad u \in H^{s}\left(\mathbb{R}^{N}\right) \tag{1.4}
\end{equation*}
$$

Because of the presence of the Kirchhoff term, in high dimension $N>4 s$, for the energy functional $I_{b}(u)$ (see section 2), one has $I_{b}(t u) \rightarrow+\infty$ as $t \rightarrow+\infty$ for each $u \neq 0$. That means Mountain pass geometry may not holds and Mountain pass theorem may not be appropriate. To overcome this difficulty, we use the variational method combined with the perturbation approach $[21,22]$ to get a special bounded (PS)-sequence. On the other hand, because of the presence of the Kirchhoff term, for the bounded (PS)-sequence $\left\{u_{n}\right\}$, even $u_{n} \rightarrow u_{0}$ weakly, it doesn't hold in general that u_{0} is the critical point of the energy functional, which brings us more tough to get the compactness. We use the properties of the special (PS)-sequence and some results of the limit problem (1.4) to recover the compactness. Moreover, we obtain the asymptotic behavior of the solutions of (1.1) as $b \rightarrow 0$.

The paper is organized as follows. Some preliminaries are presented in Section 2. In Section 3, we construct the min-max level. In Section 4, we complete the proof of Theorem 1.1.

2. Preliminaries and functional Setting

2.1. Fractional order Sobolev spaces. The fractional Laplacian $(-\Delta)^{s}$ with $s \in(0,1)$ of a function $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is defined by $\mathcal{F}\left((-\Delta)^{s} \phi\right)(\xi)=|\xi|^{2 s} \mathcal{F}(\phi)(\xi)$, where \mathcal{F} is the Fourier transform. If ϕ is smooth enough, it can be computed by the following singular integral

$$
(-\Delta)^{s} \phi(x)=c_{s} \text { P.V. } \int_{\mathbb{R}^{N}} \frac{\phi(x)-\phi(y)}{|x-y|^{N+2 s}} \mathrm{~d} y, \quad x \in \mathbb{R}^{N}
$$

where c_{s} is a normalization constant and P.V. stands the principal value. For any $s \in(0,1)$, we consider the fractional order Sobolev space

$$
H^{s}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}}|\xi|^{2 s}|\hat{u}|^{2} \mathrm{~d} \xi<\infty\right\}
$$

endowed with the norm $\|u\|=\left(\int_{\mathbb{R}^{N}}\left(1+a|\xi|^{2 s}\right)|\hat{u}|^{2} \mathrm{~d} \xi\right)^{1 / 2} . H_{r}^{s}\left(\mathbb{R}^{N}\right)$ denotes the space of radial functions in $H^{s}\left(\mathbb{R}^{N}\right)$, i.e. $H_{r}^{s}\left(\mathbb{R}^{N}\right)=\left\{u \in H^{s}\left(\mathbb{R}^{N}\right): u(x)=u(|x|)\right\}$. The homogeneous Sobolev
space $\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)$ is defined by

$$
\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2_{s}^{*}}\left(\mathbb{R}^{N}\right):|\xi|^{s} \hat{u} \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

which is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ under the norm $\|u\|_{\mathcal{D}^{s, 2}}^{2}=\left\|(-\Delta)^{s / 2} u\right\|_{2}^{2}=\int_{\mathbb{R}^{N}}|\xi|^{2 s}|\hat{u}|^{2} \mathrm{~d} \xi$.
For the further introduction on the fractional order Sobolev space, we refer to [10]. Now, we introduce the following Sobolev embedding theorems.

Lemma 2.1 (see $[8,10,14])$. For any $s \in(0,1), H^{s}\left(\mathbb{R}^{N}\right)$ is continuously embedded into $L^{q}\left(\mathbb{R}^{N}\right)$ for $q \in\left[2,2_{s}^{*}\right]$ and compactly embedded into $L_{\text {loc }}^{q}\left(\mathbb{R}^{N}\right)$ for $q \in\left[1,2_{s}^{*}\right)$. $H_{r}^{s}\left(\mathbb{R}^{N}\right)$ is compactly embedded into $L^{q}\left(\mathbb{R}^{N}\right)$ for $q \in\left(2,2_{s}^{*}\right)$ and $\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)$ is continuously embedded into $L^{2_{s}^{*}}\left(\mathbb{R}^{N}\right)$, i.e., there exists $S_{s}>0$ such that $S_{s}\left(\int_{\mathbb{R}^{N}}|u|^{2_{s}^{*}} \mathrm{~d} x\right)^{2 / 2_{s}^{*}} \leq \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} \mathrm{~d} x$.
2.2. The variational setting. We define the energy functional $I_{b}: H^{s}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ by

$$
I_{b}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(a\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+u^{2}\right) \mathrm{d} x+\frac{b}{4}\left(\int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}\right)^{2} \mathrm{~d} x-\int_{\mathbb{R}^{N}} F(u) \mathrm{d} x
$$

with $F(t)=\int_{0}^{t} f(\zeta) \mathrm{d} \zeta$. It is standard to show that I_{b} is of class C^{1}.
Definition 2.2. We call $u \in H^{s}\left(\mathbb{R}^{N}\right)$ a weak solution of (1.1) if for any $\phi \in H^{s}\left(\mathbb{R}^{N}\right)$,

$$
\left(a+b\|u\|_{\mathcal{D}^{s, 2}}^{2}\right) \int_{\mathbb{R}^{N}}(-\Delta)^{\frac{s}{2}} u(-\Delta)^{\frac{s}{2}} \phi \mathrm{~d} x+\int_{\mathbb{R}^{N}} u \phi \mathrm{~d} x=\int_{\mathbb{R}^{N}} f(u) \phi \mathrm{d} x .
$$

Obviously, the critical points of I_{b} are the weak solutions of (1.1).
Similar to the proof of Brezis-Lieb Lemma in [21], we can give the following lemma.
Lemma 2.3. For $s \in(0,1)$, assume $\left(f_{1}\right)-\left(f_{2}\right)$ hold. Let $\left\{u_{n}\right\} \subset H^{s}\left(\mathbb{R}^{N}\right)$ such that $u_{n} \rightarrow u$ weakly in $H^{s}\left(\mathbb{R}^{N}\right)$ and a.e. in \mathbb{R}^{N} as $n \rightarrow \infty$, then $\int_{\mathbb{R}^{N}} F\left(u_{n}\right) \rightarrow \int_{\mathbb{R}^{N}} F\left(u_{n}-u\right)+\int_{\mathbb{R}^{N}} F(u)$.

When $b=0$, problem (1.1) becomes the limit problem (1.4) which plays a crucial role in our paper. The energy functional of (1.4) is defined as

$$
L(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(a\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+u^{2}\right) \mathrm{d} x-\int_{\mathbb{R}^{N}} F(u) \mathrm{d} x, \quad u \in H^{s}\left(\mathbb{R}^{N}\right) .
$$

With the same assumptions on f in Theorem 1.1, it is not difficult to check that $L(u)$ satisfies the Mountain pass geometry. The Mountain pass value denoted by c is defined by

$$
c=\inf _{\gamma \in \Gamma_{L}} \max _{t \in[0,1]} L(\gamma(t))>0,
$$

where $\Gamma_{L}=\left\{\gamma \in C\left([0,1], H^{s}\left(\mathbb{R}^{N}\right)\right), \gamma(0)=0, L(\gamma(1))<0\right\}$. In the following, we present some results of the ground states of (1.4) and the proof is similar as that in [22].

Proposition 2.4. Suppose f satisfies $\left(f_{1}\right)-\left(f_{3}\right)$ and $\max \left\{2,2_{s}^{*}-2\right\}<p<2_{s}^{*}$. Let S_{r} be the set of positive radial ground states of (1.4), then
(i) S_{r} is not empty and S_{r} is compact in $H_{r}^{s}\left(\mathbb{R}^{N}\right)$,
(ii) $c<\frac{s}{N}\left(a S_{s}\right)^{\frac{N}{2 s}}$ and c agrees with the least energy level denoted by E, that is, there exists $\gamma \in \Gamma_{L}$ such that $u \in \gamma(t)$ and $\max _{[0,1]} L(\gamma(t))=E$, where $u \in S_{r}$,
(iii) $u \in S_{r}$ satisfies the Pohozăev identity

$$
\begin{equation*}
\frac{N-2 s}{2} \int_{\mathbb{R}^{N}} a\left|(-\Delta)^{s / 2} u\right|^{2} \mathrm{~d} x+\frac{N}{2} \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x=N \int_{\mathbb{R}^{N}} F(u) \mathrm{d} x . \tag{2.1}
\end{equation*}
$$

3. The minimax level

In order to get a bounded (PS)-sequence by the local deformation argument, a different min-max level is needed. Take $U \in S_{r}$ be arbitrary but fixed. By the definition of $\hat{U}=$ $\mathcal{F}(U)$, for $U_{\tau}(x)=U\left(\frac{x}{\tau}\right), \tau>0$, we have $\hat{U}_{\tau}(\cdot)=\tau^{N} \hat{U}(\tau \cdot)$. Thus $\int_{\mathbb{R}^{N}}\left|(-\Delta)^{s / 2} U_{\tau}\right|^{2} \mathrm{~d} x=$ $\tau^{N-2 s} \int_{\mathbb{R}^{N}}\left|(-\Delta)^{s / 2} U\right|^{2} \mathrm{~d} x$. From the Pohozǎev identity (2.1), we obtain

$$
L\left(U_{\tau}\right)=\left(\frac{a \tau^{N-2 s}}{2}-\frac{N-2 s}{2 N} \tau^{N}\right) \int_{\mathbb{R}^{N}}\left|(-\Delta)^{s / 2} U\right|^{2}
$$

So, there exists $\tau_{0}>1$ such that $L\left(U_{\tau}\right)<-2$ for $\tau \geq \tau_{0}$. Set $D_{b} \equiv \max _{\tau \in\left[0, \tau_{0}\right]} I_{b}\left(U_{\tau}\right)$. Noting that $I_{b}\left(U_{\tau}\right)=L\left(U_{\tau}\right)+\frac{b}{4}\left\|U_{\tau}\right\|_{\mathcal{D}^{s, 2}}^{4}$ and $\max _{\tau \in\left[0, \tau_{0}\right]} L\left(U_{\tau}\right)=E$, we have $D_{b} \rightarrow E$ as $b \rightarrow 0^{+}$.
Lemma 3.1. There exist $b_{1}>0$ and $\mathcal{C}_{0}>0$, such that for any $0<b<b_{1}$ there hold

$$
I_{b}\left(U_{\tau_{0}}\right)<-2, \quad\left\|U_{\tau}\right\| \leq \mathcal{C}_{0}, \quad \forall \tau \in\left(0, \tau_{0}\right], \quad\|u\| \leq \mathcal{C}_{0}, \quad \forall u \in S_{r}
$$

Proof. Since S_{r} is compact, it is easy to verify that there exists $\mathcal{C}_{0}>0$ such that the second and third part of the assertion hold. It follows from $I_{b}\left(U_{\tau_{0}}\right) \leq L\left(U_{\tau_{0}}\right)+\frac{b}{4} \mathcal{C}_{0}^{4}$ and $L\left(U_{\tau_{0}}\right)<-2$ that the first part holds for any $0<b<b_{1}$, where $b_{1}>0$ small. The proof is completed.
Now, for any $b \in\left(0, b_{1}\right)$, we define a min-max value $C_{b}:=\inf _{\gamma \in \Upsilon_{b}} \max _{\tau \in\left[0, \tau_{0}\right]} I_{b}(\gamma(\tau))$, where

$$
\Upsilon_{b}=\left\{\gamma \in C\left(\left[0, \tau_{0}\right], H_{r}^{s}\left(\mathbb{R}^{N}\right)\right): \gamma(0)=0, \gamma\left(\tau_{0}\right)=U_{\tau_{0}},\|\gamma(\tau)\| \leq \mathcal{C}_{0}+1, \tau \in\left[0, \tau_{0}\right]\right\} .
$$

Proposition 3.2. $\lim _{b \rightarrow 0^{+}} C_{b}=E$.
Proof. For $\tau>0$, by $\left\|U_{\tau}\right\|^{2}=a \tau^{N-2 s}\|U\|_{\mathcal{D}^{s}, 2}^{2}+\tau^{N}\|U\|_{2}^{2}$, we can define $U_{0} \equiv 0$. So $U_{\tau} \in \Upsilon_{b}$. Moreover, $\lim \sup _{b \rightarrow 0^{+}} C_{b} \leq \lim _{b \rightarrow 0^{+}} D_{b}=E=c$. On the other hand, for any $\gamma \in \Upsilon_{b}$, it follows from $L\left(U_{\tau_{0}}\right)<-2$ that $\tilde{\gamma}(\cdot)=\gamma\left(\tau_{0} \cdot\right) \in \Gamma_{L}$. Thus, from the definition of c and C_{b}, we obtain $C_{b} \geq E$ for any $b \in\left(0, b_{1}\right)$. The proof is completed.

4. The Proof of Theorem 1.1

For $\alpha, d>0$, we define

$$
I_{b}^{\alpha}:=\left\{u \in H_{r}^{s}\left(\mathbb{R}^{N}\right): I_{b}(u) \leq \alpha\right\}
$$

and

$$
S^{d}:=\left\{u \in H_{r}^{s}\left(\mathbb{R}^{N}\right): \inf _{v \in S_{r}}\|u-v\| \leq d\right\} .
$$

Proposition 4.1. Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be such that $\lim _{n \rightarrow \infty} b_{n}=0$ and $\left\{u_{b_{n}}\right\} \subset S^{d}$ with

$$
\lim _{n \rightarrow \infty} I_{b_{n}}\left(u_{b_{n}}\right) \leq E \text { and } \lim _{n \rightarrow \infty} I_{b_{n}}^{\prime}\left(u_{b_{n}}\right)=0
$$

Then for d small, there is $u_{0} \in S_{r}$, up to a subsequence, such that $u_{b_{n}} \rightarrow u_{0}$ strongly in $H_{r}^{s}\left(\mathbb{R}^{N}\right)$.
Proof. For convenience, we write $u_{b_{n}}$ for u_{b}. Since $u_{b} \in S^{d}$, there exists $\tilde{u}_{b} \in S_{r}$ such that $\left\|u_{b}-\tilde{u}_{b}\right\| \leq d$. Let $v_{b}=u_{b}-\tilde{u}_{b}$. By the fact that S_{r} is compact and $\left\|v_{b}\right\| \leq d$, up to a subsequence, there exist $\tilde{u}_{0} \in S_{r}$ and $v_{0} \in H^{s}\left(\mathbb{R}^{N}\right)$, such that $\tilde{u}_{b} \rightarrow \tilde{u}_{0}$ strongly in $H_{r}^{s}\left(\mathbb{R}^{N}\right)$ and $v_{b} \rightarrow v_{0}$ weakly in $H^{s}\left(\mathbb{R}^{N}\right)$. Denoting $u_{0}=\tilde{u}_{0}+v_{0}$, then $u_{0} \in S^{d}$ and $u_{b} \rightarrow u_{0}$ weakly in $H_{r}^{s}\left(\mathbb{R}^{N}\right)$. Next, we show $u_{b} \rightarrow u_{0}$ strongly in $H_{r}^{s}\left(\mathbb{R}^{N}\right)$. Since $\lim _{n \rightarrow \infty} I_{b}^{\prime}\left(u_{b}\right)=0$, then for any $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
I_{b}^{\prime}\left(u_{b}\right) \phi=L^{\prime}\left(u_{b}\right) \phi+b\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2} \int_{\mathbb{R}^{N}}(-\Delta)^{s / 2} u_{b}(-\Delta)^{s / 2} \phi
$$

It follows from Lemma 2.1 and $u_{b} \in S^{d}$ that $L^{\prime}\left(u_{0}\right)=0$ as $b \rightarrow 0$. Obviously $u_{0} \not \equiv 0$ by $u_{0} \in S^{d}$ with d small. Thus $L\left(u_{0}\right) \geq E$. Meanwhile, from Lemma 2.3, $I_{b}\left(u_{b}\right)=L\left(u_{b}\right)+\frac{b}{4}\left\|u_{b}\right\|_{\mathcal{D}^{s}, 2}^{4}=$
$L\left(u_{0}\right)+L\left(u_{b}-u_{0}\right)+o(1)$. Together with $\lim _{n \rightarrow \infty} I_{b_{n}}\left(u_{b_{n}}\right) \leq E$, we obtain $L\left(u_{b}-u_{0}\right) \leq o(1)$. Thus, by $\left(f_{1}\right)-\left(f_{2}\right)$ and Sobolev embedding theorem, there exists constant $c_{1}>0$ such that $\left\|u_{b}-u_{0}\right\|^{2} \leq c_{1}\left\|u_{b}-u_{0}\right\|^{2_{s}^{*}}$. If $\left\|u_{b}-u_{0}\right\| \nrightarrow 0$ as $b \rightarrow 0$, there exists constant $c_{2}>0$ such that $\left\|u_{b}-u_{0}\right\| \geq c_{2}$ for b small. On the other hand, from $\tilde{u}_{0} \in S_{r}$ and $u_{0} \in S^{d}$, we get $\left\|\tilde{u}_{0}-u_{0}\right\| \leq d$. Then $\left\|u_{b}-u_{0}\right\| \leq\left\|u_{b}-\tilde{u}_{b}\right\|+\left\|\tilde{u}_{b}-\tilde{u}_{0}\right\|+\left\|\tilde{u}_{0}-u_{0}\right\| \leq 2 d+o(1)$, which is a contradiction for d small. The proof is completed.
Remark 4.2. By Proposition 4.1, for small $d \in(0,1)$, there exist $\omega>0, b_{0}>0$ such that

$$
\begin{equation*}
\left\|I_{b}^{\prime}(u)\right\| \geq \omega \text { for } u \in I_{b}^{D_{b}} \bigcap\left(S^{d} \backslash S^{\frac{d}{2}}\right) \text { and } b \in\left(0, b_{0}\right) \tag{4.1}
\end{equation*}
$$

Thus, we have the following proposition.
Proposition 4.3. There exists $\alpha>0$ such that for small $b>0$ and $\gamma(\tau)=U(\dot{\bar{\tau}}), \tau \in\left(0, \tau_{0}\right]$,

$$
I_{b}(\gamma(\tau)) \geq C_{b}-\alpha \text { implies that } \gamma(\tau) \in S^{\frac{d}{2}}
$$

Proof. By the Pohozǎev identity $(2.1), I_{b}(\gamma(\tau))=\left(\frac{a \tau^{N-2 s}}{2}-\frac{N-2 s}{2 N} \tau^{N}\right)\|U\|_{\mathcal{D}^{s, 2}}^{2}+\frac{b}{4} \tau^{2 N-4 s}\|U\|_{\mathcal{D}^{s, 2}}^{4}$. Then $\lim _{b \rightarrow 0^{+}} \max _{\tau \in\left[0, \tau_{0}\right]} I_{b}(\gamma(\tau))=\max _{\tau \in\left[0, \tau_{0}\right]}\left(\frac{a \tau^{N-2 s}}{2}-\frac{N-2 s}{2 N} \tau^{N}\right)\|U\|_{\mathcal{D}^{s, 2}}^{2}=E$. On the other hand, $\lim _{b \rightarrow 0^{+}} C_{b}=E$. The conclusion follows.

Thanks to (4.1) and Proposition 4.3, we can prove the following proposition, which assures the existence of a bounded (PS)-sequence for I_{b}. The proof is similar as that in [21,22]. We omit the details here.

Proposition 4.4. For $b>0$ small, there exist $\left\{u_{n}\right\}_{n} \subset I_{b}^{D_{b}} \cap S^{d}$ such that $I_{b}^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

The completion of Proof of Theorem 1.1

Proof. It follows from Proposition 4.4 that there exists $b_{0}>0$ such that for $b \in\left(0, b_{0}\right)$, there exists $\left\{u_{n}\right\} \in I_{b}^{D_{b}} \cap S^{d}$ with $I_{b}^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, there exists $u_{b} \in H_{r}^{s}\left(\mathbb{R}^{N}\right)$, up to a subsequence, such that $u_{n} \rightarrow u_{b}$ weakly in $H_{r}^{s}\left(\mathbb{R}^{N}\right), u_{n} \rightarrow u_{b}$ strongly in $L^{p}\left(\mathbb{R}^{N}\right), p \in\left(2,2_{s}^{*}\right)$ and $u_{n} \rightarrow u_{b}$ a.e in \mathbb{R}^{N}. Next, we claim that $I_{b}^{\prime}\left(u_{b}\right)=0$ for b small. Set $f(t)=g(t)+t^{2_{s}^{*}-1}$. By Lemma 2.1, we have $\int_{\mathbb{R}^{N}} g\left(u_{n}\right) \varphi=\int_{\mathbb{R}^{N}} g\left(u_{b}\right) \varphi+o_{n}(1)$ for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and $\int_{\mathbb{R}^{N}} g\left(u_{n}\right) u_{n}=\int_{\mathbb{R}^{N}} g\left(u_{b}\right) u_{b}+o_{n}(1)$. Let $v_{n}=u_{n}-u_{b}$ and $\left\|v_{n}\right\|_{\mathcal{D}^{s, 2}}^{2} \rightarrow A \geq 0$, then $\left\|u_{n}\right\|_{\mathcal{D}^{s, 2}}^{2}=\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2}+A+o_{n}(1)$. From $I_{b}^{\prime}\left(u_{n}\right) \rightarrow 0$, we have

$$
\begin{equation*}
\left(a+b\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2}+b A\right)\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2}+\left\|u_{b}\right\|_{2}^{2}=\int_{\mathbb{R}^{N}} g\left(u_{b}\right) u_{b}+\left\|u_{b}\right\|_{2_{s}^{*}}^{2_{s}^{*}} . \tag{4.2}
\end{equation*}
$$

The corresponding Pohozǎev identity is

$$
\begin{equation*}
\frac{N-2 s}{2}\left(a+b\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2}+b A\right)\left\|u_{b}\right\|_{\mathcal{D}^{s}, 2}^{2}+\frac{N}{2}\left\|u_{b}\right\|_{2}^{2}=N \int_{\mathbb{R}^{N}} G\left(u_{b}\right)+\frac{N}{2_{s}^{*}}\left\|u_{b}\right\|_{2_{s}^{s}}^{2_{s}^{*}} . \tag{4.3}
\end{equation*}
$$

It follows from $I_{b}^{\prime}\left(u_{n}\right) u_{n} \rightarrow 0$ and Brezis-Lieb Lemma that

$$
\left(a+b\left\|u_{b}\right\|_{\mathcal{D}^{s}, 2}^{2}+b A\right)\left(\left\|u_{b}\right\|_{\mathcal{D}^{s}, 2}^{2}+A\right)+\left(\left\|u_{b}\right\|_{2}^{2}+\left\|v_{n}\right\|_{2}^{2}\right)=\int_{\mathbb{R}^{N}} g\left(u_{b}\right) u_{b}+\left\|u_{b}\right\|_{2_{s}^{*}}^{2_{s}^{*}}+\left\|v_{n}\right\|_{2_{s}^{*}}^{2_{s}^{*}}+o_{n}(1)
$$

Together with (4.2), we have

$$
\begin{equation*}
\left(a+b\left\|u_{b}\right\|_{\mathcal{D}_{s, 2}}^{2}+b A\right) A+\left\|v_{n}\right\|_{2}^{2}=\left\|v_{n}\right\|_{2_{s}^{*}}^{2_{s}^{*}}+o_{n}(1) . \tag{4.4}
\end{equation*}
$$

It follows from Lemma 2.1 that $A \leq \frac{1}{a}\left(\frac{A}{S_{s}}\right)^{\frac{2_{s}^{*}}{2}}+o(1)$. If $A=0$, we have done. If $A>0$, then $A \geq a^{\frac{N-2 s}{2 s}} S_{s}^{\frac{N}{2 s}}$. By the Pohozǎev identity (4.3) and (4.4),

$$
\begin{aligned}
I_{b}\left(u_{n}\right) & =\left(\frac{1}{2}-\frac{1}{2_{s}^{*}}\right) a\left(\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2}+A\right)+\left(\frac{1}{4}-\frac{1}{2_{s}^{*}}\right) b\left(\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2}+A\right)^{2}+\left(\frac{1}{2}-\frac{1}{2_{s}^{*}}\right)\left\|v_{n}\right\|_{2}^{2}+o(1) \\
& \geq\left(\frac{1}{2}-\frac{1}{2_{s}^{*}}\right) a A+b\left(\frac{1}{4}-\frac{1}{2_{s}^{*}}\right)\left(\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2}+A\right)^{2}+o(1)
\end{aligned}
$$

On the other hand, from $\left\{u_{n}\right\} \in S^{d}$, for d small, there exist $\tilde{u}_{n} \in S_{r}$ and $\tilde{v}_{n} \in H^{s}\left(\mathbb{R}^{N}\right)$ such that $u_{n}=\tilde{u}_{n}+\tilde{v}_{n}$ with $\left\|\tilde{v}_{n}\right\| \leq d$. Thus $\left\|u_{n}\right\|_{\mathcal{D}^{s, 2}}^{2} \leq\left\|\tilde{v}_{n}\right\|_{\mathcal{D}^{s, 2}}^{2}+\left\|\tilde{u}_{n}\right\|_{\mathcal{D}^{s, 2}}^{2} \leq 1+\sup _{v \in S_{r}}\|v\|_{\mathcal{D}^{s, 2}}^{2} \triangleq B$ which implies that $\left\|u_{b}\right\|_{\mathcal{D}^{s, 2}}^{2}+A \leq 2 B$, where B is independent of b, n and d. So

$$
I_{b}\left(u_{n}\right) \geq\left(\frac{1}{2}-\frac{1}{2_{s}^{*}}\right) a A-4 b\left|\frac{1}{4}-\frac{1}{2_{s}^{*}}\right| B^{2}+o(1)
$$

Meanwhile, from $\lim \sup _{n \rightarrow \infty} I_{b}\left(u_{n}\right) \leq D_{b}$, we get

$$
\left(\frac{1}{2}-\frac{1}{2_{s}^{*}}\right) a A \leq D_{b}+b\left|\frac{1}{4}-\frac{1}{2_{s}^{*}}\right| B^{2} .
$$

Together with $A \geq a^{\frac{N-2 s}{2 s}} S_{s}^{\frac{N}{2 s}}$, we have $\frac{s}{N}\left(a S_{s}\right)^{\frac{N}{2 s}} \leq D_{b}+b\left|\frac{1}{4}-\frac{1}{2_{s}^{*}}\right| B^{2} \rightarrow E$, as $b \rightarrow 0$, which is a contradiction with $E<\frac{s}{N}\left(a S_{s}\right)^{\frac{N}{2 s}}$. So, the claim is true. Since $u_{n} \in S^{d}$, then for d small, $u_{b} \not \equiv 0$. Thus, for b and d small, there exists $u_{b} \in H_{r}^{s}\left(\mathbb{R}^{N}\right)$ which is a nontrivial solution of (1.1). In the following, we investigate the asymptotic behavior of u_{b} as $b \rightarrow 0$. Noting that $D_{b} \rightarrow E$ as $b \rightarrow 0$, the similar proof as that in Proposition 4.1, we obtain that there exist $u \not \equiv 0$ such that $u_{b} \rightarrow u$ strongly in $H_{r}^{s}\left(\mathbb{R}^{N}\right)$ with $L^{\prime}(u)=0$ and $L(u)=E$. The proof is finished.

Acknowledgements. This work is supported by the National Natural Science Foundation of China (11271364).

References

[1] D. Applebaum, Lévy processes-from probability theory to finance and quantum groups, Notices of the American Math Soc., 51 (2004), 1320-1331. 1
[2] C. O. Alves, M. A. S. Souto, M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. PDE. 43 (2012), 537-554. 1
[3] V. Ambrosio, T. Isernia, A multiplicity result for a fractional Kirchhoff equation in \mathbb{R}^{N} with a general nonlinearity. arXiv:1606.05845 2
[4] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems invoving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125(2015), 699-714. 1
[5] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in \mathbb{R}^{N}, J. Differential Equations. 255 (2013), 2340-2362. 1
[6] C. Brändle, E. Colorado, U. Sánchez, A concave-convex elliptic problem involving the fractionnal Laplacian, Proc. R. Soc. Edinb., 143A(2013), 39-71. 1
[7] X. Chang and Z. Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494. 1
[8] A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236. 3
[9] Y. Deng, S. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \mathbb{R}^{3}. J. Funct. Anal. 269 (2015), 3500-3527. 1
[10] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 512-573. 3
[11] A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94(2014), 156-170. 1
[12] X. He, W. Zou, Existence and concetration behavior of positive solutions for a Kirchhoff equation in \mathbb{R}^{3}, J. Differential Equations 252 (2012), 1813-1834. 1
[13] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. 1
[14] P. L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Analysis, 49 (1982), 315-334. 3
[15] N. Laskin, Fractional quantum mechanics and Levy path integrals, Physics Letters A 268 (2000), 298-305. 1
[16] Z. S. Liu, M. Squassina, J. J. Zhang, Ground state for fractional Kirchhoff equations with critical nonlinearity in low Dimension. arXiv:1612.07914. 2
[17] N. Nyamoradi, Existence of three solutions for Kirchhoff nonlocal operators of elliptic type, Math. Commun. 18(2013), 489-502. 1
[18] P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in \mathbb{R}^{N} involving nonlocal operators, Rev. Mat. Iberoam. 32(2016), 1-22. 1
[19] Y. Sire, E. Valdinoci, Fractional Laplacian phase transtion and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6) (2009), 1842-1864. 1
[20] M. Q. Xiang, B. L. Zhang and M. M. Yang, A fractional Kirchhoff-type problem in \mathbb{R}^{N} without the (AR) condition. Complex Var. Elliptic Equ. 61(11)(2016),1481-1493. 2
[21] J. J. Zhang, J. M. do O and M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity. Commun. Contemp. Math.,1650028 (2016). 2, 3, 5
[22] J. J. Zhang, J. M. do O and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud. 16(1)(2016), 15-30. 2, 3, 5
(H. Jin)

College of Science
China University of Mining and Technology
Xuzhou, 221116, China
E-mail address: huajin@cumt.edu.cn
(W. B. Liu)

College of Science
China University of Mining and Technology
Xuzhou, 221116, China
E-mail address: liuwenbin-xz@163.com

[^0]: 2010 Mathematics Subject Classification. 35A15, 35B33, 35J60.
 Key words and phrases. fractional Kirchhoff equation, variational methods, critical growth.
 W. Liu is the corresponding author.

