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NOTES ON LIOUVILLE TYPE THEOREMS FOR THE STATIONARY

COMPRESSIBLE NAVIER-STOKES EQUATIONS

ZHOUYU LI1 AND PENGCHENG NIU1, *

Abstract. In this paper, we investigate the three dimensional stationary compressible
Navier-Stokes equations, and obtain Liouville type theorems if a smooth solution (ρ,u)
satisfies some suitable conditions. In particular, our results improve and generalize the
corresponding result of Li and Yu (2014) [8].
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1. Introduction

This paper is concerned with the following stationary barotropic compressible Navier-
Stokes equations on R

3

(1.1)

{

div(ρu) = 0,

div(ρu⊗ u)− ν∆u− (λ+ ν)∇ divu+∇P = 0,

where the vector u denotes the flow velocity field and the scalar function ρ represents the
density of the fluid. The pressure P is given by the γ−law:

P (ρ) = aργ ,

where a > 0 and γ > 1 are physical constants. The shear viscosity ν and bulk viscosity λ are
both constants and satisfy

ν > 0 , λ+
2

3
ν > 0.

For more physical explanations about (1.1), see [5, 10].
In the past decades, the time-dependent compressible Navier-Stokes equations have been

studied by many authors. See [3, 14] for global existence and blow-up criteria of solutions,
and [4, 12] for regularity criterion of weak solutions. In general, Liouville type theorems
appear naturally when studying the regularity of the time-dependent Navier-Stokes equations.
However, Liouville type theorems have not been solved yet, as far as we know, even in the
stationary case.

Here we consider the Liouville type theorems for the stationary compressible Navier-Stokes
equations (1.1). In [2], Chae showed the Liouville type theorems for the compressible Navier-
Stokes equations on R

n. In particular, he stated that if the smooth solution (ρ,u) satisfies

‖ρ‖L∞(R3) + ‖∇u‖L2(R3) + ‖u‖
L

3
2 (R3)

< ∞,(1.2)

then u ≡ 0 and ρ = constant. Later, Li and Yu in [8] pointed out that the condition

‖ρ‖L∞(R3) + ‖∇u‖L2(R3) < ∞
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is very natural because most physical flows have bounded density and finite enstrophy, and
improved the result of Chae, assuming that

‖ρ‖L∞(R3) + ‖∇u‖L2(R3) + ‖u‖
L

9
2 (R3)

< ∞.(1.3)

The interested readers can also refer [9], which proved a different result. We note that the
condition (1.3) is weaker than (1.2) in the sense that u can decay more slowly at infinity.
Thus, a natural and interesting problem is how to further weaken the integrability condition

u ∈ L
9
2 (R3). The purpose of this paper is to give a positive answer. We state the first result

of this paper as follows:

Theorem 1.1. Suppose that (ρ,u) is a smooth solution to (1.1) with ρ ∈ L∞(R3), ∇u ∈
L2(R3) and u ∈ Lp,q(R3) for 3 < p < 9

2 , 3 ≤ q ≤ ∞ or p = q = 3. Then u ≡ 0 and

ρ = constant on R
3.

Now one can ask what happens for the values p ≥ 9
2 ? We apply some ideas of the papers

[6, 13] dealing with the Liouville type theorems for stationary incompressible Navier-Stokes
equations. Let us define

Mp,q(R) := R
2
3
− 3

p ‖u‖Lp,q(R≤|x|≤2R).

Our second result is

Theorem 1.2. Suppose that (ρ,u) is a smooth solution to (1.1) with ρ ∈ L∞(R3) and

∇u ∈ L2(R3). For p ≥ 9
2 , 3 ≤ q ≤ ∞, assume that

lim inf
R→∞

M p, q(R) < ∞,

then

D(u) :=

∫

R3

|∇u|2 dx ≤ C0 lim inf
R→∞

M3
p, q(R).(1.4)

If moreover assume

lim inf
R→∞

M3
p, q(R) ≤ δD(u)(1.5)

for some 0 < δ < 1/C0, then u ≡ 0 and ρ = constant on R
3.

Indeed, we establish the Liouville type theorems in the setting of Lorentz spaces, which
can be regarded as a natural generalisation of Lesbesgue spaces. Roughy speaking, we prove
that a smooth solution (ρ,u) is trivial if ρ ∈ L∞(R3), ∇u ∈ L2(R3) and u ∈ Lp,q with
p ≥ 3. Compared with the case in [6, 13], we investigate the Liouville type theorems for
the stationary compressible Navier-Stokes equations (1.1). Note that in (1.1), we need the
condition ∇u ∈ L2(R3) in order to deal with the pressure term. On the other hand, we more
carefully discuss u ∈ Lp,q for the two cases: 3 ≤ p < 9

2 and p ≥ 9
2 in contrast to the result

given in [6, 13].

Remark 1.1. (i). It should be noted that if we consider the integrability condition u ∈
Lp,q(R3) with 3 < p < 9

2 , 3 ≤ q ≤ ∞ or p = q = 3 in Theorem 1.1, then we do not need any

additional assumption which is similar to (1.5).
(ii). For the value p = 9

2 and q = ∞ in Theorem 1.2, our result can be regarded as a relaxation

to the corresponding result of Li and Yu [8].

The organization of this paper is as follows: In Section 2, we collect some elementary facts.
Section 3 is devoted to obtaining a prior estimate, which is the key of our proof. Finally, the
proofs of Theorem 1.1 and 1.2 are given in Section 4.
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2. Preliminaries

We recall the definition of Lorentz space. Given 1 ≤ p < ∞, 1 ≤ q ≤ ∞, we say that a
measurable function f ∈ Lp,q(R3) if ‖f‖Lp,q(R3) < ∞, where

‖f‖Lp,q(R3) :=











(

∫∞
0 tq−1|{x ∈ R

3 : |f(x)| > t}|
q

p dt
)

1
q
, if q < +∞,

sup
t>0

t|{x ∈ R
3 : |f(x)| > t}|

1
p , if q = +∞.

The space satisfies the continuous embeddings

Lp(R3) = Lp,p(R3) →֒ Lp,q(R3) →֒ Lp,∞(R3) , p ≤ q < ∞.

It should be stressed that ‖ · ‖Lp,q is a quasi-norm, namely, ‖ · ‖Lp,q do not satisfy the usual
triangle inequality. Instead, we have

‖f + g‖Lp,q ≤ C(p, q)(‖f‖Lp,q + ‖g‖Lp,q ),

with C(p, q) = 21/p max(1, 2(1−q)/q). See [7] for details.
The following inequalities in Lorentz spaces are useful.

Lemma 2.1 (Hölder inequality, [11]). Let f ∈ Lp1,q1(R3) and g ∈ Lp2,q2(R3) with 1 ≤ p1, p2 ≤
∞, 1 ≤ q1, q2 ≤ ∞. Then fg ∈ Lp,q(R3) with 1

p = 1
p1

+ 1
p2
, 1

q ≤ 1
q1

+ 1
q2

and

‖fg‖Lp,q(R3) ≤ C‖f‖Lp1,q1 (R3)‖g‖Lp2,q2 (R3)

for a constant C > 0.

Lemma 2.2 (Calderón-Zygmund inequality, [1]). Let Ω be a bounded domain in R
n, 1 < p <

∞, 1 < q ≤ ∞ and f ∈ Lp,q(Ω). Then

‖∇2(−∆)−1f‖Lp,q(Ω) ≤ C‖f‖Lp,q(Ω),

where the constant C > 0 is independent of Ω.

3. A priori estimate

In this section, we derive a local estimate of ∇u by means of u:

Proposition 3.1. Let (ρ,u) be a smooth solution to (1.1) with ρ ∈ L∞(R3) and ∇u ∈ L2(R3).
If p > 3, 3 ≤ q ≤ ∞ or p = q = 3, then we have

∫

|x|≤R
|∇u|2 dx+

∫

|x|≤R
|divu|2 dx ≤ C0D1,(3.1)

where D1 := R
1− 6

p ‖u‖2Lp,q(R≤|x|≤2R) + R
2− 9

p ‖u‖3Lp,q(R≤|x|≤2R) + R
1
2
− 3

p ‖u‖Lp,q(R≤|x|≤2R) and

the constant C0 is independent of R > 0.

Proof. Let ϕ ∈ C∞
0 (R3) be a radial cut-off function satisfying

ϕ(|x|) =

{

1, if |x| < 1,

0, if |x| > 2,

and 0 ≤ ϕ(|x|) ≤ 1 for 1 ≤ |x| ≤ 2. For each given R > 0, we define ϕR(x) := ϕ( |x|R ) satisfying

‖∇kϕR‖L∞ 6 CR−k

for k = 0, 1, 2 with some positive constant C independent of x ∈ R
3.

Taking the inner product of (1.1)2 with uϕ2
R and integrating by parts over R3, it follows

ν

∫

R3

∇u : ∇(uϕ2
R) dx+ (λ+ ν)

∫

R3

divudiv(uϕ2
R) dx+

∫

R3

div(ρu⊗ u) · uϕ2
R dx

+

∫

R3

∇P · uϕ2
R dx = 0.
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Applying the fact div(ρu) = 0, we deduce that

ν

∫

R3

|∇u|2ϕ2
R dx+ (λ+ ν)

∫

R3

|divu|2ϕ2
R dx

= −2ν

∫

R3

ϕR∇u : u⊗∇ϕR dx− 2(λ+ ν)

∫

R3

ϕR divuu · ∇ϕR dx

−

∫

R3

ρu · ∇u · uϕ2
R dx−

∫

R3

∇P · uϕ2
R dx

=

4
∑

i=1

Ii.

(3.2)

In the following, we estimate Ii term by term. we assume p > 3, 3 ≤ q ≤ ∞ or p = q = 3.
For I1, we get

I1 = ν

∫

R3

u · div(u⊗∇(ϕ2
R)) dx

= ν

∫

R3

u · (∇u · ∇(ϕ2
R) + u∆(ϕ2

R)) dx

= ν

∫

R3

|u|2(ϕR∆ϕR + |∇ϕR|
2) dx.

Using Lemma 2.1 implies that

|I1| ≤ C(ν)

∫

R≤|x|≤2R
|u|2(|ϕR∆ϕR|+ |∇ϕR|

2) dx

≤ CR−2‖|u|2‖
L

p
2 ,

q
2 (R≤|x|≤2R)

‖1‖
L

p
p−2 ,

q
q−2 (R≤|x|≤2R)

≤ CR
1− 6

p ‖u‖2Lp,q(R≤|x|≤2R).

(3.3)

For I2, an application of Young inequality yields

|I2| ≤ C(λ+ ν)

∫

R≤|x|≤2R
|ϕR divu||u||∇ϕR| dx

≤ C(λ+ ν)R−1‖ϕR divu‖
L

p
p−1 ,

q
q−1 (R≤|x|≤2R)

‖u‖Lp,q(R≤|x|≤2R)

≤ C(λ+ ν)R−1‖ϕR divu‖L2(R≤|x|≤2R)‖u‖Lp,q(R≤|x|≤2R)‖1‖
L

2p
p−2 ,

2q
q−2 (R≤|x|≤2R)

≤ C(λ+ ν)R
1
2
− 3

p ‖ϕR divu‖L2(R≤|x|≤2R)‖u‖Lp,q(R≤|x|≤2R)

≤
(λ+ ν)

2
‖ϕR divu‖2L2(R3) + CR1− 6

p ‖u‖2Lp,q(R≤|x|≤2R).

(3.4)

For I3, we obtain from div(ρu) = 0 that

I3 = −

∫

R3

ρu · ∇u · uϕ2
R dx = −

1

2

∫

R3

ρu · ∇|u|2ϕ2
R dx =

1

2

∫

R3

|u|2 div(ρuϕ2
R) dx

=
1

2

∫

R3

|u|2(ϕ2
R div(ρu) + 2ϕR∇ϕR · ρu) dx =

∫

R3

|u|2ϕR∇ϕR · ρu dx,

thus

|I3| ≤ CR−1‖ρ‖L∞‖|u|3‖
L

p
3 ,

q
3 (R≤|x|≤2R)

‖1‖
L

p
p−3 ,

q
q−3 (R≤|x|≤2R)

≤ CR
2− 9

p ‖u‖3Lp,q(R≤|x|≤2R).
(3.5)

To obtain the estimate for the pressure term, we recall the following lemma.
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Lemma 3.1 (see [8]). Let P ∈ L∞(R3), p1 ∈ Lr1(R3), p2 ∈ Lr2(R3) with 1 ≤ r1, r2 < ∞.
Suppose that P − p1 − p2 is weakly harmonic, that is

∆(P − p1 − p2) = 0

in the sense of distribution, then there exists a constant c such that

P − p1 − p2 = c a.e. x ∈ R
3

If furthermore P (x) ≥ 0 a.e., then we also have c ≥ 0.

With Lemma 3.1 in hand, we give the estimate of I4. Taking the divergence on both sides
of (1.1)2, we have

∆(P − p1 − p2) = 0,

where p1 := (−∆)−1∂i∂j(ρuiuj) and p2 := (λ+ 2ν) divu.

Using the assumption ∇u ∈ L2(R3) and the Sobolev embedding Ḣ1(R3) →֒ L6(R3), it
follows

p1 ∈ L3(R3) , p2 ∈ L2(R3).

Due to Lemma 3.1, there exists a constant c ≥ 0 such that

aργ = P = c+ p1 + p2.

Considering the function

P1 := ργ−1 − (
c

a
)
γ−1
γ = (

c+ p1 + p2
a

)
γ−1
γ − (

c

a
)
γ−1
γ ,

we have

∇P = ∇(aργ) =
aγ

γ − 1
ρ∇(ργ−1) =

aγ

γ − 1
ρ∇P1

and

|P1ρ| ≤ C(a, ‖ρ‖L∞)(|p1|+ |p2|).(3.6)

With respect to (3.6), more detailed arguments see [8].
Hence, making use of integration by parts, it implies

I4 = −

∫

R3

aγ

γ − 1
ρ∇P1 · uϕ

2
R dx

=
aγ

γ − 1

∫

R3

P1 div(ρuϕ
2
R) dx

=
aγ

γ − 1

∫

R3

P1 div(ρu)ϕ
2
R dx+

aγ

γ − 1

∫

R3

P1ρu · ∇(ϕ2
R) dx

=
2aγ

γ − 1

∫

R3

P1ρu · (ϕR∇ϕR) dx,

and then

|I4| ≤ C(a, γ, ‖ρ‖L∞)R−1

∫

R≤|x|≤2R
(|p1|+ |p2|)|u| dx.

By Lemmas 2.1 and 2.2, we have

C(a, γ, ‖ρ‖L∞)R−1

∫

R≤|x|≤2R
|p1||u| dx

≤ CR−1‖p1‖L
p
2
,
q
2 (R≤|x|≤2R)

‖u‖Lp,q(R≤|x|≤2R)‖1‖
L

p
p−3

,
q

q−3 (R≤|x|≤2R)

≤ CR−1‖ρ‖L∞‖|u|2‖
L

p
2 ,

q
2 (R≤|x|≤2R)

‖u‖Lp,q(R≤|x|≤2R)‖1‖
L

p
p−3 ,

q
q−3 (R≤|x|≤2R)

≤ CR2− 9
p ‖u‖3Lp,q(R≤|x|≤2R)

(3.7)
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and

C(a, γ, ‖ρ‖L∞)R−1

∫

R≤|x|≤2R
|p2||u| dx

≤ C(a, γ, ‖ρ‖L∞)R−1‖p2‖
L

p
p−1

,
q

q−1 (R≤|x|≤2R)
‖u‖Lp,q(R≤|x|≤2R)

≤ CR−1‖∇u‖L2(R≤|x|≤2R)‖u‖Lp,q(R≤|x|≤2R)‖1‖
L

2p
p−2

,
2q
q−2 (R≤|x|≤2R)

≤ CR
1
2
− 3

p ‖∇u‖L2(R3)‖u‖Lp,q(R≤|x|≤2R)

(3.8)

Therefore,

|I4| ≤ CR
2− 9

p ‖u‖3Lp,q(R≤|x|≤2R) + CR
1
2
− 3

p ‖u‖Lp,q(R≤|x|≤2R).(3.9)

Substituting the estimates of I1, I2, I3 and I4 into (3.2) leads to

ν

∫

|x|≤R
|∇u|2 dx+

(λ+ ν)

2

∫

|x|≤R
|divu|2 dx

≤ C
(

R
1− 6

p ‖u‖2Lp,q(R≤|x|≤2R) +R
2− 9

p ‖u‖3Lp,q(R≤|x|≤2R) +R
1
2
− 3

p ‖u‖Lp,q(R≤|x|≤2R)

)

(3.10)

for all R > 0 with the constant C independent of R. Thanks to λ + 2
3ν ≥ 0, ν > 0, we see

that λ+ ν ≥ 0. Thus, Proposition 3.1 is proved.
�

4. The Proofs of Theorems

Now, we are ready to complete the proofs of Theorem 1.1 and 1.2.

Proof of Theorem 1.1. Assume that ρ ∈ L∞(R3), ∇u ∈ L2(R3) and u ∈ Lp,q(R3) with 3 <
p < 9

2 , 3 ≤ q ≤ ∞ or p = q = 3. Passing R → +∞ in (3.1), we get

lim
R→+∞

D1 = 0.

Thus, it gives

lim
R→+∞

(

∫

|x|≤R
|∇u|2 dx+

∫

|x|≤R
|divu|2 dx) = 0.

By virtue of the Lebesgue dominated convergence theorem, it leads to
∫

R3

|∇u|2 dx+

∫

R3

|divu|2 dx = 0(4.1)

Hence, u is a constant vector on R
3, which follows from (4.1). Since u ∈ Lp,q(R3) with

3 < p < 9
2 , 3 ≤ q ≤ ∞ or p = q = 3, we conclude that u ≡ 0. On the other hand, by means

of (1.1)2, we know that ∇(aργ) = 0, which implies that ρ=constant on R
3. The proof of

Theorem 1.1 is ended. �

Proof of Theorem 1.2. Due to Mp,q(R) := R
2
3
− 3

p ‖u‖Lp,q(R≤|x|≤2R), we see that

D1 = R− 1
3M2

p,q(R) +M3
p,q(R) +R− 1

6Mp,q(R).

Thus, using the assumption and passing R → ∞ in (3.1), it gets

lim
R→+∞

(

∫

|x|≤R
|∇u|2 dx+

∫

|x|≤R
|divu|2 dx) ≤ C0 lim inf

R→∞
M3

p,q(R).

The dominated convergence theorem implies
∫

R3

|∇u|2 dx+

∫

R3

|divu|2 dx ≤ C0 lim inf
R→∞

M3
p,q(R).
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Consequently, we prove (1.4). Noting the condition (1.5), we have

D(u) :=

∫

R3

|∇u|2 dx ≤ C0 lim inf
R→∞

M3
p,q(R) ≤ C0δD(u).(4.2)

Since 0 < C0δ < 1, we conclude that D(u) = 0 and u ≡ 0 on R
3. Again using (1.1)2, we

obtain ρ=constant on R
3. This ends the proof of Theorem 1.2. �
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