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Abstract. The defocusing nonlinear Schrödinger (NLS) equation has no the modulational in-
stability, and was not found to possess the rogue wave (RW) phenomenon up to now. In this paper,
we firstly investigate some novel nonlinear wave structures in the defocusing NLS equation with
real-valued time-dependent and time-independent potentials such that the stable new RWs and W-
shaped solitons are found, respectively. Moreover, the interactions of two or three RWs are explored
such that the RWs with higher amplitudes are generated in the defocusing NLS equation with real-
valued time-dependent potentials. Finally, we study the defocusing NLS equation with complex
PT -symmetric potentials such that some RWs and W-shaped solitons are also found. These novel
results will be useful to design the related physical experiments to generate the RW phenomena and
W-shaped solitons in the case of defocusing nonlinear interactions, and to apply them in the related
fields of nonlinear or even linear sciences.
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I. INTRODUCTION

The rogue wave (RW) phenomenon should earliest be found in the deep ocean, and has caused many catastrophic
damages due to its high amplitudes and violent energy [1]. After the optical RWs was observed in the experiment,
and play an important role in the supercontinuum generation, the RWs have been paid more and more attention to.
Up to now, the RWs have been theoretically or/and experimentally verified to appear in many distinct nonlinear
physical systems such as Bose-Einstein condensates, fiber optical, plasma physics, and even financial markets [2].
The first analytic RW solution of the focusing NLS equation was found by Peregrine in 1983 [3]. In 2010, the
Peregrine RW was verified to well agree with the numerical and experimental results nearby the origin in the
focusing NLS equation [4]. Though there exist many analytic, numerical, and experimental results about the RWs
in the distinct nonlinear systems (see, e.g., Ref. [5] and references therein), the physical mechanisms generating
RWs in nonlinear wave equations still needs to be investigated.
For the nonlinear wave equations, the modulational instability (MI) may be regarded as a necessary condition

for generating the extreme waves (e.g., RW phenomenon). For example, the focusing NLS equation (σ = −1)

iut = −1

2
uxx + σ|u|2u (1)

admits the MI, and was verified to possess the RWs by the analytical, numerical, and experimental ways. However,
the defocusing NLS equation (σ = 1) has no MI [6]. Up to now, the defocusing NLS equation (1) with σ = 1 was
not found to admit the RW phenomenon. A natural problem is what additional condition can make the defocusing
NLS equation (1) with σ = 1 generate the RWs. In other word, what generalized form of the defocusing equation
(1) with σ = 1 can admit the RWs ?
In this paper, we would like to consider the generalized forms of Eq. (1) with σ = 1, i.e., the defocusing NLS

equation with external potentials. We find that the defocusing equation with a time-dependent potential can
support the stable RWs, and defocusing equation with an time-independent potential can support the stable W-
shaped solitons. We verify that these nonlinear wave phenomena appearing in the focusing NLS equation can also
be found in the generalized defocusing NLS equation with external potentials. Recently, the PT symmetry plays a
more and more important role in the linear spectral problems and nonlinear wave equations. In this paper, we will
further consider the defocusing equation with PT -symmetric potentials such that the RWs and W-shaped solitons
can also be found.
The rest of this paper is arranged as follows. In Sec. 2, we consider the defocusing NLS equation with time-

dependent and time-independent potentials such that the stable RWs andW-shaped solitons are found, respectively.
Moreover, we study the interactions of two or three RWs in the time-dependent and time-independent potentials.
In Sec. 3, we explore the generalized defocusing NLS equation with complex PT -symmetric potentials such that
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FIG. 1: (color online). (a) The profile of RW (2) at t = −6 of the focusing NLS Eq. (1); (b) The wave evolution of initial
condition (a) in the focusing NLS equation (1); (c) The profile of RW (2) at t = 0 of the focusing NLS Eq. (1); (d) The wave
evolution of initial condition (c) in the focusing NLS equation (1); (e) The profile of the plane wave at t = 0 of the focusing
NLS Eq. (1); (f) The wave evolution of initial condition (e) with a noise in the focusing NLS equation (1).

FIG. 2: (color online). (a, b) The wave propagations of the plane wave at t = 0 with a random noise in the defocusing NLS
Eq. (1) with σ = 1; (c,d) The wave propagations of the plane wave at t = 0 with a random nose in the defocusing NLS
equation with the time-dependent potential (5); (e,f) The evolution of RW (2) with t = −500 and a 2% random noise in the
defocusing NLS Eq. (5) with the time-dependent potential (5); (g) The intensity features in (e,f) for t = −2 (dashed blue
line), t = 0 (dashed-dot red line), and t = 4 (solid green line); (h) The profile of time-dependent potential (5).

the stable RWs and W-shaped solitons are also found. Moreover, we also analyze the effects of the gain-and-loss
parameters in the PT -symmetric linear spectral problems. Finally, some conclusions and discussions are given in
Sec. 4.

II. NONLINEAR SCHRÖDINGER EQUATIONS AND NONLINEAR WAVES

2.1 The basic focusing and defocusing NLS equations.—As a fundamental physical model, the focusing NLS
equation (1) appears in many fields of nonlinear science such as the nonlinear optics, Bose-Einstein condensate,
deep ocean, plasmas physics, and even finance (see, e.g., Refs. [2, 7, 8]), and was found to possess the basic RW
solution [3] (also called the Peregrine soliton or rogon [2, 5])

us(x, t) =

[

1− 4(1 + 2it)

4(x2 + t2) + 1

]

eit, (2)

from which one can have |us(x, t)| → 1 as |x|, |t| → ∞, max(|us(x, t)|) = 3 at the point (x, t) = (0, 0),
min(|us(x, t)|) = 0 at the points (x, t) = (±

√
3/2, 0), and us(x, t) ∼ eit (a plane wave) as |x|, |t| → ∞. More-

over P (t) =
∫

∞

−∞
|us(x, t) − eit|2dx = 4π/

√
4t2 + 1 and 0 < P (t) ≤ 4π. The Peregrine RW (2) [3] was originally

derived from the parameter limit (c1 → 0) of the temporal-periodic Kuznetsov-Ma breather [9, 10] of Eq. (1)

ukm(x, t)=
cos(wt−2ic1)−cosh(c1) cosh(kx)

cos(wt)−cosh(c1) cosh(kx)
eit, (3)

where w = sinh(2c1), k = 2 sinh(c1), and c1 is a real constant. |ukm(x, t)|2 → 1 and ukm(x, t) → eit as |x| → ∞.
In fact, it can also be deduced from the parameter limit (c2 → 0) of spatial periodic Akhmediev breather [11] of
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FIG. 3: (color online). (a, b) The evolution of the plane wave e−it with t = 0 and a 2% random noise in the defocusing Eq.
(5) and time-independent potential (6); (c) The evolution of RW (2) with t = 0 and 2% random noise in the defocusing Eq.
(5) and time-independent potential (6); (d) The intensity feature for t = 0 (dashed blue line), t = 500 (dashed-dot red line),
and t = 1000 (solid green line); (e) The evolution of RW (2) with t = 0 and 40% random noise in the formation of Eq. (5)
and time-independent potential (6); (f) The profile of time-independent potential (6).

Eq. (1)

uab(x, t)=
cosh(wt−2ic2)−cos(c2) cos(kx)

cosh(wt)−cos(c2) cos(kx)
eit, (4)

where w = sin(2c2), k = 2 sin(c2), and c2 is a real constant. |uab(x, t)|2 → 1 and uab(x, t) → eit as |t| → ∞.
Moreover, if we consider the complex c1 and c1 = ic2, then the temporal-periodic Kuznetsov-Ma breather (3)
becomes the spatial periodic Akhmediev breather (4) [12].
We use us(x,−6) and us(x, 0) as the initial conditions (see Figs. 1(a,c)) to study their wave evolutions in the

focusing NLS equation (1) such that we find that they are both unstable and generate many wave humps where
there are some ones with larger amplitudes (see Figs. 1(b,d)). In fact, Eq. (1) admits the modulational instability
(MI), that is, one can use a simple plane-wave solution (e.g, u = eit) with a 5% random noise as an initial condition
(see Fig. 1e) to possibly generate the RW phenomena in Eq. (1) (see Fig. 1f).
However, the defocusing NLS equation does not possess the MI (see Figs. 2(a,b), where we use the simple

plane wave u = e−it with a 2% random noise as an initial condition to study its wave evolution illustrating the
modulational stability). Up to now, the defocusing NLS equation was not verified to support the RW phenomenon.
A natural problem is that what condition can make the defocusing NLS equation support the RW phenomena.

2.2. The defocusing NLS equation with external potentials and RWs.—Nowadays, we consider the defocusing
NLS equation with the real-valued time-dependent external potential in the dimensionless form

iut = −1

2
uxx − V (x, t)u + |u|2u, V (x, t) =

4(t2 − x2) + 1

(x2 + t2 + 0.25)2
+ 2, (5)

where V approaches to 2 as |x|, |t| → ∞ and max(V (x, t)) = 18 at the point (x, t) = (0, 0) (see Fig. 2h), u(x, t) rep-
resents the wave envelope field with t and x being the propagation variable and transverse coordinates, respectively.
Notice that the external potential (5) depends on both space and time.
More interesting, we find that the defocusing NLS equation with the time-dependent potential (5) also admits

the analytical RW solution (2). This differs from the usual defocusing NLS equation (1) without a potential, which
was not found to admit the RWs up to now. That is to say, the external potential (5) can make the defocusing NLS
equation (5) support the RWs. Particularly, we know that as |x|, |t| → ∞, we have us(x, t) ∼ eit and V (x, t) ∼ 2.

Case 1. The time-dependent potential: We now study the wave evolution of the simple plane wave u = e−it with
t = 0 and a 2% random noise (i.e., u(x, 0) = e−0i(1+2%×noise)) (see Fig. 2c) in the defocusing equation with the
time-dependent potential (5) such that we can find the RW phenomenon (see Fig. 2d). Next, we turn our attention
to the stability of the RW solution (2) in the defocusing NLS equation (5) with the time-dependent potential (5).
Figs. 2(e,f) illustrate the RW propagation in the defocusing NLS equation by using the RW (2) with t = −500 and
a 2% random noise (i.e., us(x,−500)(1+2%×noise)) as the initial condition such that we find that the defocusing
NLS Eq. (5) with the time-dependent potential (5) can almost allow for the stable existence of the RW formation.
Moreover, we find that max(|u(x, t)|2) ≈ 8.756 at the point (0, 0). Fig. 2(g) exhibits the RW profiles at the distinct
times t = −2, 0, 4.
These above-mentioned results imply that the defocusing NLS equation with the time-dependent potential (5)

can admit the RW phenomena (see Figs. 2(c,e)), and the time-dependent potential (5) plays a key role in the
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FIG. 4: (color online). The interaction of solutions in the defocusing Eq. (5) with the time-independent potential (6). (a)
The initial condition is us(x, 1) + us(x − 5, 1); (b, c) The interaction of two RWs; (d) The profiles at t = −1 (dashed blue
line), t = 0.36 (dashed-dot red line), and t = 0.85 (solid green line).

RW formation even if the defocusing NLS equation (5) without an external potential (i.e., V (x, t) = 0) does not
possess the RW (see Fig. 2b). In other words, the RWs can also be stably formed under the interplay between
the time-dependent potential (5) and defocusing Kerr nonlinearity. The result about the RWs was found in the
generalized defocusing NLS equation before.

Case 2. The time-independent potential: We now consider the effect of time-independent potential given by
Eq. (5) with t = 0, that is,

V0(x) = V (x, 0) = 2

(

x2 − 0.75

x2 + 0.25

)2

, (6)

which approaches to 2 as x→ ±∞ (see Fig. 3f), in the defocusing NLS equation (5).
Similarly, we consider the wave evolution of the simple plane wave u(x, t) = e−it with t = 0 and a 2% random noise

in the defocusing equation with the time-independent potential (6) such that we also can find the W-shaped soliton
(see Figs. 3(a,b)). We still use the RW solution (2) with t = 0 and a 2% random noise (i.e., us(x, 0)(1+2%×noise))
as the initial condition to study the wave propagation in the defocusing NLS equation (5) with the time-independent
potential (6) such that the stable W-shaped soliton (not RW) is found (see Figs. 3(c,d)). Moreover, It is easy to
see that even if the larger 40% random noise can not damage the stable evolution of the W-shaped soliton (see
Fig. 3e).
It follows from Figs. 2 and 3 that for the same defocusing NLS equation (5) and similar initial conditions of RWs,

the time-dependent potential (5) can support the stable RW (see Fig. 2e), however the time-independent potential
(6) can support the stable W-shaped solitons (see Fig. 3c).

2.3. The interactions of RWs in time-dependent and time-independent potentials.—It is known that the dissi-
pative term was proposed generally to investigate the RW formation [13]. Moreover, the higher-order perturbation
terms could also excite the RW generations in the focusing NLS equation [14–18].
Case 1. The time-independent potential: We now consider the interactions of RWs in the defocusing Eq. (5) and

time-independent potential (6). Figs. 4(b,c,d) display the interaction between two RWs us(x, 1) and us(x − 5, 1)
(we use us(x, 1)+us(x− 5, 1) as the initial condition, see Fig. 4(a)) in Eq. (5) with the time-independent potential
(6). As a result, we find that the interaction can generate the W-shaped soliton with higher amplitudes and
semi-periodic oscillations. Moreover, the intensity of W-shaped soliton almost approaches to 4 as |x| → ∞.
Case 2. The time-dependent potential: We now consider the interactions of RWs in the defocusing equation and

time-dependent potential given by Eq. (5). Figs. 5(b,c,d) display the interaction between two RWs us(x, 0.9) and
ur(x − 2.5, 0.9) with ur(x, t) = us(x, t) + 1 − eit (we use us(x, 0.9) + ur(x − 2.5, 0.9) as the initial condition, see
Fig. 5(a)) in Eq. (5) with the time-dependent potential (5). As a result, we find that the interaction can generate
the RW with higher amplitudes. Furthermore, we also display the interaction of three RWs. Figs. 6(b,c,d) display
the interaction between two RWs us(x, 0.9) and ur(x − 2.5, 1.9), and ur(x + 2.5, 1.8) (we use us(x, 0.9) + ur(x −
2.5, 1.9) + ur(x+ 2.5, 1.8) as the initial condition, see Fig. 6(a)) in Eq. (5) with the time-dependent potential (5).
As a result, we find that the interaction can generate the RW with higher amplitude than one in Fig. 5 for the
interaction of two RWs.

III. THE DEFOCUSING NLS EQUATION WITH PT -SYMMETRIC POTENTIALS

In the section, we consider the defocusing equation with both the external potential (5) and gain-and-loss
distribution W (x) in the form

iut = −1

2
uxx − [V (x, t) + iW (x)]u + |u|2u, (7)

where W (x) is an odd function of space, i.e., W (x) = −W (−x). It is easy to know that the complex potential
U(x, t) = −[V (x, t) + iW (x)] is PT -symmetric [19], i.e., U(x, t) = U∗(−x, t).
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FIG. 5: (color online). The interaction of solutions in the defocusing equation with the time-dependent potential (5). (a)
The initial condition is us(x, 0.9) + ur(x− 2.5, 0.9) with ur(x, t) = us(x, t) + 1− eit; (b, c) The interaction of two RWs; (d)
The profiles at t = −1 (dashed blue line), t = 0 (dashed-dot red line), and t = 1 (solid green line).

FIG. 6: (color online). The interaction of solutions in the defocusing equation with the time-dependent potential (5). (a)
The initial condition is us(x, 0.9) + ur(x− 2.5, 1.9) + ur(x+2.5, 1.8) with ur(x, t) = us(x, t)+ 1− eit; (b, c) The interaction
of three RWs; (d) The profiles at t = −1 (dashed blue line), t = 0 (dashed-dot red line), and t = 1 (solid green line).

FIG. 7: (color online). (a) The region of PT -broken/unbroken phases for V (x, t) and W1(x) given by Eqs. (5) and (8) in
the (t, W0) space; (b) The stable W-shaped soliton evolution of initial condition given by Eq. (2) with t = 0 and a 2%
random noise in the framework of the defocusing NLS equation (7), the time-independent potential (6) and gain-and-loss
distribution (8) with W0 = 0.04; (c) The stable RW evolution of initial condition given by Eq. (2) with t = −500 and a
2% random noise in the framework of the defocusing NLS equation (7), the time-dependent potential (5), and gain-and-loss
distribution (8) with W0 = 0.02.

FIG. 8: (color online). (a) The region of PT -broken/unbroken phases for V (x, t) and W2(x) given by Eqs. (5) and (8) in
the (t, W0) space; (b) The stable W-shaped soliton evolution of initial condition given by Eq. (2) with t = 0 and a 2%
random noise in the framework of the defocusing NLS equation (7), the time-independent potential (6) and gain-and-loss
distribution (8) with W0 = 0.9; (c, d) The stable RW evolution of initial condition given by Eq. (2) with t = −500 and a
2% random noise in the framework of the defocusing NLS equation (7), the time-dependent potential (5), and gain-and-loss
distribution (8) with W0 = 0.06.

Here we choose the following three kinds of basic gain-and-loss distributions W (x) as [20–24]

W1(x) =W0 tanhx, W2(x) =W0 sechx tanhx, W3(x) =W0xe
−x2

, (8)

where W0 is a real constant. We find that W1 → ±W0 as x → ±∞, while W2,3 → ±0 as x → ±∞ and W3

decreases more quickly than W2. That is, the gain-and-loss distribution Wj(x) has the weaker and weaker effect
on the defocusing equation (7) as j becomes large.
We firstly consider the linear PT -symmetric spectral problem [19]: Lψ = λψ, L = − 1

2
∂2x − V (x, t) − iW (x),

where V (x, t) is given by Eq. (5), W (x) is chosen as Wj(x) given by Eq. (8), λ stands for eigenvalue and ψ is the
underlying eigenvector, L is PT symmetric, and t can be treated as a parameter, not a variable.
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FIG. 9: (color online).(a) The region of PT -broken/unbroken phases for V (x, t) and W3(x) given by Eqs. (5) and (8) in
the (t, W0) space; (b) The stable W-shaped soliton evolution of initial condition given by Eq. (2) with t = 0 and a 2%
random noise in the framework of the defocusing NLS equation (7), the time-independent potential (6) and gain-and-loss
distribution (8) with W0 = 2.98; (c, d) The stable RW evolution of initial condition given by Eq. (2) with t = −500 and a
2% random noise in the framework of the defocusing NLS equation (7), the time-dependent potential (5), and gain-and-loss
distribution (8) with W0 = 2.1.

Since the PT -symmetric property may provide possibility to admit real eigenenergies for the non-Hermitian
PT Hamiltonian L. The real and complex eigenvalue distributions related to L associated with Eqs. (5) and (8)
are illustrated in Fig. 7(a) by virtue of numerical Fourier spectral method. It is easy to see that there always
exists a threshold (i.e., two red lines): the real spectra (i.e., PT -unbroken phases) exist inside the two lines,
however the complex spectra (i.e., PT -broken phases) exist beyond the two red lines. The intriguing finding is
that for the point (t,W0) = (0, 0.04) in Fig. 7(a) where the linear spectral problem has the complex eigenvalues

and the time-dependent potential V (x, t) given by Eq. (5) reduces to the time-independent potential V0(x) given
by Eq. (6), we use Eq. (2) with t = 0 and a 2% random noise as an initial condition to study its evolution such
that the stable W-shaped soliton can exist in Eq. (7) in the presence of the time-independent potential (6) and
gain-and-loss distribution (8) with W0 = 0.04 (see Fig. 7b). That is to say, the nonlinear term may broaden the
linear PT -symmetric threshold allowing real eigenvalues. For the time-dependent potential (5), we use Eq. (2)
with t = −500 and a 2% random noise as an initial condition to study its evolution in Eq. (7) in the presence of
the time-dependent potential (5) and gain-and-loss distribution (8) with W0 = 0.02 such that the stable RW can
be found (see Fig. 7c).
Similarly, we consider the linear spectral problem with V (x, t) andW2(x) orW3(x) such that the thresholds about

PT -unbroken/broken phases are given in Figs. 8a and 9a, respectively. It follows from Figs. 7a, 8a and 9a that
for the given potential V (x, t), if the gain-and-loss distribution W (x) has the weaker effect on the linear spectral
problem, then the region for the PT -unbroken phases becomes the larger. Fig. 8b implies that when we use Eq. (2)
with t = 0 and a 2% random noise as an initial condition to study its evolution such that the stable W-shaped
soliton can exist in Eq. (7) under the sense of the time-independent potential (6) and gain-and-loss distribution W2

with W0 = 0.9 (see Fig. 8b). For the time-dependent potential (5), we use Eq. (2) with t = −500 and a 2% random
noise as an initial condition to study its evolution in Eq. (7) under the sense of the time-dependent potential (5)
and gain-and-loss distribution W2 with W0 = 0.06 such that the stable RW can be found (see Figs. 8(c,d)). For the
given gain-and-loss distribution W3, we have also the similar results. Fig. 9b implies that when we use Eq. (2) with
t = 0 and a 2% random noise as an initial condition to study its evolution such that the stable W-shaped soliton
can exist in Eq. (7) under the sense of the time-independent potential (6) and gain-and-loss distribution W3 with
W0 = 2.98 (see Fig. 8b). For the time-dependent potential (5), we use Eq. (2) with t = −500 and a 2% random
noise as an initial condition to study its evolution in Eq. (7) under the sense of the time-dependent potential (5)
and gain-and-loss distribution W3 with W0 = 2.1 such that the stable RW can be found (see Figs. 9(c,d)).
Figures 8b and 9b show the evolution of stable W-soliton with 2% random noise, even though the corresponding

pinned values of t = 0 , and W0 = 0.9 and 2.98, respectively, in Figs. 8a and 9a are associated with complex
eigenenergies, leading to eigenenergies oscillating. These results reported in Figs. 8 and 9 are similarly to ones in
Fig. 7. However, the thresholds presented in Figs. 7a, 8a and 9a allowing for the unbroken PT -symmetry eigenstates
become bigger for three different dissipative terms given by Eq. (8), and the maximal dissipative coefficient subject
to evolution of stable RWs becomes bigger (see Fig. 7 (c) with W0 = 0.02, Fig. 8c with W0 = 0.06 and Fig. 9c
with W0 = 2.1). We would like further to investigate the characteristics produced by real external potential and
Gaussian dissipative term W3 in Fig. 9. Figs. 9b and 9c correspond to the case, the impact of gain-and-loss system
satisfying the PT symmetry is required to simulate Hamiltonian dynamics in the defocusing NLS equation (7).
In fact the threshold condition of the parameter W0 isW0 ∈ [0, 2.1] to make sure the defocusing NLS equation (7)

with the time-dependent potential possess the stable RWs, whereas the threshold condition of the parameter W0

in W3 is W0 ∈ [0, 2.98] to make sure the defocusing NLS equation (7) with the time-independent potential admit
a stable W-soliton. Obviously, we find that the larger the value of W0 is, the higher the background amplitudes
become during the study of the numerical simulations.
In conclusion, we have verified that the defocusing NLS equation (5) with the time-dependent potential (5) could

support the analytical RWs, and numerically found that the RWs could stably exist in the defocusing model with
the time-dependent potential. Moreover, we find that the defocusing NLS equation (5) with the time-independent
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potential (6) can support the stable W-shaped solitons. We also study the interactions of two or three RWs in
the defocusing NLS equation (5) with time-dependent or time-independent potentials such that the W-shaped
solitons and RWs with higher amplitudes are found. Finally, we explore the defocusing NLS equation (7) with
some PT -symmetric potentials. As a consequence, the stable W-shaped solitons and RWs can be generated again.
These above-mentioned results imply that the external potentials play an significant role in the study of the

defocusing NLS equation and even linear Schrödinger equation. The idea used in this paper can also be extended
to other nonlinear equations without MI such that these models with some potentials may generate the RW
phenomena. We will further study these questions in future.
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