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Abstract

In this paper, a family of arbitrarily high-order structure-preserving exponential Runge-Kutta meth-
ods are developed for the nonlinear Schrédinger equation by combining the scalar auxiliary variable
approach with the exponential Runge-Kutta method. By introducing an auxiliary variable, we first
transform the original model into an equivalent system which admits both mass and modified energy
conservation laws. Then applying the Lawson method and the symplectic Runge-Kutta method in time,
we derive a class of mass- and energy-preserving time-discrete schemes which are arbitrarily high-order in
time. Numerical experiments are addressed to demonstrate the accuracy and effectiveness of the newly
proposed schemes.
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1 Introduction

The nonlinear Schrodinger (NLS) equation is well-known in many fields of physics, such as quantum
physics, plasma physics and nonlinear optics. In this paper, we consider the following cubic NLS equation

000 (., 1) = 5 Ay, 0) + Bl 1, D,y 0), (my) €9, 0<E<T, (11)
subject to the (I1,l2)-periodic boundary condition

P(z,y,t) = ¥(x + 1,y 1), P(z,y,t) =,y +12,1), (2,9) €Q, 0<t<T, (1.2)
and the initial condition

U(z,y,0) = vo(z,y), (z,y) €, (1.3)
where i=+/—1 is the complex unit, ¢ is the time variable, z and y are the spatial variables, ¢ (z, y, t) is the
complex-valued wave function, A is the usual Laplace operator, § is a given real constant, and g (z,y) is

a given (I, ls)-periodic complex-valued function. The initial-periodic boundary value problem (|1.1))-(1.3])
preserves the following mass and energy conservation laws, respectively,

M(t) == /Q [v(z,y,t)|Pdedy = M(0), t >0, (1.4)
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and
1) = [ [5G0 + S1ult| ey = 1), 2 0 (15)

where Q = [0,11]%[0,l2] and [Vep|? = |1]? + [y |%.

It is well-known that mass and energy conservation laws are fundamental in the development of nu-
merical schemes, and play a crucial role in the numerical analyses of the NLS equation. Thus, during the
past decade, various conservative numerical methods which can preserve mass or energy are proposed
for numerically solving the NLS equation, such as the Crank-Nicolson method [Il 2| 0], Hamiltonian
boundary value method [3], partitioned averaged vector field method [5], energy-preserving collocation
method [15], discrete variational derivative method [16], prediction-correction method [14] and so on.
In recent years, there has been an increasing interest in structure-preserving exponential integrators for
conservative or dissipative systems, because of their good stability, high accuracy and high efficiency. In
Ref. [6], Celledoni et al. proposed a symmetric energy-preserving exponential integrators for the cubic
Schrodinger equation by adopting the symmetric projection strategy. In Ref. [15], motivated by the ideas
of exponential integrators and discrete gradients, Li and Wu constructed a structure-preserving exponen-
tial scheme for general conservative or dissipative systems, which was thereafter revisited and generalized
by Shen et al [20]. In Refs. [8, [12], authors developed different energy-stable exponential integrators for
gradient flows. More recently, Jiang et al. [I1] designed a linearly implicit energy-preserving exponential
integrator for the nonlinear Klein-Gordon equation by combining the scalar auxiliary variable (SAV) ap-
proach [I9] and exponential integrators. For other structure-preserving exponential integrators, readers
are referred to Refs. [4, I7]. However, to our best knowledge, there has been no reference considering
structure-preserving exponential schemes for the NLS eqaution, which can inherit the properties of both
mass and energy.

To meet such challenge, in this paper, we focus on developing arbitrary high-order structure-
preserving methods for the NLS eqaution, which can preserve the discrete mass and energy simulta-
neously. By introducing an auxiliary variable, we first recast the original model into an equivalent
system which admits both mass and modified energy conservation laws. Then a class of high-order
semi-discrete exponential Runge-Kutta methods methods are obtained by using the Lawson method [I3]
and symplectic Runge-Kutta (RK) method in time. We show that the resulting system can rigorously
preserve the semi-discrete mass and modified energy, simultaneously. Numerical tests are presented to
verify the theoretical analysis.

2 Model reformulation

For simplicity of notations, we define the L? inner product and its norm as (f,g) = fQ fgdx and
£l = \/(f, f), Vf,g € L?>(Q), respectively, where g represents the conjugate of g. Denote the linear
part of (L.1)) as Ly = —%Aw for simplicity, we then utilize the SAV idea to derive a SAV reformulation,

by introducing an auxiliary variable

qa(t) = vV (¥?,¢?) + Co,

where Cy > 0 to make g well-defined for all ©. The energy functional can be rewritten as the following
quadratic form

g B
E(t) = (L, ¥) + 5612 - 500- (2.1)
Subsequently, according to the energy variational principle, the original system (1.1)) is equivalent to the

following SAV reformulated system

. BlY[*q >
opp = —i| LY + ——— |,
tﬂ} 1( 7/} /(wQ, ,¢2) + CO (2 2)
4~ 9Re (M, WW) '
dt VW) +Co)’
with the consistent initial conditions
w(x,yvo) = 1/)0(55,2/)» q(O) = \/(¢g(x7y)a¢[2)(may)) + CO) (x7y) € Q, (23)



and the periodic boundary condition (|1.2]).
The SAV reformulation (2.2]) satisfies the mass conservation law (1.4) and the modified energy

conservation law (2.1]), respectively. Since the systems (1.1]) and (2.2)) are identical at a continuous level,

the mass and energy conservation laws of the reformulated system (2.2]) stand naturally.
Following the Lawson transformation [I3], we define the change of variables u = exp(iLt)v, then

the system becomes
B| exp(—iLlt)u|? exp(—iLt)ug
VP (iL0)2, (exp(—iL)w)?) + Co
| exp(—iLt)u|? exp(—ilt)u ) (2:4)
\/((exp(—iﬁt)u)Q, (exp(—iLt)u)?) + Co

Oru=—iexp(iLt)

d . .
79 2Re <— iexp(—ilt)Lu,

where the fact 2Re (exp(—iﬁt)@tu, |exp(~iLt)ul” exp(~iLt)u ) =0 was used. The system ([2.4)
((exp(fi[lt)u)Q,(exp(fi[lt)u)Q)+Co
further satisfies the following mass conservation law
M(t) == (u,u) = M(0), t >0, (2.5)
and modified energy conservation law

5, B

50— 5C0= E(0), t> 0. (2.6)

E(t) := (Lu,u) +

3 Exponential SAV-RK method

In this section, we further apply the RK method for the system (2.4]) in time. Choose 7 = % be
the time step, where N is a positive integer number, and denote t,, = n7 forn =0,1,2--- | N; let ¥" be
the numerical approximation of ¥ (z,y,t,) for n =0,1,2,--- | N. Applying a RK method to the system

(12.4), we have

s s
Uzv:u"—FTZaijkj, Qi:qn+TZaijlj7
j=1 j=1

Bl exp(—iL(t,+ ¢;7))Ui|? exp(—iL(t,+ ;7)) U;Q;
\/ ((exp(—iL(tn+ ¢iT))Ui)2, (exp(—iL(tn+ ¢iT))Ui)2) + Co

ki = —iexp(iL(tn+ ;7))

| exp(—iL(tn+ ;7)) Us|? exp(—iL(tn+ ¢;7))Us >
\/ ((exp(—iL(tn+ ci7))U;)2, (exp(—iL(tn+ ¢7))U;)2) + Co

I = 2Re( —iexp(—iL(tn+ ¢;7))LU;

S S
W=t S bk T =gt Y bili,
=1 =1
(3.1)

where a;;,b5,%,j = 1,---,5 are RK coeflicients, and U;, ¥; and @; are numerical approximations of
w(z,y, tn+ 1), Y(,y,tn+ ¢;7) and q(t,+ ¢;7), respectively with ¢; = 22:1 ajj.
After manipulating the exponentials (i.e., ¥™ = exp(—iLlt,)u", ¥; = exp(—iL(t,+ ¢;7))U; and

ki = exp(—1L(tn+ ¢;7))k;), the discretization can be rewritten in terms of the original variable to give a
class of exponential Runge-Kutta (ERK) methods for solving (2.2)) as follows:

U, = exp(—iLle;7)Y" + 1 Z a;jexp(iL(c; — ¢;)7)kj,
j=1

; (3.2)
Qi=q"+7)_ail;
j=1



where k; =—1i M, l;= 2Re<— LW, &) Then ¢"*! and ¢"*! are updated by

(w2,92)+c0 \/ (w292 )4Co

P = exp(—iLT)Y" + 7 by exp(—iL(1 — ¢)7)ki,
=1

. (3.3)
=g 1> b,
=1

which is the exponential scalar auxiliary variable Runge-Kutta method (ESAV-RK) method for the NLS
equation.

Lemma 3.1. [T2] For the symmetric positive definite operator L and the operator exp(iLt), we have the
following results:

e exp(ilt) commutes with L;
o exp(ilt)* = exp((iLt)*) = exp(—iLlt),
where exp(iLt)* denotes the adjoint operator of exp(iLt).
Theorem 3.1. If the coefficients of a RK method satisfy
bia;; +bja;; =bb;, Vi, j=1,---,s, (3.4)

the proposed ERK method (3.2))-(3.3) can preserve the semi-discrete mass and modified energy conser-
vation laws, respectively, that is,

M"=M° E"=E° n=1,--- N,

where

M= (), B = (o) + () -

Proof. According to Theorem 2.2 of Ref. [I0], if the coefficients of a RK method satisfy (3.4), the
proposed RK method (3.1)) satisfies the following semi-discrete mass conservation law

M" = (u",u”)EJ\AJ/O, n=12---,N,

Co. (3.5)

and modified energy conservation law

T N

With Lemma and Y™ = exp(—iLlt,)u", the above semi-discrete mass and energy conservation laws
can be rewritten in terms of the original variable given by

Blgme -2
2 2
This completes the proof. O

C()EEO, n=12--- N.

Co=E’ n=1,2

s 2y

M™ = (47, ") = MO, B™ := (L4, 07) + N

Remark 3.1. A numerical scheme that preserves both mass and energy conservation laws of the NLS
equation after time and spatial discretizations is known as a mass- and energy-preserving method. Thus,
for the spatial discretization, we shall pay special attentions to the following three aspects:

e preserve the symmetric positive definite property of the operator L;
e preserve the discrete integration-by-parts formulae [7];

e is high-order accuracy which is compatible with the time-discrete methods.

Based on these statements and the periodic boundary condition, the standard Fourier pseudo-spectral
method is chosen for spatial discretizations which is omitted here due to space limitation. Interested
readers are referred to Refs. [9, [18] for details.

Remark 3.2. [t is noted that the original discrete Hamiltonian energy at time level t,, is given by

1" = (L3 67) + 5 (), (67)?). (36)

However, we should note that the modified energy (3.5) is only equivalent to the Hamiltonian energy (3.6)
in the continuous sense, but not for the discrete sense. Thus, the proposed schemes cannot preserve the
discrete Hamiltonian energy exactly.



4 Numerical examples

In this section, some numerical examples are presented briefly to demonstrate the accuracy, invariants-
preservation, as well as the practicability of the proposed schemes. For simplicity, in the rest of this paper,
we take for example the 4th- and 6th-order Gauss methods, denoted by ESAV-RK4 and ESAV-RKG6,
respectively. The RK coefficients of the corresponding numerical methods can be found in Ref. [10].

The NLS equation admits the following progressive plane wave solution

¢1 (Z‘, Y, t) = exp(i(klx + k2y - wlt))a w1 = (k% + k%)/2 + ﬁa fOI‘ d - 27
Vo, y, 2,t) = exp(i(k1z + kay + ksz — wat)), wo = (ki + k3 +k3)/2+ B, for d=3,

where k1 = ko = k3 = 1. We choose the spatial domains as D = [0,27]? (d = 2,3) and fix the Fourier
node 32 x 32 for d = 2 and 32 x 32 x 32 for d = 3 respectively such that the spatial discretization errors
are negligible. In addition, the convergence rate is obtained by the following formula

Rate = In(errory /errors)/In(8y /d2),

where d;, error; (I = 1,2) are step sizes and errors with step size d;, respectively. Moreover, the relative
errors of discrete mass, Hamiltonian energy and quadratic energy on time level ¢,, will be calculated by

RM™ = |(M" — M°)/M°|, RH" := |(H" — H®)/H"|, RE" := |(E" — E°)/E°|, n=1,-- N,

respectively.

We first choose different § to test the temporal accuracy in 2D /3D, and the results are summarized in
Table[Il As is shown that the ESAV-RK4 and ESAV-RK6 methods arrive at fourth-order and sixth-order
convergence rates in time, respectively. Furthermore, for a fixed time step and mesh size, the numerical
errors are observed to increase along with the growth of 5. In this case, the high-order accurate numerical
algorithms are more preferable in practical computations to obtain a given high accuracy, especially in
long-time simulation.

Table 1: Temporal errors of the numerical solutions at T' = 9.

2D case 3D case

7=0.03 7=0.02 7=0.015 7=0.01 7=0.05 7=0.04 7=0.025 71=0.0125

B8=5 el 3.16e-05 6.25e-06  1.98e-06  3.91e-07 2.43e-04  9.98e-05 1.52e-05 9.53e-07

Rate * 4.00 4.00 4.00 * 3.99 4.00 4.00

ESAV-RK4 =6 |elloo 7.86e-05 1.55e-05 4.926-06 9.72e-07 6.04e-04 2.48¢-04 3.79e-05  2.37e-06
Rate * 4.00 4.00 4.00 * 3.99 4.00 4.00

B=7 llelloo 1.70e-04 3.36e-05 1.06e-05 2.10e-06 1.30e-03 5.35e-04  8.19e-05  5.13e-06
Rate * 4.00 4.00 4.00 * 3.98 3.99 4.00

B=5 Jlelloo 5.08e-00 4.46e-10 7.95e-11 6.89e-12 1.09¢-07  2.85¢-08  1.70e-09  2.6de-11
Rate * 5.99 5.99 6.03 * 6.00 6.00 6.01

ESAV-RK6 B8=6 |lefloo 1.82¢-08 1.60e-09 2.85e-10  2.50e-11  3.89e-07 1.02e-07  6.10e-09  9.5de-11
Rate * 6.00 6.00 6.00 * 6.00 6.00 6.00

B=7 lelloo 5.35e-08 4.70e-09 8.37e-10 7.35e-11 1.14e-06 3.00e-07  1.79e-08  2.82e-10
Rate * 6.00 6.00 6.00 * 6.00 6.00 6.00

Moreover, we research the long-time behavior of the proposed schemes at a large time period 7' = 20
with 7 = 0.01 and the Fourier node 32 x 32 for d = 2 and 32 x 32 x 32 for d = 3. As is illustrated
in Figure [1] (a)-(d) that the proposed schemes preserve the discrete mass and energy exactly, which
conforms the preceding theoretical analysis.
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Figure 1: Relative errors of discrete mass and energy with 8 = 5 computed by (a) ESAV-RK4 for 2D case; (b) ESAV-RK6
for 2D case; (c) ESAV-RK4 for 3D case; (d) ESAV-RK6 for 3D case, respectively.



5 Conclusions

In this paper, we present a novel class of arbitrary high-order exponential Runge-Kutta methods for
solving the NLS equation by combing the SAV approach with the Lawson method. We show that the
proposed method can preserve both the mass and the modified energy. Numerical tests are indicated
to verify the accuracy and effectiveness of the proposed schemes. The numerical strategy adopted
in this paper can be generalized for general Hamiltonian partial differential systems to develop high-
order energy-preserving exponential Runge-Kutta methods. Here, we should note that, in general, the
particularly interesting types of ERK methods are integrating factor (IF) methods and exponential time
differencing (ETD) methods, respectively. The proposed method of this paper is actually assigned to the
IF methods and arbitrary high-order structure-preserving ETD methods for the conservative systems
will be presented in a separated report.
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