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Abstract

We construct and study structures imitating the field of complex numbers with exponentiation.
We give a natural, albeit non first-order, axiomatisation for the corresponding class of structures
and prove that the class has a unique model in every uncountable cardinality. This gives grounds
to conjecture that the unique model of cardinality continuum is isomorphic to the field of complex
numbers with exponentiation.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

We construct and study here structures imitatihg, = (C, +, x, exp), the complex
numbers equipped with the field operations and exponentiation. The idea and the aims of
the project were described if][

The version of the structures, thigongly exponentially—algebraically closed fields with
pseudo-exponentiatipthat we study here is very close@ayp, and one of the main results
is the statement that there is exactly one, up to isomorphism, strongly exponentially—
algebraically closed field with pseudo-exponentiation of a given uncountable cardinality,
and we give precise and simple conditions under wiiigh, is the one of cardinality
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continuum. In fact the conditions can be interpreted as two conjectures about the complex
exponentiation, the first being the well known Schanuel conjecture and the second the
conjecture stating that certain systems of exponential equations over complex numbers do
have solutions in the complex numbers.

The definition of the above-mentioned systems of exponential equations is given in
natural, albeit rather technical, terms (normality and freeness) which roughly speaking
amount to saying that the systemnist overdeterminediVe prove that these definitions
are first order, in fact that certain properties of exponential varieties are of finite character,
which we hope to use for a further analysis of the fields with pseudo-exponentiation.

We also prove an elimination-of-quantifiers resultLip, ., for the fields with pseudo-
exponentiation and give a, we hope useful, criterion for elementary extensions in the class.

2. Definitionsand notation

We start with a class of structur€s= (F, L) whereF is a field of characteristic 0 in
the languagé. consisting of a binary operation, unary operation%-, for every positive
integerm, a binary relatiorE and a collection oh-ary predicate¥ (xi, ..., Xp) for each
algebraic subvariety € F", defined and irreducible ovéy;

These are interpreted Fhas follows:

+ is the usual addition in the field;

%- multiplies the argument by the corresponding rational number;
n-ary predicate¥ (xi, ..., Xn) correspond to algebraic subvarietiésc F";
the binary relatiorE(x, y) is the graph of a function exF — F.

Definition. We let& to be the class of -structured= defined by the (first-order) axioms
stating thatF is an algebraically closed field of characteristic zero &, y) the graph
of a surjective map

ex: F— F*=F\ {0}
satisfying the homomorphism condition
ex(X1 + X2) = ex(X1) - ex(x2).

Definition. Let L~ be the languagé without predicateE. Let sukf be the class of
L-structuresA such that for somé& € £

(i) AC F asL™-structures;
(i) E(A) < E(F);
(i) the domain of the partial mapping @xs closed under addition and multiplication by
rationals.

The following lemma provides a descriptiongflf in algebraic terms.

Lemma 2.1. Suppose A is a divisible subgroup of the additive group of an algebraically
closed field F, & € A adivisible subgroup and

exa: Ag = F*
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a homomorphism into the multiplicative group such tegt(Ao) € A. Let E be the graph
of exa and let, for any L-name V for an algebraic variety o¥@rus interpret V on A as
induced by the embedding@F.
Suppose also that the ranks of the abelian groups satisfy the inequahity< rk F.
Then A viewed as an L-structure is in gub

Proof. By definition it is enough to be able to extendaeo a surjective homomorphism:
ex: F—> F*.

By standard theory of abelian groups,
F= Agx B and F* = ex(Ag) x B/,

where B and B’ are divisible groups in, respectively, additive and multiplicative
representations. Considering the ranks one gets easily from the assumption that

rk B =rk B’ > Ro.

SinceB is torsion free, it follows that there is a surjective homomorphism fBonto B,
and hence we can extendsei a surjective way. [

Notation. We write X Csip Y to say thatX is a finite subset of. We also often writeX'Y
instead ofX U Y.

Notation. For A € sukf,
Da={xe A:3y e AE(X,Yy)}.
For X Ciin A
exa(X) ={ye A:3Ix e X E(x, y)};

tr.d.(X) is the transcendence degreeXobverQ and
lin.d.(X) the dimension of the vector space sg&X) generated byX overQ;

Definition. The predimension of X Cyp, Alis
SA(X) = tr.d.(spargy X U exaspary X) — lin.d.(spampy X).
Remark. If X Cin A € B e sukf then obviously
SA(X) =< éB(X).
We usually omit the subscript #n(X) whenAis fixed.
Definition. For X, X' Cgn A
S(X/ Xy =8(XX) = §(X)).

For infinite Z € A andk € Z, §(X/Z) > k by definition means that for any Zgi Z
there isY Cfn Y/ € Z such that(X/Y’) > k, and§(X/Z) = k meanss(X/Z) > k and
nots(X/zZ) > k + 1.
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Remark. Letting tr.d.(X/X’) = tr.d.(XX’) —tr.d.(X") and
lin.d.(X/X") = lin.d.(XX) — lin.d.(X") and assumin = spamy X and X" = spar X’
we have
S(X/ Xy =tr.d.(X UexX/X UexX’) —lin.d.(X/X)).
Notation. sute? is the subclass afukf consisting of allA € suke satisfying the condition
Sa(X) > O0forall X s Da.
£% = £ nsuke®.
Notation. For W an algebraic varietyg = (by, ..., by), let
WD) = {{Xi4+1, .-, Xn1) : (b1, oo B, Xiga, oo, Xnpd) € W)L

Lemma2.2. If X = {X1,...,Xn} € A, X = (Xg, ..., Xn), then:tr.d.(X) = dimV, where
V C F"is the minimal algebraic variety ovép containingX;

lin.d.(X) = dimL, where L is the minimal linear subspace ot Eontainingx and given
by homogeneous linear equations o@er

Proof. Immediate from definitions. (O
Lemma2.3. Let Ae sukf. Then for XZsn A and ZC A there is an Yl Z, such that
ifY CY C Z,thens(X/Y') =8(X/2).

Proof. ChooseY ZCiin Z such that

trd.(X UexX/Y UexY) = tr.d.(X UexX/Z UexZ) and lind.(X/Y) = lin.d.(X/2).
This choice is possible, sincedr(X/Y) and lind.(X/Y) are non-increasing functions
ofY. O

Remark. The condition lind.(X/Z) = lin.d.(X/Y) for Y C Z is satisfied iff
spay(X) N Z € Y and correspondingly for the transcendence degree.

Definition. For A, B € sukf, we say thatA is strongly embedded in B, writing A < B,
if A C B asL-structures and the following two conditions hold:

(S1) 8a(Y/Z) < 8(Y/Z) foranyY, Z Cin Da; and
(S2) 6g(X/Dp) = 0, for all X Cyip Dp.

Lemma 2.4. Condition(S1)is satisfied if the following condition holds:
(S1A) any algebraically independent subsetex (A) \ A is algebraically independent
over A.

Proof. The inequality in (S1) is equivalent by definition to
trd.(YuexaY/ZUuexaZ) <trd.(YUexgY/ZUexgZ).

W.l.o.g.,Z C Y. We can equivalently replace gX on the right by
exgY’ UexaY such thategY’ C exgY \ A, exgY’ is a transcendence basis og&k\ A
and exg(Y' N Z) is a basis of e Z \ A. Then
trd.(YUexgY/ZUexgZ) =tr.d.(YUexgY UexaY/ZUexg(Y NZ)UexaZ)
=tr.d.(YUuexaY/ZuexaZ) + lexg(Y'\ 2)|. O
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We also use a relativized notion of a strong embedding:

Definition. For subsett) C V € C andC € sulf, we say that is strongly embedded
into V relativeto C, writing

U=<cV,
meaning thasc (X/U N D¢) > 0foranyX € V NDc.

Notice that this definition agrees with the absolute strong embeddingWherA, V = B
andA, B € C with the property that @ = AN Dc.

Lemma 2.5. For any structure A of the class stiland X Y, Z Gy, A:

@) If spar@(x’) = spagy(X) thens(X’) = §(X).

(i) If spar@(x/Y) = spagy(XY) thens(X/Y) = S(X'/Y).
(iii) If spay(Y) = spagy(Y') thens(X/Y) = §(X/Y").
(V) 8(XY/Z)=8(X/Y2) +8(Y/2).

Proof. Immediate from definitions. O

Lemma26. (i) For A, B, C € sulg,
if A< BandB=< C,then A< C.

(ii) For C e sukf and its subsets A B C C,
if A <c Band B<c C, then A<c C.

Proof. (i) Let X Ciin Dc and letZ Ciin Da be large enough thdt (X/Z) = 6c(X/Da).
We need to prove thaic(X/Z) > 0. ChooseY Ciin Dg so that spag(Y Z) = Dg N
spamy (X 2). Thenlind.(X/Y Z) = lin.d.(X/Dg).

From the definition ofsc it follows that c(X/Y 2) > 8c(X/Dg) > 0. Also
3c(Y/Z) > 8g(Y/Z) > 0 by (S1) and (S2). Hence
8c(XY/Z) = 8c(X/Y Z) + 8c(Y/Z) > 0. Now notice thatc(X/Z) = 8c(XY/Z) by
definition.

(i) We may assume thah = spaA and B = spanyB and then apply the same
arguments as in (i). O

Definition. Let A € sukt® andX Csin Da. Thedimension of X in Ais
dA(X) = min{8a(X") : X € X' Sfin X U D).
Lemma2.7. Let Ae suke®.

() If X € X' Csin Da are such that o(X') = 9a(X), then X <a A.
(i) Given XCiin Da there exists XCiin D a satisfying(i).

Proof. Immediate from definitions. O
Lemma28. Let A B € sukf, A < B and XZsin A. Then
IA(X) = 9(X).
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Proof. LetY Csin Dg be such that
§B(XY) = 9B(X).
Let Yg be aQ-linear basis off over A andX; Ciin A a superset oK such that
sparb(xl) = sparb(XY) N A.

Then lind.(Yo/A) = lin.d.(Yp/X1). On the other hand, it is obvious thatdx(Yy U
exsYo/AUexgA) < tr.d.(YoUexgYo/ X1 U exgX1). It follows that

sB(Yo/ X1) = d8(Yo/A) = 0.
Also
spary (XY) = spary (X1Yo).
Hence
8B(XY) = 88(X1Yo) = 88(X1) + dB(Yo/ X1).

By the above proof§g (XY) > §g(X1). By definitionssg(X1) > da(X1) andda(Xy) >
da(X). Thusdg(X) > 9a(X), and the converse is obvious[]

Lemma 2.9. Suppose A suke®, B e suke,

A C B as L-structuresDg = Da + spary (X),
the condition(S1A) of Lemma2.4is satisfied and
3g(X’/Dp) > Oforall X' Ciin spary X.

Then Be sukt® and A< B.

Proof. We may assume thaX is Q-linearly independent over R LetZ € Dg, Z =

{z1,...,zn} andz; = x; + i for somex; € spay(X), yi € Da. Let{xs,...,x} be a
Q-linear basis ofxy, ..., Xp}. Then, usind.emma 2.5for § = §g we have

8(Z) = 8(X1+ Y1, -+ Xk + Yk Yiy 1o -+ -» Yn)s TOF Yy a5 - - -, Yy @ppropriateQ-linear
combinations ofy1, ..., Yn.

We rewrite as follows:
8(Z) =8({X1 4+ Y1, - Xk 4+ Yk} Vit - - Vo) + 8 Vit - -+ V)
By assumptiond (Y 4 - - -» ¥n) = 0. On the other hand,
SUXL+ Y1, - Xk + Y/ Yk - -+ Ynd) = 8({X1, ..., Xk}/Da) = 0
since

tr.o.(Xe + Y1, ..., Xk + Vi €X(XL 4+ Y1), -, €XOk 4 YK/ Yier1s - - -5 Yo

eX(Yip1)s - - - » €X(YR)
> tr.d.({X1 4+ Y1, ..., Xk + Yk, €X(X1 + Y1), ..., €X(Xk + Yk)}/Da U exaA)
> tr.d.({Xq, ..., Xk, €X(X1), ..., eX(Xk)}/Da U exaA)

and

lin.d.({x1 + y1, ... Xk + Y}/ Yis 1> - - -» Y)) =k =lin.d.({x1, ..., Xk}/Da).
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Thus
8(Z2) = 0.

The same argument shows that
8(Z/Da) = 0.

This proves (S2) of the definition of strong embeddingmma 2.4completes the
proof. O

Definition. Let A € sukf. Write
keia =f{ae A:ex@ = 1}.

A'is said to bewith standard kernel if
kefa=w-Z

for some transcendentale A.

Ais said to bawith full kernel if for ker = kera = {a € A: ex(a) = 1} the groupA/ ker
is isomorphic to a multiplicative subgroup of an algebraically closed field containing all
torsion points of the field.

Proposition 2.10. There is an Ac suke® with standard full kernel.

Proof. Let F be an algebraically closed field arg € F a transcendental element.
Consider the subgroupy = o - Q of the additive groupg- and defineH = Ag/ ker
for ker the standard kernel with generatorThenH considered as a multiplicative group
is characterized by the property that it is a torsion group such that any equation of the
form x" = h, for any h, has exactlyn solutions in the group. In other words{ is
isomorphic to the torsion subgroup of the algebraically closed fieldefine ex as
the canonical homomorphis#yy — H C F* corresponding to this isomorphism and
A = Ao + spaigyH. Now we can viewA as anL -structure fromsukf, by Lemma 2.1

Sincew is transcendentalAg N spamH = ¥, Da = Ao and§(X) = 0 for any
X Ciin Ao. It follows thatA € suke®. O

Lemma 2.11. Suppose A subkc® and A is with full kernel. Then there is & £° and an
embedding of A into F such that A F andkerig = kerja.

Proof. Choose an algebraically closed fidtdof characteristic zero such thAtC F and
tr.d.(F/A) > cardA+Ro. We want to define exF — F* extending ex so thatF < £°.
Fix a well-ordering ofF. Let

Do =Da, exo=¢exa: Do — AandAp = A.
Proceed by induction defining,, A, and a homomorphism
€% : Dy — F* with Da, = Dy and ex (D,) € Ay

as follows:
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If « is even, choose the first element F \ D, and define ex;1(a) to be any element
in F* \ acl(Ay). Put Dyy1 = D, + Q- a and extend ex;1 to Dyy1 @s a group
homomorphism.
If o is odd, choose the first elemebte F* \ ex,(D,) and ana € F \ acl(A,),
put ex+1(@) = b, Dgr1 = Dy + Q - a and again extend gx1 to D,+1 as a group
homomorphism.

Define in both cases

Ac+1 = spary(Aq U Dot1 U €Xy11(Das1))

with E on the set defined by gx1.

On any step it follows fronhemma 2.9hat A, 1 € sukt® andA, < Aq41. AlSO Dgy1
is divisible and, sincé is with full kernel, in eXA, 1) any equation of the form" = b
has exactly solutions.

Finally,

kefia,, = Kefja,

since if eXga+ a’) = 1 for a generatingD,+1 over D, as above, some rationql=
anda’ € D, thenb™ = g" for b = ex(a), g = ex(—a’). Since all the roots of degree
g" are in eXD,) it would contradicb ¢ ex(Dy) unlessq = 0. O

sI3

f

o

Notation. Let suktd be the subclass afuke® consisting of the structures with standard
full kernel.
Let

ES =suESNE.

3. Normality and freeness

In this section we consider the class of structures with standard ke#elhich we
denote just as ker. We extend the languld®/ namingw.

Definition. We say that an algebraic variety C F2" is ex-defined over someC C F if
V can be defined with parameters in the fi@ldC + ker+exC).

We letC = Q(C + ker+exC).

We say that the variety ex-definable ove€ is ex-irreducible over C if the ideal of
the polynomials irxs, . .., Xn, Y1, . . . , Yn overC vanishing onV is prime.

Definition. For an algebraic variety € F2", written in variable, ..., X, Y1, . . ., Yn,
define pgV to be the Zariski closure of the projection @fonto the firsin coordinates.
Correspondingly, gV is the Zariski closure of the projection onto the lastoordinates.

Remark. Ifthe varietyV is ex-definable and ex-irreducible over so@& F, then so are
the projections.

Definition. For V. < F?" ex-definable oveC, we say that grV is free of additive
dependenciesover C if no & € pr,V generic oveC satisfiean; -ag +---+mp-an =¢
forac e span)(C + ken and a non-zero tuple of integers, ..., my.
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prV is said to beabsolutely free of additive dependenciesover C if pr,V is free of
additive dependencies over €C). )

We say that pyV is freeof multiplicative dependenciesover C if no b € pr,V generic
overC satisfieso]™ - ... - bp" =r foranr € ex(spany(C + ken).

pryV is said to beabsolutely free of multiplicative dependencies over C if no
b € pryV generic oveC satisfiesby™ - ... - by" =r foranr € ackC).

V is said to befree if both pr,V is free of additive dependencies and ris free of
multiplicative dependencies over.

Notation. GL(F) = F" x (F*)" is an algebraic group, the product mfcopies of the
additive groupF andn copies of the multiplicative group *.

Givenm € Z denote agm] : Gh(F) — Gn(F) the homomorphism mapping given by
X = mx on the firstn coordinates ang — y™ on the lash ones.

More generally, given an integék x n)-matrix

M = {mj j }1<i<k; 1<j<ns
we denote by

[M]: Gn(F) — Gk(F)

the homomorphism mapping given 1, ..., Xn) = (X3, ..., X), with x{ = mj 1x1 +
--- 4+ MjnXn on the firstn coordinates andys, ..., Yn) — (y;..... Y With y/ =

mi 1 Mi.n
Y1~ -...-¥n " onthelash ones.
Definition. V € Gn(F) is said to bex-nor mal over C if in some extensions of the field
there ardas, ..., an, b1, ..., by) € V such that for ank < nindependent integer vectors
mi = (Mj1,....,Min),i =1,...,k and

a =mija+---+mpan, b =bl- .. by,
the following inequality holds:

tr.d.((a,...,a b}, ..., b /C) >k 1)
Equivalently, the varieties

« = locus(@y, ..., ag by, ..., by

,,,,,

dimv; >k )

.....

Notice that the varietie¥;] | are just the images of under the corresponding regular
homomorphismgM] : G(F) — Gk (F). We denote the image of the variety undiist]
by VM,

If W = pr,V then we writew™ for pr, (V™). Obviously, this™ is equal to the image
of W under the above multiplicative homomorphigk)" — (F *)kK determined byw.
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Definition. Given ann-tuplea € F" and a subseE C F, we definethe ex-locus of a
over C to be the smallest algebraic variafyc F2" ex-defined ove€ and containing the
2n-tuple(as, ..., an, €xa, ..., €xan).

Remark. The ex-locus of a tuple ovél is ex-irreducible ove€.

Lemma3.l. LetC C A,w € C <a A € sukt®, and leta = (ay, ..., a,) be a string of
elements of A linearly independent over C andbexa be~defined foralli=1,...,n.

Then the ex-locus V & over C is ex-normal and free. @ is an algebraically closed
subfield of F, then V is absolutely free.

Proof. The inequalities]) in the definition of ex-normality under the assumptions of the
lemma are equivalent to

5@y, ...,a/C)>0

and the latter follow from the fact th& <a A.

An additive dependence for ¢ would mean by the definition oV a linear
dependence di overC, which does not hold by the assumptions.

A multiplicative dependence for p¥ is equivalent to ex being multiplicatively
dependent over the subgroup generated I, @hich is equivalent under the assumptions
to & being linearly dependentovér. O

Theorem 3.2. LetV(X4, ..., Xn, Y1, - .., Y, Z1, . .., Zk) € F2"K be an algebraic variety
over some C. Then the following sets are quantifier-free definable in the language of fields:

(@ ....,a) € FK: V(Xe, ..., X, Y1, ..., Yn, a1, . .., a) is irreducible}; (3)
{{a1, ..., &) € FK. pryV(ys, ..., ¥yn, a1, ..., &) is absolutely free

of multiplicative dependenciés (4)
{(@,....,a) € FX:V (X1, ..., %Xn, Y1, ..., Yn, @1, . .., &) is €x-normal. (5)

Proof. Throughout the proof we letv = pry,V, the variety in the variableg, . .., yn,
71,...,Z We leta = (a,...,a) and denote byW(a) the variety in the variables
V1, ..., Yn Obtained fromW by lettingz = a.

For (3) the fact is well known and widely used.

To prove the statement fod)it is enough to prove that, foV = pr,V, there is a finite
setu (W) of basic tori (algebraic subgroups ¢ *)") of codimension 1 such that, given
W(a) € F" which is not free of multiplicative dependencies, there @re (W) and
ane € (F*)" with W(a) € Qe, the shift ofQ by e. This statement is a special case of
Corollary 3 of B]. For (5) we will need a stronger version of the same Corollary 3 which is
obtained by simply combining the former with the ‘function field’ version of Proposition
1 of [5]:

Fact. Let P € (F*)" be a basic torus and \(4) € P an algebraic variety. Then there is

a finite collectionzp (W) of basic subtori of P (depending on W but not on a) such that
given a torus TC P, for any connected infinite atypical component X a&\" T, there
exists Qe wp(W) and c e P such that XC Q- c and X is typical in Wa) N T with
respectto Q c.
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Here a componerX of W(a) N T is said to beatypical (with respect taP) if
dimX > dimW(a) + dimT —dim P
andtypical if
dimX =dimW(a) + dimT — dimP.
The last statement will be proved through the following sequence of lemmas.

Definition. Given a basic toru§ < (F*)" there is a uniquely determined algebraic
(group) variety(F*)"/T and the corresponding regular surjective homomorphism

(FO" = (F)"/T.
We write W(a)/ T for the image ofW(a) under the homomorphism. Also, sindeis
uniquely determined by any of its cosets, we use the notation also Wh&a non-basic
torus, i.e. a coset of an algebraic subgrougff)".

LetT C P betori,W(a) € P. We say thatW(a)/ T is anatypical image with respect
to P if

dimW@)/T < min{dimP/T, dimW()}.

Easy dimension calculations show, for irreducil¥ga) < P with an atypical image
W(a)/ T, that for any generia € W(a) it holds that

dmW@ NTw >0 (6)
and
dmW@) N Tw > dimW() — dimP/T. (7

Proposition 3.3.1 Given Wa) € P = (F*)", an irreducible algebraic variety, for any
basic torus TC P with atypical image Wa)/ T with respect to P, there is @ wp (W)
such that

dimW(@)/Q =dimW(@)/T —dimQ/(QNT)
and
dmW(@)/T =dimW@)/(QNT).

Proof. Letw € W(a) be genericanK € W(a) N T - w be a component of the intersec-
tion of maximal dimension. Then by the additive formula

dimW(@)/T =dimW(@) — dim X (8)

and dimX = dimW@) N T - w > 0. We may assume € X. By the Fact above there is
Q € 7p(W) such that (i)X € Q - w and (ii) X is a typical component of the intersection

liam grateful to Kitty Holland for detecting a serious error in the formulation of the Proposition in the previous
version of the paper. The present version is quite similar to her resu},ithp proof of which is based on the
same Section 5 of.
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(W(a) N Qw) N Tw with respect toQw. By (i) and the maximality of dinX, we have
dimW(@)/T = dimW()/(Q N T). And (ii) means that, given a connected component
Y D X of the varietyW(a) N Qw, we have

dimX =dimY +dmQnNT —dimQ. (9)

But Y is a component of a generic fibre of the mappiga) — W(a)/Q and, by the
classical theorem on the dimension of fibred,(Chapter 1, s.6, Thm 7),

dimY =dimW(@) N Qw = dimW(a) — dimW(@a)/Q. (10)
Combining 8), (9) and (LO) we get the required equality on dvid(a)/Q. O
In the case oP = (F*)" we writer (W) instead ofrp (W).

Lemma 3.4. If the variety V(@) € F2" is not ex-normal then eithetimV (a) < n or, for
W = pr,V, there is Qe (W) defined by a matrix g on+ codim Q independent integer
n-rows as Q= {y € (F*)": y9 = 1} such that

dmV @ <.

Proof. Suppose dinv(a) > n, andV (a) is not ex-normal, which is witnessed iy, a
matrix ofk < n independent integer-rows, as

dimV @M < k. (11)

By definition, onx-coordinates the mapping — MXx is a linear surjective mapping
F" — FK and ony-coordinatey — yM is a surjective homomorphis(f )" — (F )k,
Denote the kernel of the second oneTgghus the latter mapping in the notation above is
P — P/T andW(a)M = W(a)/T. Notice also that the dimension of the kerne[ bf]
onx-coordinates is equal to dif, since both are equal to the co-rank of the malifix
Claim 1.W(a)/T is an atypical image.

Suppose not. Then, in the case of dMmT < dimW(a), we have by definition
that dimW(a)/T = dimP/T and dimP/T = Kk, a contradiction. In the case of
dimW(a) < dimP/T we have dimNV(a)/ T = dimW(a). It follows that the mapping
W(a) — W(a)M is finite; thus the fibres of the mappitwya) — V(a)M are at most of
dimension dinT and hence dinv (@)™ > dimV(a) — dimT > n—dimT =dimP/T,
which contradicts the assumptions again. The claim is proved.

By Proposition 3.3there isQ € =n(W) with dimW@)/Q = dimW(@)/T —
dimQ/(QNT)anddimW(a)/(QNT) =dimW(a)/T.

Claim 2. W.l.0.g., we may assume tl@t> T.

Indeed, the basic tor®@ N T is given by a system df = codimQ N T > k indepen-
dent equationg™’ = 1.

By definition,M’ defines orx-coordinates a linear surjective mapping
[M’]: F" — FK with kefM’] € keffM], so[M] can be obtained as the composition of
[M’] with another linear mapping with fibres of dimensidn- k. Thus, for anyo € W(a),
letting

V(b"a)={ce F":c"be V(a)},



B. Zilber / Annals of Pure and Applied Logic 132 (2005) 67-95 79

a variety onx-coordinates, we have after applying the mappiid§ and[M],
dimV® a)M < dimVv® a)M + K — k).
On the other hand, by the addition formula,

dimV@" =dimw@™ + min dmvb aM.
beW(a)

Since dimW (@M = dimW()/(QNT) = dimW()/T = dmW(@M, we have
dimV@" < dmw@M™ + min dimV® a)M + K — k)
beW(a)
=dmV@M +K -k <K.

In other words, we can repladeby Q N T, and soM by M’, and still witness the failure
of ex-normality. The claim is proved.

Let now the above basic tord@ > T be given byl = codimQ < k equations of the
form y9 = 1, and the matrix] induce the surjective mapping

[q]: F" x (FH" > F' x (F%).
SinceQ 2 T we have
dimV (b~ a)? < dmV{® a)M,
while for y-coordinates we have
dimw@9 = dimw@M — (k—1),

by the definition ofQ.
Again, the addition formula and the last two formulas yield

dimV @9 = dimW@9?+ min dimV®~a)d <dimV@M +1 — k.
beW(a)

It follows by (11) that
dmv@9<I. O

End of the Proof of the Theorem. The statement for5) follows immediately from the
lemma, as the condition

dmV@ >n & /\ dimV (@9 > codimQ
Qen (W)
is quantifier-free definable ih. O
Remark. Theorem 3.2vill not be used in the proof of the main result of this paper since
the further constructions and proofs are carried outjn,,-terms. Still we hope that with

some extra work the theorem can provide a finer description of the fields with pseudo-
exponentiation.
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4. Exponentially—algebraically closed structures

Definition. LetV C Gp(F) be an algebraic subvariety ex-defined and ex-irreducible over
someC C F. With any suchv we associate a sequer{c‘el1 .| € N} of algebraic varieties
which are ex-definable and ex-irreducible oGeand satisfy the following:
V1 =V;andforany, me N the mappingm] mapsVl% ontoV 1.

Such a sequence is said todsequence associated with VV overC.

Also, with any(ay, ..., an, b1, ..., by) € V as above we associate a sequence
1
{{aq,...,an,b1,...,b0)T7 : | € N}
such that for anyl, m € N the mapping[m] maps(as,...,an, b1, ..., bn)% onto

1
(ag,...,an, b1, ..., bp)T.

Let V' € V C Gn(F) be varieties ovet, V irreducible overC, {Vl1 1 e N}a
sequence associated with Then the pair
r=(V\V, (VT :leN)

is said to bean [almost finite] n-type over C. A finite n-type over C is given by an
algebraic set of the fornd \ V/, with V, V’ € F2" ex-definable algebraic varieties.
Atuplea = (aj, ..., a,) € F"is said to realize the typé \ V' if
(@, ...,an, ex@y), ..., ex@n)) € V\ V'

The tuples is said to realize the typeabove ifa realizesv \ V’ and

1 1 1 1 1
I—al,...,l—an,ex l—al .., 6X l—an eVr1

foralll e N.
We say that realizesr generically over C if V is the ex-locus o& overC.

The complete ex-locus of a over C is the type(V, {V:TL .1 e N}, whereVT are the
ex-loci of (fau, ..., fan) overC.

We say thaC C F isfinitary if there aren > 0, substructuregs, ..., En € F, such
that exgs, ..., exEp are algebraically closed subfields©f and a finite sef, such that

C=spa|@(A)UE1U---UEn.

Below we use the notatidf for an L-structure on the fieldF.

A crucial tool for the study of types and their realizations in this section will be the
following reformulation of the main result o6]:

Theorem4.1. Let F ¢ &% C < F, V an algebraic variety in2n variables

X1, ..., %n, Y1, - - -, Yn, €x-defined, ex-irreducible over C and free, ewd% :neN}a
sequence associated with V over C. Suppose also that C is finitary. Then there exists a
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positive integer m such that for anyd N, Vi is the unique variety which is irreducible
overC and satisfies

L 1 |
(Vim) =Vm (X =1 -x and y = y;).

Proof. This is based on Theorem 1 @[

We may assume that is ex-defined over finitéd C C, w € A as in the definition of
finitary C. Obviously, for anym, the field of definition oV 7 is a subfield of agAUexA),
which is of finite transcendence degree. Hence, the statement of the theorem h@ldfs for
and only if it holds forCy instead ofC, where

Co = C NIn(ackAU exA)) = spay(A) UEJ U - U E]

and Ei0 are substructures such tha’(Ef?) = L; are algebraically closed subfieldsef
Let (a1,...,an) be a generic oveC point in prV and {as,....,a} = AU

{a1,...,an} Uex(AU{ay, ..., an}).
LetP = Q(ay, ...,ar,v/1, L1,..., Lp), thefield generated by elements . . . , &, all
the roots of unity and subﬂeldsl , Ln. (The roots of unity can be omlttednf> 0.)

1
Choose(bl", .. bn ) to be generic in R}Vm over P and (b_k)k = bm It follows
from the freeness assumptions that. . ., b, are multiplicatively mdependent over the
groupgp(as, ..., a) generated by tha 's. The statement of the theorem follows with this
notation directly from Theorem 1 06]. O

Definition. A structureF in £3 is said to besxponentially—algebraically closed (e.a.c.)
if forany F' Est, such thaF < F/, any finite quantifier-free type oveér which is realized
in F’ has a realization ifr.

The class of exponentially—algebraically closed structures is denot&sas

Remark. It follows from Lemma 2.11that in the definition oECs; we can equivalently
assume tha’ ranges irsuked.

Lemma4.2. Supposé& € ECst, C C F is finitary and
= (V\V, {VT:leN)

is a type ex-definable over C. Assume also that V is ex-normal over C and absolutely free.
Then there is an a ifF realizing . Moreover, in some extensiéti > F, a can be chosen
to realizet generically over C.

Proof. Under the assumptions of the lemma, Dlgeorem 4.1 after the transformation
Xj > %xi of variables, we may assume thais justV \ V’. Takea™bin an algebraically
closed extensiorF’ of the field F, generic inVV over F. Choose inF’ a sequence

1
{@b)" : | e N} associated witla~b. This gives us uniquely determined values%af
1
andbiT for coordinates; of a andb; of b.

1
Let A = F + spap{(@~b)’ : | € N} and define ex with domain Dy = D =
F + spay(ai, ..., an) as
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exa (f +Z$aa) = eX(f)-]_[(bi%)mi,
i i

for any integersm;, | # 0 and elementf e F. The definition is consistent since,
is free of additive dependencies over Evidently the formula defines a homomorphism;
thusA € sulf.

The kernel of the homomorphism gcoincides with that of ex orF, since pyV
has no multiplicative dependencies over Thus A has a standard full kernel. Notice
that, by ex-normalitys(mia,...,mga/F) > O for any independent integer vectors
m ={M,....Min),i=1....k

ThusF C A satisfy the assumptions abmma 2.9with exa(F) \ F = ) and hence
A e sukfgt, F < A. By the choice ofa the tuple realizes. SinceF € £Cg; there is a
realization of the type ifr. O

Proposition 4.3. A structureF ¢ 5& is in ECg iff for any irreducible ex-normal free V
over F there is a realization of the finite type given by \lFin

First we prove:

Lemma 4.4. Given an irreducible free ex-normal ¥ F2" and non-empty ¥Y< V there
is a free ex-normal ¥ < F2"t2M gych that(ay, ..., an, by, ..., bn) € F? realizes
V \ V'’ iff there is (@ni1, ..., 8nsm, bnit, ..., bhem) € F2M such that(ay, ..., an,
an+1, - -+, 8+m, b1, ..., bn, by, ..., bpem) realizes V.

Proof. Let g(X1,...,Xn, Y1, ..., ¥n) be a polynomial in the annihilator of’, but not
zero onV. We may assume that for no positive integeeand a non-zero integer tuple
<m1, ceey mn>,

OOXL, vy Xny Y1 oo, YK Yoy

is constant orV, since otherwisg does not vanish oN'’. Add new variablent1, Yn+1
together with the new identity

9(X1, ..oy Xn, Y1, oo Yn) - Ynp1 = 1

Denote the resulting variety if2"+2 by V9. By constructionV9 is irreducible and its
projection onto the firstr2 coordinates is equal to

VA {{X2, .5 Xns V1, - -5 Yn) - 9(X1, -y Xn, Y1, - - -5 Yn) = O}

By our assumptiond/9 is free of multiplicative dependencies and obviously free of
additive dependencies. It is also ex-normal since we do not impose any conditkgnion

Repeating the construction with all the polynomials in the basis of the annihila¥tr of
we come tovV * as required. (J

Proof of the Proposition. The left-to-right implication follows fronL,emma 4.2 Indeed,
since the fieldF is algebraically closedy is absolutely free. On the other hand, we can
obviously choos€ C F finite such thaV is ex-definable oveC.

To get the inverse, assume tlzais a tuple in somé&’ > F and we need to realize an

almost finite typgV \ V’, {V% .| € N}), wheret = (V, {V:TL .| € N}) is the ex-locus of
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aoverF. Itis enough to solve the problem fo&linear basisp of a over F, so we may
assume that is Q-linearly independent ovef. ThusV is free ex-normal, byemma 3.1

and ex-irreducible, becauseis algebraically closed. So we may assume thigta finite

type. ByLemma 4.4ve reduce the typ¥ \ V' to a type of the formi/ andV is ex-normal
and free. By the assumptions of the Proposition the type is realiZed ial

Corollary 4.5. The structureCexp, 0N complex numbers is ifCs iff it satisfies the
Schanuel conjecture and for any ex-normal free algebraic variety 2" there is ac C"
such that & exp(a) € V.

Proof. By definition, Cexp € 5& iff the Schanuel conjecture holds. The rest is
Proposition 4.3

Corollary 4.6. There is a collectiofiEC of first-order formulas such that for arfy e £
F = ECIff F e ECst.

Proof. For each algebraic variety < F2k over Q in variables x1, ..., Xn,
Y1, ..., ¥Yn, 21, ..., Zk, by Theorem 3.2here exists a first-order quantifier-free formula
Wy(zZ1,...,Z), in the language of fields, such that foramy ..., ax € F,

FE= Wy@,...,a) iff V(ay, ..., a) isirreducible, ex-normal and free.

It follows that the statement

forany a, ..., a, if V(ag,...,a) is irreducible, ex-normal and free, then there is
(X1, ..., %n, Y1, ..., Yn) € V(ay, ..., &) such thaex(x1) = y1, ..., eX(Xn) = Yn
is first order (in fact, av3-sentence).

Since any variety oveF has the formV (ay, ..., ak) for someV anday, ..., ax as
above, we can write down the condition givenRroposition 4.3y an infinite collection
of first-order formulas. O

We are going to weaken the assumptionsémma 4.2 We assume below th&te £Cst.

Lemma4.7. Let C be a finitary subset i, a a finite string in somé&’ > F,
{V% 1 € N}) be the complete ex-locus®fover C andr the type

VAV, {V:TL :1 € N}) for V' some proper subvariety of VV, ex-defined over C. Then there
is an me N such thatr is equivalent to a finite type

V\V/, {V:TL -1 < m}) and there is a realization of in F.

Proof. Passing to a linear basis afover C U {w} we may assume that is linearly
independentoveEU{w}. HenceV is free. ByTheorem 4.the infinite part ofr, the system

of equations saying th#b‘(“ex(%i) eV %, | € N, is equivalent to a finite subsystem. Thus
7 is equivalent to a finite type. By the assumptionFathe finite type is realized ir. O

Proposition 4.8. Let C <g F be finitary and V in coordinatesix. .., Xn, Y1, ..., Yn be

ex-definable irreducible over C and ex-normal. Then for any sequ{an%:e | € N} and
V' G V over C there is ifF a realizationa of the type
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r=NV\V,{VT:leN)
Moreover, in some extensiét > F there is a generic realization af.

Proof. If V is absolutely free, then we can aplgmma 4.2and get the statement. So we
assume that is not absolutely free and prove the statement by inductiom on

Forn = 1, from the fact thal/ is not absolutely free we get that dimj = 0 or
dimpr,V = 0. Suppose that the first takes place. Then by ex-normality&fpr,V and
b ¢ aclC U {a}) then(a,b) € V. Choose anya in pr,V(F) € ackC). Then, since
8(a/C) > 0 anda is additively independent of, we have that eta) is algebraically
independent o€; thus (a, ex(@)) € V. For the same reasonl%a, ex(l—la)) satisﬁesV:TL
and(a, ex(a)) ¢ V'.

The case gV = 0 can be dealt with symmetrically.

Consider now the generalassuming that the statement holds for smaller values of
and that pgV is not absolutely free of additive dependencies.

Let F < F with F’ of infinite transcendence degree overApplying a transformation
[M]: Gh(F") — Gp(F’) induced by an appropriate rational matrix\owe may assume
that for anya = (ay, ..., an) € pr,V in F/, generic oveC, the elementsy, ..., a are
linearly independent over a€l) anday. 1, . . ., a, € ackC). Choose such a tupkein F'.
By genericity,a ¢ V'.

Write W = pryV and Wk41,..n the variety induced by on {k + 1,...,n}-
coordinates. It follows from ex-normality and the fact thad.(@x 1, . . ., an/é) = 0 that
dimW1. n=n—k

Sinced(aky1, ..., an/C) > 0, we have

tr.d.(ex(@k+1), . .., ex@n)/C) > lin.d.(ak41, ..., an/C) = n — Kk,

which implies tha{ay1, . . ., @, eX(@&+1), - - . , €X(@n)) IS generic inVi41, .. n overC. For
the same reason,

1 1 1 1 i
T - 8. OX| Takil |- eX| ran €Viit n

Finally notice that the type(ax+1, . . ., &) overC U {ax+1, . . ., an}, corresponding to the
firstk coordinates irr when the rest are replaced by the highlighted elements, satisfies the
assumptions ofemma 4.2 Thus it has a realizatiofay, . . ., ak) in F. This completes the
construction of a realizatio(as, . . ., an) of 7.

The case when p¥ is not absolutely free of multiplicative dependencies can be treated
symmetrically. O

Now we study the rank notiodg for F e.a.c.
Lemma4.9. For F € £Cg, given ACsin F andF' € Ssot such that F< F/,
IF (A) = 0p (A).

Proof. This is just a special case bémma 2.8 O
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Lemma4.10. GivenF € ECg, forany ACsqn F andanyab e F:

() 3(A) <d@A) <A+
(i) o(abA) =a3(@A) =a(A) impliesa(bA) = a(A);
(i) 9(abA) = d@A&I(A) < d(bA) impliesd(abA) = d(bA);
(iv) a(@aA) = 9(A) = d(bA) impliesda(abA) = 3(A);
(v) 9(@A) = 3(A) impliesd(bA) = d(abA).

Proof. (i) follows immediately from the definitions é¢fanda. (ii) and (iii) are immediate

from (i).

(iv) Let B © aA B” 2> bAbe such that(B’) = 9(aA) ands(B”) = a(bA). Let

B = spany(B’) Nsparg(B").

Notice thats(B’ U B”) < §(B”). Indeed byLemma 2.5iii),

§(B’UB”) =8(B'/B") + 8§(B")

= [tr.d.(B’ Uex(B")/B"” Uex(B")) — lin.d.(B'/B")] + §(B").

By the modularity of linear dimension, lid (B’/B”) = lin.d.(B’/B). Also, by properties

of algebraic dependence,

tr.d.(B’ Uex(B)/B” Uex(B")) < tr.d.(B’Uex(B')/B U ex(B)). Hence

8(B’/B”) < §(B’/B). The latter is less than or equal to zero by the choicd,d’ andB.
Now, sinceabAC B’UB” ands(B’'UB”) < §(B") = 9(A), we haved(abA) = 9 (A).
(v) is immediate from (iv). O

Notation. For finite A C F,
cle(A) = {b e F : 9(Ab) = 3(A)}.
For infinite A,

ce(A) = [ clr(X).

XChinA

cle(A) will be called thed-closure ofAin F.
We usually omit the subscrifit when no ambiguity can arise.

Proposition 4.11. The operator A— cl(A) in F € £Cstis a closure operator, satisfying
forany AC F:

(i)
day= |J  cxy
xcA, x finite
(ii)
if AC A C F, thencl(A) C cl(A);
(iii)

cl(cl(A)) = cl(A);
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(iv)
a € cl(Ab) \ cl(A) = b € cl(Aby);
(v)
cl(A) = F;
(vi)  cl(A) is an existentially—algebraically closed substructurerof

Proof. (i) is immediate from definitions.

(i) and (iii) follow from Lemma 4.10

(iv) follows from Lemma 4.1Qii).

(v) Assume first thatA is finite. Then there is a finit?/ > A, A’ € F, such that
9(A) = 8(A") and soA’ <g F. Since for everya € A’ by definitiond(Aa) = 9(A), we
haveA’ C cl(A). The same argument shows in the general case that foBany, cl(A)
there is a finiteB’, B € B’ C cl(A), such thatB’ <r F. Notice also that ¢lA) is closed
under ex. It follows that ¢lA) < F.

(vi) follows from Proposition 4.3Indeed, we need to check that given a free ex-normal
V in 2n variables ex-definable over(@&) there is a realization 6§ in cl(A). Notice that
cl(A) N F is algebraically closed in the field.

We prove the existence of the realization by inductiomea lin.d.(a/cl(A)).

Leta be a realization of/ in F with minimal §(a/cl(A)). This number is non-negative
since c(A) < F. If §(a/cl(A)) = 0, thena is a tuple from olA) by definition and we are
done. Suppose, towards a contradiction, #tagcl(A)) > 0. If we apply a transformation
induced by an integer matri of rankk < n, then stills§(Ma/cl(A)) > 0, since otherwise
we see thaMa is in cl(A) and the linear dimension @ over Ma, and so over ¢lA), is
not bigger tham — k. We can also assume thats linearly independent over@) andV
is the ex-locus of over ckA). ThenV is ex-normal and absolutely free.

Let C <g cl(A) be finitary and such tha¥ is ex-defined ovec. It follows from
8(a/C) > OthatdimpgV > 0, so we may also assume tlagt¢ aclC).

Then there exists @&, € aclC) such that every componeM’ of the subvariety
V N {xn = ¢y} is non-empty and has dimension equal to ¥m- 1. Consider such an
ex-definable irreducible variety” over the finitary set spgf(Ccy). This is ex-normal.
Indeed, consider a generic oV@t, tuple(cy, . . ., Cn, by, ..., by) € V/ and

a =mi1C1+ - +Mmincn, andb =bl"™* ... . by i=1...k
for somek x ninteger matrix

M={mj:1<i<k 1<l|<n}
of rankk < n. We can also write down in vector form

a=Ma and b’ =bM.
We need to see that

tr.d.(@"b'/Cc) > k.
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It follows from the fact that the tuple was chosen to be generic that the required
inequality is equivalent to

dim(vHM > k.
ButdimV’ = dimV — 1, thus dim{V)M > dimVM — 1, so
dim(vVH)M —k > dimvM —k -1 =tr.d.(Ma"ex@M/C) —k — 1,

and the latter is non-negative becads®la/cl(A)) > 0. The ex-normality follows.
Now we useProposition 4.80 find a realizatiord’ for V' in F, which by definition is
of linear dimension at most — 1 over cl A), contradicting the minimality. [

5. Strongly exponentially—algebraically closed fields

Definition. A structureF in £%is said to bestrongly exponentially—algebr aically closed
(s.e.a.c.) ifF € ECs, and, for any ex-irreducible free ex-normélin 2n variables ex-
defined over afinit€ C F, with dimV = n, there is a generic ov€l realization oV in F.
The class of strongly exponentially—algebraically closed structures is denaféd,as

Remark. The definition assumes a ‘slight saturatedness’ of the exponentially—
algebraically closed structure.

Remark. Corollary 4.5can be obviously amended to a criterion s, to be s.e.a.c.

Definition. We say that a structuré € £ has thecountable closure property (or c.c.p.
for short) if, given aC € F and an algebraic variety € F2" of dimensionn which is
ex-definable, ex-irreducible, ex-normal and free d@ethe set of generic realizations of
V overC is at most countable.

We prove belowl(emma 5.12thatCeyxp has the c.c.p.

Our main goal in this final section of the paper is to prove that the class of exponentially—
algebraically closed structures with the countable closure property has a unique model
in every uncountable cardinality. We show first that the class is definable ty,a5-
sentence and the c.c.p. (which can be written ak gn,(Q)-sentence in this case). The
author’s paper] lays out sufficient conditions under which such a class is categorical
in all uncountable cardinals. The main theorem gfi§ a contribution to the theory of
excellency developed by Shelah and adapted here for algebraic applications. We present
the result below with some simplifications sufficient for the purposes of the present paper.

A classC of L-structures is said to bguasi-minimal excellent if the following three
assumptions hold:

Assumption | (Pregeometry. Thereis arL,,, ,-definable operataX — cl(X) acting on
subsets of air € C and satisfying:

(i) cl(X) € C as a substructure &,
(i) cl(Y) = U{cI(X): X 2V, Xfinite};
(i) X — cl(X) is a monotone idempotent operator.



88 B. Zilber / Annals of Pure and Applied Logic 132 (2005) 67-95

Definition. LetF,F’ € C andG C F, G C F'. Then a (partial) mapping, identical @,
¢ : F — F is called aG-monomor phism if it preserves quantifier-free formulas ov@r

Assumption Il (w-Homogeneity over a SubmojleLet G € F, G € F, G € C or
G =¢. Then

(i) if X andX’ are cl-independent subsets owiin someF, F' € C, respectively, then
any bijectiong : X — X’ is aG-monomorphism;
(i) if a partial ¢ : F — F’ is aG-monomorphism, Donp = X, with X finite, then for
anyy € F there is an extensiap’ of ¢ with Dom¢’ = X U {y};
(i) if ¢ : XU {y} = X' U{y’} is a monomorphism, then

y e cl(X) iff y’ e cl(X').

Definition. Given X, C C F we say thathetype of X over C isdefined over Cy if any
¢ : X = F" which is aCo-monomorphism is also @ monomorphism.

Definition. A subsetC C F will be calledspecial if there is a cl-independe® C F and
A1, ..., Ax € Asuch that

C=[JelA.
i
Assumption I11. SupposeC C F is special andX is a finite subset of ¢C). Then the
type of X overC is defined over a finite subs€p < C.

Main Theorem of [7]. LetC be quasi-minimal excellent af be its subclass consisting
of structures satisfying the countable closure property. Suppose also thatFsamé”
contains an infinitel-independent subset A. Then for any uncountaltkere is a unique,
up to isomorphismi, € C* of cardinality . Moreover,F, is prime over any maximal
cl-independent subset (basis).

Now we proceed to check the Assumptions or = £C%. It is obvious that
Proposition 4.1ImpliesAssumption | It remains to prove the other two.

Lemma5.1. There s an L, ,-sentenc&C, such that, giverr € £°,
F & ECiff F e ECE.

Proof. Follow the proof ofCorollary 4.6and observe that for evely(a) we can say, by
anL,, »-formula, thatx"y is generic inV (&) overa. O

It follows from Lemma 4.2hat:
Proposition 5.2. For anyF e £3 there is anF? € £CY, such thatF < F*,
Lemmab.3. If F € EC% and AC F, thencl(A) < F andcl(A) € ECY;.

Proof. By Proposition 4.1(v) cl(A) < F. By Proposition 4.1(vi) we have c{A) € ECst.
Now given a free ex-normal over a finiteC <g cl(A) in 2n variables with dimV = n,
by definition there is a realizatiaiof V generic oveC in F. But then
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8(@/C) =dimV —n=0
andthusaisin cl(A). SoclA) € EC%. O

Definition. GivenF € £C§ and subset8, C C F, we say thaB is cl-independent over
C if cl(B’C) # cl(BC) for any proper subsdé®’ C B.
We say thaB isacl-basisof F over C if B is cl-independentove€ and c{BC) = F.
If C = @ thenB is just called a cl-basis.
By the properties of cl, any two baseskofire of the same cardinality. This cardinality
is called the cldimension of F.

Lemmab5.4. Suppose that A F and B Gy, F is cl-independent over A. Then ABF.

Proof. We have by assumptio®(B/A) = §(B/A) and hencé(BD/A) > §(B/A) for
any finiteD C F. O

Lemma55. If F e £C%, then for every finite CS F for any F > F and finite
A C clg(C) there is an A C clg(C) such that the quantifier-free types of A and A
over C coincide.

Proof. ExtendC to a finiteC’ <g F. We may replacéA by its linear basis ove€’; thus

we assume w.l.o.g. thak is linearly independent oveE’. Since A C cl(C’), there is a
finite extensionB 2 A in F/, of sizen say, such that(B/C’) = 0 andB is linearly
independent ove’. Then the ex-locu¥ of B overC' is free, ex-normal and di = n.

By Lemma 4.the complete ex-locus is equivalent to its finite part and we may assume that
this is justV. By definition it has a generic realizatiddf in F, and the genericity implies
that the quantifier-free type &' overC’ coincides with that o8, §(B’/C’) = 0 and thus

B’ Cclg(C). O

Notation. We now extend the languadeto a languagé-* for structures ir€C%. LetV
be a variety in 2n + |) variables ovefQ. Given an (ordered) subs#t of sizel of a field
with pseudo-exponentiation, I8t be the variety obtained by replacinhdf the variables
by X U ex(X). ThusVy is an ex-definable oveX variety in 2h variables. For any suct
we introduce the predicatey (X) in variablesX saying that

“Vy is ex-irreducible, free oveX and there exists a generic ov€realization ofVx in
cl(X)”.

Obviously, this is arlL, ,-definable expansion of the language; thus the notions of
L*- andL-isomorphisms coincide, which is not necessarily true for monomorphisms, the
bijections between subsets preserving the basic relations.

Lemmab5.6. Given C inF with 9(C) < m this fact is withessed by the{quantifier-free
type of C in the following sense:
If C’ in F satisfies the same*tquantifier-free type, the&i(C’) < m.

Proof. W.l.0.g., we may assume th@tis linearly independent. Suppod€C) = mgp < m.
We have by definition that, for some finite and linearly independent Gvéinite set
D C cl(C) of size, say,

tr.d.(CDex(CD)) — (n+1) <mg, forn=|C]|.
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In other words, there is an algebraic varistyn F2"+2 irreducible overQ, with dimV <
m+ n + |, andC Dex(C D) is its generic point. Then

F = Ev(C) and F = Ev(C))
and the fact on the right implies
tr.d.(C’'D’'ex(C’'D")) — (n +1) < mg,
for someD’ linearly independent ovet’ (by genericity). Hencé(C') <m. O

It follows, in particular, that the fact that sonBeC cl(C) is witnessed by *-quantifier-
free formulas as well.

Lemmab5.7. Supposé € EC&, C € F and Ca <¢ F. Then the L-quantifier-free type of
a over C determines the*tquantifier-free type cd over C; that s, any realizatiob of the
L-quantifier-free type o, with Cb <g F, has the same ‘-quantifier-free type over C.

Proof. We show that if for som&/, F = Ey(Ca), thenF = Ey (Cb). Indeed, assuming
the first holds, leti be a generic realization dfcz in cl(Ca). SinceCa <g F we can
extendd to a 0’ such thats(i’/Ca) = 0. Without loss of generality we consider the
ex-locus oft’ over Ca instead of\Vcz and we assume that = @'. It follows from the
assumptions tha¥cs is ex-irreducible, free, ex-normal and also diigy = n. The same
is true forV,, as the parameters of the variety are of the same algebraic type VEgen
has a generic realization tool]

Lemma5.8. Supposé&, F' € £C%. Then
F<F&FC+F

Proof. =. Supposé= < F’ and letC C F be finite. IfF" E Ey(C), leta be a generic
realization ofV¢ in clg/(C). By Lemma 5.5here is@’ in clg(C) realizingVc generically.
ThusF = Ev(C). If FE Ev(C) thenF’ E Ey(C) follows by definition.

<. Supposé- C F' in L*. ConsiderA = clg/(F). By Lemma5.3 A < F’. We want
to show thatF < A, which by transitivity would implyF < F'. So suppose, towards a
contradiction, that there is a finigin A such that(a/F) < 0. We may assume thatis
linearly independent ovef, and letn be the length of the tuple. Then, lettiMk be the
ex-locus ofa over F, some finiteX <g F, we have thaV is free and ex-irreducible over
F and

dimVx —n=4§@/F) < 0.

ThenF = Ev(X) and thusk = Ey(X). But the latter implies that there is a generic
realization@’ of Vx in F. By definition,§(@’/ X) = dimV — n < 0. This contradicts the
factthatX <g F. O

Proposition 5.9. LetF1, F2, G € £C%, G < F1, G < F2 and G be finiteel-dimensional
countable orG = @. Suppose also thatiC< Fi, C; € F» are finite subsets and
¢ : C1 — Cyis an L*-monomorphism oves.
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Then:

(i) Forany b e cl(Cy) there is an *-G-monomorphism’ extendingp, with Dom¢’ O
C1 U {bs}.
(i) If ¢’ : CLU{b1} - Co U {bo}is an L*-monomorphism extending then

by € cl(Cy) iff by € cl(Cy).

(i) Suppose some1BC Fi1, Bp € F are cl-independent over GCand GG,
respectively. Then, given a bijectiafp : By — By, the mappingy U g is an
L*-G-monomorphism.

Proof. Let C| be a cl-basis ofC; over G in Fy, i.e. a cl-independent subset such that
C] € C1 C cl(GC)). We have theisC; < F, by Lemma 5.4

The imageC), = ¢(Cy) is a basis oC; in F2, since cl-dependence is witnessed by basic
formulas ofL* (seeLemma 5.6.

Let Ciby € C] <f, cl(GCy), C/ finite. Then

0 < 8(CJ/GC}) < 8(C;/GC}) = 0;

thatis,8(C{/GC;)) = 0 and this property of/ is withessed by (Cy), the ex-locus o€
overGGC;.

The L*-quantifier-free formula stating the existence of a generic realization of type
V (C1) guarantees that the corresponding typ&,) over GC; has a generic realization
C5 in F2. It follows thats(C;/GC5) = 0 and then agaid(C;D/GC,) > §(C;/GC)),
for everyD, since we know already th&C, < F,. ThusGCj <f, F».

This allows us to extend by lettingy’(C{) = C5. We have

C1 € GC{ <f, cl(GCy) <f, F1, C2 € GC] <f, cl(GCy) <f, F2,
andy’ preserves all the baslcformulas. ByLemma 5.7¢’ is anL*-monomorphism over
G.
(ii) Immediate byLemma 5.6

(iii) By (i) we may assume tha; <f, F1, C2 <f, F2 andg is anL-monomorphism
betweernC; andC,.
Let

C? = spany(B1 U C1 Uker) andC3 = sparg(Bz U Cz U ker).

With a slight abuse of notation we calp the mapping which is the extension of the initial
Yo U ¢ onto the domaini:? by linearity. Any L-quantifier-free formula which holds for a
finite subset 0C|° (I = 1, 2) is a conjunction of polynomial equalities and inequalities in

B Uex(B)) with coefficients inC;. By independence, only the inequalities are possible for
both values of. Thus

W02C8—>Cg

is anL-monomorphism.
It is also obvious thaC|° <f FI,1 =1, 2; thusyyg is anL*-monomorphism. O
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Corollary 5.10. LetF be a s.e.a.c. structure and C a finite subsdt.iihen there are only
countably many complete,k. ,-n-types over C realized iR.

Proof. Extend firstC to a finiteC <g F.

We claim that the number of completetypes overC realized inF is Xo, which
obviously implies the statement of the corollary.

Let b be a finiten-tuple in F such thatCb <¢ F. By Proposition 5.%andLemma 5.7
the automorphism type @foverC is determined by it& -quantifier-free type. On the other
hand, by definition there is abh-monomorphism between two such tuples if and only if
the complete ex-loci of the tuples ov€rcoincide. ByTheorem 4.1he complete ex-loci
are principal types oveZ; thus there are only countably mamtypes ovelC. [

Now we discuss the countable closure property in the class of s.e.a.c. structures.

Lemma5.11. For F exponentially—algebraically closed; has the countable closure
property iffcle(C) is countable for any finite G F.

Proof. The right-to-left statement is obvious. We prove the statement on the right
assuming that the countable closure property holds.

By Proposition 4.1(v) we may assume th& <g F. Thena € cl(C) iff 4(a/C) =0
iff there is a tuplea extendinga such that(a/C) = 0. We may assume thatis linearly
independent ove€. Then the ex-locu¥ of a overC is of dimension equal to the length
of 3, ex-definable, ex-irreducible, ex-normal and free d@ehus by the assumption of
the lemma there are at most countably many choices for suahlafollows that c(C) is
countable. O

Remark. With the use of the quantifigx expressing the fact that ‘there are uncountably
manyx such that...’, one can write down the obvidus, ., (Q)-sentence, call it E{g,
such that

F = ECgicqpiff F € £C5 and has the c.c.p.
Lemma 5.12. Cexp has the countable closure property.

Proof. We need to show that for any fini@ € C and an algebraic variety < F2" of
dimensionn, which is ex-definable, ex-irreducible, ex-normal and free @®ethe set of
the of generic realization of over B is at most countable. L&t be a generic realization
of V. We claim thata is an isolated point in the analytic set

S={XxeC":X" expX) e V}.
Suppose not. Then there is a non-cons@itmapping from the real unit interval into a
neighbourhood oé in S

te[0,1]1— X(t) €S X0 =&

we denote the mapping &s(t) coordinate-wise. Ley; (t) = exp(x; (t)). Then thex; (t)
and y;(t) can be considered as elements of a differential field of germs of functions
differentiable near 0, with the differentiation operatof B %. By definition,

Dy; = yiDx;, alli. (12)
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Also, X(t)" y(t) € V and, by the assumptions &handa,
tr.d.(X(t)" y(t)/B) = n. (13)

Consider additive dependencies between the differentialé)X. .., dxn(t). If there
are some, then by a suitab@linear transformation of variables we may assume that
dx1(t) = 0,...,dxk(t) = 0 and dy11(1), ..., dxn(t) are additively independent (in the
case where there are no dependendies,0). It follows thatxi(t) = a1, ..., Xk(t) = a
andyi(t) = expa), ..., Yk(t) = explak). By the ex-normality ofV and the fact that
a~ exp@) is genericinV,

tr.d.({ag, ..., &, exp@y), ..., expla)}/B) > k.
Hence

tr.d.({(X+1(1), . .., Xn (1), Yk1 (1), - .., Yn()}/C)
<trdX@®)"y@t)/BU{ay,...,a, exp@), ..., expa)})
=tr.dX®)"yt)/B) —tr.d.({as, ..., ak, expay), ..., expak)}/B)
<n-k. (14)

By the theorem of J. AxY], under (L2) and (L4) Dxy+1(1), ..., Dxn(t) must be additively
dependent. The contradiction proves the claim and the lemma.

Theorem 5.13. LetF; andF> be s.e.a.c. structures of infinitkdimensions. Then the two
structures are |, ,-equivalent; moreover,

F1 S+ Foiff Fu <Foiff Fu <y, , Fo.

1,0

and any L, -definable subset ofifs quantifier-free definable in j}w

Proof. The first ‘iff’ is Lemma 5.8 It follows that, given a finiteC C F4, the identity
embeddindC C F, is anL*-monomorphism. Suppose NndvC C; C F;,C CCo C
finite, ¢ : C; — Cyis anL*-monomorphism fixingz, andb; € F fori = 1 ori = 2. By
the symmetry of what follows we may assume w.l.0.g. that1.

If by € cl(Cy), then byProposition 5.9ve can extend the to C1 U {by}. If by ¢
cl(Cy) then, using the fact tha&, is infinite dimensional, chooda, € F \ cl(Cy). By
Proposition 5.6ii) we can putg(b;) = bz and again extend to C; U {by}. Thus by the
Ehrenfeucht—Fraisse criterion we obtain thRatandF, areL,,, -equivalent ovecC, for
any finiteC < F1. This by definition means that

F1 <L, ., F2

1,0

On the other hand, the same argument shows that once therd.israpnomorphism
betweenC; € F1 andC; C F1, we can play the Ehrenfeucht—Fraisse game extending the
monomorphism any finite number of steps, which implies that

Cl = Lwl.w C2

The latter means that the type of atuple is equivalent to a quantifier-free type (formula)
inLy, - Butthere are only countably many complétg, ,-n-formulas realized iffF1, by
theLemma 5.10
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Since anL,,, -definable set irF is the union of the subsets definable by complete
Lo, o-formulas, there is a quantifier-fréq)l’w-formula defining the set. [

Lemma 5.14. Suppose A is al-independent subset Bf A1, ... Ax € A and

C= U cl(A). (15)
1<i<k
Then C<g F.

Proof. Notice first thatA <g F, by definition. We may assume that is finite and
A= A.

NOV\;, letcy € C, thatiscy € cl(A)), for somei. By definition, there is a finité&X1 such
thats(Xyc1/Ai) = 0. It follows thats (X1¢1/A) = 0 andX; C cl(Aj) € C.

Applying this observation we get for any finitey, . .., cm} € C finite X1,..., Xm €
C such thats(Xjci/A) = 0 for eachi € {1,...,m} and henceS(X1 U --- U X U
{c1,....cm}/A) =0.

It follows that

AUX1U---UXnU{ct,...,Cm} < F;

thus for any finite subsef’ < C there is aC” <g F such thatC’ € C” < C. This
immediately impliestha€ <g F. O

Proposition 5.15. GivenF € £C%;, ker <g C <fg F, C finitary and a finite AC cl(C),
there is a finite subsetdCc C such that the complete,l.,,-type tgA/C) is isolated by
the type tA/ Co).

In other words any : A — F' € £C%; which is an *-monomorphism over {Js also
a monomorphism over C.

In particular, the statement holds for C satisfyifiph) above.

Proof. Replacing if needed by its linear basis ove€ we assume thah is linearly
independent ove€. SinceA C cl(C) there is a finiteB, linearly independent ovet A,
such thas(AB/C) = 0.

ChooseCqy <g C finite with the propertys(AB/Cp) = 0 and containing a generator
of the cyclic group ker, the kernel of ex. We also may assumédmma 4.7 that the ex-
locus of AB overC is determined uniquely by an irreducible vari&gywhich is ex-defined
over a finiteCy and contains the tupla BexAexB as a generic element.

We claim that thi<Cy satisfies the requirements.

Indeed, lety : A — F’ be anL*-monomorphism ovety.

The L, »-formula overCy stating that A’ = ¢(A) can be extended by B’ so
that A'B’exA’exB’ satisfiesVp generically ovelCy” holds in F', by Theorem 5.13This
implies§(A'B’/Cp) = 0 = §(A'B’/C), and thusCA'B’ < F'. It follows also that any
ex-definableV’ over C satisfied byA’'B’exA’exB’ must containVy, because otherwise
S(A'B’/C) < 0. In other words, we have proved thAB and A'B’ have the samé-
guantifier-free types oves.

Suppose now thdEy (C) is a predicate in the languag& overC € C A satisfied byy,
for someY C clg(CA) = clg(C AB). We can without loss of generality assume tWés
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linearly independent oveZ AB. By extendingY we can also assume thaty /C AB) = 0.
Let V* be the ex-locus of overC ABand suppos¥ * is ex-defined ove€; AB for some
finite C1 € C such thatC; AB < F.

By Lemma 3.1V* is free and ex-normal.

Let V' be the variety ove€; A'B’ obtained fromV* by replacingAB by A’'B’. Since
the property of being free and ex-normalisquantifier-free definable, by the above proof
V' is free and ex-normal, and for the same reason\dim n = 0, for n equal to the
number ofx-variables inV’ or, equivalently, the number of elementsvin

By Lemma 4.8and the fact thaF’ € £C%;, there is a generic realizatioff of V' in
F’. By constructionY’ witnesses the validity oEy (¢(€)) in F'. This finally proves thap
preserves quantifier-frde*-formulas and thus, byheorem 5.13all L,,, ,-formulas. O

The combined meaning éfropositions 4.1,15.9and5.15is that£Cy; is quasi-minimal
excellent. ByProposition 5.2there is an infinite-dimensional member of this class of
cardinality®Xo, hence with the countable closure property. Thus, we get:

Theorem 5.16 (Categoricity Theorem For any uncountable cardinal there is a unique,
up to isomorphism, structute € £Cg; ., of cardinalityx.

Moreover,F is prime over any basis.

In other words the L, ,(Q)-sentenceEC
cardinalities.

tccp IS Categorical in all uncountable
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