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Abstract

A class of restarted randomized surrounding methods are presented to accelerate the
surrounding algorithms by restarted techniques for solving the linear equations. Theoretical
analysis shows that the proposed method converges under the randomized row selection rule
and the convergence rate in expectation is also addressed. Numerical experiments further
demonstrate that the proposed algorithms are efficient and outperform the existing method
for overdetermined and underdetermined linear equations, as well as in the application of
image processing.

Keywords. Reflection transformation, Randomized iterative methods, Linear equations, Con-
vergence

1 Introduction

Consider the solution of linear algebraic equations

Ax = b, A ∈ R
m×n, b ∈ R

m, (1.1)

where A has full column rank, which comes widely from many scientific and engineering compu-
tation, for instance, discrete PDEs, image reconstruction, signal processing, option pricing and
machine learning.

Kaczmarz method is one of the well-known iterative projection method, which was firstly
proposed in [11] and further extended to block and inconsistent cases in [6, 9]. Since the linear
convergence of a randomized Kaczmarz method was established by Strohmer and Vershynin [14],
variants of randomized Kaczmarz method were presented and deeply studied, see [3,4,8,10]. On
the other hand, iterative methods based on Householder orthogonal reflection also attract much
attention from the community of numerical linear algebra. Cimmino [7] firstly proposed a general
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iteration scheme with orthogonal reflection and proved the convergence as long as the rank of A
is greater than one. Ansorge [1] gave the relations between the Cimmino method and Kaczmarz
method for the solution of singular and rectangular systems of equations and proved the rate of
convergence for a given weight. Further, block Cimmino method [2, 15] and extended Cimmino
method [12] were proposed and investigated. For more details of the Cimmino method, we refer
the reader to [5].

Recently, Steinerberger [13] studied a surrounding method which randomly reflected the
start point and took the average of all reflective points as the approximate solution. In this
manuscript, we propose a restarted randomized surrounding method, which takes the average of
several randomly reflective points as the new initial value and repeats the iterations. Theoretical
analysis demonstrates the convergence in expectation and shows the convergence rate is faster
than that of the existing surrounding method. Numerical experiments further verify our analysis,
and show that restarted strategies are efficient which can greatly accelerate the surrounding
method.

The organization of the rest paper is as follows. In Section 2, we give some notations and
propose the restarted randomized surrounding algorithms. In Section 3, the convergence analysis
is given and compared with the existing results. Numerical experiments are presented in Section
4 compared with the surrounding method. Finally, in Section 5, we end this paper with the
conclusions.

2 The restarted randomized surrounding method

In this section, after introducing the notations and reviewing the existing method, we intro-
duce the restarted randomized surrounding method for solving the linear equations (1.1).

Denote aTi = [ai1, ai2, . . . , ain] and bi be the ith row of A and the ith entry of the right-hand
side vector b respectively. Let xk be the kth approximate solution and x∗ be the exact solution
of the linear equations (1.1) respectively, which is actually the intersection of the n hyperplanes
aTi x = bi(1 ≤ i ≤ m).

By choosing ik from the set {1, 2, · · · ,m} with probability proportional to ‖ai‖22, Steiner-
berger [13] proposed a surrounding method as follows.

xk+1 = xk + 2
bik − aTikxk

‖aik‖22
aik , 1 ≤ k ≤ M, (2.1)

= (I − 2
aTikaik

‖aik‖22
)xk + 2

bik
‖aik‖22

aik , 1 ≤ k ≤ M. (2.2)

After M reflections, the approximate solution is given by the average of all the reflective points
1
M

∑M
k=1 xk.

Steinerberger [13] proved that the approximate solution approaches to the true solution x∗
when M goes to infinity, e.g., lim

M→∞

1
M

∑M
i=1 xk = x∗ and the convergence rate in expectation

was given by

E

∥

∥

∥

∥

∥

x∗ −
1

M

M
∑

k=1

xk

∥

∥

∥

∥

∥

≤ 1 + ‖A‖F
∥

∥A−1
∥

∥

√
M

‖x∗ − x0‖ . (2.3)

It is easily seen that it requires quite a number of reflective points to achieve a satisfying
convergence precision, which is usually very expensive.

In order to accelerate the convergence of the randomized surrounding method, a restarted
version is proposed which firstly reflects several times and then takes the average of the reflective
points as the initial to restart the iterations.

The framework of the restarted randomized surrounding method (abbreviated as RRS) can
be described as follow:
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Algorithm 1 Restarted randomized surrounding (RRS) algorithms

Input: A, b, initial guess x0 = y
(0)
0 ∈ R

n, restarted number q.
Output: approximate solution xk+1.
1: for k = 0, 1, 2, . . . do

2: for i = 1, 2, . . . , q − 1 do

3: Select a row index ik randomly according to pik =
‖aik‖

2

‖A‖2
F

4: Set y
(i)
k = y

(i−1)
k + 2

bik−aTik
y
(i−1)
k

‖aik‖
2
2

aik

5: end for

6: Compute the approximate solution: xk+1 =
1
q

∑q−1
i=0 y

(i)
k

7: Update y
(0)
k+1 = xk+1

8: end for

9: return xk+1

We plot a sketch graph to demonstrate the idea of restarted randomized surrounding method
in Figure 1, where the green diamond points are the approximate solutions which eventually
converge to the center, namely the true solution. In Figure 1, the star points and circle points
denote the randomized reflective points generated in the first and second loops respectively.
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Fig. 1. Sketch of restarted randomized surrounding method

3 Convergence analysis

Denote the Householder reflection matrix corresponding to the ith hyperplane by

Hi = I − 2
aia

T
i

aTi ai
, i = 1, 2, . . . ,m. (3.1)

which is an n × n orthogonal matrix. We give the convergence of restarted randomized sur-
rounding method as follows.
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Lemma 3.1. In every iteration, if q reflections are randomly computed where ik is taken from

the set {1, 2, · · · ,m} with the probability pik =
‖aik‖

2

‖A‖2
F

, then the sequence {‖xk − x∗‖} is non-

increasing.

Proof . Without loss of generality, we assume that the rows with indices {i1, . . . , iq} are selected
in k-th iteration step and set

Qj = HijHij−1 · · ·Hi1 , Q0 = I, j = 1, . . . , q. (3.2)

where I represents the identity matrix of size n. Since Qj is a product of the Householder
matrices, Qj is orthogonal and nonsingular. Hence,

xk+1 − x∗ =
1

q

(

q
∑

i=1

y
(i)
k

)

− x∗

=
1

q

q
∑

i=1

(y
(i)
k − x∗)

=
1

q
(Q1 +Q2 + · · ·+Qq)(xk − x∗).

(3.3)

Due to distance-preserving transformation,

‖xk+1 − x∗‖ ≤ 1

q

q
∑

j=1

‖Qj(xk − x∗)‖ =
1

q

q
∑

i=1

‖(xk − x∗)‖ = ‖(xk − x∗)‖. (3.4)

Because the linear combination is convex, the equality in (3.4) holds if and only if

xk − x∗ = Q1(xk − x∗) = · · · = Qq(xk − x∗).

If xk 6= x∗ and N (A) = {0}, then ‖1
q
(Q1 + Q2 + · · · + Qq)‖ < 1, which yields the sequence

{‖xk − x∗‖} is decreasing.
From the Lemma 3.1, it is seen that the restarted randomized surrounding algorithm is

convergent. Further, we estimate and analyze the convergence rate of the restarted randomized
surrounding algorithm as follow.

Theorem 3.1. If ik is taken with the probability pik =
‖aik‖

2

‖A‖2
F

and q reflections are randomly

taken in every iteration, it holds

E‖x∗ − xk‖2 ≤ γk‖x0 − x∗‖2, 0 < γ < 1, (3.5)

where the constant γ < 1
q
+ 2

q2

∑q−1
i=1 (q − i)‖L‖i and ‖L‖ = 1− 2σ2

min

‖A‖2
F

.

Proof . Denote 〈·, ·〉 be the Euclidean inner product, for all x, y ∈ R
n, ij ∈ {1, 2, . . . ,m}, we

have

Eij (〈y,Qjx〉) = Eij

(

〈y, (I − 2
aija

T
ij

‖aij‖2
)Qj−1x〉

)

=〈y,Qj−1x〉 − 2Eij

(

〈y,
aija

T
ij

‖aij‖2
Qj−1x〉

)

=〈y,Qj−1x〉 − 2〈y,
m
∑

j=1

‖aij‖2
‖A‖2F

(

aija
T
ij

‖aij‖2
Qj−1x

)

〉

=〈y,Qj−1x〉 −
2

‖A‖2F

m
∑

j=1

yTaija
T
ij
Qj−1x

=〈(I − 2

‖A‖2F
ATA)y,Qj−1x〉 := 〈Ly,Qj−1x〉.

(3.6)



Restarted randomized surrounding methods for solving large linear equations 5

Similarly, it is obtained that

Ei1,i2,...,ij〈y,Qjx〉 = Ei1,i2,...,ij−1〈Ly,Qj−1x〉 = Ei1,i2,...,ij−2〈L2y,Qj−2x〉 = · · · = 〈Ljy, x〉. (3.7)

Since L = I − 2
‖A‖2

F

ATA is a symmetric matrix,

ρ(L) = ‖L‖ ≤ 1− 2σ2
min

‖A‖2F
, (3.8)

where σmin is the smallest singular value of A. Thus,

|Ei1,i2,...,ij 〈x,Qjx〉| ≤ ‖Ljx‖‖x‖ ≤ ‖L‖j‖x‖2.

Let ek = xk − x∗ and it holds that

E‖x∗ − xk+1‖ = E‖x∗ −
1

q

q−1
∑

j=0

Qjxk‖2 =
1

q2
E‖

q−1
∑

j=0

Qjek‖2

=
1

q2





q−1
∑

j=0

〈Qjek, Qjek〉+ 2E

q−2
∑

j=0

q−1
∑

ℓ=j+1

〈Qjek, Qℓek〉





=
1

q
‖ek‖2 +

2

q2
E

q−2
∑

j=0

q−1
∑

ℓ=j+1

〈Qjek,Hiℓ · · ·Hij+1(Qjek)〉

≤ 1

q
‖ek‖2 +

2

q2

q−2
∑

j=0

q−1
∑

ℓ=j+1

‖Lℓ−j‖‖Qjek‖2 := γ‖ek‖2,

(3.9)

where γ is a constant and ‖L‖ < 1. By calculating,

γ =
1

q
+

2

q2

[

(q − 1)‖L‖ + (q − 2)‖L2‖+ · · ·+ ‖Lq−1‖
]

≤ 1

q
+

2

q2

[

(q − 1)‖L‖ + (q − 2)‖L‖2 + · · ·+ ‖L‖q−1
]

< 1.

Hence, it holds that

E‖x∗ − xk+1‖2 ≤ γ‖xk − x∗‖2 ⇒ E‖x∗ − xk‖2 ≤ γk‖x0 − x∗‖2.

As a consequence of Theorem 3.1, when the restarts are carried out every q reflection for k
times, i.e., total kq iterations, then the convergence rate of restarted randomized surrounding
method is γk = O( 1

qk
), which is much less that O( 1

kq
), the rate of the randomized surrounding

method if k > 2 and q > 2. It shows the potential that the restarted version could be faster
than the original one.

The restarted randomized surrounding method can be generalized into more efficient ap-
proaches by introducing the relaxation. For instance, the restarted randomized surrounding
method can still converge when the approximate solution is chosen to be the convex linear com-

bination xk+1 =
∑q−1

i=0 ω
(i)
k y

(i)
k , where weights

∑q−1
i=0 ω

(i)
k = 1 and ω

(i)
k > 0. Moreover, the restart

number q in the iteration could be flexible to get better numerical performances.

4 Numerical experiments

In this section, numerical experiments are presented to demonstrate the efficiency of the
restarted randomized surrounding method and compared with the original randomized sur-
rounding method.
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All the methods start from the zero vector and stop when the norm of relative error vector
(denoted by ‘ERR’) satisfies

ERR =
‖xk − x∗‖22
‖x0 − x∗‖22

≤ 10−6,

or achieves the maximal number of the iteration, e.g., 5000. The number of iteration steps
(denoted by ‘IT’), the elapsed CPU time in seconds (denoted by ‘CPU’) of the randomized
surrounding method (abbreviated as ‘RS’) and the proposed restarted randomized surrounding
method are compared.

Example 1. The test matrices are generated by using the Matlab function A = randn(m,n)
where the components are normally distributed random numbers. The consistent linear system
is constructed by b = Ax∗ where the exact solution x∗ is an all-one vector.

The curves of the relative error versus the number of the iteration are plotted in Figure 2
for the RS, RRS(5), RRS(10) and RRS(20) methods respectively.
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Fig. 2. Convergence curves for overdetermined and underdetermined cases

From Figure 2, it is observed that the restarted randomized surrounding method converges
with expected linear rate and the curves decrease much steeper than that of randomized sur-
rounding method in both the underdetermined and overdetermined cases. It indicates that
restarted randomized surrounding method is much efficient than the original randomized sur-
rounding method for underdetermined and overdetermined cases.

In order to further compare the convergence performance, in Table 1 and Table 2, the
number of iteration and the elapsed CPU time of randomized surrounding method and restarted
randomized surrounding method for q = 5, 10 and 20 are listed for different sizes respectively.
All results are computed the average over 40 trials.

From Table 1 and Table 2, it is seen that the restarted randomized surrounding methods are
efficient, and require less steps and CPU time than randomized surrounding method. Among
these methods, the restarted randomized surrounding methods with q = 5 performs the best,
which indicates that a small number of restart may greatly improve the rate of convergence.

Example2. The test matrices are chosen from the SuiteSparse Matrix Collection. The
property of the matrices including size, density, rank and Euclidean condition number (i.e.,
cond ) of the tested matrices are given in Table 3.
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1000 × 100 2000 × 100 3000 × 100 4000 × 100 5000 × 100

RS
IT 5000 5000 5000 5000 5000

CPU 0.0088 0.0093 0.0100 0.0097 0.0107

RRS(5)
IT 1929 1830 1812 1804 1776

CPU 0.0035 0.0036 0.0040 0.0039 0.0041

RRS(10)
IT 2062 1962 1952 1945 1950

CPU 0.0036 0.0038 0.0050 0.0041 0.0044

RRS(20)
IT 2163 2092 2061 2064 2043

CPU 0.0038 0.0041 0.0047 0.0043 0.0045

Table 1. Numerical results for overdetermined cases

100 × 1000 100× 2000 100× 3000 100 × 4000 100 × 5000

RS
IT 5000 5000 5000 5000 5000

CPU 0.0282 0.0584 0.1114 0.1847 0.3399

RRS(5)
IT 1729 1608 1541 1531 1472

CPU 0.0093 0.0182 0.0331 0.0539 0.0922

RRS(10)
IT 1893 1740 1663 1672 1666

CPU 0.0102 0.0194 0.0371 0.0596 0.1052

RRS(20)
IT 1978 1893 1805 1775 1741

CPU 0.0106 0.0211 0.0404 0.0630 0.1112

Table 2. Numerical results for underdetermined cases

name crew1 bibd 13 6 cari bibd 16 8

size 135× 6469 78× 1716 400× 1200 120 × 12870

rank 135 78 400 120

density 5.38% 19.23% 31.83% 23.33%

cond 18.20 6.27 3.13 9.54

Table 3. Information of the matrices from the Matrix Market
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Fig. 3. Convergence curves for the matrices from Matrix Market

The curves of the relative error versus the number of the iteration are plotted in Figure 3 for
randomized surrounding method and restarted randomized surrounding methods respectively.
From Figure 3, it is seen that all the restarted randomized surrounding methods converges faster
than the randomized surrounding method, which further confirms the efficiency of the restart
technique.

In Table 4, the number of iteration and the elapsed CPU time of the randomized surrounding
method and restarted randomized surroundingmethods when q = 5, 10, 20 are listed respectively.

Method crew1 bibd 13 6 cari bibd 16 8

RS
IT 5000 5000 5000 5000

CPU 22.3069 5.2526 4.2073 79.2887

RRS(5)
IT 11921 2027 6319 3592

CPU 5.2916 0.2139 0.5388 5.5906

RRS(10)
IT 11545 2210 6901 3914

CPU 5.0950 0.2319 0.5826 6.0782

RRS(20)
IT 11456 2399 7256 4304

CPU 5.1426 0.2502 0.6167 6.6959

Table 4. Numerical results for the matrices from Matrix Market

From Table 4, it is seen that the restarted randomized surrounding methods are efficient, and
require less number of iteration and CPU time than the randomized surrounding method. For
the matrix ‘crew1’, RRS(10) require the least CPU time while RRS(20) take the least number
of iteration; for the other three examples, RRS(5) require the least CPU time and the least
number of iteration. This implies that the restarted strategy is efficient and can greatly improve
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the convergence while the optimal restart number is possibly problem depended.
Example 3. Finally, we compare these methods for solving a 2-D parallel-beam tomography

problem and a seismic travel-time tomography problem generated by AIR tool box. The right
term is b = Ax∗+e where e is the noise vector and the relative noise level is 0.01. The signal-noise
ratio (SNR) is defined as

SNR := 10 log10

∑n
i=0 x

2
i

∑n
i=0(xi − x̂i)2

where x is the original clean signal, x̂ is the denoised signal, and n is the length of the signal.
The greater the value of SNR is, the better the denoising effect. The reconstruction images
are compared in Figures 4 and 5 for a 2-D parallel-beam tomography problem and a seismic
travel-time tomography problem respectively, after 100m iterations where m is the number of
rows.

Exact phantom RS

SNR=18.7891

RRS(5)

SNR=23.0932

RRS(10)

SNR=23.8002

Fig. 4. 2-D parallel-beam tomography problem where A ∈ R
23883×2500

Exact phantom RS

SNR=8.4278

RRS(5)

SNR=14.5765

RRS(10)

SNR=14.8254

Fig. 5. 2-D seismic travel-time tomography problem where A ∈ R
2500×2500

From Figures 4 and 5, it is observed that the restarted randomized surrounding method can
remove the noise and restore the real image efficiently. Moreover, the images reconstructed by the
restarted randomized surrounding methods are better than that of the randomized surrounding
method from the viewpoint of the sharpness of images and higher values of SNR. Among the
three approaches, it is seen that the recovered image of RRS(10) is the best.

5 Conclusions

Restarted randomized surrounding methods are proposed for solving large linear problems.
The convergence theory is established when the probability of row selection rule is proportional
to the squared norm of row. Numerical experiments verify the proposed algorithms are efficient
and outperform the existing method for overdetermined and underdetermined linear equations,
as well as in the application in image processing. The continue work including of the dynamical
restarted strategies, relaxation and the randomized selection rule are deserved to further study
in the future.
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