
Annals of Pure and Applied Logic 132 (2005) 67–95

www.elsevier.com/locate/apal

Pseudo-exponentiation on algebraically closed fields
of characteristic zero

B. Zilber

Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK

Received 1 May 2003; received in revised form 1 June 2004; accepted 9 July 2004

Available online 23 August 2004

Communicated by I. Moerdÿk

Abstract

We construct and study structures imitating the field of complex numbers with exponentiation.
We give a natural, albeit non first-order, axiomatisation for the corresponding class of structures
and prove that the class has a unique model in every uncountable cardinality. This gives grounds
to conjecture that the unique model of cardinality continuum is isomorphic to the field of complex
numbers with exponentiation.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

We construct and study here structures imitatingCexp = (C,+,×,exp), the complex
numbers equipped with the field operations and exponentiation. The idea and the aims of
the project were described in [4].

The version of the structures, thestrongly exponentially–algebraically closed fields with
pseudo-exponentiation, that we study here is very close toCexp, and one of the main results
is the statement that there is exactly one, up to isomorphism, strongly exponentially–
algebraically closed field with pseudo-exponentiation of a given uncountable cardinality,
and we give precise and simple conditions under whichCexp is the one of cardinality
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continuum. In fact the conditions can be interpreted as two conjectures about the complex
exponentiation, the first being the well known Schanuel conjecture and the second the
conjecture stating that certain systems of exponential equations over complex numbers do
have solutions in the complex numbers.

The definition of the above-mentioned systems of exponential equations is given in
natural, albeit rather technical, terms (normality and freeness) which roughly speaking
amount to saying that the system isnot overdetermined. We prove that these definitions
are first order, in fact that certain properties of exponential varieties are of finite character,
which we hope to use for a further analysis of the fields with pseudo-exponentiation.

We also prove an elimination-of-quantifiers result inLω1,ω for the fields with pseudo-
exponentiation and give a, we hope useful, criterion for elementary extensions in the class.

2. Definitions and notation

We start with a class of structuresF = 〈F, L〉 whereF is a field of characteristic 0 in
the languageL consisting of a binary operation+, unary operations1m·, for every positive
integerm, a binary relationE and a collection ofn-ary predicatesV(x1, . . . , xn) for each
algebraic subvarietyV ⊆ Fn, defined and irreducible overQ;
These are interpreted inF as follows:
+ is the usual addition in the fieldF ;
1
m· multiplies the argument by the corresponding rational number;
n-ary predicatesV(x1, . . . , xn) correspond to algebraic subvarietiesV ⊆ Fn;
the binary relationE(x, y) is the graph of a function ex: F → F .

Definition. We letE to be the class ofL-structuresF defined by the (first-order) axioms
stating thatF is an algebraically closed field of characteristic zero andE(x, y) the graph
of a surjective map

ex : F → F× = F \ {0}
satisfying the homomorphism condition

ex(x1+ x2) = ex(x1) · ex(x2).

Definition. Let L− be the languageL without predicateE. Let subE be the class of
L-structuresA such that for someF ∈ E
(i) A ⊆ F asL−-structures;
(ii) E(A) ⊆ E(F);
(iii) the domain of the partial mapping exA is closed under addition and multiplication by

rationals.

The following lemma provides a description ofsubE in algebraic terms.

Lemma 2.1. Suppose A is a divisible subgroup of the additive group of an algebraically
closed field F, A0 ⊆ A a divisible subgroup and

exA : A0 → F×



B. Zilber / Annals of Pure and Applied Logic 132 (2005) 67–95 69

a homomorphism into the multiplicative group such thatexA(A0) ⊆ A. Let E be the graph
of exA and let, for any L-name V for an algebraic variety overQ, us interpret V on A as
induced by the embedding A⊆ F.

Suppose also that the ranks of the abelian groups satisfy the inequalityrk A0 < rk F.
Then A viewed as an L-structure is in subE .

Proof. By definition it is enough to be able to extend exA to a surjective homomorphism:

ex : F → F×.

By standard theory of abelian groups,

F ∼= A0× B and F× ∼= ex(A0)× B′,

where B and B′ are divisible groups in, respectively, additive and multiplicative
representations. Considering the ranks one gets easily from the assumption that

rk B = rk B′ ≥ ℵ0.

SinceB is torsion free, it follows that there is a surjective homomorphism fromB ontoB′,
and hence we can extend exA in a surjective way. �

Notation. We write X ⊆fin Y to say thatX is a finite subset ofY. We also often writeXY
instead ofX ∪ Y.

Notation. For A ∈ subE ,

DA = {x ∈ A : ∃y ∈ A E(x, y)}.
For X ⊆fin A

exA(X) = {y ∈ A : ∃x ∈ X E(x, y)};
tr.d.(X) is the transcendence degree ofX overQ and
lin.d.(X) the dimension of the vector space spanQ(X) generated byX overQ;

Definition. The predimension of X ⊆fin A is

δA(X) = tr.d.(spanQX ∪ exAspanQX)− lin.d.(spanQX).

Remark. If X ⊆fin A ⊆ B ∈ subE then obviously

δA(X) ≤ δB(X).

We usually omit the subscript inδA(X) whenA is fixed.

Definition. For X, X′ ⊆fin A

δ(X/X′) = δ(X X′)− δ(X′).
For infinite Z ⊆ A andk ∈ Z, δ(X/Z) ≥ k by definition means that for anyY ⊆fin Z
there isY ⊆fin Y′ ⊆ Z such thatδ(X/Y′) ≥ k, andδ(X/Z) = k meansδ(X/Z) ≥ k and
notδ(X/Z) ≥ k + 1.
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Remark. Letting tr.d.(X/X′) = tr.d.(X X′)− tr.d.(X′) and
lin.d.(X/X′) = lin.d.(X X′) − lin.d.(X′) and assumingX = spanQX andX′ = spanQX′
we have

δ(X/X′) = tr.d.(X ∪ exX/X′ ∪ exX′)− lin.d.(X/X′).

Notation. subE0 is the subclass ofsubE consisting of allA ∈ subE satisfying the condition

δA(X) ≥ 0 for all X ⊆fin DA.

E0 = E ∩ subE0.

Notation. For W an algebraic variety,̄b = 〈b1, . . . ,bl 〉, let

W(b̄) = {〈xl+1, . . . , xn+l 〉 : 〈b1, . . . ,bl , xl+1, . . . , xn+l 〉 ∈ W}.
Lemma 2.2. If X = {x1, . . . , xn} ⊆ A, x̄ = 〈x1, . . . , xn〉, then:tr.d.(X) = dimV , where
V ⊆ Fn is the minimal algebraic variety overQ containingx̄;
lin.d.(X) = dim L, where L is the minimal linear subspace of Fn containingx̄ and given
by homogeneous linear equations overQ.

Proof. Immediate from definitions. �
Lemma 2.3. Let A∈ subE . Then for X⊆fin A and Z⊆ A there is an Y⊆fin Z, such that
if Y ⊆ Y′ ⊆ Z, thenδ(X/Y′) = δ(X/Z).

Proof. ChooseY ⊆fin Z such that
tr.d.(X ∪ exX/Y ∪ exY) = tr.d.(X ∪ exX/Z ∪ exZ) and lin.d.(X/Y) = lin.d.(X/Z).
This choice is possible, since tr.d.(X/Y) and lin.d.(X/Y) are non-increasing functions
of Y. �
Remark. The condition lin.d.(X/Z) = lin.d.(X/Y) for Y ⊆ Z is satisfied iff
spanQ(X) ∩ Z ⊆ Y and correspondingly for the transcendence degree.

Definition. For A, B ∈ subE , we say thatA is strongly embedded in B, writing A ≤ B,
if A ⊆ B asL-structures and the following two conditions hold:

(S1) δA(Y/Z) ≤ δB(Y/Z) for anyY, Z ⊆fin DA; and
(S2) δB(X/DA) ≥ 0, for all X ⊆fin DB.

Lemma 2.4. Condition(S1)is satisfied if the following condition holds:
(S1A) any algebraically independent subset ofexB(A) \ A is algebraically independent
over A.

Proof. The inequality in (S1) is equivalent by definition to

tr.d.(Y ∪ exAY/Z ∪ exAZ) ≤ tr.d.(Y ∪ exBY/Z ∪ exBZ).

W.l.o.g.,Z ⊆ Y. We can equivalently replace exBY on the right by
exBY′ ∪ exAY such that exBY′ ⊆ exBY \ A, exBY′ is a transcendence basis of exBY \ A
and exB(Y′ ∩ Z) is a basis of exBZ \ A. Then

tr.d.(Y ∪ exBY/Z ∪ exBZ) = tr.d.(Y ∪ exBY′ ∪ exAY/Z ∪ exB(Y
′ ∩ Z) ∪ exAZ)

= tr.d.(Y ∪ exAY/Z ∪ exAZ)+ |exB(Y
′ \ Z)|. �
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We also use a relativized notion of a strong embedding:

Definition. For subsetsU ⊆ V ⊆ C andC ∈ subE , we say thatU is strongly embedded
into V relative to C, writing

U ≤C V,

meaning thatδC(X/U ∩ DC) ≥ 0 for anyX ⊆ V ∩ DC.

Notice that this definition agrees with the absolute strong embedding whenU = A, V = B
andA, B ⊆ C with the property that DA = A∩DC.

Lemma 2.5. For any structure A of the class subE and X,Y, Z ⊆fin A:

(i) If spanQ(X
′) = spanQ(X) thenδ(X′) = δ(X).

(ii) If spanQ(X
′Y) = spanQ(XY) thenδ(X/Y) = δ(X′/Y).

(iii) If spanQ(Y) = spanQ(Y
′) thenδ(X/Y) = δ(X/Y′).

(iv) δ(XY/Z) = δ(X/Y Z)+ δ(Y/Z).

Proof. Immediate from definitions. �

Lemma 2.6. (i) For A, B,C ∈ subE ,
if A ≤ B and B≤ C, then A≤ C.

(ii) For C ∈ subE and its subsets A⊆ B ⊆ C,
if A ≤C B and B≤C C, then A≤C C.

Proof. (i) Let X ⊆fin DC and letZ ⊆fin DA be large enough thatδC(X/Z) = δC(X/DA).
We need to prove thatδC(X/Z) ≥ 0. ChooseY ⊆fin DB so that spanQ(Y Z) = DB ∩
spanQ(X Z). Then lin.d.(X/Y Z) = lin.d.(X/DB).

From the definition ofδC it follows that δC(X/Y Z) ≥ δC(X/DB) ≥ 0. Also
δC(Y/Z) ≥ δB(Y/Z) ≥ 0 by (S1) and (S2). Hence
δC(XY/Z) = δC(X/Y Z) + δC(Y/Z) ≥ 0. Now notice thatδC(X/Z) = δC(XY/Z) by
definition.

(ii) We may assume thatA = spanQA and B = spanQB and then apply the same
arguments as in (i). �

Definition. Let A ∈ subE0 andX ⊆fin DA. Thedimension of X in A is

∂A(X) = min{δA(X
′) : X ⊆ X′ ⊆fin X ∪ DA}.

Lemma 2.7. Let A∈ subE0.

(i) If X ⊆ X′ ⊆fin DA are such thatδA(X′) = ∂A(X), then X′ ≤A A.
(ii) Given X⊆fin DA there exists X′ ⊆fin DA satisfying(i).

Proof. Immediate from definitions. �

Lemma 2.8. Let A, B ∈ subE , A≤ B and X⊆fin A. Then

∂A(X) = ∂B(X).
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Proof. Let Y ⊆fin DB be such that

δB(XY) = ∂B(X).

Let Y0 be aQ-linear basis ofY over A andX1 ⊆fin A a superset ofX such that

spanQ(X1) = spanQ(XY) ∩ A.

Then lin.d.(Y0/A) = lin.d.(Y0/X1). On the other hand, it is obvious that tr.d.(Y0 ∪
exBY0/A∪ exB A) ≤ tr.d.(Y0 ∪ exBY0/X1 ∪ exBX1). It follows that

δB(Y0/X1) ≥ δB(Y0/A) ≥ 0.

Also

spanQ(XY) = spanQ(X1Y0).

Hence

δB(XY) = δB(X1Y0) = δB(X1)+ δB(Y0/X1).

By the above proof,δB(XY) ≥ δB(X1). By definitionsδB(X1) ≥ δA(X1) andδA(X1) ≥
∂A(X). Thus∂B(X) ≥ ∂A(X), and the converse is obvious.�

Lemma 2.9. Suppose A∈ subE0, B ∈ subE ,
A ⊆ B as L-structures,DB = DA + spanQ(X),
the condition(S1A)of Lemma2.4 is satisfied and
δB(X′/DA) ≥ 0 for all X ′ ⊆fin spanQ X.
Then B∈ subE0 and A≤ B.

Proof. We may assume thatX is Q-linearly independent over DA. Let Z ⊆ DB, Z =
{z1, . . . , zn} andzi = xi + yi for somexi ∈ spanQ(X), yi ∈ DA. Let {x1, . . . , xk} be a
Q-linear basis of{x1, . . . , xn}. Then, usingLemma 2.5, for δ = δB we have
δ(Z) = δ(x1 + y1, . . . , xk + yk, y′k+1, . . . , y′n), for y′k+1, . . . , y′n appropriateQ-linear

combinations ofy1, . . . , yn.
We rewrite as follows:

δ(Z) = δ({x1+ y1, . . . , xk + yk}/{y′k+1, . . . , y′n})+ δ(y′k+1, . . . , y′n).

By assumption,δ(y′k+1, . . . , y′n) ≥ 0. On the other hand,

δ({x1+ y1, . . . , xk + yk}/{y′k+1, . . . , y′n}) ≥ δ({x1, . . . , xk}/DA) ≥ 0

since

tr.d.(x1+ y1, . . . , xk + yk,ex(x1+ y1), . . . ,ex(xk + yk)/y′k+1, . . . , y′n,
ex(y′k+1), . . . ,ex(y′n))
≥ tr.d.({x1+ y1, . . . , xk + yk,ex(x1+ y1), . . . ,ex(xk + yk)}/DA ∪ exAA)

≥ tr.d.({x1, . . . , xk,ex(x1), . . . ,ex(xk)}/DA ∪ exAA)

and

lin.d.({x1+ y1, . . . xk + yk}/{y′k+1, . . . , y′n}) = k = lin.d.({x1, . . . , xk}/DA).
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Thus

δ(Z) ≥ 0.

The same argument shows that

δ(Z/DA) ≥ 0.

This proves (S2) of the definition of strong embedding.Lemma 2.4completes the
proof. �

Definition. Let A ∈ subE . Write

ker|A = {a ∈ A : ex(a) = 1}.
A is said to bewith standard kernel if

ker|A = ω · Z
for some transcendentalω ∈ A.

A is said to bewith full kernel if for ker = ker|A = {a ∈ A : ex(a) = 1} the groupA/ ker
is isomorphic to a multiplicative subgroup of an algebraically closed field containing all
torsion points of the field.

Proposition 2.10. There is an A∈ subE0 with standard full kernel.

Proof. Let F be an algebraically closed field andω ∈ F a transcendental element.
Consider the subgroupA0 = ω · Q of the additive groupF and defineH = A0/ ker
for ker the standard kernel with generatorω. ThenH considered as a multiplicative group
is characterized by the property that it is a torsion group such that any equation of the
form xn = h, for any h, has exactlyn solutions in the group. In other words,H is
isomorphic to the torsion subgroup of the algebraically closed fieldF . Define exA as
the canonical homomorphismA0 → H ⊆ F× corresponding to this isomorphism and
A = A0+ spanQH . Now we can viewA as anL-structure fromsubE , by Lemma 2.1.

Sinceω is transcendental,A0 ∩ spanQH = ∅, DA = A0 and δ(X) = 0 for any
X ⊆fin A0. It follows that A ∈ subE0. �

Lemma 2.11. Suppose A∈ subE0 and A is with full kernel. Then there is F∈ E0 and an
embedding of A into F such that A≤ F andker|F = ker|A.

Proof. Choose an algebraically closed fieldF of characteristic zero such thatA ⊆ F and
tr.d.(F/A) ≥ cardA+ℵ0. We want to define ex: F → F× extending exA so thatF ∈ E0.

Fix a well-ordering ofF . Let

D0 = DA, ex0 = exA : D0 → A andA0 = A.

Proceed by induction definingDα , Aα and a homomorphism

exα : Dα → F× with DAα = Dα and exα(Dα) ⊆ Aα

as follows:
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If α is even, choose the first elementa ∈ F \ Dα and define exα+1(a) to be any element
in F× \ acl(Aα). Put Dα+1 = Dα + Q · a and extend exα+1 to Dα+1 as a group
homomorphism.
If α is odd, choose the first elementb ∈ F× \ exα(Dα) and ana ∈ F \ acl(Aα),
put exα+1(a) = b, Dα+1 = Dα + Q · a and again extend exα+1 to Dα+1 as a group
homomorphism.

Define in both cases

Aα+1 = spanQ(Aα ∪ Dα+1 ∪ exα+1(Dα+1))

with E on the set defined by exα+1.
On any step it follows fromLemma 2.9thatAα+1 ∈ subE0 andAα ≤ Aα+1. Also Dα+1

is divisible and, sinceA is with full kernel, in ex(Aα+1) any equation of the formxn = b
has exactlyn solutions.

Finally,

ker|Aα+1 = ker|Aα ,

since if ex(qa+ a′) = 1 for a generatingDα+1 over Dα as above, some rationalq = m
n

anda′ ∈ Dα , thenbm = gn for b = ex(a), g = ex(−a′). Since all the roots of degreem of
gn are in ex(Dα) it would contradictb /∈ ex(Dα) unlessq = 0. �

Notation. Let subE0
st be the subclass ofsubE0 consisting of the structures with standard

full kernel.
Let

E0
st = subE0

st∩ E .

3. Normality and freeness

In this section we consider the class of structures with standard kernelωZ, which we
denote just as ker. We extend the languageL by namingω.

Definition. We say that an algebraic varietyV ⊆ F2n is ex-defined over someC ⊆ F if
V can be defined with parameters in the fieldQ(C + ker+exC).

We letC̃ = Q(C + ker+exC).
We say that the varietyV ex-definable overC is ex-irreducible over C if the ideal of

the polynomials inx1, . . . , xn, y1, . . . , yn overC̃ vanishing onV is prime.

Definition. For an algebraic varietyV ⊆ F2n, written in variablesx1, . . . , xn, y1, . . . , yn,
define prxV to be the Zariski closure of the projection ofV onto the firstn coordinates.
Correspondingly, pryV is the Zariski closure of the projection onto the lastn coordinates.

Remark. If the varietyV is ex-definable and ex-irreducible over someC ⊆ F , then so are
the projections.

Definition. For V ⊆ F2n ex-definable overC, we say that prxV is free of additive
dependencies over C if no ā ∈ prxV generic overC̃ satisfiesm1 · a1+ · · · +mn · an = c
for a c ∈ spanQ(C + ker) and a non-zero tuple of integersm1, . . . ,mn.
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prxV is said to beabsolutely free of additive dependencies over C if prxV is free of
additive dependencies over acl(C̃).

We say that pryV is free of multiplicative dependencies over C if no b̄ ∈ pryV generic

overC̃ satisfiesbm1
1 · . . . · bmn

n = r for anr ∈ ex(spanQ(C + ker)).
pryV is said to beabsolutely free of multiplicative dependencies over C if no

b̄ ∈ pryV generic overC̃ satisfiesbm1
1 · . . . · bmn

n = r for anr ∈ acl(C̃).

V is said to befree if both prxV is free of additive dependencies and pryV is free of
multiplicative dependencies overC.

Notation. Gn(F) = Fn × (F×)n is an algebraic group, the product ofn copies of the
additive groupF andn copies of the multiplicative groupF×.

Givenm ∈ Z denote as[m] : Gn(F)→ Gn(F) the homomorphism mapping given by
x �→ mx on the firstn coordinates andy �→ ym on the lastn ones.

More generally, given an integer(k× n)-matrix

M = {mi, j }1≤i≤k; 1≤ j≤n,

we denote by

[M] : Gn(F)→ Gk(F)

the homomorphism mapping given by〈x1, . . . , xn〉 �→ 〈x′1, . . . , x′k〉, with x′i = mi,1x1 +
· · · + mi,nxn on the firstn coordinates and〈y1, . . . , yn〉 �→ 〈y′1, . . . , y′k〉 with y′i =
y

mi,1
1 · . . . · y

mi,n
n on the lastn ones.

Definition. V ⊆ Gn(F) is said to beex-normal over C if in some extensions of the field
there are〈a1, . . . ,an,b1, . . . ,bn〉 ∈ V such that for anyk ≤ n independent integer vectors
mi = 〈mi,1, . . . ,mi,n〉, i = 1, . . . , k, and

a′i = mi,1a1+ · · · +mi,nan, b′i = b
mi,1
1 · . . . · bmi,n

n ,

the following inequality holds:

tr.d.(〈a′1, . . . ,a′k,b′1, . . . ,b′k〉/C̃) ≥ k. (1)

Equivalently, the varieties

V ′1,...,k = locusC(a′1, . . . ,a′k,b′1, . . . ,b′k)

satisfy the inequality

dimV ′1,...,k ≥ k. (2)

Notice that the varietiesV ′1,...,k are just the images ofV under the corresponding regular
homomorphisms[M] : Gn(F)→ Gk(F). We denote the image of the variety under[M]
by V M .

If W = pryV then we writeWM for pry(V
M ). Obviously, thisWM is equal to the image

of W under the above multiplicative homomorphism(F×)n → (F×)k determined byM.
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Definition. Given ann-tuple ā ∈ Fn and a subsetC ⊆ F , we definethe ex-locus of ā
over C to be the smallest algebraic varietyV ⊆ F2n ex-defined overC and containing the
2n-tuple〈a1, . . . ,an,exa1, . . . ,exan〉.
Remark. The ex-locus of a tuple overC is ex-irreducible overC.

Lemma 3.1. Let C̃ ⊆ A,ω ∈ C ≤A A ∈ subE0, and letā = 〈a1, . . . ,an〉 be a string of
elements of A linearly independent over C and bi = exai be defined for all i= 1, . . . ,n.
Then the ex-locus V of̄a over C is ex-normal and free. If̃C is an algebraically closed
subfield of F, then V is absolutely free.

Proof. The inequalities (1) in the definition of ex-normality under the assumptions of the
lemma are equivalent to

δ(a′1, . . . ,a
′
k/C) ≥ 0

and the latter follow from the fact thatC ≤A A.
An additive dependence for prxV would mean by the definition ofV a linear

dependence of̄a overC, which does not hold by the assumptions.
A multiplicative dependence for pryV is equivalent to ex̄a being multiplicatively

dependent over the subgroup generated by exC, which is equivalent under the assumptions
to ā being linearly dependent overC. �

Theorem 3.2. Let V(x1, . . . , xn, y1, . . . , yn, z1, . . . , zk) ⊆ F2n+k be an algebraic variety
over some C. Then the following sets are quantifier-free definable in the language of fields:

{〈a1, . . . ,ak〉 ∈ Fk : V(x1, . . . , xn, y1, . . . , yn,a1, . . . ,ak) is irreducible}; (3)

{〈a1, . . . ,ak〉 ∈ Fk : pryV(y1, . . . , yn,a1, . . . ,ak) is absolutely free

of multiplicative dependencies}; (4)

{〈a1, . . . ,ak〉 ∈ Fk : V(x1, . . . , xn, y1, . . . , yn,a1, . . . ,ak) is ex-normal}. (5)

Proof. Throughout the proof we letW = pryzV , the variety in the variablesy1, . . . , yn,

z1, . . . , zk. We let a = 〈a1, . . . ,ak〉 and denote byW(a) the variety in the variables
y1, . . . , yn obtained fromW by lettingz= a.

For (3) the fact is well known and widely used.
To prove the statement for (4) it is enough to prove that, forW = pryV , there is a finite

setµ(W) of basic tori (algebraic subgroups of(F×)n) of codimension 1 such that, given
W(a) ⊆ Fn which is not free of multiplicative dependencies, there areQ ∈ µ(W) and
ane ∈ (F×)n with W(a) ⊆ Qe, the shift ofQ by e. This statement is a special case of
Corollary 3 of [5]. For (5) we will need a stronger version of the same Corollary 3 which is
obtained by simply combining the former with the ‘function field’ version of Proposition
1 of [5]:

Fact. Let P⊆ (F×)n be a basic torus and W(a) ⊆ P an algebraic variety. Then there is
a finite collectionπP(W) of basic subtori of P (depending on W but not on a) such that
given a torus T⊆ P, for any connected infinite atypical component X of W(a) ∩ T , there
exists Q∈ πP(W) and c∈ P such that X⊆ Q · c and X is typical in W(a) ∩ T with
respect to Q· c.
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Here a componentX of W(a) ∩ T is said to beatypical (with respect toP) if

dim X > dimW(a)+ dimT − dim P

andtypical if

dim X = dimW(a)+ dimT − dim P.

The last statement will be proved through the following sequence of lemmas.

Definition. Given a basic torusT ⊆ (F×)n there is a uniquely determined algebraic
(group) variety(F×)n/T and the corresponding regular surjective homomorphism

(F×)n → (F×)n/T.

We write W(a)/T for the image ofW(a) under the homomorphism. Also, sinceT is
uniquely determined by any of its cosets, we use the notation also whenT is a non-basic
torus, i.e. a coset of an algebraic subgroup of(F×)n.

Let T ⊆ P be tori,W(a) ⊆ P. We say thatW(a)/T is anatypical image with respect
to P if

dimW(a)/T < min{dim P/T,dim W(a)}.
Easy dimension calculations show, for irreducibleW(a) ⊆ P with an atypical image

W(a)/T , that for any genericw ∈ W(a) it holds that

dimW(a) ∩ Tw > 0 (6)

and

dimW(a) ∩ Tw > dimW(a)− dim P/T. (7)

Proposition 3.3.1 Given W(a) ⊆ P = (F∗)n, an irreducible algebraic variety, for any
basic torus T⊆ P with atypical image W(a)/T with respect to P, there is Q∈ πP(W)

such that

dimW(a)/Q = dimW(a)/T − dim Q/(Q ∩ T)

and

dimW(a)/T = dimW(a)/(Q ∩ T).

Proof. Letw ∈ W(a) be generic andX ⊆ W(a) ∩ T · w be a component of the intersec-
tion of maximal dimension. Then by the additive formula

dimW(a)/T = dimW(a)− dim X (8)

and dimX = dimW(a) ∩ T · w > 0. We may assumew ∈ X. By the Fact above there is
Q ∈ πP(W) such that (i)X ⊆ Q · w and (ii) X is a typical component of the intersection

1 I am grateful to Kitty Holland for detecting a serious error in the formulation of the Proposition in the previous
version of the paper. The present version is quite similar to her result in [2], the proof of which is based on the
same Section 5 of [5].
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(W(a) ∩ Qw) ∩ Tw with respect toQw. By (i) and the maximality of dimX, we have
dimW(a)/T = dimW(a)/(Q ∩ T). And (ii) means that, given a connected component
Y ⊇ X of the varietyW(a) ∩ Qw, we have

dim X = dimY + dim Q ∩ T − dim Q. (9)

But Y is a component of a generic fibre of the mappingW(a) → W(a)/Q and, by the
classical theorem on the dimension of fibres ([3], Chapter 1, s.6, Thm 7),

dimY = dimW(a) ∩ Qw = dimW(a)− dimW(a)/Q. (10)

Combining (8), (9) and (10) we get the required equality on dimW(a)/Q. �

In the case ofP = (F×)n we writeπ(W) instead ofπP(W).

Lemma 3.4. If the variety V(a) ⊆ F2n is not ex-normal then eitherdimV(a) < n or, for
W = pryV , there is Q∈ π(W) defined by a matrix q on l= codimQ independent integer
n-rows as Q= {y ∈ (F×)n : yq = 1} such that

dimV(a)q < l .

Proof. Suppose dimV(a) ≥ n, andV(a) is not ex-normal, which is witnessed byM, a
matrix ofk < n independent integern-rows, as

dimV(a)M < k. (11)

By definition, onx-coordinates the mappingx → Mx is a linear surjective mapping
Fn → Fk, and ony-coordinatesy → yM is a surjective homomorphism(F×)n → (F×)k.
Denote the kernel of the second one asT ; thus the latter mapping in the notation above is
P → P/T andW(a)M = W(a)/T . Notice also that the dimension of the kernel of[M]
on x-coordinates is equal to dimT , since both are equal to the co-rank of the matrixM.
Claim 1.W(a)/T is an atypical image.

Suppose not. Then, in the case of dimP/T ≤ dimW(a), we have by definition
that dimW(a)/T = dim P/T and dimP/T = k, a contradiction. In the case of
dimW(a) < dim P/T we have dimW(a)/T = dimW(a). It follows that the mapping
W(a) → W(a)M is finite; thus the fibres of the mappingV(a) → V(a)M are at most of
dimension dimT and hence dimV(a)M ≥ dim V(a)− dimT ≥ n− dimT = dim P/T ,
which contradicts the assumptions again. The claim is proved.

By Proposition 3.3there is Q ∈ π(W) with dimW(a)/Q = dimW(a)/T −
dim Q/(Q ∩ T) and dimW(a)/(Q ∩ T) = dimW(a)/T .

Claim 2. W.l.o.g., we may assume thatQ ⊇ T .
Indeed, the basic torusQ ∩ T is given by a system ofk′ = codimQ ∩ T ≥ k indepen-

dent equationsyM ′ = 1.
By definition,M ′ defines onx-coordinates a linear surjective mapping

[M ′] : Fn → Fk′ , with ker[M ′] ⊆ ker[M], so[M] can be obtained as the composition of
[M ′] with another linear mapping with fibres of dimensionk′ −k. Thus, for anyb ∈ W(a),
letting

V(b�a) = {c ∈ Fn : c�b ∈ V(a)},
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a variety onx-coordinates, we have after applying the mappings[M ′] and[M],
dimV(b�a)M

′ ≤ dimV(b�a)M + (k′ − k).

On the other hand, by the addition formula,

dimV(a)M
′ = dimW(a)M

′ + min
b∈W(a)

dimV(b�a)M
′
.

Since dimW(a)M
′ = dimW(a)/(Q ∩ T) = dimW(a)/T = dimW(a)M , we have

dimV(a)M
′ ≤ dimW(a)M + min

b∈W(a)
dimV(b�a)M + (k′ − k)

= dimV(a)M + k′ − k < k′.

In other words, we can replaceT by Q ∩ T , and soM by M ′, and still witness the failure
of ex-normality. The claim is proved.

Let now the above basic torusQ ⊇ T be given byl = codimQ ≤ k equations of the
form yq = 1, and the matrixq induce the surjective mapping

[q] : Fn × (F∗)n → Fl × (F∗)l .
SinceQ ⊇ T we have

dimV(b�a)q ≤ dimV(b�a)M ,

while for y-coordinates we have

dimW(a)q = dimW(a)M − (k− l ),

by the definition ofQ.
Again, the addition formula and the last two formulas yield

dimV(a)q = dimW(a)q + min
b∈W(a)

dimV(b�a)q ≤ dimV(a)M + l − k.

It follows by (11) that

dimV(a)q < l . �

End of the Proof of the Theorem. The statement for (5) follows immediately from the
lemma, as the condition

dimV(a) ≥ n &
∧

Q∈π(W)

dimV(a)q ≥ codimQ

is quantifier-free definable inL. �

Remark. Theorem 3.2will not be used in the proof of the main result of this paper since
the further constructions and proofs are carried out inLω1,ω-terms. Still we hope that with
some extra work the theorem can provide a finer description of the fields with pseudo-
exponentiation.
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4. Exponentially–algebraically closed structures

Definition. Let V ⊆ Gn(F) be an algebraic subvariety ex-defined and ex-irreducible over

someC ⊆ F . With any suchV we associate a sequence{V 1
l : l ∈ N} of algebraic varieties

which are ex-definable and ex-irreducible overC and satisfy the following:

V1 = V ; and for anyl ,m ∈ N the mapping[m]mapsV
1

lm ontoV
1
l .

Such a sequence is said to bea sequence associated with V overC.
Also, with any〈a1, . . . ,an,b1, . . . ,bn〉 ∈ V as above we associate a sequence

{〈a1, . . . ,an,b1, . . . ,bn〉
1
l : l ∈ N}

such that for anyl ,m ∈ N the mapping[m] maps 〈a1, . . . ,an,b1, . . . ,bn〉 1
lm onto

〈a1, . . . ,an,b1, . . . ,bn〉
1
l .

Let V ′ ⊆ V ⊆ Gn(F) be varieties overC, V irreducible overC, {V 1
l : l ∈ N} a

sequence associated withV . Then the pair

τ = (V \ V ′, {V 1
l : l ∈ N})

is said to bean [almost finite] n-type over C. A finite n-type over C is given by an
algebraic set of the formV \ V ′, with V,V ′ ⊆ F2n ex-definable algebraic varieties.

A tuple ā = 〈a1, . . . ,an〉 ∈ Fn is said to realize the typeV \ V ′ if

〈a1, . . . ,an,ex(a1), . . . ,ex(an)〉 ∈ V \ V ′.

The tupleā is said to realize the typeτ above ifā realizesV \ V ′ and〈
1

l
a1, . . . ,

1

l
an,ex

(
1

l
a1

)
, . . . ,ex

(
1

l
an

)〉
∈ V

1
l

for all l ∈ N.
We say that̄a realizesτ generically over C if V is the ex-locus of̄a overC.

The complete ex-locus of ā over C is the type(V, {V 1
l : l ∈ N}, whereV

1
l are the

ex-loci of 〈1
l a1, . . . ,

1
l an〉 overC.

We say thatC ⊆ F is finitary if there aren ≥ 0, substructuresE1, . . . , En ⊆ F , such
that exE1, . . . ,exEn are algebraically closed subfields ofF , and a finite setA, such that

C = spanQ(A) ∪ E1 ∪ · · · ∪ En.

Below we use the notationF for anL-structure on the fieldF .

A crucial tool for the study of types and their realizations in this section will be the
following reformulation of the main result of [6]:

Theorem 4.1. Let F ∈ E0, C ⊆ F, V an algebraic variety in2n variables

x1, . . . , xn, y1, . . . , yn, ex-defined, ex-irreducible over C and free, and{V 1
n : n ∈ N} a

sequence associated with V over C. Suppose also that C is finitary. Then there exists a
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positive integer m such that for any l∈ N, V
1

lm is the unique variety which is irreducible
overC̃ and satisfies

(V
1

lm )l = V
1
m (xi �→ l · xi and yi �→ yl

i ).

Proof. This is based on Theorem 1 of [6].
We may assume thatV is ex-defined over finiteA ⊆ C, ω ∈ A as in the definition of

finitary C. Obviously, for anym, the field of definition ofV
1
m is a subfield of acl(A∪exA),

which is of finite transcendence degree. Hence, the statement of the theorem holds forC if
and only if it holds forC0 instead ofC, where

C0 = C ∩ ln(acl(A∪ exA)) = spanQ(A) ∪ E0
1 ∪ · · · ∪ E0

n

andE0
i are substructures such that ex(E0

i ) = Li are algebraically closed subfields ofF .
Let 〈a1, . . . ,an〉 be a generic overC̃ point in prxV and {a1, . . . ,ar } = A ∪

{a1, . . . ,an} ∪ ex(A∪ {a1, . . . ,an}).
Let P̂ = Q(a1, . . . ,ar ,

√
1, L1, . . . , Ln), the field generated by elementsa1, . . . ,ar , all

the roots of unity and subfieldsL1, . . . , Ln. (The roots of unity can be omitted ifn > 0.)

Choose〈b
1
m
1 , . . . ,b

1
m
n 〉 to be generic in pryV

1
m over P̂ and (b

1
mk
i )k = b

1
m
i . It follows

from the freeness assumptions thatb1, . . . ,bn are multiplicatively independent over the
groupgp(a1, . . . ,ar ) generated by theai ’s. The statement of the theorem follows with this
notation directly from Theorem 1 of [6]. �

Definition. A structureF in E0
st is said to beexponentially–algebraically closed (e.a.c.)

if for any F′ ∈ E0
st, such thatF ≤ F′, any finite quantifier-free type overF which is realized

in F′ has a realization inF.
The class of exponentially–algebraically closed structures is denoted asECst.

Remark. It follows from Lemma 2.11that in the definition ofECst we can equivalently
assume thatF′ ranges insubE0

st.

Lemma 4.2. SupposeF ∈ ECst, C ⊆ F is finitary and

τ = (V \ V ′, {V 1
l : l ∈ N})

is a type ex-definable over C. Assume also that V is ex-normal over C and absolutely free.
Then there is an a inF realizingτ . Moreover, in some extensionF′ ≥ F, a can be chosen
to realizeτ generically over C.

Proof. Under the assumptions of the lemma, byTheorem 4.1, after the transformation
xi �→ 1

mxi of variables, we may assume thatτ is justV \ V ′. Takea�b in an algebraically
closed extensionF ′ of the field F , generic inV over F . Choose inF ′ a sequence

{(a�b)
1
l : l ∈ N} associated witha�b. This gives us uniquely determined values of1

l ai

andb
1
l
i for coordinatesai of a andbi of b.

Let A = F + spanQ{(a�b)
1
l : l ∈ N} and define exA with domain DA = D =

F + spanQ(a1, . . . ,an) as
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exA

(
f +

∑
i

mi

l
ai

)
= ex( f ) ·

∏
i

(bi
1
l )mi ,

for any integersmi , l #= 0 and elementf ∈ F . The definition is consistent since prxV
is free of additive dependencies overF . Evidently the formula defines a homomorphism;
thusA ∈ subE .

The kernel of the homomorphism exA coincides with that of ex onF , since pryV
has no multiplicative dependencies overF . Thus A has a standard full kernel. Notice
that, by ex-normality,δ(m1a, . . . ,mka/F) ≥ 0 for any independent integer vectors
mi = 〈mi,1, . . . ,mi,n〉, i = 1, . . . , k.

ThusF ⊆ A satisfy the assumptions ofLemma 2.9(with exA(F) \ F = ∅) and hence
A ∈ subE0

st, F ≤ A. By the choice ofa the tuple realizesτ . SinceF ∈ ECst there is a
realization of the type inF. �

Proposition 4.3. A structureF ∈ E0
st is in ECst iff for any irreducible ex-normal free V

over F there is a realization of the finite type given by V inF.

First we prove:

Lemma 4.4. Given an irreducible free ex-normal V⊆ F2n and non-empty V′ ⊆ V there
is a free ex-normal V∗ ⊆ F2n+2m such that〈a1, . . . ,an,b1, . . . ,bn〉 ∈ F2n realizes
V \ V ′ iff there is 〈an+1, . . . ,an+m,bn+1, . . . ,bn+m〉 ∈ F2m such that〈a1, . . . ,an,

an+1, . . . ,an+m,b1, . . . ,bn,bn+1, . . . ,bn+m〉 realizes V∗.

Proof. Let g(x1, . . . , xn, y1, . . . , yn) be a polynomial in the annihilator ofV ′, but not
zero onV . We may assume that for no positive integerk and a non-zero integer tuple
〈m1, . . . ,mn〉,

g(x1, . . . , xn, y1, . . . , yn)
k · ym1

1 · . . . · ymn
n

is constant onV , since otherwiseg does not vanish onV ′. Add new variablesxn+1, yn+1
together with the new identity

g(x1, . . . , xn, y1, . . . , yn) · yn+1 = 1.

Denote the resulting variety inF2n+2 by Vg. By construction,Vg is irreducible and its
projection onto the first 2n coordinates is equal to

V \ {〈x1, . . . , xn, y1, . . . , yn〉 : g(x1, . . . , xn, y1, . . . , yn) = 0}.
By our assumptionsVg is free of multiplicative dependencies and obviously free of
additive dependencies. It is also ex-normal since we do not impose any condition onxn+1.

Repeating the construction with all the polynomials in the basis of the annihilator ofV ′
we come toV∗ as required. �

Proof of the Proposition. The left-to-right implication follows fromLemma 4.2. Indeed,
since the fieldF is algebraically closed,V is absolutely free. On the other hand, we can
obviously chooseC ⊆ F finite such thatV is ex-definable overC.

To get the inverse, assume thata is a tuple in someF′ ≥ F and we need to realize an

almost finite type(V \ V ′, {V 1
l : l ∈ N}), whereτ = (V, {V 1

l : l ∈ N}) is the ex-locus of
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a overF . It is enough to solve the problem for aQ-linear basisa0 of a overF , so we may
assume thata is Q-linearly independent overF . ThusV is free ex-normal, byLemma 3.1,
and ex-irreducible, becauseF is algebraically closed. So we may assume thatτ is a finite
type. ByLemma 4.4we reduce the typeV \V ′ to a type of the formV andV is ex-normal
and free. By the assumptions of the Proposition the type is realized inF. �

Corollary 4.5. The structureCexp on complex numbers is inECst iff it satisfies the
Schanuel conjecture and for any ex-normal free algebraic variety V⊆ C2n there is a∈ Cn

such that a� exp(a) ∈ V .

Proof. By definition, Cexp ∈ E0
st iff the Schanuel conjecture holds. The rest is

Proposition 4.3

Corollary 4.6. There is a collectionECof first-order formulas such that for anyF ∈ E0
st

F |= EC iff F ∈ ECst.

Proof. For each algebraic varietyV ⊆ F2n+k over Q in variables x1, . . . , xn,
y1, . . . , yn, z1, . . . , zk, by Theorem 3.2there exists a first-order quantifier-free formula
ΨV(z1, . . . , zk), in the language of fields, such that for anya1, . . . ,ak ∈ F ,

F |= ΨV (a1, . . . ,ak) iff V(a1, . . . ,ak) is irreducible, ex-normal and free.

It follows that the statement
for any a1, . . . ,ak, if V (a1, . . . ,ak) is irreducible, ex-normal and free, then there is

〈x1, . . . , xn, y1, . . . , yn〉 ∈ V(a1, . . . ,ak) such thatex(x1) = y1, . . ., ex(xn) = yn

is first order (in fact, an∀∃-sentence).
Since any variety overF has the formV(a1, . . . ,ak) for someV anda1, . . . ,ak as

above, we can write down the condition given inProposition 4.3by an infinite collection
of first-order formulas. �

We are going to weaken the assumptions inLemma 4.2. We assume below thatF ∈ ECst.

Lemma 4.7. Let C be a finitary subset inF, ā a finite string in someF′ ≥ F,

{V 1
l : l ∈ N}) be the complete ex-locus ofā over C andτ the type

(V \ V ′, {V 1
l : l ∈ N}) for V ′ some proper subvariety of V , ex-defined over C. Then there

is an m∈ N such thatτ is equivalent to a finite type

(V \ V ′, {V 1
l : l ≤ m}) and there is a realization ofτ in F.

Proof. Passing to a linear basis ofā over C ∪ {ω} we may assume that̄a is linearly
independent overC∪{ω}. HenceV is free. ByTheorem 4.1the infinite part ofτ , the system

of equations saying that1
l x̄�ex(1

l x̄) ∈ V
1
l , l ∈ N, is equivalent to a finite subsystem. Thus

τ is equivalent to a finite type. By the assumption forF the finite type is realized inF. �

Proposition 4.8. Let C ≤F F be finitary and V in coordinates x1, . . . , xn, y1, . . . , yn be

ex-definable irreducible over C and ex-normal. Then for any sequence{V 1
l : l ∈ N} and

V ′ � V over C there is inF a realizationā of the type
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τ = (V \ V ′, {V 1
l : l ∈ N})

Moreover, in some extensionF′ ≥ F there is a generic realization ofτ .

Proof. If V is absolutely free, then we can applyLemma 4.2and get the statement. So we
assume thatV is not absolutely free and prove the statement by induction onn.

For n = 1, from the fact thatV is not absolutely free we get that dim prxV = 0 or
dim pryV = 0. Suppose that the first takes place. Then by ex-normality, ifa ∈ prxV and

b /∈ acl(C̃ ∪ {a}) then 〈a,b〉 ∈ V . Choose anya in prxV(F) ⊆ acl(C̃). Then, since
δ(a/C) ≥ 0 anda is additively independent ofC, we have that ex(a) is algebraically

independent ofC̃; thus〈a,ex(a)〉 ∈ V . For the same reason,〈1
l a,ex(1

l a)〉 satisfiesV
1
l

and〈a,ex(a)〉 /∈ V ′.
The case pryV = 0 can be dealt with symmetrically.

Consider now the generaln assuming that the statement holds for smaller values ofn
and that prxV is not absolutely free of additive dependencies.

Let F ≤ F′ with F ′ of infinite transcendence degree overF . Applying a transformation
[M] : Gn(F ′)→ Gn(F ′) induced by an appropriate rational matrix toV we may assume
that for anyā = 〈a1, . . . ,an〉 ∈ prxV in F ′, generic overC̃, the elementsa1, . . . ,ak are
linearly independent over acl(C̃) andak+1, . . . ,an ∈ acl(C̃). Choose such a tuplēa in F′.
By genericity,ā /∈ V ′.

Write W = pryV and Wk+1,...,n the variety induced byW on {k + 1, . . . ,n}-
coordinates. It follows from ex-normality and the fact that tr.d.(ak+1, . . . ,an/C̃) = 0 that
dimWk+1,...,n = n− k.

Sinceδ(ak+1, . . . ,an/C) ≥ 0, we have

tr.d.(ex(ak+1), . . . ,ex(an)/C̃) ≥ lin.d.(ak+1, . . . ,an/C) = n− k,

which implies that〈ak+1, . . . ,an,ex(ak+1), . . . ,ex(an)〉 is generic inVk+1,...,n overC̃. For
the same reason,〈

1

l
ak+1, . . . ,

1

l
an,ex

(
1

l
ak+1

)
, . . . ,ex

(
1

l
an

)〉
∈ V

1
l

k+1,...,n.

Finally notice that the typeτ (ak+1, . . . ,an) overC∪ {ak+1, . . . ,an}, corresponding to the
first k coordinates inτ when the rest are replaced by the highlighted elements, satisfies the
assumptions ofLemma 4.2. Thus it has a realization〈a1, . . . ,ak〉 in F. This completes the
construction of a realization〈a1, . . . ,an〉 of τ .

The case when pryV is not absolutely free of multiplicative dependencies can be treated
symmetrically. �

Now we study the rank notion∂F for F e.a.c.

Lemma 4.9. For F ∈ ECst, given A⊆fin F andF′ ∈ E0
st such that F≤ F ′,

∂F (A) = ∂F ′(A).

Proof. This is just a special case ofLemma 2.8. �
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Lemma 4.10. GivenF ∈ ECst, for any A⊆fin F and any a,b ∈ F:

(i) ∂(A) ≤ ∂(a A) ≤ ∂(A)+ 1;
(ii) ∂(abA) = ∂(a A) = ∂(A) implies∂(bA) = ∂(A);
(iii) ∂(abA) = ∂(a A)&∂(A) < ∂(bA) implies∂(abA) = ∂(bA);
(iv) ∂(a A) = ∂(A) = ∂(bA) implies∂(abA) = ∂(A);
(v) ∂(a A) = ∂(A) implies∂(bA) = ∂(abA).

Proof. (i) follows immediately from the definitions ofδ and∂ . (ii) and (iii) are immediate
from (i).
(iv) Let B′ ⊇ a A, B′′ ⊇ bA be such thatδ(B′) = ∂(a A) and δ(B′′) = ∂(bA). Let
B = spanQ(B

′) ∩ spanQ(B
′′).

Notice thatδ(B′ ∪ B′′) ≤ δ(B′′). Indeed byLemma 2.5(iii),
δ(B′ ∪ B′′) = δ(B′/B′′)+ δ(B′′)
= [tr.d.(B′ ∪ ex(B′)/B′′ ∪ ex(B′′))− lin.d.(B′/B′′)] + δ(B′′).
By the modularity of linear dimension, lin.d.(B′/B′′) = lin.d.(B′/B). Also, by properties
of algebraic dependence,
tr.d.(B′ ∪ ex(B′)/B′′ ∪ ex(B′′)) ≤ tr.d.(B′ ∪ ex(B′)/B ∪ ex(B)). Hence
δ(B′/B′′) ≤ δ(B′/B). The latter is less than or equal to zero by the choice ofA, B′ andB.

Now, sinceabA⊆ B′ ∪B′′ andδ(B′ ∪B′′) ≤ δ(B′′) = ∂(A), we have∂(abA) = ∂(A).
(v) is immediate from (iv). �

Notation. For finite A ⊆ F,

clF(A) = {b ∈ F : ∂(Ab) = ∂(A)}.
For infinite A,

clF(A) =
⋃

X⊆finA

clF(X).

clF(A) will be called the∂-closure ofA in F.
We usually omit the subscriptF when no ambiguity can arise.

Proposition 4.11. The operator A�→ cl(A) in F ∈ ECst is a closure operator, satisfying
for any A⊆ F:

(i)

cl(A) =
⋃

X⊆A, X finite

cl(X);

(ii)

if A ⊆ A′ ⊆ F, thencl(A) ⊆ cl(A′);
(iii)

cl(cl(A)) = cl(A);
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(iv)

a ∈ cl(Ab) \ cl(A)⇒ b ∈ cl(Ab);
(v)

cl(A) ≤ F;
(vi) cl(A) is an existentially–algebraically closed substructure ofF.

Proof. (i) is immediate from definitions.
(ii) and (iii) follow from Lemma 4.10.
(iv) follows from Lemma 4.10(iii).
(v) Assume first thatA is finite. Then there is a finiteA′ ⊇ A, A′ ⊆ F , such that
∂(A) = δ(A′) and soA′ ≤F F . Since for everya ∈ A′ by definition∂(Aa) = ∂(A), we
haveA′ ⊆ cl(A). The same argument shows in the general case that for anyB ⊆fin cl(A)
there is a finiteB′, B ⊆ B′ ⊆ cl(A), such thatB′ ≤F F . Notice also that cl(A) is closed
under ex. It follows that cl(A) ≤ F .
(vi) follows from Proposition 4.3. Indeed, we need to check that given a free ex-normal
V in 2n variables ex-definable over cl(A) there is a realization ofV in cl(A). Notice that
cl(A) ∩ F is algebraically closed in the fieldF .

We prove the existence of the realization by induction onn = lin.d.(ā/cl(A)).
Let ā be a realization ofV in F with minimalδ(ā/cl(A)). This number is non-negative

since cl(A) ≤ F . If δ(ā/cl(A)) = 0, thenā is a tuple from cl(A) by definition and we are
done. Suppose, towards a contradiction, thatδ(ā/cl(A)) > 0. If we apply a transformation
induced by an integer matrixM of rankk < n, then stillδ(Mā/cl(A)) > 0, since otherwise
we see thatMā is in cl(A) and the linear dimension of̄a over Mā, and so over cl(A), is
not bigger thann− k. We can also assume thatā is linearly independent over cl(A) andV
is the ex-locus of̄a over cl(A). ThenV is ex-normal and absolutely free.

Let C ≤F cl(A) be finitary and such thatV is ex-defined overC. It follows from
δ(ā/C) > 0 that dim prxV > 0, so we may also assume thatan /∈ acl(C̃).

Then there exists acn ∈ acl(C̃) such that every componentV ′ of the subvariety
V ∩ {xn = cn} is non-empty and has dimension equal to dimV − 1. Consider such an
ex-definable irreducible varietyV ′ over the finitary set spanQ(Ccn). This is ex-normal.
Indeed, consider a generic over̃Ccn tuple〈c1, . . . , cn,b1, . . . ,bn〉 ∈ V ′ and

a′i = mi,1c1+ · · · +mi,ncn, andb′i = b
mi,1
1 · . . . · bmi,n

n i = 1, . . . , k,

for somek× n integer matrix

M = {mi,l : 1 ≤ i ≤ k, 1≤ l ≤ n}
of rankk ≤ n. We can also write down in vector form

ā′ = Mā and b̄′ = b̄M .

We need to see that

tr.d.(ā′�b̄′/C̃cn) ≥ k.



B. Zilber / Annals of Pure and Applied Logic 132 (2005) 67–95 87

It follows from the fact that the tuple was chosen to be generic that the required
inequality is equivalent to

dim(V ′)M ≥ k.

But dimV ′ = dimV − 1, thus dim(V ′)M ≥ dimV M − 1, so

dim(V ′)M − k ≥ dimV M − k− 1= tr.d.(Mā�ex(ā)M/C̃)− k − 1,

and the latter is non-negative becauseδ(Mā/cl(A)) > 0. The ex-normality follows.
Now we useProposition 4.8to find a realization̄a′ for V ′ in F, which by definition is

of linear dimension at mostn− 1 over cl(A), contradicting the minimality. �

5. Strongly exponentially–algebraically closed fields

Definition. A structureF in E0
st is said to bestrongly exponentially–algebraically closed

(s.e.a.c.) ifF ∈ ECst, and, for any ex-irreducible free ex-normalV in 2n variables ex-
defined over a finiteC ⊆ F, with dimV = n, there is a generic overC realization ofV in F.
The class of strongly exponentially–algebraically closed structures is denoted asEC∗st.

Remark. The definition assumes a ‘slight saturatedness’ of the exponentially–
algebraically closed structure.

Remark. Corollary 4.5can be obviously amended to a criterion forCexp to be s.e.a.c.

Definition. We say that a structureF ∈ E has thecountable closure property (or c.c.p.
for short) if, given aC ⊆ F and an algebraic varietyV ⊆ F2n of dimensionn which is
ex-definable, ex-irreducible, ex-normal and free overC, the set of generic realizations of
V overC is at most countable.

We prove below (Lemma 5.12) thatCexp has the c.c.p.

Our main goal in this final section of the paper is to prove that the class of exponentially–
algebraically closed structures with the countable closure property has a unique model
in every uncountable cardinality. We show first that the class is definable by anLω1,ω-
sentence and the c.c.p. (which can be written as anLω1,ω(Q)-sentence in this case). The
author’s paper [7] lays out sufficient conditions under which such a class is categorical
in all uncountable cardinals. The main theorem of [7] is a contribution to the theory of
excellency developed by Shelah and adapted here for algebraic applications. We present
the result below with some simplifications sufficient for the purposes of the present paper.

A classC of L-structures is said to bequasi-minimal excellent if the following three
assumptions hold:

Assumption I (Pregeometry). There is anLω1,ω-definable operatorX → cl(X) acting on
subsets of anF ∈ C and satisfying:

(i) cl(X) ∈ C as a substructure ofF;
(ii) cl(Y) =⋃{cl(X) : X ⊆ Y, X finite};
(iii) X → cl(X) is a monotone idempotent operator.
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Definition. Let F,F′ ∈ C andG ⊆ F, G ⊆ F′. Then a (partial) mapping, identical onG,
ϕ : F → F′ is called aG-monomorphism if it preserves quantifier-free formulas overG.

Assumption II (ω-Homogeneity over a Submodel). Let G ⊆ F, G ⊆ F′, G ∈ C or
G = ∅. Then

(i) if X andX′ are cl-independent subsets overG in someF,F′ ∈ C, respectively, then
any bijectionϕ : X → X′ is aG-monomorphism;

(ii) if a partial ϕ : F → F′ is a G-monomorphism, Domϕ = X, with X finite, then for
anyy ∈ F there is an extensionϕ′ of ϕ with Domϕ′ = X ∪ {y};

(iii) if ϕ : X ∪ {y} → X′ ∪ {y′} is a monomorphism, then

y ∈ cl(X) iff y′ ∈ cl(X′).

Definition. Given X,C ⊆ F we say thatthe type of X over C is defined over C0 if any
ϕ : X → F′ which is aC0-monomorphism is also aC-monomorphism.

Definition. A subsetC ⊆ F will be calledspecial if there is a cl-independentA ⊆ F and
A1, . . . , Ak ⊆ A such that

C =
⋃

i

cl(Ai ).

Assumption III. SupposeC ⊆ F is special andX is a finite subset of cl(C). Then the
type of X overC is defined over a finite subsetC0 ⊆ C.

Main Theorem of [7]. LetC be quasi-minimal excellent andC# be its subclass consisting
of structures satisfying the countable closure property. Suppose also that someF ∈ C#

contains an infinitecl-independent subset A. Then for any uncountableκ there is a unique,
up to isomorphism,Fκ ∈ C# of cardinalityκ . Moreover,Fκ is prime over any maximal
cl-independent subset (basis).

Now we proceed to check the Assumptions forC = EC∗st. It is obvious that
Proposition 4.11impliesAssumption I. It remains to prove the other two.

Lemma 5.1. There is an Lω1,ω-sentenceEC∗st such that, givenF ∈ E0,

F |= EC∗st iff F ∈ EC∗st.

Proof. Follow the proof ofCorollary 4.6and observe that for everyV(ā) we can say, by
anLω1,ω-formula, thatx̄� ȳ is generic inV(ā) overā. �

It follows from Lemma 4.2that:

Proposition 5.2. For anyF ∈ E0
st there is anF� ∈ EC∗st such thatF ≤ F�.

Lemma 5.3. If F ∈ EC∗st and A⊆ F, thencl(A) ≤ F andcl(A) ∈ EC∗st.

Proof. By Proposition 4.11(v) cl(A) ≤ F. By Proposition 4.11(vi) we have cl(A) ∈ ECst.
Now given a free ex-normalV over a finiteC ≤F cl(A) in 2n variables with dimV = n,
by definition there is a realization̄a of V generic overC in F. But then
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δ(ā/C) = dimV − n = 0

and thus̄a is in cl(A). So cl(A) ∈ EC∗st. �

Definition. GivenF ∈ EC∗st and subsetsB,C ⊆ F , we say thatB is cl-independent over
C if cl(B′C) #= cl(BC) for any proper subsetB′ ⊂ B.

We say thatB is a cl-basis of F over C if B is cl-independent overC and cl(BC) = F .
If C = ∅ thenB is just called a cl-basis.

By the properties of cl, any two bases ofF are of the same cardinality. This cardinality
is called the cl-dimension of F.

Lemma 5.4. Suppose that A≤ F and B⊆fin F is cl-independent over A. Then AB≤ F.

Proof. We have by assumption∂(B/A) = δ(B/A) and henceδ(B D/A) ≥ δ(B/A) for
any finiteD ⊆ F . �

Lemma 5.5. If F ∈ EC∗st, then for every finite C⊆ F for any F′ ≥ F and finite
A ⊆ clF′(C) there is an A′ ⊆ clF(C) such that the quantifier-free types of A and A′
over C coincide.

Proof. ExtendC to a finiteC′ ≤F F. We may replaceA by its linear basis overC′; thus
we assume w.l.o.g. thatA is linearly independent overC′. SinceA ⊆ cl(C′), there is a
finite extensionB ⊇ A in F′, of sizen say, such thatδ(B/C′) = 0 and B is linearly
independent overC′. Then the ex-locusV of B overC′ is free, ex-normal and dimV = n.
By Lemma 4.7the complete ex-locus is equivalent to its finite part and we may assume that
this is justV . By definition it has a generic realizationB′ in F, and the genericity implies
that the quantifier-free type ofB′ overC′ coincides with that ofB, δ(B′/C′) = 0 and thus
B′ ⊆ clF(C). �

Notation. We now extend the languageL to a languageL∗ for structures inEC∗st. Let V
be a variety in 2(n+ l ) variables overQ. Given an (ordered) subsetX of sizel of a field
with pseudo-exponentiation, letVX be the variety obtained by replacing 2l of the variables
by X ∪ ex(X). ThusVX is an ex-definable overX variety in 2n variables. For any suchV
we introduce the predicateEV (X) in variablesX saying that

“VX is ex-irreducible, free overX and there exists a generic overX realization ofVX in
cl(X)”.

Obviously, this is anLω1,ω-definable expansion of the language; thus the notions of
L∗- andL-isomorphisms coincide, which is not necessarily true for monomorphisms, the
bijections between subsets preserving the basic relations.

Lemma 5.6. Given C inF with ∂(C) ≤ m this fact is witnessed by the L∗-quantifier-free
type of C in the following sense:

If C ′ in F′ satisfies the same L∗-quantifier-free type, then∂(C′) ≤ m.

Proof. W.l.o.g., we may assume thatC is linearly independent. Suppose∂(C) = m0 ≤ m.
We have by definition that, for some finite and linearly independent overC finite set
D ⊆ cl(C) of size, sayl ,

tr.d.(C Dex(C D))− (n+ l ) ≤ m0, for n = |C|.
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In other words, there is an algebraic varietyV in F2n+2l irreducible overQ, with dimV ≤
m+ n+ l , andC Dex(C D) is its generic point. Then

F |= EV(C) and F′ |= EV (C
′)

and the fact on the right implies

tr.d.(C′D′ex(C′D′))− (n+ l ) ≤ m0,

for someD′ linearly independent overC′ (by genericity). Hence∂(C′) ≤ m. �

It follows, in particular, that the fact that someB ⊆ cl(C) is witnessed byL∗-quantifier-
free formulas as well.

Lemma 5.7. SupposeF ∈ EC∗st, C ⊆ F and Cā ≤F F. Then the L-quantifier-free type of
ā over C determines the L∗-quantifier-free type of̄a over C; that is, any realization̄b of the
L-quantifier-free type of̄a, with Cb̄ ≤F F, has the same L∗-quantifier-free type over C.

Proof. We show that if for someV , F |= EV (Cā), thenF |= EV (Cb̄). Indeed, assuming
the first holds, let̄u be a generic realization ofVCā in cl(Cā). SinceCā ≤F F we can
extendū to a ū′ such thatδ(ū′/Cā) = 0. Without loss of generality we consider the
ex-locus ofū′ over Cā instead ofVCā and we assume thatū = ū′. It follows from the
assumptions thatVCā is ex-irreducible, free, ex-normal and also dimVCā = n. The same
is true forVCb̄, as the parameters of the variety are of the same algebraic type. ThenVCb̄
has a generic realization too.�

Lemma 5.8. SupposeF,F′ ∈ EC∗st. Then

F ≤ F′ ⇔ F ⊆L∗ F′

Proof. ⇒. SupposeF ≤ F′ and letC ⊆ F be finite. If F′ � EV (C), let ā be a generic
realization ofVC in clF′(C). By Lemma 5.5there isā′ in clF(C) realizingVC generically.
ThusF |= EV (C). If F � EV (C) thenF′ � EV(C) follows by definition.
⇐. SupposeF ⊆ F′ in L∗. ConsiderA = clF′(F). By Lemma 5.3, A ≤ F ′. We want
to show thatF ≤ A, which by transitivity would implyF ≤ F′. So suppose, towards a
contradiction, that there is a finitēa in A such thatδ(ā/F) < 0. We may assume thatā is
linearly independent overF , and letn be the length of the tuple. Then, lettingVX be the
ex-locus ofā over F , some finiteX ≤F F , we have thatV is free and ex-irreducible over
F and

dimVX − n = δ(ā/F) < 0.

ThenF′ |= EV (X) and thusF |= EV (X). But the latter implies that there is a generic
realizationā′ of VX in F. By definition,δ(ā′/X) = dimV − n < 0. This contradicts the
fact thatX ≤F F . �

Proposition 5.9. Let F1,F2,G ∈ EC∗st, G ≤ F1, G ≤ F2 andG be finite-cl-dimensional
countable orG = ∅. Suppose also that C1 ⊆ F1, C2 ⊆ F2 are finite subsets and
ϕ : C1 → C2 is an L∗-monomorphism overG.
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Then:

(i) For any b1 ∈ cl(C1) there is an L∗-G-monomorphismϕ′ extendingϕ, with Domϕ′ ⊇
C1 ∪ {b1}.

(ii) If ϕ′ : C1 ∪ {b1} → C2 ∪ {b2} is an L∗-monomorphism extendingϕ, then

b1 ∈ cl(C1) iff b2 ∈ cl(C2).

(iii) Suppose some B1 ⊆ F1, B2 ⊆ F2 are cl-independent over GC1 and GC2,
respectively. Then, given a bijectionψ0 : B1 → B2, the mappingϕ ∪ ψ0 is an
L∗-G-monomorphism.

Proof. Let C′1 be a cl-basis ofC1 over G in F1, i.e. a cl-independent subset such that
C′1 ⊆ C1 ⊆ cl(GC′1). We have thenGC′1 ≤ F , by Lemma 5.4.

The imageC′2 = ϕ(C′1) is a basis ofC2 in F2, since cl-dependence is witnessed by basic
formulas ofL∗ (seeLemma 5.6).

Let C1b1 ⊆ C′′1 ≤F1 cl(GC′1), C′′1 finite. Then

0≤ δ(C′′1/GC′1) ≤ δ(C′1/GC′1) = 0;
that is,δ(C′′1/GC′1) = 0 and this property ofC′′1 is witnessed byV(C1), the ex-locus ofC′′1
overGC1.

The L∗-quantifier-free formula stating the existence of a generic realization of type
V(C1) guarantees that the corresponding typeV(C2) overGC2 has a generic realization
C′′2 in F2. It follows thatδ(C′′2/GC′2) = 0 and then againδ(C′′2 D/GC′2) ≥ δ(C′′2/GC′2),
for everyD, since we know already thatGC′2 ≤ F2. ThusGC′′2 ≤F2 F2.

This allows us to extendϕ by lettingϕ′(C′′1) = C′′2 . We have

C1 ⊆ GC′′1 ≤F1 cl(GC1) ≤F1 F1, C2 ⊆ GC′′2 ≤F2 cl(GC2) ≤F2 F2,

andϕ′ preserves all the basicL-formulas. ByLemma 5.7, ϕ′ is anL∗-monomorphism over
G.

(ii) Immediate byLemma 5.6.

(iii) By (i) we may assume thatC1 ≤F1 F1, C2 ≤F2 F2 andϕ is anL-monomorphism
betweenC1 andC2.

Let

C0
1 = spanQ(B1 ∪ C1 ∪ ker) andC0

2 = spanQ(B2 ∪ C2 ∪ ker).

With a slight abuse of notation we callψ0 the mapping which is the extension of the initial
ψ0 ∪ ϕ onto the domainC0

1 by linearity. AnyL-quantifier-free formula which holds for a
finite subset ofC0

l (l = 1,2) is a conjunction of polynomial equalities and inequalities in
Bl ∪ex(Bl ) with coefficients inC̃l . By independence, only the inequalities are possible for
both values ofl . Thus

ψ0 : C0
1 → C0

2

is anL-monomorphism.
It is also obvious thatC0

l ≤Fl Fl , l = 1,2; thusψ0 is anL∗-monomorphism. �
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Corollary 5.10. LetF be a s.e.a.c. structure and C a finite subset inF. Then there are only
countably many complete Lω1,ω-n-types over C realized inF.

Proof. Extend firstC to a finiteC̄ ≤F F.
We claim that the number of completen-types overC̄ realized inF is ℵ0, which

obviously implies the statement of the corollary.
Let b̄ be a finiten-tuple in F such thatC̄b̄ ≤F F . By Proposition 5.9andLemma 5.7

the automorphism type of̄b overC̄ is determined by itsL-quantifier-free type. On the other
hand, by definition there is anL-monomorphism between two such tuples if and only if
the complete ex-loci of the tuples overC̄ coincide. ByTheorem 4.1the complete ex-loci
are principal types over̄C; thus there are only countably manyn-types overC̄. �

Now we discuss the countable closure property in the class of s.e.a.c. structures.

Lemma 5.11. For F exponentially–algebraically closed,F has the countable closure
property iffclF(C) is countable for any finite C⊆ F.

Proof. The right-to-left statement is obvious. We prove the statement on the right
assuming that the countable closure property holds.

By Proposition 4.11(v) we may assume thatC ≤F F. Thena ∈ cl(C) iff ∂(a/C) = 0
iff there is a tupleā extendinga such thatδ(ā/C) = 0. We may assume thatā is linearly
independent overC. Then the ex-locusV of ā overC is of dimension equal to the length
of ā, ex-definable, ex-irreducible, ex-normal and free overC. Thus by the assumption of
the lemma there are at most countably many choices for such anā. It follows that cl(C) is
countable. �
Remark. With the use of the quantifierQx expressing the fact that ‘there are uncountably
manyx such that . . . ’, one can write down the obviousLω1,ω(Q)-sentence, call it EC∗st,ccp,
such that

F � EC∗st,ccp iff F ∈ EC∗st and has the c.c.p.

Lemma 5.12. Cexp has the countable closure property.

Proof. We need to show that for any finiteB ⊆ C and an algebraic varietyV ⊆ F2n of
dimensionn, which is ex-definable, ex-irreducible, ex-normal and free overB, the set of
the of generic realization ofV over B is at most countable. Let̄a be a generic realization
of V . We claim that̄a is an isolated point in the analytic set

S= {x̄ ∈ Cn : x̄� exp(x̄) ∈ V}.
Suppose not. Then there is a non-constantC∞-mapping from the real unit interval into a
neighbourhood of̄a in S:

t ∈ [0,1] �→ x̄(t) ∈ S, x̄(0) = ā;
we denote the mapping asxi (t) coordinate-wise. Letyi (t) = exp(xi (t)). Then thexi (t)
and yi (t) can be considered as elements of a differential field of germs of functions
differentiable near 0, with the differentiation operator Df = d f

dt . By definition,

Dyi = yi Dxi , all i . (12)
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Also, x̄(t)� ȳ(t) ∈ V and, by the assumptions onV andā,

tr.d.(x̄(t)� ȳ(t)/B) = n. (13)

Consider additive dependencies between the differentials dx1(t), . . . ,dxn(t). If there
are some, then by a suitableQ-linear transformation of variables we may assume that
dx1(t) ≡ 0, . . . ,dxk(t) ≡ 0 and dxk+1(t), . . . ,dxn(t) are additively independent (in the
case where there are no dependencies,k = 0). It follows thatx1(t) ≡ a1, . . . , xk(t) ≡ ak

and y1(t) ≡ exp(a1), . . . , yk(t) ≡ exp(ak). By the ex-normality ofV and the fact that
ā� exp(ā) is generic inV ,

tr.d.({a1, . . . ,ak,exp(a1), . . . ,exp(ak)}/B) ≥ k.

Hence

tr.d.({xk+1(t), . . . , xn(t), yk+1(t), . . . , yn(t)}/C)
≤ tr.d.(x̄(t)� ȳ(t)/B ∪ {a1, . . . ,ak,exp(a1), . . . ,exp(ak)})
= tr.d.(x̄(t)� ȳ(t)/B)− tr.d.({a1, . . . ,ak,exp(a1), . . . ,exp(ak)}/B)

≤ n− k. (14)

By the theorem of J. Ax [1], under (12) and (14) Dxk+1(t), . . . ,Dxn(t) must be additively
dependent. The contradiction proves the claim and the lemma.�
Theorem 5.13. LetF1 andF2 be s.e.a.c. structures of infinitecl-dimensions. Then the two
structures are Lω1,ω-equivalent; moreover,

F1 ⊆L∗ F2 iff F1 ≤ F2 iff F1 �Lω1,ω
F2,

and any Lω1,ω-definable subset of F1 is quantifier-free definable in L∗ω1,ω
.

Proof. The first ‘iff’ is Lemma 5.8. It follows that, given a finiteC ⊆ F1, the identity
embeddingC ⊆ F2 is anL∗-monomorphism. Suppose nowC ⊆ C1 ⊆ F1, C ⊆ C2 ⊆ F2
finite,ϕ : C1 → C2 is anL∗-monomorphism fixingC, andbi ∈ Fi for i = 1 or i = 2. By
the symmetry of what follows we may assume w.l.o.g. thati = 1.

If b1 ∈ cl(C1), then byProposition 5.9we can extend theϕ to C1 ∪ {b1}. If b1 /∈
cl(C1) then, using the fact thatF2 is infinite dimensional, chooseb2 ∈ F2 \ cl(C2). By
Proposition 5.9(iii) we can putϕ(b1) = b2 and again extendϕ to C1 ∪ {b1}. Thus by the
Ehrenfeucht–Fraisse criterion we obtain thatF1 andF2 are Lω1,ω-equivalent overC, for
any finiteC ⊆ F1. This by definition means that

F1 �Lω1,ω
F2.

On the other hand, the same argument shows that once there is anL∗-monomorphism
betweenC1 ⊆ F1 andC2 ⊆ F1, we can play the Ehrenfeucht–Fraisse game extending the
monomorphism any finite number of steps, which implies that

C1 ≡Lω1,ω
C2.

The latter means that the type of ann-tuple is equivalent to a quantifier-free type (formula)
in L∗ω1,ω

. But there are only countably many completeLω1,ω-n-formulas realized inF1, by
theLemma 5.10.
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Since anLω1,ω-definable set inF1 is the union of the subsets definable by complete
Lω1,ω-formulas, there is a quantifier-freeL∗ω1,ω

-formula defining the set. �

Lemma 5.14. Suppose A is acl-independent subset ofF, A1, . . . Ak ⊆ A and

C =
⋃

1≤i≤k

cl(Ai ). (15)

Then C≤F F.

Proof. Notice first thatA ≤F F , by definition. We may assume thatA is finite and
A =⋃i Ai .

Now, letc1 ∈ C, that isc1 ∈ cl(Ai ), for somei . By definition, there is a finiteX1 such
thatδ(X1c1/Ai ) = 0. It follows thatδ(X1c1/A) = 0 andX1 ⊆ cl(Ai ) ⊆ C.

Applying this observation we get for any finite{c1, . . . , cm} ⊆ C finite X1, . . . , Xm ⊆
C such thatδ(Xi ci /A) = 0 for eachi ∈ {1, . . . ,m} and henceδ(X1 ∪ · · · ∪ Xm ∪
{c1, . . . , cm}/A) = 0.

It follows that

A∪ X1 ∪ · · · ∪ Xm ∪ {c1, . . . , cm} ≤F F;
thus for any finite subsetC′ ⊆ C there is aC′′ ≤F F such thatC′ ⊆ C′′ ⊆ C. This
immediately implies thatC ≤F F . �

Proposition 5.15. GivenF ∈ EC∗st, ker ≤F C ≤F F, C finitary and a finite A⊆ cl(C),
there is a finite subset C0 ⊆ C such that the complete Lω1,ω-type tp(A/C) is isolated by
the type tp(A/C0).

In other words anyϕ : A → F′ ∈ EC∗st which is an L∗-monomorphism over C0 is also
a monomorphism over C.

In particular, the statement holds for C satisfying(15) above.

Proof. Replacing if neededA by its linear basis overC we assume thatA is linearly
independent overC. SinceA ⊆ cl(C) there is a finiteB, linearly independent overC A,
such thatδ(AB/C) = 0.

ChooseC0 ≤F C finite with the propertyδ(AB/C0) = 0 and containing a generator
of the cyclic group ker, the kernel of ex. We also may assume, byLemma 4.7, that the ex-
locus ofAB overC is determined uniquely by an irreducible varietyV0 which is ex-defined
over a finiteC0 and contains the tupleABexAexB as a generic element.

We claim that thisC0 satisfies the requirements.
Indeed, letϕ : A→ F′ be anL∗-monomorphism overC0.
The Lω1,ω-formula overC0 stating that “A′ = ϕ(A) can be extended by aB′ so

that A′B′exA′exB′ satisfiesV0 generically overC0” holds in F′, by Theorem 5.13. This
impliesδ(A′B′/C0) = 0 = δ(A′B′/C), and thusC A′B′ ≤F F′. It follows also that any
ex-definableV ′ over C satisfied byA′B′exA′exB′ must containV0, because otherwise
δ(A′B′/C) < 0. In other words, we have proved thatAB and A′B′ have the sameL-
quantifier-free types overC.

Suppose now thatEV (c̄) is a predicate in the languageL∗ over c̄ ∈ C A satisfied byY,
for someY ⊆ clF(C A) = clF(C AB). We can without loss of generality assume thatY is
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linearly independent overC AB. By extendingY we can also assume thatδ(Y/C AB) = 0.
Let V∗ be the ex-locus ofY overC ABand supposeV∗ is ex-defined overC1AB for some
finite C1 ⊆ C such thatC1AB ≤F F.

By Lemma 3.1, V∗ is free and ex-normal.
Let V ′ be the variety overC1A′B′ obtained fromV∗ by replacingAB by A′B′. Since

the property of being free and ex-normal isL-quantifier-free definable, by the above proof
V ′ is free and ex-normal, and for the same reason dimV ′ − n = 0, for n equal to the
number ofx-variables inV ′ or, equivalently, the number of elements inY.

By Lemma 4.8and the fact thatF′ ∈ EC∗st, there is a generic realizationY′ of V ′ in
F′. By construction,Y′ witnesses the validity ofEV (ϕ(c̄)) in F′. This finally proves thatϕ
preserves quantifier-freeL∗-formulas and thus, byTheorem 5.13, all Lω1,ω-formulas. �

The combined meaning ofPropositions 4.11, 5.9and5.15is thatEC∗st is quasi-minimal
excellent. ByProposition 5.2there is an infinite-dimensional member of this class of
cardinalityℵ0, hence with the countable closure property. Thus, we get:

Theorem 5.16 (Categoricity Theorem). For any uncountable cardinalκ there is a unique,
up to isomorphism, structureF ∈ EC∗st,ccp of cardinalityκ .

Moreover,F is prime over any basis.
In other words the Lω1,ω(Q)-sentenceEC∗st,ccp is categorical in all uncountable

cardinalities.
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