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STRONG COMPARISON PRINCIPLE FOR A P-LAPLACE EQUATION INVOLVING
SINGULARITY AND ITS APPLICATIONS

R.DHANYA1*, M.S. INDULEKHA2 AND RITABRATA JANA3

ABSTRACT. We prove a strong comparison principle for radially decreasing solutions u, v ∈
C

1,α
0

(BR) of the singular equations −∆pu−
λ
uδ = f(x) and −∆pv−

λ
vδ = g(x) in BR, where

1 < p ≤ 2, δ ∈ (0, 1) and λ > 0. We assume that f and g are continuous radial functions
with 0 ≤ f ≤ g and f 6≡ g in BR. Also, a counterexample is provided where the strong
comparison principle is violated when p > 2. In addition, we prove a three solution theorem
for p-Laplace equation as an application of strong comparison principle. This is illustrated
with an example.
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1. Introduction

Strong comparison principle for p-Laplacian is an inevitable tool in the analysis of partial
differential equations. It is useful in establishing existence and uniqueness results, a-priori
estimates, symmetry results, etc. We consider the following p-Laplace equations for p ∈
(1,∞)

−∆pu−
λ
uδ = f(x) in BR

−∆pv −
λ
vδ

= g(x) in BR

u = v = 0 on ∂BR











(1.1)

where BR ⊂ R
n is an open ball of radius R centred at origin, δ ∈ (0, 1) and λ > 0. The

functions f and g belong to C(BR) and are radial such that 0 ≤ f ≤ g and f 6≡ g in BR. We
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assume that u and v belong to C
1,α
0 (BR) for some α ∈ (0, 1). Clearly, the solutions u and

v of (1.1) are positive in BR. Given that f ≤ g, by weak comparison principle we observe
that u ≤ v. The strong comparison principle (SCP) for (1.1) reads as

0 < u < v in BR and
∂v

∂ν
<
∂u

∂ν
< 0 on ∂BR (1.2)

where ν denotes the outward normal vector on ∂BR. The main goal of this article is to
investigate to what extend the strong comparison principle (1.2) is valid for the p-Laplace
equation with a singular nonlinearity as in (1.1).

In the literature, standard methods of strong comparison principle were developed for
equations

−∆pu− b(x, u) = f(x) in Ω
−∆pv − b(x, v) = g(x) in Ω

u = v = 0 on ∂Ω







(1.3)

where b(x, ·) is an increasing function for each x. If u ≤ v and f(x) ≤ g(x), then we have
f ∗ ≤ g∗, where f ∗ := b(x, u) + f(x) and g∗ := b(x, v) + g(x). Now the comparison principle
of [10] is applicable for −∆pu = f ∗ and −∆pv = g∗ and yields u(x) < v(x) for all x ∈ Ω.
On the other hand, the above technique is no longer applicable for (1.1) as the function
b(x, ·) is decreasing for each x.

Giacomoni et. al. in [7] derived a strong comparison principle for quasilinear elliptic
equation with singular non-linearity. Here the authors proved that u < v in Ω for the same
set of equations (1.1), but with a stronger assumption 0 ≤ f < g in Ω. In contrast to this,
we no longer assume f < g and hence the result obtained is stronger. In [12], the SCP
is shown for PDE of the type −∆pu − λ

uδ + σup−1 = f(x) with similar assumptions as in
[7]. It is noteworthy to mention that in both these articles authors have used the fact that
g − f attains a positive minimum in any compact subset of Ω. Our main focus here is to
investigate the validity of SCP relaxing this condition. In section 2, we state the main result
as Theorem 1.1, where we prove that the SCP is valid in BR if 1 < p ≤ 2 and 0 ≤ f ≤ g. In
addition to this, we provide a counterexample for the SCP when p > 2.

Theorem 1.1. Let 1 < p ≤ 2, λ > 0 and f, g be continuous radial functions in BR such that
0 ≤ f ≤ g in BR and f 6≡ g in BR. Assume that u, v ∈ C1,α(BR), are radially decreasing

solutions of −∆pu − λ
uδ = f(x) and −∆pv −

λ
vδ

= g(x), u = v = 0 on ∂BR. Then 0 < u < v

in BR and ∂v
∂ν
< ∂u

∂ν
< 0 on ∂BR.

If f and g are L∞ functions in BR, then by the regularity results in [7], the solutions u
and v belong to C1,α(BR). If we assume that f, g are radial and radially decreasing, the
solutions are expected to be radially decreasing by a recent work of [6].

The existence of multiple solutions of elliptic problems is another interesting area of
research. In the third section of this paper, we shall see how an SCP is helpful in obtaining
a third solution when two pairs of ordered sub and super-solutions are known(see also the
example given at the end of section 3). In this regard, we consider the following elliptic
problem in a bounded open set Ω in R

N :

−∆pu = λ( 1
uδ +G(u)) in Ω ; u > 0 in Ω, u = 0 on ∂Ω. (1.4)
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We assume that 0 < δ < 1 and the function G : R → [0,∞) is monotonically increasing
in R

+ with G(0) = 0. We define the solution operator AG in definition 3.3, section 3 and
prove the three solution theorem.

Theorem 1.2. (Three solution theorem) Suppose there exists two pairs of ordered sub and
supersolutions (ψ1, φ1) and (ψ2, φ2) of (1.4) with the property ψ1 ≤ ψ2 ≤ φ1, ψ1 ≤ φ2 ≤ φ1

and ψ2 6≤ φ2. Additionally assume that ψ2, φ2 are not solutions of (1.4) and AG(φ2) < φ2

and AG(ψ2) > ψ2. Then there exists at least three solutions ui, i = 1, 2, 3 for (1.4) where
u1 ∈ [ψ1, φ2], u2 ∈ [ψ2, φ1] and u3 ∈ [ψ1, φ1] \ ([ψ1, φ2] ∪ [ψ2, φ1]).

2. Strong Comparison Principle

In this section we prove the main result, Theorem 1.1:

Proof. Given that f ≤ g, using the test function (u − v)+ in the weak formulation of the
problem we can find that u(x) ≤ v(x) ∀x ∈ BR. Now, for any 0 < r < R, define Ur :=
BR \Br. Since u and v are radially decreasing in BR \ {0} we have du

dr
< 0 and dv

dr
< 0. Next

we write w = v − u and following the idea of [7] the system of equations in (1.1) can be
re-written as

−div(A(x)∇w)− λB(x)w = g − f ≥ 0 in Ur

w ≥ 0 on ∂Ur
(2.5)

for a matrix A(x) = [aij(x)] and a scalar function B(x). Here,

aij(x) =

∫ 1

0

|(1− t)∇u(x) + t∇v(x)|p−2
[

δij + (p− 2)
((1− t)uxi

+ tvxi
)((1− t)uxj

+ tvxj
)

|(1− t)∇u(x) + t∇v(x)|2

]

dt

and B(x) = −δ

∫ 1

0

dt

((1− t)u(x) + tv(x))δ+1
.

Using the assumptions on u and v, we note that A(x) = [aij(x)] is uniformly elliptic in Ur

for every r > 0. We now fix an r0 > 0 such that f−g 6≡ 0 in Ur0 , which is possible as f, g are
assumed to be continuous in BR. Now applying the strong maximum principle Theorem
2.5.2 of [13] we conclude that w > 0 in Ur for all r < r0. In fact this implies that w(x) > 0
for all x 6= 0.

In the next step, by exploiting the ideas in section 3 of [4] we will show that w is strictly
positive in Br0 as well . Using the radial symmetry of solutions, the problem (1.1) can be
reduced to a system of ODEs:

u
′

1 = α(r, u2), u1(r1) = u1,0

u
′

2 = −
N − 1

r
u2 + βf (r, u1), u2(r1) = u2,0 (2.6)

where r1 ∈ (0, R), u1(r) = u(r), u2(r) = |u
′

(r)|p−2u
′

(r). We denote by βf (r, y) the function

−( λ
yδ

+ f(r)) and α(r, y) : (0, R)× R → R is given by

α(r, y) =

{

y
1

p−1 if y ≥ 0

|y|
1

p−1 if y < 0.
(2.7)

Clearly u1(R) = u2(0) = 0. Analogously we can write

v
′

1 = α(r, v2), v1(r1) = v1,0
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v
′

2 = −
N − 1

r
v2 + βg(r, v1), v2(r1) = v2,0 (2.8)

where v1(R) = v2(0) = 0.
Suppose u(r

′

) = v(r
′

) for some r
′

< r0(where r0 is as in the first part of the proof).
As w ≥ 0 in BR, its minimum is attained at r′ and hence dw

dr
(r′) = 0. Taking r1 = r′

in the systems of ODE, u1,0 = v1,0 and u2,0 = v2,0. For the function b(x, u) = λu−δ we

have 0 ≤ − ∂b
∂u

∈ L∞

loc((−R,R) × (0,∞)), and hence by using Lemma 3.2 of [4], we obtain
v1(r) ≤ u1(r) ∀ r ∈ [r1, R) which contradicts the fact thatw > 0 in Ur0 . Therefore, 0 < u < v

in BR. Finally we note that since w > 0 in BR, we can apply Theorem 2.7.1 of Pucci and
Serrin[13] to conclude that ∂v

∂ν
< ∂u

∂ν
< 0. �

From a careful observation of the above proof we note that the hypothesis of the Theo-
rem 1.1 can be modified as in the next theorem and still the strong comparison principle
holds.

Theorem 2.1. Let 1 < p ≤ 2 and u, v be positive radially decreasing solutions of (1.1). Also
assume that f, g are continuous radial functions in BR such that f ≤ g and f 6≡ g. Then
u(x) < v(x) for all x ∈ BR.

When p > 2, under the given assumptions of the above theorem we can show that u < v

in BR \ {0}. On the other hand, when 1 < p ≤ 2, our Theorem 1.1 uses the smoothness of

the map t → t
1

p−1 along with the Muller Kamke theorem [14] to prove u(0) < v(0). In the
next example we prove that the above result(Theorem 2.1) need not be true when p > 2.

Counter example to Theorem 2.1 when p > 2: For 0 < θ < ∞, define uθ(x) := 1 − rθ

and fθ(x) := ((p− 1)(θ− 1)− 1+N)θ(p−1)r(p−1)(θ−1)−1 −λ(1− rθ)−δ, where r = |x|. Clearly,

−∆puθ − λu−δ
θ = fθ in B1

uθ = 0 on ∂B1 (2.9)

Also, uθ > 0 in B1 and fθ ∈ C(B1) for all θ ∈ (0,∞). We observe that uθ(0) = 1 for all θ and
uθ1(x) < uθ2(x) for all x in B1 \ {0} when 0 < θ1 < θ2 < ∞. We claim that, we can choose
θ1, θ2 and λ > 0 appropriately so that fθ1(x) ≤ fθ2(x) in B1 and thus the strong comparison
principle (Theorem 2.1) is violated. To this end, it is enough to prove that ∂θfθ ≥ 0. Now,

∂θfθ(r) = (p− 1)(p(θ − 1) +N)θp−2r(p−1)(θ−1)−1 +

(p− 1)(p(θ − 1) +N − θ)θp−1r(p−1)(θ−1)−1ln(r) +

(−λδ(1− rθ)−δ−1rθln(r))

Define lp(θ) :=
1
θ
+ 1

p(θ−1)+N−θ
> 0 for 1 < θ <∞. If r ∈ [e−lp(θ), 1], the first two summands

of ∂θfθ give non-negative sum and since λ > 0 the third summand is also positive. This
gives ∂θfθ(r) ≥ 0 when e−lp(θ) ≤ r ≤ 1. Next when r ∈ (0, e−lp(θ)), we first choose θ ≥ p

p−2

so that we get

(p− 1)(p(θ − 1) +N − θ)θp−1r(p−1)(θ−1)−1−θ − λδ(1− rθ)−δ−1 ≤ (p− 1)(p(θ − 1) +N − θ)θp−1 − λδ.

Now we choose λ large enough, for instance λδ ≥ (p− 1)(p(θ− 1) +N − θ)θp−1 so that the
sum of last two terms in ∂θfθ(r) is positive. The first term of ∂θfθ(r) is always positive and
thus ∂θfθ(r) ≥ 0 for r ∈ (0, e−lp(θ)) as well. Thus we conclude that the strong comparison
principle does not hold true if we choose p

p−2
≤ θ1 < θ2 <∞ and λ large enough. �
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3. Three Solution Theorem

In this section we consider the following quasilinear BVP with singular nonlinearity:

−∆pu = λ( 1
uδ +G(u)) in Ω ; u > 0 in Ω, u = 0 on ∂Ω. (3.10)

Ω is a bounded open subset of RN , N ≥ 1 with smooth boundary ∂Ω and 0 < δ < 1. The
function G : R → [0,∞) is monotonically increasing in R

+ with G(0) = 0. We prove the
existence of three solutions of (3.10) whenever there exists two pairs of ordered sub and
super solutions. We use a technique similar to that in [5], where the authors have proved
this result for the linear case p = 2. We remark here that all the results in this section can
be concluded for −∆pu = λ( c

uδ +G(u)) where c is any positive constant.

Definition 3.1. A function u ∈ C1,α(Ω̄) is said to be a sub-solution(super solution) of (3.10)
if u > 0 in Ω, u = 0 on ∂Ω and

∫

Ω

|∇u|p−2∇u∇φ ≤ ( ≥ )λ

∫

Ω

(
1

uδ
+G(u))φ

holds for all non-negative test functions φ ∈ C∞

c (Ω). If a function u is both sub solution and
super solution, then it is called a solution of (3.10).

Definition 3.2. Given λ > 0 and 0 < δ < 1, we define ξλ as the unique positive solution of
−∆pξλ = λξ−δ

λ in Ω; ξλ|∂Ω = 0. By [7], we know that there exists positive constants l, L for
which l d(x) ≤ ξλ ≤ Ld(x), where d(x) = d(x, ∂Ω).

Definition 3.3. For a given λ > 0, we define the map AG : C0(Ω̄) → C
1,α
0 (Ω̄) as AG(u) = w

iff w is a weak solution of −∆pw − λ
wδ = λG(u) in Ω ; w > 0 in Ω , w = 0 on ∂Ω.

Lemma 3.4. The map AG is well defined, monotone operator from C0(Ω̄) to C
1,α
0 (Ω̄).

Proof. For a given u, existence and uniqueness of a non-negative weak solution w =
AG(u) ∈ W

1,p
0 (Ω) can be proved by the minimization of a suitable energy functional as

discussed in Lemma 3.1 of [7] or by following the idea of proof of Theorem 3.2 in [8].
Again using the results in Appendix B of [7], it can be shown that w ∈ C1,α(Ω̄). Now
the monotonicity of the map AG easily follows as G is assumed to be a monotonically
increasing function. �

We define e ∈ C1,α(Ω̄) as the unique positive solution of −∆pe = 1 in Ω with zero
Dirichlet boundary condition. Ce(Ω̄) is the set of functions in C0(Ω̄) such that |u| ≤ te(x)
for some t > 0. Ce(Ω̄) is a Banach space equipped with the norm ‖u‖e = inf{t > 0 : |u(x)| ≤
te(x)} (see [5] for more details).

Proposition 3.5. The map AG : Ce(Ω̄) −→ Ce(Ω̄) is completely continuous.

Proof. Recalling the continuous embedding C
1,α
0 (Ω̄) →֒ C1

0(Ω̄) →֒ Ce(Ω̄) →֒ C0(Ω̄) it is

enough to show that AG : C0(Ω̄) −→ C
1,α
0 (Ω̄) is continuous. Let {uh} ⊂ C0(Ω̄) be such that

‖uh − u‖C0(Ω̄) → 0 as h → 0. Let AG(u) = w and AG(uh) = wh. Since G is positive, we get

−∆pwh − λ

wδ
h

= λG(uh) ≥ 0. Using weak comparison principle, we conclude wh ≥ ξλ ≥
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cd(x). Thus, for some positive constants C and C1 independent of h, we have

w−δ
h +G(uh) ≤

C

d(x)δ
≤
C1

ξδλ
.

Again from the weak comparison principle we have ξλ ≤ wh ≤ kξλ. Now we can use
Theorem B.1 of [7] and obtain a C1,α

0 uniform bound for {wh}, that is, there exists M > 0
such that

sup
h

‖wh‖C1,α
0 (Ω̄) ≤M.

By the compact embedding C1,α
0 (Ω̄) ⊂⊂ C

1,α′

0 (Ω̄) where 0 < α′ < α, the sequence wh has

a convergent subsequence in C
1,α′

0 (Ω̄), namely {whi
}. The uniqueness of weak solution

of the equation −∆pw − λ
wβ = λG(u) would imply that whi

→ w in C
1,α′

0 (Ω̄). Through a

standard subsequence argument it can be shown that wh → w in C1,α′

0 (Ω̄) and thus the the

map AG : C0(Ω̄) → C
1,α′

0 (Ω̄) is continuous. Once again using Ascoli Arzela theorem it is
easy to prove that the map AG is completely continuous from Ce(Ω̄) to itself. �

Authors in [8] consider a system of quasilinear equations with a singular non-linearity
and prove that the associated operator is completely continuous. Furthermore, they show
the existence of its solution using Schauder’s fixed point theorem. Our aim is to use a fixed
point theorem due to Amann [2] to prove the existence of three solutions to (3.10).
Proof of Theorem 1.2 : Existence of two solutions u1 ∈ [ψ1, φ2] and u2 ∈ [ψ2, φ1] is
straight forward as the map AG is monotone and completely continuous. The proof of ex-
istence of a third solution follows as in the case of Laplacian(see Theorem 3.9 of [5]), but
we shall briefly describe the underlying idea here. Using the given condition AG(φ2) < φ2

we note that ψ1 ≤ u1 < φ2. Also,

−∆pu1 −
λ

uδ
1

= λG(u1) in Ω

−∆pφ2 −
λ

φδ
2

≥ λG(φ2) in Ω

u1 = φ2 = 0 on ∂Ω.

(3.11)

Since u1 < φ2 and G is strictly increasing, using Theorem 2.3 of [7] (or by Theorem 2.7.1
of Pucci and Serrin[13]) we have ∂u1

∂ν
> ∂φ2

∂ν
, or φ2 − u1 ≥ c1e(x) for some positive constant

c1. Similarly for some constant c2 > 0 we can show that u2 − ψ2 > c2e(x). Now the open
balls,

Bk = {z ∈ Ce(Ω̄)} : ‖z − uk‖e < ck}

for k = 1, 2 lie entirely inside X1 = [ψ1, φ2] and X2 = [ψ2, φ1] respectively. Thus we prove
that Xi for i = 1, 2 have non-empty interior and appeal to the fixed point theorem of
Amann [2] to conclude the existence of a third solution u3 ∈ [ψ1, φ1] \ ([ψ1, φ2] ∪ [ψ2, φ1]).

�

Next we wish to understand under what hypothesis the conditions AG(ψ2) > ψ2 and
AG(φ2) < φ2 are valid. Let ψ2 be a sub-solution of (3.10), then ψ2 is also a weak solu-
tion of the BVP

−∆pψ2 −
λ

ψδ
2

= λG̃(x) in Ω

ψ2 = 0 on ∂Ω







(3.12)
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for some function G̃ defined on Ω. Since ψ2 is a subsolution we have G̃(x) ≤ G ◦ ψ2(x). In

most of the applications, when ψ2 is known the function G̃ happens to be continuous in Ω.
If we write ω = AG(ψ2), then

−∆pω −
λ

ωδ
= λG(ψ2) in Ω

ω = 0 on ∂Ω







(3.13)

If Ω = BR is a ball and 1 < p ≤ 2, Theorem 1.1 provides a sufficient condition that
ensures the hypothesis of the three solution theorem. This result is stated as the following
proposition. Similar results hold true for φ2 as well.

Proposition 3.6. Let 1 < p ≤ 2 and Ω = BR. Suppose ψ2 and AG(ψ2) are radially decreasing

functions in BR. If G̃(x) is a continuous radial function in BR, then we have AG(ψ2) > ψ2.

Next we shall state another condition which can be useful to prove the three solution
theorem.

Proposition 3.7. Let 1 < p < ∞ and Ω is an arbitrary bounded open set with smooth

boundary. Assume that G̃(x) < G(ψ2(x)) for all x ∈ Ω. Then AG(ψ2) > ψ2.

Proof. Proof is a straightforward application of the strong comparison principle in Theorem
2.3 of [7] or Proposition 4 of [12]. �

We demonstrate the three solution theorem for an elliptic equation with singularity
through an example.

Example 3.1 Ko et al. [9] have considered the boundary value problem

−∆pu = λ
F (u)

uδ
in Ω

u = 0 on ∂Ω

u > 0 in Ω















(3.14)

where 1 < p < ∞, δ ∈ (0, 1), λ is a positive parameter and Ω is a bounded domain
in R

N , N ≥ 1, with smooth boundary. It is also assumed that F ∈ C1([0,∞)) is a non-

decreasing function with F (u) > 0 for all u ≥ 0 and limu→∞

F (u)
uδ+p−1 = 0. With a few more

technical assumptions on F , in [9], authors have established the existence of two posi-
tive solutions u1, u2 of (3.14) by constructing two pairs of sub-super solutions (ψ1, φ1)and
(ψ2, φ2) whenever λ ∈ (λ∗, λ

∗) as given in the Theorem 1.3 of [9]. A model problem was

given by F (u) = e
αu
α+u for α >> 1. We urge the readers to go through the cited reference

to know about the exact definition of λ∗, λ
∗ and sub-supersolutions ψi and φi.

We intend to modify the construction of the subsolution ψ2 given in [9] and by abuse of
notation we call the new subsolution also as ψ2. This reconstruction of ψ2 is necessary to
use Proposition 3.7 and we conclude the example by showing (3.14) has a third solution
u3 when λ ∈ (λ∗, λ

∗). For ease of notation let us assume that F (0) = 1. Now we re-write

the equation (3.14) as (3.10) by taking G(u) := F (u)−F (0)
uδ . Clearly, Theorem 1.2 would

guarantee the existence of a third solution u3 ∈ [ψ1, φ1] \ ([ψ1, φ2] ∪ [ψ2, φ1]) of (3.14) if
AG(φ2) < φ2 and AG(ψ2) > ψ2. For our purpose of establishing AG(ψ2) > ψ2, as mentioned
before we slightly modify the construction of ψ2 given in [9]. We first fix a λ ∈ (λ∗, λ

∗) and
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define H(u) := h(u)
1+ǫλ

where h(u) is given in Page no-7 of [9]. Here ǫλ is chosen in such a

way that λ
1+ǫλ

still lies within the interval (λ∗, λ
∗). We now follow the construction of sub-

solution ψ2 in [9] except for equation number (5) in page 8. If we modify this particular
equation (5) in [9], with −∆pu = λH(u) in Ω; u|∂Ω = 0 and redo the calculations then the
resulting sub-solution verifies the strict inequality AG(ψ2) > ψ2. From the definition of φ2

in [9], clearly AG(φ2) < φ2.

We summarize the above discussion in the following remark.

Remark 3.8. The boundary value problem (3.14) admits three solutions whenever λ ∈
(λ∗, λ

∗). �

Towards the completion of our work we came across two recent manuscripts [1] and [3]
where a problem similar to Example 3.1 is considered for p-q Laplacian. In both papers,
the authors focus on the construction of two pairs of sub-super solutions either in a ball or
in a general domain. Arora [3] also establishes a three solution theorem for p-q Laplacian
with the help of the strong comparison principle given in Proposition 6 of [11]. Though
Example 3.1 can be treated as a special case of the work of Arora, we wish to conclude our
paper emphasizing that in the light of the strong comparison principle in a ball (Theorem
1.1), our three solution theorem is applicable for more general elliptic boundary value
problems.
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