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Abstract

In [24] and previous papers by the same authors, a general smooth setting
was proposed for the incompressible Navier-Stokes (NS) Cauchy problem on a
torus of any dimension d > 2, and the a posteriori analysis of its approximate
solutions. In this note, using the same setting I propose an elementary proof of
the following statement: global existence and time decay of the NS solutions
are stable properties with respect to perturbations of the initial datum. Fully
explicit estimates are derived, using Sobolev norms of arbitrarily high order.
An application is proposed, in which the initial data are generalized Beltrami
flows. A comparison with the related literature is performed.
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1 Introduction

Let us consider the Cauchy problem for the (homogeneous, incompressible) Navier-
Stokes (NS) equations on a torus Td; this reads

∂u

∂t
= ν∆u+ P(u, u) , u(x, 0) = u0(x) . (1.1)

Here: any dimension d > 2 is admitted; u = u(x, t) is the divergence free velocity
field, depending on x ∈ Td and on time t; ν > 0 is the kinematic viscosity; ∆ is the
Laplacian of Td; P is the bilinear map sending any two sufficiently regular vector
fields v, w : Td → Rd into

P(v, w) := −L((v•∇)w) . (1.2)

In the above (v•∇)w : Td → Rd is the vector field of components ((v•∇)w)r =∑d
s=1 vs∂swr, and L is the Leray projection onto the space of divergence free vector

fields.
In [24], a smooth functional setting was proposed for the Cauchy problem (1.1);

this relies on the Fréchet space of C∞ vector fields on Td with vanishing divergence
and mean, which is represented as an intersection of Hp type Sobolev spaces of
arbitrarily high order p (i.e., as a Sobolev space of infinite order); here and in the
sequel ‖ ‖p stands for the Hp norm, for any real p. Working within this framework,
a general strategy was presented in [24] to infer estimates on the solution u of (1.1)
from the a posteriori analysis of any approximate solution ua; such estimates con-
cern the time interval of existence of u and the distance ‖u(t)−ua(t)‖p of arbitrarily
high order p. (1) This setting also applies to the inviscid limit ν = 0 (giving Eu-
ler’s equations) and to the case where an external forcing is present; however, such
extensions will not be considered in the present note.

A similar approach to the approximate solutions of (1.1) in Sobolev spaces of
finite order was presented in [20]; both [20] and [24] are greatly indebted to the
seminal works [4] [27] on the a posteriori analysis of NS approximants. In typical
applications of the approach of [20] [24], the approximant ua is provided by the
Galerkin method (see the same works), or by a truncated power expansion in the
“Reynolds number” 1/ν [23] [16] (see also [15], where the limit ν = 0 is considered
and ua is a truncated power expansion in t). (2)

The aim of this note is to discuss the global, time decaying NS solutions and their
stability with the methods of [24]; the necessary tools from that work are reviewed

1Of course, for each time t, u(t) means the map x ∈ Td 7→ u(x, t); ua(t) and analogous symbols
appearing in the sequel must be understood similarly.

2In addition let me mention papers [18] [19], presenting earlier variants of the same ideas on
NS approximants, and the recent work [25] which extends the methods of [24] to (homogeneous,
incompressible) magnetohydrodynamics.
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in Sections 2 and 3. Given a smooth, global NS solution v, there are several notions
of decay for v: for example, one can ask that

‖v(t)‖n → 0 for t→ +∞ (1.3)

for some n. In Section 4 of the note I point out that condition (1.3) for some n >
d/2+1, and other reasonable decay conditions, are in fact equivalent to exponential
decay in all Sobolev norms:

‖v(t)‖p 6 const.× e−νt for all p ∈ R and t > 0 (1.4)

(where the constants depend on v and p). In Section 5, I derive the stability of
the above properties with respect to small perturbations of the initial data. More
precisely, I show what follows: if the NS solution v with an initial datum v0 is global
and decaying (in any sense equivalent to (1.4)), the same happens for the NS solution
u with any datum u0 such that ‖u0− v0‖n is sufficiently small for some n > d/2 + 1.
Again for ‖u0 − v0‖n small, I derive estimates on u− v having essentially the form

‖u(t)− v(t)‖p 6 const.× ‖u0 − v0‖p e−νt for all p > n and t > 0 . (1.5)

The precise formulation of the above statements can be found in Theorem 5.1; to
prove these results, I apply the machinery of [24] viewing v as an approximate
solution for the NS Cauchy problem with datum u0.

In Section 6, that concludes this note, I consider as an example the case when
the initial datum v0 is a generalized Beltrami flow [29] [31]. A datum of this kind
can be arbitrarily large and is known to produce a global, decaying NS solution v
with an elementary expression; the results of Section 5 are applied to this case.

The statement that the global nature of the NS solutions is preserved by small
perturbations of the initial datum, under suitable decay assumptions for the un-
perturbed solution, is not at all new in the literature. The first result of this kind
is [26]; the subject has been investigated until present time, see e.g. the recent
works [3] [6]. (3) Most papers in this area discuss global stability in terms of some
reference Banach space of velocity fields, which is an H1 type space in [26], the
so-called X−1 space in [3] (4), and, essentially, an Hr type space of fixed, integer
order r > 1 in [6]; this makes some difference with respect to the present note, that
refers systematically to a Fréchet space of velocity fields with infinitely many Hp

norms.
3Other authors have discussed the preservation (under small changes of the initial datum) of

the global nature of some special, nondecaying NS solutions in presence of external forces. In
particular, global stability results have been obtained for the small amplitude, almost periodic
solutions of the NS equations with time quasi-periodic external forcing: see [14] and references
therein.

4this is made of the velocity fields u : R3 → R3 with Fourier transform Fu : k 7→ (Fu)(k) such
that +∞ > ‖u‖X−1 :=

∫
R3 dk |k|−1|(Fu)(k)|.
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In addition, most of the cited works refer to the case of space dimension d = 3
(admittedly, the most interesting case), while the present results hold for d arbitrary.
Let me repeat that the space domain in this note is the torus Td; for a comparison
with the literature, I will mention for example that [26] refers to a domain Ω ⊂ R3,
[3] to the whole space R3 and [6] to T3. (5)

Another point I would mention is that, with notable exceptions like [3], most
papers on this subject present estimates relying on unspecified constants. On the
contrary, all estimates in this note are fully explicit: this holds, in particular, for the
bounds on ‖u0 − v0‖n yielding the stability result of Section 5 and for the constant
in Eq. (1.5). This is made possible by the quantitative analysis performed in [17]
[21] [22] for the constants in some fundamental inequalities on the NS bilinear map
(1.2).

Concerning the form of the stability result, the earlier work to which the present
note is closer is [6]; for a more detailed comparison, see Remark 4.4 (iv) (on the
functional settings and decay conditions) and Remark 5.2 (ii) (about Eq. (1.5) and
its analogue in [6]).

Apart from technical differences with respect to the previous literature, a feature
of this note is that the present stability result arises almost automatically from the
main theorem of [24] on NS approximants (to be used as indicated after Eq. (1.5)).
It might be of some interest that the same result of [24] also has the applications
mentioned before, rather different from the one presented here.

2 Preliminaries

Some function spaces. Throughout this note we work on a torus

Td := (R/2πZ)d (d = 2, 3, ...) (2.1)

and refer to the functional setting of [24] (and [20]), reproduced in this section to
make the note self-contained.

Let us consider the space D′(Td,Rd) ≡ D′ of Rd-valued distributions on Td; each
v ∈ D′ has a weakly convergent Fourier expansion v =

∑
k∈Zd vkek with coefficients

vk = v−k ∈ Cd, where ek(x) := (2π)−d/2eik•x. The mean value 〈v〉 is, by definition,
the action of v on the constant test function (2π)−d, and 〈v〉 = (2π)−d/2v0. The
Laplacian of v ∈ D′ has Fourier coefficients (∆v)k = −|k|2vk; if 〈v〉 = 0 and p ∈ R,

5One of the referees suggested a comment upon the extension of the present results to space
domains different from Td. Indeed Td has several nice features, namely, the strict positivity of the
spectrum of −∆ on NS velocity fields (under the condition of mean zero) and the inequalities for
the NS bilinear map (1.2) reviewed in Section 2; all of them are essential for the setting of [24] and
for its present application. It is not obvious that the totality of these features would be preserved
passing to other space domains.
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we define (−∆)p/2v to be the element of D′ with mean zero and Fourier coefficients
((−∆)p/2v)k = |k|pvk for k ∈ Zd \ {0}. We consider as well the space L2(Td,Rd) ≡
L2, with the standard inner product 〈v|w〉L2 :=

∫
Td v•w dx. For any p ∈ R, let us

introduce the Sobolev space

Hp
Σ0 := {v ∈ D′ | div v = 0, 〈v〉 = 0, (−∆)p/2v ∈ L2 } (2.2)

= {v ∈ D′ | k•vk = 0 ∀k ∈ Zd, v0 = 0,
∑

k∈Zd\{0}

|k|2p|vk|2 < +∞}

(the subscripts Σ and 0 indicate the vanishing of the divergence and of the mean);
this carries the inner product and the norm

〈v|w〉p := 〈(−∆)p/2v|(−∆)p/2w〉L2 =
∑

k∈Zd\{0}

|k|2pvk•wk , (2.3)

‖v‖p :=
√
〈v|v〉p = ‖(−∆)p/2v‖L2 .

For real p > ` one has Hp
Σ0 ⊂ H`

Σ0 and ‖ ‖p > ‖ ‖`. The vector space

H∞Σ0 :=
⋂
p∈R

Hp
Σ0 (2.4)

can be equipped with the topology induced by the family of all Sobolev norms ‖ ‖p
(p ∈ R), which coincides with that induced by the countable subfamily ‖ ‖p (p ∈ N);
so, we have a Fréchet space. Due to standard Sobolev imbeddings,

H∞Σ0 = { v ∈ C∞(Td,Rd) | div v = 0, 〈v〉 = 0 } (2.5)

and the above mentioned topology on H∞Σ0 coincides with that induced by the family
of norms ‖ ‖

Cr
(r ∈ N), where ‖ ‖

Cr
is the sup norm for the derivatives of all

orders 6 r (for r ∈ N and p ∈ R one has ‖ ‖
Cr
6 const.‖ ‖p if p > r + d/2 , and

‖ ‖p 6 const.‖ ‖
Cr

if p 6 r).

The fundamental bilinear map for NS equations. In the Introduction I have
already mentioned the bilinear map sending two (sufficiently regular) divergence
free, mean zero vector fields v, w : Td → Rd into P(v, w) := −L((v•∇)w) (see Eq.
(1.2) and the subsequent comments; a precise definition of the Leray projection L
is given, e.g., in [20]). Let p, n ∈ R; it is known that p > d/2, v ∈ Hp

Σ0, w ∈ Hp+1
Σ0

⇒ P(v, w) ∈ Hp
Σ0 and that, for p, n as below, there are constants Kp, Gp, Kpn, Gpn

∈ (0,+∞) such that the following holds:
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‖P(v, w)‖p 6 Kp‖v‖p‖w‖p+1 if p > d/2, v ∈ Hp
Σ0 , w ∈ Hp+1

Σ0 , (2.6)

|〈P(v, w)|w〉p| 6 Gp‖v‖p‖w‖2p if p > d/2 + 1, v ∈ Hp
Σ0 , w ∈ Hp+1

Σ0 , (2.7)

‖P(v, w)‖p 6
1

2
Kpn(‖v‖p‖w‖n+1 + ‖v‖n‖w‖p+1) (2.8)

if p > n > d/2, v ∈ Hp
Σ0 , w ∈ Hp+1

Σ0 ,

|〈P(v, w)|w〉p| 6
1

2
Gpn(‖v‖p‖w‖n + ‖v‖n‖w‖p)‖w‖p (2.9)

if p > n > d/2 + 1, v ∈ Hp
Σ0 , w ∈ Hp+1

Σ0 .

Note that (2.8) with n = p gives (2.6), with Kp := Kpp; similarly, (2.9) with n = p
gives (2.7) with Gp := Gpp. Eq. (2.6) (with the implication in the text before it)
indicates that P maps continuously Hp

Σ0×Hp+1
Σ0 to Hp

Σ0 for all p > d/2, and H∞Σ0×H∞Σ0

to H∞Σ0.
Eq. (2.6) and its generalization (2.8) are closely related to the basic norm in-

equalities about multiplication in Sobolev spaces. Eq. (2.7) was discovered in [9] for
integer p, and extended in [5] to noninteger cases; inequalities very similar to (2.9)
were proposed in [2] [30] [28]. Fully quantitative, upper and lower bounds for the
sharp constants Kp, Gp, Kpn, Gpn in Eqs. (2.6-2.9) were proposed in [21] [22] [17].
From here to the end of the paper Kp, ..., Gpn are (possibly nonsharp) constants
fulfilling the above inequalities.

The NS Cauchy problem in a smooth framework. From here to the end of
the paper we fix a viscosity

ν ∈ (0,+∞) . (2.10)

The (homogeneous, incompressible) NS Cauchy problem with initial datum u0 ∈ H∞Σ0

is the following:

Find u ∈ C∞([0, T ),H∞Σ0) such that
du

dt
= ν∆u+ P(u, u) , u(0) = u0 , (2.11)

with T = Tu ∈ (0,+∞]; obviously enough, a solution of (2.11) with T = +∞ is said
to be global. It is known that (2.11) has a unique maximal (i.e., not extendable)
solution u, whose domain [0, T ) depends in principle on the datum u0 [2] [8] [9] [10]
[11] [12] [30]. (6)

6Most of these classical works refer to Sobolev spaces of finite order, but there are standard
arguments for passing to the infinite order case (i.e., to the setting based on H∞Σ0); these arguments
are reviewed, e.g., in [24].
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3 Approximate solutions of the NS Cauchy prob-

lem. Control inequalities

Let u0 ∈ H∞Σ0; hereafter I report a definition from [24], and the main result proved
in the same work.

3.1 Definition. An approximate solution of the NS Cauchy problem (2.11) is
any map ua ∈ C1([0, Ta),H∞Σ0), with Ta ∈ (0,+∞]. Given such a function, (i) and
(ii) are stipulated.
i) The differential error and the datum error of ua are, respectively:

e(ua) :=
dua
dt
− ν∆ua − P(ua, ua) ∈ C([0, Ta),H∞Σ0) ; u0 − ua(0) ∈ H∞Σ0 . (3.1)

ii) Let p ∈ R. A differential error estimator, a datum error estimator and a growth
estimator of order p for ua are, respectively, a function εp ∈ C([0, Ta), [0,+∞)), a
number δp ∈ [0,+∞) and a function Dp ∈ C([0, Ta), [0,+∞)) such that

‖e(ua)(t)‖p 6 εp(t) for t ∈ [0, Ta) , ‖u0 − ua(0)‖p 6 δp , (3.2)

‖ua(t)‖p 6 Dp(t) for t ∈ [0, Ta) .

In particular the function εp(t) := ‖e(ua)(t)‖p, the number δp := ‖u0 − ua(0)‖p and
the function Dp(t) := ‖ua(t)‖p will be called the tautological estimators of order p
for the differential error, the datum error and the growth of ua.

3.2 Proposition. Let ua ∈ C1([0, Ta),H∞Σ0) be an approximate solution of the NS
Cauchy problem (2.11). Assume that, for some n ∈ (d/2+1,+∞), ua has differential
error, datum error and growth estimators of order n or n+ 1, indicated with εn, δn,
Dn and Dn+1, and that there is a function Rn ∈ C([0, Tc),R), with Tc ∈ (0, Ta],
fulfilling the following control inequalities:

d+Rn

dt
> −νRn+(GnDn+KnDn+1)Rn+GnR

2
n+εn everywhere on [0, Tc), Rn(0) > δn

(3.3)
(Kn, Gn as in Eqs. (2.6) (2.7), with p replaced by n; in the above we use the
right, upper Dini derivative (d+Rn(t)/dt)(t) := lim suph→0+ (Rn(t+ h)−Rn(t))/h).
Consider the maximal solution u ∈ C∞([0, T ),H∞Σ0) of problem (2.11); then (i)(ii)
hold.
i) u and its existence time T are such that

T > Tc , ‖u(t)− ua(t)‖n 6 Rn(t) for t ∈ [0, Tc) . (3.4)

In particular, if Rn is global (Tc = +∞), then u is global as well (T = +∞).
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ii) Consider any p ∈ (n,+∞), and let εp, δp, Dp,Dp+1 be differential error, datum
error and growth estimators of order p or p + 1 for ua. Let Rp ∈ C([0, Tc),R) be a
function fulfilling the linear, order p control inequalities

d+Rp

dt
> −νRp+(GpDp+KpDp+1+GpnRn)Rp+εp everywhere on [0, Tc) , Rp(0) > δp

(3.5)
(Kp, Gp, Gpn as in Eqs. (2.6) (2.7) (2.9); again, d+/dt stands for the right, upper
Dini derivative). Then

‖u(t)− ua(t)‖p 6 Rp(t) for t ∈ [0, Tc) . (3.6)

The relations (3.5) are both fulfilled as equalities by a unique function Rp ∈ C1([0, Tc),R),
which is given explicitly by

Rp(t) = e−νt+ Ap(t)
(
δp +

∫ t

0

ds eνs−Ap(s)εp(s)
)
, (3.7)

Ap(t) :=

∫ t

0

ds
(
GpDp(s)+KpDp+1(s)+GpnRn(s)

)
. �

I have already mentioned in the Introduction a number of applications of Proposition
3.2 in which ua is, e.g., a Galerkin approximant or a truncated power expansion in
1/ν. From the viewpoint of the present note, Proposition 3.2 is the basic tool
yielding, by elementary manipulations, a global stability result for the NS Cauchy
problem: see Section 5.

4 Global, decaying NS solutions

4.1 Lemma. Let w0 ∈ H∞Σ0 be such that ‖w0‖n < ν/Gn for some n ∈ (d/2 +
1,+∞). Then, the (maximal) solution w of the NS Cauchy problem (2.11) with
initial datum w0 is global and, for each p ∈ R, there is a constant Cp ∈ [0,+∞)
such that ‖w(t)‖p 6 Cpe

−νt for all t ∈ [0,+∞).

Proof. This follows immediately from Proposition 5.1 of [24]. (7) �

Using the previous Lemma, we can easily prove that many natural decay conditions
for a global NS solution v are in fact equivalent, and are indeed equivalent to the
requirement that v(t0) be sufficiently small at just one time t0.

7The cited Proposition from [24] gives slightly more refined estimates on the norms of w(t) (see
Eq. (5.4) therein), which could be used to infer explicit expressions for the constants Cp in terms
of the norms of w0. These explicit expression are not relevant for our present purposes.
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4.2 Proposition. Let v ∈ C∞([0,+∞),H∞Σ0) be a global NS solution: dv/dt =
ν∆v + P(v, v). The following statements are equivalent:
a) For some n ∈ (d/2 + 1,+∞) and t0 ∈ [0,+∞), it is ‖v(t0)‖n < ν/Gn.
b) For some n ∈ (d/2 + 1,+∞), it is ‖v(t)‖n → 0 for t→ +∞.
c) For all p ∈ R, it is ‖v(t)‖p → 0 for t→ +∞ (i.e., v(t)→ 0 in the Fréchet space
H∞Σ0).
d) For some n ∈ (d/2 + 1,+∞) and γ ∈ (0,+∞), it is

∫ +∞
0

dt ‖v(t)‖γn < +∞.

e) For all p ∈ R and γ ∈ (0,+∞), it is
∫ +∞
0

dt ‖v(t)‖γp < +∞.
f) For some n ∈ (d/2 + 1,+∞), there is constant Cn ∈ [0,+∞) such that ‖v(t)‖n 6
Cn e

−νt for all t ∈ [0,+∞).
g) For each p ∈ R, there is constant Cp ∈ [0,+∞) such that ‖v(t)‖p 6 Cp e

−νt for
all t ∈ [0,+∞).

Proof. It suffices to show that (a) ⇒ (g) and that, for (x) = (b),(c),(d),(e),(f), it
is (g) ⇒ (x) ⇒ (a). Here are the proofs.
(a)⇒ (g). Let n, t0 be as in (a), that we assume to hold. Setting w0 := v(t0) we see
that v(t) = w(t− t0) for t ∈ [t0,+∞), where w is the (maximal) solution of the NS
Cauchy problem with datum w0, which has the features predicted by Lemma 4.1.
Thus, v fulfills (g).
(g) ⇒ (b),(c),...,(f). Obvious
(b) ⇒ (a); (c) ⇒ (a); (f) ⇒ (a). Obvious.
(d) ⇒ (a). Let n, γ be as in (d), that we assume to hold; hereafter we show that,
for each η > 0, there is t0 ∈ [0,+∞) such that ‖v(t0)‖n < η. Indeed, if not so, we
would have ‖v(t)‖n > η for all t ∈ [0,+∞) and this would imply

∫ +∞
0

dt ‖v(t)‖γn >
ηγ
∫ +∞
0

dt = +∞, against (d). Now, with η = ν/Gn we get the thesis (a).
(e) ⇒ (a). In fact, it is evident that (e) ⇒ (d) and we know that (d) ⇒ (a). �

4.3 Definition. i) A global, decaying NS solution is a global solution v with the
equivalent properties (a)-(g) of Proposition 4.2.
ii) We say that v0 ∈ H∞Σ0 gives rise to a global, decaying solution for the NS Cauchy
problem if such features are possessed by the maximal solution v of problem (2.11)
with initial datum v0.
iii) The subset of H∞Σ0 formed by the initial data v0 as in (ii) will be indicated with
E∞Σ0 ν ≡ E∞Σ0. �

4.4 Remarks. i) Lemma 4.1 indicates that, for any n ∈ (d/2 + 1,+∞), E∞Σ0

contains the ball {v0 ∈ H∞Σ0 | ‖v0‖n < ν/Gn}.
ii) One can give examples of arbitrarily large initial data v0 ∈ E∞Σ0; among them are
the generalized Beltrami flows of Section 6.

iii) Consider a global NS solution v. Using the equivalence between the family of
norms ‖ ‖p (p ∈ R) and the family of norms ‖ ‖

Cr
(r ∈ N) on H∞Σ0 (see after
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Eq. (2.5)), it is possible to construct further equivalents of conditions (a)-(g) in
Proposition 4.2, e.g. the following ones:

d’) For some r ∈ N with r > d/2+1 and some γ ∈ (0,+∞), it is
∫ +∞
0

dt ‖v(t)‖γ
Cr

< +∞.

e’) For all r ∈ N and γ ∈ (0,+∞), it is
∫ +∞
0

dt ‖v(t)‖γ
Cr

< +∞.

In fact: (e) ⇔ (e’) due to the inequalities ‖ ‖
Cr
6 const. ‖ ‖p for p > r + d/2 and

‖ ‖p 6 const. ‖ ‖
Cr

for p 6 r ; (e’) ⇒ (d’) (obvious);

(d’) ⇒ (d) since ‖ ‖n 6 const. ‖ ‖
Cr

for n = r. Thus (d’) and (e’) are both

equivalent to (d) (e), and hence to all items in Proposition 4.2.

iv) Paper [6], already mentioned in the Introduction, considers for d = 3 the global
NS solutions v with (divergence free, mean zero) data v0, such that

∫ +∞
0

dt ‖v(t)‖2
Wr,∞

< +∞ for some r ∈ N \ {0}; if v0 has a minimal regularity (say, v0 ∈ H1
Σ0), for all

t > 0 v(t) is C∞ [13] (and thus in H∞Σ0), whence ‖v(t)‖
Wr,∞ = ‖v(t)‖

Cr
. With

the stronger assumption v0 ∈ H∞Σ0, a comparison can be made with the present
note keeping in mind the previous Remark (iii); it turns out that the condition∫ +∞
0

dt ‖v(t)‖2
Cr

< +∞ is implied by those in Proposition 4.2 if r = 1, 2, and is

equivalent to them if r > 3 .

5 A global stability result for the NS Cauchy prob-

lem

5.1 Theorem. Let v0 ∈ E∞Σ0 (see Definition 4.3). Denote with v ∈ C∞([0,+∞),H∞Σ0)
the global, decaying NS solution with initial datum v0, and set

Jp :=

∫ +∞

0

dt ‖v(t)‖p < +∞ for p ∈ R ; (5.1)

in addition, choose any n ∈ (d/2 + 1,+∞) and define

ρn :=
ν

Gn

e−GnJn −KnJn+1 . (5.2)

Then
u0 ∈ H∞Σ0 , ‖u0 − v0‖n < ρn =⇒ u0 ∈ E∞Σ0 . (5.3)

If u0 ∈ H∞Σ0, ‖u0 − v0‖n < ρn and u is the global, decaying NS solution with datum
u0, for all t ∈ [0,+∞) and p ∈ (n,+∞) we have

‖u(t)− v(t)‖n 6
eGnJn +KnJn+1

1− δn/ρn
δn e
−νt, δn := ‖u0 − v0‖n ; (5.4)

‖u(t)− v(t)‖p 6 e
GpJp +KpJp+1 +

Gpn δn/ρn
Gn(1− δn/ρn) δp e

−νt, δp := ‖u0 − v0‖p .
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Under the stronger assumptions u0 ∈ H∞Σ0 and δn ≡ ‖u0 − v0‖n 6 ρn/2 , the bounds
(5.4) imply these simpler bounds, with linear dependence on both variables δn and
δp: for t ∈ [0,+∞) and p ∈ (n,+∞),

‖u(t)− v(t)‖n 6 2 eGnJn +KnJn+1 δn e
−νt , (5.5)

‖u(t)− v(t)‖p 6 e
GpJp +KpJp+1 +

Gpn

Gn δp e
−νt .

Proof. Let us consider a datum u0 ∈ H∞Σ0, for the moment arbitrary. We are
interested in the NS Cauchy problem (2.11) with datum u0, and in its (maximal)
exact solution u. We apply to this Cauchy problem Proposition 3.2 on approximate
solutions, with

ua := v . (5.6)

Since v solves exactly the NS equations with datum v0, the differential error of v
is zero and the datum error (with respect to (2.11)) is u0 − v0; we will use the
tautological error and growth estimators associated to v according to Definition 3.1,
which are

εp(t) := 0 , δp := ‖u0 − v0‖p , Dp(t) := ‖v(t)‖p for p ∈ R, t ∈ [0,+∞). (5.7)

In the sequel we will also refer to the primitive functions

Jp(t) :=

∫ t

0

ds ‖v(s)‖p 6 Jp for p ∈ R, t ∈ [0,+∞) (5.8)

(the last inequality comes from comparison with (5.1)).
Let us choose n ∈ (d/2+1,+∞). We use the estimators (5.7) with p = n or n+1 and
try to fulfill the control inequalities (3.3) as equalities for an unknown C1 function;
this yields the Cauchy problem

dRn

dt
= −νRn + (Gn‖v‖n +Kn‖v‖n+1)Rn +GnR

2
n , Rn(0) = δn (5.9)

for an unknown function Rn ∈ C1([0, Tc),R). The (maximal) solution of (5.9) is as
follows:

Rn(t) := δn
e−νt+GnJn(t) +KnJn+1(t)

1−GnδnLn(t)
for t ∈ [0, Tc) , (5.10)

Ln(t) :=

∫ t

0

ds e−νs+GnJn(s) +KnJn+1(s) for t ∈ [0,+∞) (5.11)

Tc :=


+∞, if GnδnLn(t) 6= 1 for all t ∈ (0,+∞);

the unique t ∈ (0,+∞) s.t. GnδnLn(t) = 1,
if this exists

(note that Ln is strictly increasing on [0,+∞)).
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According to (5.8) Jn(s) 6 Jn, Jn+1(s) 6 Jn+1 for all s > 0, so that

Ln(t) 6 eGnJn +KnJn+1

∫ t

0

ds e−νs = eGnJn +KnJn+1
1− e−νt

ν
(5.12)

6
1

ν
eGnJn +KnJn+1 =

1

Gnρn
for t ∈ [0,+∞)

(as for the last equality, recall Eq. (5.2)). From now on we assume, as in (5.3),

δn ≡ ‖u0 − v0‖n < ρn . (5.13)

Then, due to (5.12),

GnδnLn(t) 6
δn
ρn

< 1 for all t ∈ [0,+∞) (5.14)

so that Tc = +∞, i.e., the solution Rn in Eqs. (5.10) (5.11) is globally defined. Due
to Proposition 3.2, this implies that the solution u of the NS Cauchy problem (2.11)
with datum u0 is global as well, and that

‖u(t)− v(t)‖n 6 Rn(t) for t ∈ [0,+∞) ; (5.15)

‖u(t)− v(t)‖p 6 Rp(t) for p ∈ (n,+∞), t ∈ [0,+∞), (5.16)

Rp(t) := δp e
−νt+ Ap(t) , Ap(t) := GpJp(t) +KpJp+1(t) +Gpn

∫ t

0

dsRn(s).

(To derive Eq. (5.16) one uses Eqs. (3.6) and (3.7), recalling the form (5.7) of the
error and growth estimators and Eq. (5.8)). Now, let us return to the expression
(5.10) for Rn in which we insert the inequalities Jn(t) 6 Jn, Jn+1(t) 6 Jn+1 (recall
again (5.8)) and the inequality (5.14) for Ln; this gives

Rn(t) 6
eGnJn +KnJn+1

1− δn/ρn
δn e
−νt =

ν δn/ρn
Gn(1− δn/ρn)

e−νt for t ∈ [0,+∞) ;

(5.17)∫ +∞

0

dtRn(t) 6
δn/ρn

Gn(1− δn/ρn)

(the above equality follows from (5.2); the bound on the integral is a consequence
of the bound on Rn). Now, ‖u(t)‖n 6 ‖v(t)‖n+ ‖u(t) − v(t)‖n 6 ‖v(t)‖n + Rn(t);
from here we infer, using the definition (5.1) of Jn and the inequality in (5.17) for
the integral of Rn,∫ +∞

0

dt ‖u(t)‖n 6 Jn +
δn/ρn

Gn(1− δn/ρn)
< +∞ . (5.18)
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Thus the solution u of the NS Cauchy problem with datum u0, besides being global
is decaying: this means that u0 ∈ E∞Σ0, so statement (5.3) is proved.

To go on, let us insert the bound (5.17) for Rn in Eq. (5.15); this yields the
bound on ‖u(t)− v(t)‖n in (5.4).

Now, let p ∈ (n,+∞) and let us consider the definition of Ap(t) in Eq. (5.16);
inserting therein the inequalities Jp(t) 6 Jp, Jp+1(t) 6 Jp+1 (see once more (5.8)),

writing
∫ t
0
dsRn(s) 6

∫ +∞
0

dsRn(s) and using for the last integral the bound (5.17),
we obtain

Ap(t) 6 GpJp +KpJp+1 +
Gpn δn/ρn

Gn(1− δn/ρn)
for t ∈ [0,+∞) . (5.19)

Eqs. (5.19) and (5.16) yield the bound on ‖u(t) − v(t)‖p in (5.4). To conclude, let
us make the stronger assumption δn 6 ρn/2; then the bounds (5.4) yield the simpler
bounds (5.5), noting that 1/(1− δn/ρn) 6 2 and (δn/ρn)/(1− δn/ρn) 6 1. �

5.2 Remarks. i) Eq. (5.3) indicates that E∞Σ0 is an open subset of H∞Σ0 in the
Fréchet topology.
ii) For a comparison between the present Theorem 5.1 and [6], let us recall that
the cited work considers for d = 3 a global NS solution v with (divergence free,
mean zero) initial datum v0, fulfilling the decay condition discussed in Remark
4.4 (iv). According to Theorem 3.1 and Corollary 3.2 of [6], for each datum u0
with ‖u0 − v0‖r sufficiently small for some r ∈ N \ {0}, the corresponding NS
solution u is global as well, and u − v fulfills bounds having essentially the form
‖u(t) − v(t)‖m 6 const. × ‖u0 − v0‖m e−σνt for each σ ∈ (0, 1), m ∈ {0, 1, ..., r},
and t > 0, with unspecified constants depending (among others) on σ (the norms
‖ ‖m are for each m as in the present note). The approach of [6] does not seem to
encompass the σ → 1 limit, that would give estimates more similar to those in the
present Eq. (5.5).

6 Generalized Beltrami flows as initial data

Let us define a generalized Beltrami flow on Td to be a vector field v0 such that

v0 ∈ H∞Σ0 , ∆v0 = −κ2 v0 (κ ∈ (0,+∞)), P(v0, v0) = 0 . (6.1)

For d = 3, the above notion (or its analog on R3) is considered in [29] [31]. Assuming
again d = 3, for (6.1) to hold it suffices that v0 ∈ H∞Σ0 and rot v0 = ±κv0 with
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κ ∈ (0,+∞) (8); this is the case usually referred to as a Beltrami (or Beltrami-
Trkal) flow [1] [6] [7].
From now on d ∈ {2, 3, ...}, v0 is a generalized Beltrami flow, and κ is as in (6.1).
Writing the condition ∆v0 = −κ2v0 in terms of the Fourier components of v0 one
checks that v0 = 0 (trivial case), or that κ = |k| > 1 for some k ∈ Zd \ {0} and
v0k = 0 for k ∈ Zd, |k| 6= κ; these facts imply

(−∆)p/2v0 = κpv0 , ‖v0‖p = κp‖v0‖L2 for p ∈ R . (6.2)

To go on let us observe that, due to (6.1), the NS Cauchy problem (2.11) with initial
datum v0 has the global, decaying solution

v(t) = e−κ
2νtv0 for t ∈ [0,+∞) ; (6.3)

thus, v0 ∈ E∞Σ0. Theorem 5.1 can be applied to any generalized Beltrami flow v0;
Eq.s (5.1) (6.2) (6.3) and (5.2) (for some n > d/2 + 1) give

Jp =

∫ +∞

0

dt ‖v(t)‖p =
‖v0‖p
κ2ν

=
κp−2

ν
‖v0‖L2 for p ∈ R , (6.4)

GpJp +KpJp+1 =
(Gp +Kpκ)κp−2

ν
‖v0‖L2 for p ∈ R , (6.5)

ρn =
ν

Gn

e
−(Gn +Knκ)κn−2

ν
‖v0‖L2

.

Any datum u0 ∈ H∞Σ0 with ‖u0 − v0‖ < ρn produces a global, decaying solution u,
and we have for u(t)− v(t) the bounds (5.4) (or (5.5), if ‖u0− v0‖ 6 ρn/2). Let me
exhibit a generalized Beltrami flow v0 for any d (which is not Beltrami if d = 3 and
A 6= 0 below); this is

v0(x) :=

√
2

(2π)d/2
A sin(k•x) for x ∈ Td (A ∈ Rd, k ∈ Zd \ {0}, A•k = 0) (6.6)

(div v0 = 0 due toA•k = 0; P(v0, v0) = −L((v0•∇)v0) vanishes because ((v0•∇)v0)(x)
= (2π)−d(A•k)A sin(2k•x) = 0). In the present case

κ = |k| , ‖v0‖L2 = |A| , ‖v0‖p = |k|p|A| for all p ∈ R . (6.7)

So, for each real p, ‖v0‖p can be arbitrarily large.

8in fact we have ∆v0 = −rot rot v0 +∇(div v0) = −rot rot v0 = −κ2v0 and (v0•∇)v0 = (rot v0)∧
v0 +∇(|v0|2/2) = ∇(|v0|2/2), which implies P(v0, v0) = −L((v0•∇)v0) = 0 because L annihilates
gradients.
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