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Abstract

In this paper we consider a class of conjugate discrete-time Riccati equations, arising originally from the
linear quadratic regulation problem for discrete-time antilinear systems. Under some mild assumptions and
the framework of the fixed-point iteration, a constructive proof is given for the existence of the maximal
solution to the conjugate discrete-time Riccati equation, in which the control weighting matrix is nonsingular
and its constant term is Hermitian. Moreover, starting with a suitable initial matrix, we also show that
the nonincreasing sequence generated by the fixed-point iteration converges at least linearly to the maximal
solution of the Riccati equation. An example is given to demonstrate the correctness of our main theorem
and provide considerable insights into the study of another meaningful solutions.
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1. Introduction

In this paper we are mainly concerned with the existence of the maximal solution to the conjugate
discrete-time algebraic Riccati equation (CDARE)

X = R(X) := AHXA−AHXB(R+BHXB)−1BHXA+H, (1a)

or its equivalent expression

X = AHX(I +GX)−1A+H, (1b)

where A ∈ Cn×n, B ∈ Cn×m, R ∈ Hm is nonsingular, H ∈ Hn, I is the identity matrix of compatible
size and G := BR−1BH , respectively. Here, Hℓ denotes the set of all ℓ × ℓ Hermitian matrices. We use
the notation M̂ := MM throughout the paper, where M is the matrix obtained by taking the complex
conjugate of each entry of a matrix M . The solution X ∈ Hn of the CDARE (1a), with RX := R+BHXB
being positive definite, is considered in this paper.

For any M,N ∈ Hn, the positive definite and positive semidefinite matrices are denoted by M > 0 and
M ≥ 0, respectively. Moreover, we usually denote by M ≥ N (or M ≤ N) if M −N ≥ 0 (or N −M ≥ 0) in
the context. For the sake of simplicity, the spectrum and spectral radius of A ∈ Cn×n are denoted by σ(A)
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and ρ(A), respectively. We say that the CDARE (1) has a maximal solution XM ∈ Hn if XM ≥ X for any
solution X ∈ Hn of the CDARE. Thus, it follows from the definition of the maximality that XM is unique if
it exists. A matrix operator f : Hn → Hn is order preserving (resp. reversing) on Hn if f(A) ≥ f(B) (resp.
f(A) ≤ f(B)) when A ≥ B and A,B ∈ Hn.

A class of CDAREs (1) arises from the linear quadratic regulation (LQR) optimal control problem for
the discrete-time antilinear system of the state space representation

xk+1 = Axk +Buk, k ≥ 0, (2)

where xk ∈ Cn is the state response and uk ∈ Cm is the control input. The main goal of this control problem
is to find a state feedback control uk = −Fxk such that the performance index

J (uk, x0) :=

∞∑

k=0

(xH
k Hxk + uH

k Ruk)

is minimized with H ≥ 0 and R > 0. If the antilinear system (2) is controllable, it is shown in Theorem 12.7
of [9] that the optimal state feedback controller is u∗

k = −R−1
X∗

BHX∗Axk for k ≥ 0 and thus the minimum

value of J (u∗
k, x0) = xH

0 X∗x0 is achieved, where X∗ ≥ 0 is the unique solution of the CDARE (1a), which
is also called the discrete-time algebraic anti-Riccati equation [8, 9].

Recently, some accelerated iterations have been proposed for solving the unique positive definite solution
of the CDARE (1) under positive definiteness assumptions with G > 0 and H > 0, see, e.g., [2, 3, 5] and the
references therein. In addition, this numerical technique has also been utilized to some real-life applications
recently, see, e.g., [4, 6, 7].

In this work the concept of the maximal solution to discrete-time algebraic Riccati equations (DAREs)
presented in Theorem 13.1.1 of [1] will be extended for the CDARE (1) with G,H ∈ Hn, and hopefully, it
would play an important role in the LQR control problem for discrete-time antilinear systems. The paper
is organized as follows. In Section 2, we introduce some useful notations and auxiliary lemmas that will
be used in our main result. In Section 3, based on the framework of the fixed-point iteration (FPI), the
monotonicity property of a sequence generated by the FPI and the existence of the maximal solution to
CDAREs (1) will be addressed in Theorem 3.1 under reasonable hypotheses in (8). We will give an example
of the scalar CDARE (1) to illustrate the correctness of Theorem 3.1 in Section 4. Finally, we conclude the
paper in Section 5.

2. Preliminaries

In this section we introduce some notations and auxiliary lemmas that will be used below. Firstly, let
the conjugate Stein matrix operator CA : Hn → Hn associated with a matrix A ∈ C

n×n be defined by

CA(X) := X −AHXA, (3)

for any X ∈ Hn. In general, the operator CA is neither order preserving nor order reversing. However,
under the assumption that ρ(AA) < 1, its inverse operator C−1

A is order preserving, since C−1
A (X) =

∞∑
k=0

((AA)k)H(X+AHXA)(AA)k ≥
∞∑
k=0

((AA)k)H(Y +AHY A)(AA)k = C−1
A (Y ) for X,Y ∈ Hn with X ≥ Y .

It will be clear later on that the matix operator R : dom(R) → Hn defined by (1a) plays an important
role im Theorem 3.1 below, where dom(R) := {X ∈ Hn | det(RX) 6= 0}. Moreover, the following sets

R≤ := {X ∈ dom(R) |X ≤ R(X)}, R≥ := {X ∈ dom(R) |X ≥ R(X)}, (4)

will be used throughout the paper. Let FX = R−1
X BHXA and TX = A− BFX for any solution X ∈ Hn of

the CDARE (1a). Note that TX = (I +GX)−1A and R(X) = AHXTX +H = TH
X XA+H , respectively.

The following lemma characterizes a useful identity depending on the matrix operator R(·) and its
associated conjugate Stein operator.
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Lemma 2.1. For any X,Y ∈ dom(R), the following matrix identity

X −R(X) = CTY
(X)−HY +K(Y,X) (5)

holds, where K(Y,X) := (FY − FX)HRX(FY − FX) and HY := H +K(Y, 0) = H + FH
Y RFY .

Proof. The proof is based on a direct calculation and the details are left to the reader.

Let T := {X ∈ Hn | ρ(T̂X) < 1} and P := {X ∈ Hn |RX > 0}. A sufficient condition is provided in
the following result to guarantee the stability property of a sequence generated by the fixed-point iteration,
which will be described in the proof of Theorem 3.1 later.

Lemma 2.2. Assume that XT ∈ T. If X ∈ P and Y ≥ 0 both satisfy the matrix inequality

CTX
(Y ) ≥ K(XT, X), (6)

then X ∈ T, i.e., ρ(T̂X) < 1.

Proof. The inequality (6) implies

S
T̂X

(Y ) ≥ K(XT, X) + TH
X K(XT, X)TX , (7)

where S
T̂X

(Y ) := Y − T̂H
X Y T̂X . Assume that there exists a scalar λ with |λ| ≥ 1 such that T̂Xx = λx for

some nonzero vector x ∈ Cn. Then we see that

0 ≥ (1− |λ|2)(xHY x) = xHS
T̂X

(Y )x ≥ xHK(XT, X)x+ xHTH
X K(XT, X)TXx ≥ 0.

Note that Ker(K(XT, X)) = Ker(FXT
− FX) ⊆ Ker(TXT

− TX) and Ker(TH
X K(XT, X)TX) ⊆ Ker(TXT

TX −
TXTX). This implies TXx = TXT

x, and TXTXx = TXT
TXx. Thus, T̂XT

x = TXT
TXT

x = TXT
TXx = TXTXx =

T̂Xx = λx, which contradicts to the assumption, and hence we conclude that ρ(T̂X) < 1.

Let S≥ :=
⋃

XT∈T

{X ∈ Hn | CTXT
(X) ≥ HXT

} if T 6= ∅. For any XT ∈ T, notice that the operator CTXT
is

a bijection because ρ(T̂XT
) < 1 and its inverse operator C−1

TXT

is order preserving. Therefore, S≥ must be a

nonempty subsets of Hn when T 6= ∅.
In order to deduce our main theorem presented in the next section, we assume that

T 6= ∅ and R≤ ∩ P 6= ∅ (8)

in the following content of the paper. Starting with X0 ∈ S≥, the monotonicity property of a sequence
{Xk}∞k=0 generated by the following FPI of the form

Xk+1 = R(Xk), k ≥ 0, (9)

will be ensured by the following lemma.

Lemma 2.3. If X⋆ ∈ S≥, then the following statements hold:

(i) X⋆ ≥ XP for any XP ∈ R≤ ∩ P.
(ii) X⋆ −R(X⋆) ≥ K(XT, X⋆) for some XT ∈ T. Furthermore, we have S≥ ⊆ R≥ ∩ P.

Proof. Since X⋆ ∈ S≥, there is a matrix XT ∈ T associated with X⋆ such that CTXT
(X⋆) ≥ HXT

.

(i) For any XP ∈ R≤ ∩ P, it follows from (5) that

0 ≥ XP −R(XP) = CTXT
(XP)−HXT

+K(XT, XP).

Since XP ∈ P, K(XT, XP) ≥ 0 and hence we deduce that HXT
≥ CTXT

(XP). Therefore,

CTXT
(X⋆ −XP) = CTXT

(X⋆)− CTXT
(XP) ≥ HXT

− CTXT
(XP) ≥ 0

and then X⋆ ≥ XP. Furthermore, we also show that S≥ ⊆ P, since RX⋆
≥ RXP

> 0.
(ii) From (5), note that X⋆ −R(X⋆) = CTXT

(X⋆)−HXT
+K(XT, X⋆) ≥ K(XT, X⋆) ≥ 0 because X⋆ ∈ P,

and we thus conclude that S≥ ⊆ R≥ ∩ P.
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3. The maximal solution of the CDARE

In this section, the existence of the maximal solution to the CDARE (1) will be established iteratively,
utilizing the framework of the FPI (9) with an appropriate initial matrix X0 ∈ Hn, under the assumptions
in (8). The main results of this paper are summarized in the following theorem.

Theorem 3.1. If the assumptions in (8) are fulfilled, then the maximal solution XM of the CDARE (1)
exists. Furthermore, the following statements hold:

(i) The sequence {Xk}∞k=0 generated by the FPI (9) with X0 ∈ S≥ is well-defined. Moreover, Xk ∈
S≥ ∩ T ⊆ R≥ ∩ P ∩ T for all k ≥ 0.

(ii) Xk ≥ Xk+1 ≥ XP for all k ≥ 0 and XP ∈ R≤ ∩ P.

(iii) The sequence {Xk}∞k=0 converges at least linearly to XM , which is the maximal element of the set

R≤ ∩ P and satisfies ρ(T̂XM
) ≤ 1, with the rate of convergence

lim sup
k→∞

k

√
‖Xk −XM‖ ≤ ρ(T̂XM

)

whenever XM ∈ T.

Proof. Let XP ∈ R≤ ∩ P. The existence of XM can be constructed by the following discussion.

(i) This result will be proven by induction. Since X0 ∈ S≥, it follows from Lemma 2.3 that X0 ≥ XP and
X0 ∈ R≥ ∩ P. Thus, X1 = R(X0) is well-defined with X0 ≥ X1. Furthermore, we also have

CTX0
(X0 −XP) = CTX0

(X0)− CTX0
(XP) = HX0

+X0 −R(X0)− CTX0
(XP)

≥ HX0
+K(XT, X0)− (HX0

+XP −R(XP)−K(X0, XT))

= K(XT, X0)− (XP −R(XP)) +K(X0, XP) ≥ K(XT, X0),

for some XT ∈ T. Then X0 ∈ T follows immediately from Lemma 2.2 since ρ(T̂XT
) < 1. Assume that

Xk ∈ S≥∩T for some positive integer k. Again, it follows from Lemma 2.3 that Xk ≥ XP, Xk ∈ R≥∩P
and Xk+1 = R(Xk) is well-defined with Xk ≥ Xk+1. In addition, from Lemma 2.1 we have

Xk −R(Xk) = CTX
k
(Xk)−HXk

, (10a)

Xk+1 −R(Xk+1) = CTX
k+1

(Xk+1)−HXk+1
, (10b)

Xk+1 −R(Xk+1) = ∆k +K(Xk, Xk+1), (10c)

XP −R(XP) = (CTX
k+1

(XP)−HXk+1
) +K(Xk+1, XP), (10d)

where ∆k := CTX
k
(Xk+1)−HXk

. From (10a) we see that

∆k = CTX
k
(Xk+1) +Xk −Xk+1 − CTX

k
(Xk)

= −CTX
k
(Xk −Xk+1) +Xk −Xk+1 = TH

k (Xk −Xk+1)Tk ≥ 0.

Thus, it implies that Xk+1 ∈ S≥ because Xk ∈ T, and thus Xk+1 ≥ XP follows from Lemma 2.3.
Moreover, from (10b), (10c) and (10d), the positive semidefinite matrix Y := Xk+1 −XP satisfies the
conjugate Stein matrix inequality

CTX
k+1

(Y ) = CTX
k+1

(Xk+1)− CTX
k+1

(XP)

=
(
Xk+1 −R(Xk+1) +HXk+1

)
−
(
(XP −R(XP)) +HXk+1

−K(Xk+1, XP)
)

= ∆k +K(Xk, Xk+1) +HXk+1
− (XP −R(XP))−HXk+1

+K(Xk+1, XP)

= ∆k +K(Xk, Xk+1)− (XP −R(XP)) +K(Xk+1, XP) ≥ K(Xk, Xk+1),

and henceXk+1 ∈ T follows from Lemma 2.2 andXk ∈ T. That is, we have deduced thatXk+1 ∈ S≥∩T
and this completes the inductive proof.
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(ii) The statement follows immediately from the proof of (i) and Lemma 2.3.
(iii) Since it follows from the statement (ii) that {Xk}∞k=0 is a nonincreasing sequence of Hermitian matrices

and bounded below by all elements of the set R≤ ∩ P, XM := lim
k→∞

Xk must be the maximal element

of R≤ ∩ P such that XM = R(XM ) and ρ(T̂XM
) ≤ 1. Moreover, the proof of the rate of convergence

for {Xk}∞k=0 follows from the Appendix A.1 of [2].

4. An example for the CDARE

In this section we shall give an example to illustrate the correctness of Theorem 3.1 presented in the
previous section.

Example 4.1. We consider a scalar CDARE (1) of the form

x = |a|2x̄− |a|2x̄2|b|2
r + |b|2x̄ + h =

|a|2x̄
1 + gx̄

+ h, (11)

where a, b ∈ C, r, h ∈ R with r+ |b|2x̄ > 0 and g := |b|2/r with r 6= 0. Without loss of generality, we assume
that |a| > 0, r > 0 and thus g > 0. From (11) and 1 + gx̄ > 0, we obtain

g|x|2 + x− (|a|2 + gh)x̄− h = 0,

which has two solutions xM , xm ∈ H1 = R satisfying

xM :=
−(1− |a|2 − gh) +

√
D

2g
and xm :=

−(1− |a|2 − gh)−
√
D

2g

if the discriminant D := (1 − |a|2 − gh)2 + 4gh ≥ 0. Note that D ≥ 0 if and only if h ≥ hM := −(1−|a|)2

g
or

h ≤ hm := −(1+|a||)2

g
.

Let t̂x := T̂x = |a|2

(1+gx)2 for x = xM or x = xm. Some facts are listed without proof as follows:

1. T = (−∞, −|a|−1
g

) ∪ ( |a|−1
g

,∞) 6= ∅ and R≤ ∩ P = [xm, xM ] ∩ (−1
g
,∞) 6= ∅ if h ≥ hM . Moreover,

1+ gxM ≥ 1+ gxm > 0 and S≥ ⊆ [xM ,∞) if h ≥ hM . When h ≤ hm, we have 1+ gxm < 1+ gxM < 0
and R≤ ∩ P = ∅.

2. t̂xM
t̂xm

= 1. Furthermore, t̂xM
< 1 < t̂xm

if h > hM , t̂xM
= 1 = t̂xm

if h = hM or h = hm, and
t̂xM

> 1 > t̂xm
if h < hm.

3. For x0 ∈ S≥\{xM}, the equivalent expressions of the sequence {xk}∞k=0 generated by the FPI (9) can
be rewritten in the form

xk = xM +
xM − xm

st̂−k
xM

− 1
if 0 < t̂xM

< 1, (12a)

= xM +
|a|(x0 − xM )

g(x0 − xM )k + |a| if t̂xM
= 1, (12b)

for all k ≥ 0, where s := x0−xm

x0−xM
.

Based on these facts, the convergence behavior of the sequence presented in (12) is summarized below
for different cases depending on h.

(i) If h > hM and 0 < t̂xM
< 1, then the assumptions in (8) hold and the sequence {xk}∞k=0 in the

expression (12a) converges decreasingly to xM , which is the maximal solution of the CDARE (11).
Furthermore, the convergence is linearly since lim

k→∞

k

√
|xk − xM | = t̂M < 1. When x0 ∈ (xm, xM ), we

see that s < 0 and thus {xk}∞k=0 converges increasingly to xM with linear convergence even though
x0 ∈ S≥ is not true in this case.
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(ii) If h = hM , then xM = xm with t̂xM
= 1 and the assumptions in (8) hold. In this case we see that the

sequence {xk}∞k=0 in the expression (12b) converges decreasingly to xM with sublinear convergence,

since lim
k→∞

|xk+1−xM |
|xk−xM | = t̂M = 1.

(iii) If h < hm, then the assumptions in (8) do not hold and t̂M > 1. However, from (12a) it can be shown
that xk → xM + xM−xm

−1 = xm as k → ∞. Namely, the sequence {xk}∞k=0 converges linearly to the
minimal solution of the CDARE (11). Further investigations are left as a topic of our future work for
this case.

5. Concluding remarks

In this paper we mainly deal with a class of conjugate discrete-time Riccati equations, arising originally
from the LQR control problem for discrete-time antilinear systems. In this case, the design of the optimal
controller usually depends on the existence of a unique positive semidefinite optimizing solution of CDAREs
(1a) with R > 0 and H ≥ 0, if the antilinear system is assumed to be controllable.

Analogous to Theorem 13.1.1 of [1] for standard DAREs, based on the framework of the fixed-point
iteration, we have proved the existence of the maximal solution to the CDARE (1a), with nonsingular R
and H ∈ Hn, under some weaker assumptions defined as in (8). Moreover, starting from X0 ∈ S≥, the
monotonicity of the sequence {Xk}∞k=0 generated by the FPI (9) and the stability of its corresponding

sequence {T̂Xk
}∞k=0 have also been deduced under the same assumptions, respectively. We believe that our

theoretical results would be useful in the LQR control problem, or even the state-feedback stabilization
problem, for discrete-time antilinear systems.

It is only to be expected that the existence of the minimal solution or other extremal solutions of the
CDARE (1) will be investigated in the next work, and it also leads to our future work that how to apply
the accelerated techniques presented in [2, 3] for solving the extremal solutions to the CDARE (1).
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