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Abstract

In this work, we extend the so-called mapped bases or fake nodes approach
to the barycentric rational interpolation of Floater-Hormann and to AAA ap-
proximants. More precisely, we focus on the reconstruction of discontinuous
functions by the S-Gibbs algorithm introduced in [? ]. Numerical tests show
that it yields an accurate approximation of discontinuous functions.
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1. Introduction1

In the seminal paper [? ], Floater and Hormann (FH) have introduced a2

family of linear barycentric rational interpolants, which contains the first Berrut3

interpolant [? ? ]. FH interpolants have shown good approximation properties4

for smooth functions, in particular using equidistant nodes. Because of their5

high accuracy, these interpolants have been applied in several frameworks, such6

as for solving Volterra integral equations [? ], or as collocation methods for7

nonlinear parabolic partial differential equations [? ]. Among other favourable8

properties, the Lebesgue constant grows logarithmically with the number of9

nodes [? ]. Other instances in which linear barycentric rational interpolation10

is extremely efficient, actually exponentially convergent, is the trigonometric11

interpolant presented in [? ] and used with conformally mapped equispaced12

points [? ? ], and its special case on the interval, Berrut’s second interpolant [?13

] between conformally mapped Chebyshev points [? ]. The Berrut interpolants14
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enjoy a Lebesgue constant that grows logarithmically for a wide class of nodes15

as well [? ? ].16

In [? ], the Adaptive Antoulas-Anderson (AAA) greedy algorithm for com-17

puting a barycentric rational approximant has been presented. This recent18

method leads to impressively well-conditioned bases, which can be used in var-19

ious fields, such as in computing conformal maps, or in rational minimax ap-20

proximations (see [? ? ]). Note that a similar approach has been considered in21

[? ] for kernel-based interpolation.22

The FH interpolants and the approximants obtained by the AAA algorithm23

suffer from the well-known Gibbs phenomenon, when the underlying function24

presents jump discontinuities. For a general overview of that phenomenon,25

interested readers may refer to [? ? ].26

In [? ], a new interpolation procedure has been suggested in the frame-27

work of univariate polynomial interpolation to reduce the Gibbs phenomenon.28

The method essentially maps the polynomial basis, in which the interpolant is29

expressed, by a suitable map S, or equivalently uses the so-called fake nodes,30

without resampling the underlying function. This led to the S-Gibbs algorithm,31

which basically constructs the map S that is then used for eliminating the Gibbs32

effect (see S-Gibbs [? , Algorithm 2]).33

In this work, we propose an extension of the fake nodes approach (cf. [? ]) to34

the framework of barycentric rational interpolation, focusing on FH interpolants35

and the AAA algorithm.36

2. Barycentric polynomial interpolation37

Let Xn := {xi : i = 0, . . . , n} be a set of n+1 distinct nodes in I = [a, b] ⊂ R,38

increasingly ordered from x0 = a to xn = b. We consider the problem of39

interpolating a function f : I −→ R given the set of samples Fn := {fi = f(xi) :40

i = 0, . . . , n}.41

It is well-known (see e.g. [? ]) that it is possible to write the unique42

interpolating polynomial Pn[f ] of degree at most n of f at Xn for any x ∈ I in43

the second barycentric form44

Pn[f ](x) =

∑n
i=0

λi

x−xi
fi∑n

i=0
λi

x−xi

, (1)

where λi =
∏
j 6=i

1

xi − xj
are the so-called weights. This expression is one of45

the most stable formulas for evaluating Pn[f ] (see [? ]). If the weights λi are46

changed to other nonzero weights, say wi, then the corresponding barycentric47

rational function48

rn[f ](x) =

∑n
i=0

wi

x−xi
fi∑n

i=0
wi

x−xi

(2)

still satisfies the interpolation conditions rn[f ](xi) = fi, i = 0, . . . , n. For more49

details about barycentric rational interpolation, we refer to [? ].50
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2.1. The Floater-Hormann family51

Let n ∈ N, d ∈ {0, . . . , n}. Let pi, i = 0, . . . , n−d denote the unique polyno-
mial interpolant of degree at most d interpolating the d+ 1 points (xk, fk), k =
i, . . . , i+ d. One can write the FH rational interpolant as

Rn,d[f ](x) =

∑n−d
i=0 λi(x)pi(x)∑n−d

i=0 λi(x)
, where λi(x) =

(−1)i

(x− xi) · · · (x− xi+d)
,

which interpolates f at the set of nodes Xn. It has been proved in [? ] that52

Rn,d[f ] has no real poles and that it reduces to the unique interpolating poly-53

nomial of degree at most n when d = n.54

One can derive the barycentric form of this family of interpolants as well.
Indeed, with considering the sets Ji = {k ∈ {0, 1, . . . , n − d} : i − d ≤ k ≤ i},
one has

Rn,d[f ](x) =

∑n
i=0

wi

x−xi
fi∑n

i=0
wi

x−xi

, where wi = (−1)i−d
∑
k∈Ji

j+d∏
j=k
j 6=i

1

|xi − xj |
.

2.2. The AAA algorithm55

Let us consider a set of points XN with a large value of N and a function f .
The AAA algorithm [? ] is a greedy technique that in the step m ≥ 0 considers
the set X (m) = XN \ {x0, . . . , xm} and constructs the interpolant

rm[f ](x) =

∑m
i=0

wi

x−xi
fi∑m

j=0
wj

x−xj

=
n(x)

d(x)
,

by solving the discrete least squares problem

min‖fd− n‖X (m) ‖w‖2 = 1,

for the unknown vector w = (w0, . . . , wm), where‖·‖X (m) is the discrete 2-norm56

over X (m). The subsequent data site xm+1 ∈ X (m) is chosen by maximizing the57

residual |f(x)− n(x)/d(x)| with respect to x ∈ X (m).58

3. Mapped bases and fake nodes in barycentric rational interpolation59

Here we investigate the extension of the interpolation method presented in60

[? ] to the Floater-Hormann interpolants and to the approximants produced61

via the AAA algorithm.62

Let S : I −→ R be a mapping that we assume injective. We construct the
“new” interpolant rSn : I −→ R at the nodes Xn and function values Fn as

rSn [f ](x) :=

∑n
i=0

wi

S(x)−S(xi)
fi∑n

i=0
wi

S(x)−S(xi)

.
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As discussed in [? , p. 3] in the polynomial interpolation setting, we can see63

rSn [f ] from two different perspectives.64

First, since the interpolant rn[f ] defined in (2) admits a cardinal basis form65

rn[f ](x) =
∑n
j=0 fjbj(x), where bj(x) =

wj
x−xj∑n

i=0
wi

x−xi

is the j-th basis function, in66

the same spirit, we can write rSn [f ] in the mapped cardinal basis form rSn [f ](x) =67 ∑n
i=0 fib

S
i (x), where bSj (x) =

wj
S(x)−S(xj)∑n

i=0
wi

S(x)−S(xi)

is the j-th mapped basis function.68

Using the S mapping approach, a more stable interpolant may arise. We69

present an upper bound on the S-Lebesgue constant which involves the classical70

Lebesgue constant.71

Theorem 1. Let Λn(Xn) = max
x∈I

n∑
j=0

|bj(x)| and ΛSn(Xn) := max
x∈I

n∑
j=0

|bSj (x)| be

the classical and the S-Lebesgue constants, respectively. We then have

ΛSn(Xn) ≤ CΛn(Xn),

where C = maxk A
k

mink Ak
with

Ak = max
x∈I

n∏
l=0
l 6=k

∣∣∣∣S(x)− S(xl)

x− xl

∣∣∣∣ , Ak = min
x∈I

n∏
l=0
l 6=k

∣∣∣∣S(x)− S(xl)

x− xl

∣∣∣∣ .
Proof. We bound each basis function bSj in terms of bj for all x ∈ I. We compute

|bSj (x)| =

∣∣∣∣∣
wj

S(x)−S(xj)∑n
i=0

wi

S(x)−S(xi)

∣∣∣∣∣ =

∣∣∣∣∣
wj

S(x)−S(xj)

∏n
l=0(S(x)− S(xl))∑n

i=0
wi

S(x)−S(xi)

∏n
l=0(S(x)− S(xl))

∣∣∣∣∣
=

∣∣∣∣∣∣∣
wj
∏n
l=0
l 6=j

(S(x)− S(xl))∑n
i=0 wi

∏n
l=0
l 6=i

(S(x)− S(xl))

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

wj
∏n
l=0
l 6=j

(S(x)− S(xl))

∏n
m=0
m 6=j

x−xm∏n
m=0
m 6=j

x−xm


∑n
i=0 wi

∏n
l=0
l 6=i

(S(x)− S(xl))

∏n
m=0
m6=i

x−xm∏n
m=0
m6=i

x−xm



∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
wj

x−xj

∏n
l=0
l 6=j

S(x)−S(xl)
x−xl∑n

i=0
wi

x−xi

∏n
l=0
l 6=i

S(x)−S(xl)
x−xl

∣∣∣∣∣∣∣
≤ maxk A

k

mink Ak

∣∣∣∣∣
wj

x−xj∑n
i=0

wi

x−xi

∣∣∣∣∣ =
maxk A

k

mink Ak
|bj(x)| = C|bj(x)|.

72
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Second, equivalently to the above mapped basis perspective, we can discuss
the construction of the interpolant rSn [f ] via the so-called fake nodes approach.
Let r̃n[g] be the barycentric interpolant as in (2) that interpolates, at the set
of fake nodes S(Xn), the function g : S(I) −→ R, making use of the same
functional values Fn, that is

g|S(Xn)
= f|Xn

.

Observe that rSn [f ](x) = r̃n[g](S(x)) for every x ∈ I. Hence, we may also build73

rSn [f ] upon a standard barycentric interpolation process, thereby providing a74

more intuitive interpretation of the method.75

The choice of the mapping S is crucial for the accuracy of the proposed76

interpolant rSn [f ]. Here, we assume that f presents jump discontinuities and77

we adopt the so-called S-Gibbs Algorithm (SGA) [? ] to construct an effective78

mapping S.79

4. Numerical Examples80

In this section, we test the fake nodes approach with SGA in the framework81

of FH interpolants and the AAA algorithm for approximation. We fix k = 1082

in the SGA. As observed in [? ], also in this setting the choice of the shifting83

parameter is non-critical as long as it is taken "sufficiently large".84

In I = [−5, 5] we consider the discontinuous functions

f1(x) =


e

1
x+5.5 , −5 ≤ x < −3

cos(3x), −3 ≤ x < 2

−x
3

30 + 2, 2 ≤ x ≤ 5.

f2(x) =


log(− sin(x/2)), −5 ≤ x < −2.5
tan(x/2), −2.5 ≤ x < 2

arctan(e−
1

x−5.1 ), 2 ≤ x ≤ 5.

We evaluate the constructed interpolants on a set of 5000 equispaced evaluation85

points Ξ = {x̄i = −5 + i
1000

: i = 0, . . . , 5000} and compute the Relative86

Maximum Absolute Error RMAE = maxi
|rn(x̄i)−f(x̄i)|
|f(x̄i)| and the same for rSn .87

The FH interpolants88

Here, we take various sets of equispaced nodes Xn = {−5 + 5i
n

: i = 0, . . . , n},89

varying the size of n. The results are displayed in Figure 1. We observe that90

the proposed reconstruction via the fake nodes approach by far outperforms the91

standard technique.92

Figure 2 displays a comparison between the direct application of the FH93

interpolant and the one modified by the SGA.94

The AAA algorithm95

As the starting set for the AAA algorithm, we consider 10000 nodes randomly96

uniformly distributed in I, which we denote by Xrand.97
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(a) Interpolation of f1 with d = 1. (b) Interpolation of f1 with d = 8.

(c) Interpolation of f2 with d = 1. (d) Interpolation of f2 with d = 8.

Figure 1: The RMAE for f1 and f2 when one doubles the number of nodes from 40 to 2560.
In blue, the standard interpolant Rn,d. In red, the proposed interpolant Rs

n,d.

Looking at Table 1, we observe that using the AAA algorithm with starting98

set S(Xrand) (indicated in the Table as AAAS), that is, constructing the ap-99

proximants via the fake nodes approach, does not suffer from the effects of the100

Gibbs phenomenon. For both approximants we fix the maximum degree to 20101

and to 40 (by default 100 in the algorithm).102

f mmax AAA AAAs

f1 20 1.5674e+02 8.5189e-05
40 1.4308e+00 2.9550e-09

f2 20 3.6034e+02 2.2066e-07
40 1.4656e+00 6.3485e-11

Table 1: RMAE for AAA and AAAs approximants

5. Conclusions103

This work introduces an extension of the fake nodes approach to barycentric104

rational approximation, in particular to the family of FH interpolants and to105
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(a) Direct approximation. (b) Using the proposed approach.

Figure 2: Interpolation of the function f1 using 80 nodes and d = 8 in the FH interpolant. In
red the function and in blue the interpolant.

the AAA algorithm for approximation, focusing on the treatment of the Gibbs106

phenomenon via the S-Gibbs algorithm. The results show that the proposed107

reconstructions outperform their classical versions, as they are not affected by108

distortions and oscillations.109
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