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Abstract

It is well known that for gradient systems in Euclidean space or on a Riemannian manifold,

the energy decreases monotonically along solutions. In this letter we derive and analyse func-

tionally fitted energy-diminishing methods to preserve this key property of gradient systems.

It is proved that the novel methods are unconditionally energy-diminishing and can achieve

damping for very stiff gradient systems. We also show that the methods can be of arbitrarily

high order and discuss their implementations. A numerical test is reported to illustrate the

efficiency of the new methods in comparison with three existing numerical methods in the

literature.

Keywords: gradient systems, energy-diminishing methods, functionally fitted methods, arbitrary-

order methods
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1 Introduction

In this letter, we investigate the following gradient systems in coordinates:

G(y(t))ẏ(t) = −∇U(y(t)), y(0) = y0 ∈ R
d, t ∈ [0, T ], (1)

where U(y) : Rd → R is a potential function and the symmetric matrix G(y) is assumed to satisfy

v⊺G(y)v ≥ v⊺Γv > 0

for all vectors v 6= 0. Here Γ is a fixed positive definite matrix.
Gradient systems frequently arise in a wide variety of applications both in a finite-dimensional

and infinite-dimensional setting. There are many examples of this system (see, e.g. [1, 3, 4, 17, 18,
19, 20]) such as models in quantum systems, in differential geometry, in image processing, and in
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material science. A fundamental and key property of gradient systems is that along every exact
solution of (1), one has

d

dt
U(y(t)) = ∇U(y(t))⊺ẏ(t) = −ẏ(t)⊺G(y(t))ẏ(t) ≤ 0,

which shows that U(y(t)) is monotonically decreasing with t. The monotonicity is true with strict
inequality except at stationary points of U . The aim of this letter is to formulate and analyse a
novel kind of methods preserving this monotonicity in the numerical treatment, i.e., after one step
of the method starting from y0 with a time step h one would have

U(y1) ≤ U(y0).

In order to get methods with this property, Hairer and Lubich analysed various energy-diminishing
methods in [6]. They showed that implicit Euler method has this property but it is only of order
one. Algebraically stable Runge-Kutta methods were proved to reduce the energy in each step
under a mild step-size restriction, which means that Runge-Kutta methods are not unconditionally
energy-diminishing. They also showed that discrete-gradient methods, averaged vector field (AVF)
methods and AVF collocation methods are unconditionally energy-diminishing, but cannot achieve
damping for very stiff gradient systems. In this letter, we will derive a novel kind of methods which
can be of arbitrarily high order. Moreover, the methods will be shown that they are unconditionally
energy-diminishing and are strongly damped even for very stiff gradient systems.

The rest of this letter is organised as follows. In Section 2, we derive the novel methods and
prove that they are unconditionally energy-diminishing for gradient systems. The unconditionally
damping property is analysed in Section 3. We study the order of the methods in Section 4. Section
5 is devoted to the implementation issue. In Section 6, a numerical test is carried out to demonstrate
the excellent qualitative behavior. Section 7 focuses on the concluding remarks.

2 Functionally fitted energy-diminishing methods

In order to formulate the novel methods, we will use the functionally fitted technology, which is a
popular approach to constructing efficient and effective methods in scientific computing (see, e.g.
[11, 22]). To this end, define a function space Y=span{ϕ0(t), . . . , ϕr−1(t)} on [0, T ] by (see [11])

Y =

{
w : w(t) =

r−1∑

i=0

ϕi(t)Wi, t ∈ I, Wi ∈ R
d

}
,

where {ϕi(t)}
r−1
i=0 are sufficiently smooth and linearly independent on [0, T ]. In this letter, we

consider two finite-dimensional function spaces Y and X as follows

Y = span {ϕ0(t), . . . , ϕr−1(t)} , X = span

{
1,

∫ t

0

ϕ0(s)ds, . . . ,

∫ t

0

ϕr−1(s)ds

}
.

Choose a stepsize h and define the function spaces Yh and Xh on [0, 1] by

Yh = span {ϕ̃0(τ), . . . , ϕ̃r−1(τ)} , Xh = span

{
1,

∫ τ

0

ϕ̃0(s)ds, . . . ,

∫ τ

0

ϕ̃r−1(s)ds

}
,
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where ϕ̃i(τ) = ϕi(τh), τ ∈ [0, 1] for i = 0, 1, . . . , r − 1. We remark that for all the functions
throughout this letter, the notation f̃(τ) is referred to f(τh).

We will use a projection Ph in the formulation of the new methods. It was defined in [11] and
we summarise it here.

Definition 1 (See [11]) Let Phw̃ be a projection of w̃ onto Yh, where w̃(τ) is a continuous R
d-

valued function on [0, 1]. The definition of Phw̃ is given by

〈ṽ(τ),Phw̃(τ)〉 = 〈ṽ(τ), w̃(τ)〉 for any ṽ(τ) ∈ Yh,

where the inner product 〈·, ·〉 is defined by

〈w̃1, w̃2〉 = 〈w̃1(τ), w̃2(τ)〉τ =

∫ 1

0

w̃1(τ) · w̃2(τ)dτ.

Here w̃1 and w̃2 are two integrable functions (scalar-valued or vector-valued) on [0, 1], and ‘·’ denotes
the entrywise multiplication operation if they are both vector-valued functions.

The following property of Ph will also be useful in this letter, which has been proved in [11].

Lemma 1 (See [11]) The projection Phw̃ can be explicitly expressed as

Phw̃(τ) = 〈Pτ,σ, w̃(σ)〉σ ,

where

Pτ,σ =

r−1∑

i=0

ψ̃i(τ)ψ̃i(σ),

and
{
ψ̃0, . . . , ψ̃r−1

}
is a standard orthonormal basis of Yh under the inner product 〈·, ·〉.

Based on these preliminaries, we are in a position to present the scheme of functionally fitted
energy-diminishing methods.

Definition 2 Choose a stepsize h and consider a function ũ ∈ Xh with ũ(0) = y0, satisfying

G(ũ(τ))ũ′(τ) = −Ph

(
∇U(ũ(τ))

)
. (2)

The numerical approximation after one step is defined by y1 = ũ(1). We call this method as
functionally-fitted energy-diminishing method and denote it by FFED.

Theorem 1 The FFED method (2) reduces the energy of gradient systems (1), i.e., U(y1) ≤ U(y0).
This means that our FFED method (2) is unconditionally energy-diminishing.

Proof According to the definitions of Xh and Yh, we know that if ũ(τ) ∈ Xh, then one has
ũ′(τ) ∈ Yh. From the definition of Ph, it follows that

∫ 1

0

ũ′(τ)iPh

(
∇U(ũ(τ))

)
i
dτ =

∫ 1

0

ũ′(τ)i
(
∇U(ũ(τ))

)
i
dτ, i = 1, 2, . . . , d,
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where (·)i denotes the ith entry of a vector. Then, we arrive at

∫ 1

0

ũ′(τ)⊺Ph

(
∇U(ũ(τ))

)
dτ =

∫ 1

0

ũ′(τ)⊺∇U(ũ(τ))dτ.

Therefore, it is obtained that

U(y1)− U(y0) =

∫ 1

0

d

dτ
U(ũ(τ))dτ = h

∫ 1

0

ũ′(τ)⊺∇U(ũ(τ))dτ = h

∫ 1

0

ũ′(τ)⊺Ph

(
∇U(ũ(τ))

)
dτ.

Inserting the scheme (2) into this formula yields

U(y1)− U(y0) = −h

∫ 1

0

ũ′(τ)⊺G(ũ(τ))ũ′(τ)dτ ≤ 0.

3 Unconditionally damping property

In this section, we consider the potential U of the form

U(y) =
1

2
y⊺Ay + V (y), (3)

where the function V is twice continuously differentiable and the matrix A is symmetric positive
semi-definite and of arbitrarily large norm. In this case, (1) is a stiff gradient system. This
kind of stiff systems arise from the spatial discretization of Cahn–Hilliard and Allen–Cahn partial
differential equations (see, e.g. [2, 5]). Many effective methods have been derived for this stiff
gradient system with a constant matrix G and we refer to [7, 8, 10, 12, 21, 22, 23, 24, 25] for
example.

The FFED method (2) for solving this stiff gradient system is defined as follows.

Definition 3 We consider a function ũ ∈ Xh with ũ(0) = y0, satisfying

G(ũ(τ))ũ′(τ) +Aũ(τ) = −Ph

(
∇V (ũ(τ))

)
, y1 = ũ(1). (4)

This method is denoted by EFFED.

Theorem 2 The EFFED method (4) reduces the energy of the stiff gradient system (1) with (3),
i.e., U(y1) ≤ U(y0).

Proof This proof is similar to that of Theorem 1. For any w̃(τ) ∈ Yh, it is easy to prove that

∫ 1

0

w̃(τ)⊺G(ũ(τ))ũ′(τ)dτ = −

∫ 1

0

w̃(τ)⊺Aũ(τ)dτ −

∫ 1

0

w̃(τ)⊺Ph

(
∇V (ũ(τ))

)
dτ

= −

∫ 1

0

w̃(τ)⊺Aũ(τ)dτ −

∫ 1

0

w̃(τ)⊺∇V (ũ(τ))dτ = −

∫ 1

0

w̃(τ)⊺∇U(ũ(τ))dτ.

(5)

Considering ũ′(τ) ∈ Yh and letting w̃(τ) = ũ′(τ) in (5), we obtain

∫ 1

0

ũ′(τ)⊺G(ũ(τ))ũ′(τ)dτ = −

∫ 1

0

ũ′(τ)⊺∇U(ũ(τ))dτ.
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Thus, one arrives

U(y1)− U(y0) =

∫ 1

0

d

dτ
U(ũ(τ))dτ = h

∫ 1

0

ũ′(τ)⊺∇U(ũ(τ))dτ = −h

∫ 1

0

ũ′(τ)⊺G(ũ(τ))ũ′(τ)dτ ≤ 0.

For G(y) = I and a quadratic potential (i.e., V (y) = 0 in (3)), our EFFED method (4) becomes

ũ′(τ) +Aũ(τ) = 0,

which leads to
y1 = ũ(1) = e−hAy0.

This scheme has been presented and researched in [22]. Rewrite this scheme as y1 = R(−hA)y0 with
the stability function R(−hA) = e−hA. It is noted that the damping property |R(∞)| < 1 plays
an important role in the properties of Runge-Kutta methods when solving semilinear parabolic
equations, which has been researched in [13, 14]. The role of the condition |R(∞)| = 0 has been
well understood in Chapter VI of [8]. It has been shown in [6] that all the unconditionally energy-
diminishing methods including discrete-gradient methods, AVF methods and AVF collocation meth-
ods show no damping for very stiff gradient systems since they do not satisfy damping property
unconditionally. However, it is noted that for our EFFED method (4), one has

|R(∞)| = |e−∞| = 0.

This means that our methods have unconditionally damping property, which is a significant feature
especially for very stiff gradient systems.

4 Algebraic order

In this section, we analyse the algebraic order of the new methods.

Theorem 3 The FFED method (2) and EFFED method (4) are both of order 2r, which means
that

ũ(1)− y(t0 + h) = O(h2r+1).

Proof Denote by y(·, t̃, ỹ) the solution of y′ = −G−1(y)∇U(y) satisfying the initial condition

y(t̃, t̃, ỹ) = ỹ for any given t̃ ∈ [0, h]. Let Φ(s, t̃, ỹ) = ∂y(s,t̃,ỹ)
∂ỹ

. Recalling the elementary theory of
ordinary differential equations, the following standard result is obtained

∂y(s, t̃, ỹ)

∂t̃
= −Φ(s, t̃, ỹ)

(
−G−1(ỹ)∇U(ỹ)

)
.
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On the base of this result, we get

ũ(1)− y(t0 + h) = y(t0 + h, t0 + h, ũ(1))− y(t0 + h, t0, y0)

=

∫ 1

0

d

dα
y(t0 + h, t0 + αh, ũ(α))dα

=

∫ 1

0

(h
∂y

∂t̃
(t0 + h, t0 + αh, ũ(α)) +

∂y

∂ỹ
(t0 + h, t0 + αh, ũ(α))hũ′(α))dα

=

∫ 1

0

(
− h

∂y

∂ỹ
(t0 + h, t0 + αh, ũ(α))G−1(ũ(α))

(
Aũ(α)−∇U(ũ(α))

)

+
∂y

∂ỹ
(t0 + h, t0 + αh, ũ(α))G−1(ũ(α))

(
hAũ(α) − h〈P1,σ,∇U(ũ(α))〉α

))
dα

= −h

∫ 1

0

Φ1(α)G−1(ũ(α))
(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)
dα,

where Φ1(α) = ∂y
∂ỹ

(t0 + h, t0 + αh, ũ(α)). We denote the matrix Φ1(α)G−1(ũ(α)) by K(α) and

partition it as K(α) = (K1(α), . . . ,Kd(α))
⊺. It follows from Lemma 3.4 of [11] that

Ki(α) = PhKi(α) +O(hr), i = 1, 2, . . . , d,

and
g(ũ(α))− Ph(g ◦ ũ)(α) = O(hr).

On the other hand, in light of the definition of Ph, we obtain

∫ 1

0

(PhKi(α))
⊺g(ũ(α))dα =

∫ 1

0

(PhKi(α))
⊺Ph(g ◦ ũ)(α)dα, i = 1, 2, . . . , d.

Therefore, one has

ũ(1)− y(t0 + h) = −h

∫ 1

0







(PhK1(α))
⊺

...
(PhKd(α))

⊺


+O(hr)




(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)
dα

=− h

∫ 1

0




(PhK1(α))
⊺
(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)

...
(PhKd(α))

⊺
(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)


 dα− h

∫ 1

0

O(hr)×O(hr)dα

=0 +O(h2r+1) = O(h2r+1).

Remark 1 It follows from this theorem that our new methods can be of arbitrarily high order only
by choosing a large integer r, which is very convenient and simple.

5 Implementations

This section considers the implementation issue of the new methods.
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5.1 For the case that G(y) is a constant matrix

We first consider the case that G(y) is a constant matrix M . Under this condition, the FFED
method (2) becomes

ũ′(τ) = −M−1

∫ 1

0

Pτ,σ∇U(ũ(σ))dσ,

which can be solved by the variation-of-constants formula as follows

ũ(τ) = y0 − τhM−1

∫ 1

0

∫ 1

0

Pξτ,σ∇U(ũ(σ))dσdξ

= y0 − τhM−1
r−1∑

i=0

( ∫ 1

0

ψ̃i(ξτ)dξ
) ∫ 1

0

ψ̃i(σ)∇U(ũ(σ))dσ.

Following [11], we introduce the generalized Lagrange interpolation functions li(τ) ∈ Xh with
respect to (r + 1) distinct points {ci}

r+1
i=1 ⊆ [0, 1]:

(l1(τ), . . . , lr+1(τ)) = (Φ̃1(τ), Φ̃2(τ), . . . , Φ̃r+1(τ))Λ
−1,

where {Φi(t)}
r+1
i=1 is a basis of X , Φ̃i(τ) = Φi(τh) and

Λ =




Φ̃1(c1) Φ̃2(c1) . . . Φ̃r+1(c1)

Φ̃1(c2) Φ̃2(c2) . . . Φ̃r+1(c2)
...

...
...

Φ̃1(cr+1) Φ̃2(cr+1) . . . Φ̃r+1(cr+1)


 .

Then it follows from [11] that {li(τ)}
r+1
i=1 is a basis of Xh satisfying li(cj) = δij . Since ũ(τ) ∈ Xh,

ũ(τ) can be expressed by the basis of Xh as

ũ(τ) =
r+1∑

i=1

ũ(ci)li(τ).

Choosing 0 = c1 < c2 < · · · < cr+1 = 1 and denoting yσ = ũ(σ), we present the following practical
FFED methods.

Definition 4 The practical FFED method is defined as follows:






ycj = y0 − cjhM
−1

r−1∑

i=0

( ∫ 1

0

ψ̃i(ξcj)dξ
) ∫ 1

0

ψ̃i(σ)∇U(

r+1∑

m=1

ycmlm(σ))dσ, j = 2, . . . , r,

y1 = y0 − hM−1
r−1∑

i=0

(∫ 1

0

ψ̃i(ξ)dξ
) ∫ 1

0

ψ̃i(σ)∇U(

r+1∑

m=1

ycm lm(σ))dσ.

(6)

In a similar way, for the stiff system with the special potential U of the form (3), we have the
following practical EFFED method for (4).
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Definition 5 The practical EFFED method is given by





ycj = e−cjhM
−1Ay0 − cjhM

−1
r−1∑

i=0

∫ 1

0

( ∫ 1

0

e−(1−ξ)cjhM
−1Aψ̃i(ξcj)dξ

)
ψ̃i(σ)∇V (

r+1∑

m=1

ycm lm(σ))dσ,

j = 2, . . . , r,

y1 = e−hM−1Ay0 − hM−1
r−1∑

i=0

∫ 1

0

( ∫ 1

0

e−(1−ξ)hM−1Aψ̃i(ξ)dξ
)
ψ̃i(σ)∇V (

r+1∑

m=1

ycm lm(σ))dσ.

(7)

It is noted that when M = I, this method has been proposed and analysed in [22].

5.2 For the general case that G(y) depends on y

Now we pay attention to the general case that G(y) is a matrix depending on y. The FFED method
(2) becomes

ũ′(τ) = −G−1(ũ(τ))

∫ 1

0

Pτ,σ∇U(ũ(σ))dσ,

which implies

ũ(x) = y0 − h

∫ x

0

G−1(ũ(τ))

∫ 1

0

Pτ,σ∇V (ũ(σ))dσdτ

=y0 − h

∫ x

0

G−1(ũ(τ))

∫ 1

0

r−1∑

i=0

ψ̃i(τ)ψ̃i(σ)∇V (ũ(σ))dσdτ

=y0 − h

r−1∑

i=0

∫ x

0

G−1(ũ(τ))ψ̃i(τ)dτ

∫ 1

0

ψ̃i(σ)∇V (ũ(σ))dσ.

(8)

Choosing x = cj for j = 2, . . . , r + 1 and denoting yσ = ũ(σ), we obtain the following practical
FFED method





ũ(σ) =
r+1∑

i=1

yci li(σ),

ycj = y0 − h
r−1∑

i=0

∫ cj

0

G−1(ũ(τ))ψ̃i(τ)dτ

∫ 1

0

ψ̃i(σ)∇V (ũ(σ))dσ, j = 2, . . . , r,

y1 = y0 − h
r−1∑

i=0

∫ 1

0

G−1(ũ(τ))ψ̃i(τ)dτ

∫ 1

0

ψ̃i(σ)∇V (ũ(σ))dσ,

(9)

which represents a nonlinear system of equations for the unknowns ycj for j = 2, . . . , r + 1 and it
can be solved by iteration.

Remark 2 We note that the integrals appearing in the methods can be calculated exactly for many
cases. If they cannot be directly calculated, it is nature to consider approximating them by a quadra-
ture rule.
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6 Numerical test

As an example, we choose
ϕk(t) = tk, k = 0, 1, · · · , r − 1

for the function spaces X and Y , and then take r = 2 and c1 = 3−
√
3

6 , c2 = 3+
√
3

6 for our new
methods. We denote this method as FFED. In order to show its efficiency and robustness, we
choose the following three methods in the literature:

• AVF: the averaged vector field method studied in [16];

• AVFC: the averaged vector field collocation method with s = 2 given in [6];

• EEI: the explicit exponential integrator of order four derived in [9].

It is noted that we approximate the integrals appearing in the methods by the four-point Gauss-
Legendre’s quadrature. For implicit methods, we set 10−16 as the error tolerance and 10 as the
maximum number of each fixed-point iteration.

Consider the gradient system (1) with

G(y) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)−1

and

U(y) =
1

2
r(y21 + y22)−

1

2
sin(θ)

(
y1y

2
2 −

1

3
y31
)
+

1

2
cos(θ)

(
− y21y2 +

1

3
y32
)
,

where θ = π/2− 10−4 and r = 20. The initial value is chosen as y1(0) = 0, y2(0) = 1. This system
has been researched in [15]. We first solve it in [0, 100] with h = 1

10 ,
1
20 ,

1
100 and see Figure 1 for the

results of the potential function U(y). Then the system is solved with h = 0.1/2i for i = 1, . . . , 4
and T = 100, 500, 1000. The global errors are presented in Figure 2.

From these numerical results, it can be observed that our FFED method has a higher accuracy,
a better energy-diminishing property, and a more prominent damping behavior in comparison with
the other three methods.

7 Conclusions

In this letter we derived a novel kind of functionally fitted energy-diminishing methods for solv-
ing gradient systems. The properties of the methods have been analysed. It was shown that the
arbitrary-order methods are unconditionally energy-diminishing and achieve damping for stiff gra-
dient systems. We also discussed the implementations of the methods. The remarkable efficiency
of the methods was demonstrated by a numerical test in comparison with three existing numerical
methods in the literature.
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Figure 1: The results of the energy U against the time t.
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