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Abstract

In the Bohm theorem workshop on Crete island, Zoran Petfledc&tatman’s “Typical
Ambiguity theorem”typed Béhm theorenMoreover, he gave a new proof of the theorem
based on set-theoretical models of the simply typed lambltalcis.

In this paper, we study the linear version of the typed B&heotém on a fragment of
Intuitionistic Linear Logic. We show that in the multiplidee fragment of intuitionistic
linear logic without the multiplicative unit (for short IMLL) weak typed B&hm theorem
holds. The system IMLL exactly corresponds to the linearddancalculus without expo-
nentials, additives and logical constants. The system IMlsb exactly corresponds to the
free symmetric monoidal closed category without the unject As far as we know, our
separation result is the first one with regard to these sysieimpurely syntactical manner.

1 Introduction

In [DPO01], Dosen and Petric called Statman’s “Typical Ambigtheorem” [Sta83]
typed B6hm theorenMoreover, they gave a new proof of the theorem based on set-
theoretical models of the simply typed lambda calculus.

In this paper, we study the linear version of the typed Boheotém on intuition-
istic multiplicative Linear Logic without the multiplicate unit1 (for short IMLL).
We consider the typed version of the following statement:

There are two different closgéh-normal terms Gand 1such that ifs andt are
closed untyped normakterms, and #g,, t then, there is a conteglf] such that

Cls =py 0 and Ct] =gy 1
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We call the statementeak untyped Bohm theorem this paper, we show that the
typed version of weak Bohm theorem holds in IMLL.

The theorem is nontrivial because the system IMLL is ratheskin expressibility.
Hence, a careful analysis on IMLL proof nets is needed. Tls&esy IMLL exactly
corresponds to the linear lambda calculus without expaalenadditives and logi-
cal constants. A version of the linear lambda calculus cdotned in [MOO03]. The
system IMLL also exactly corresponds to the free symmetooaidal closed cat-
egory without the unit object(see [MO03]). As far as we knthve result we prove
in this paper is the first one with regard to these systems iaraly syntactical
manner.

On the other hand, we call the following statemsinbng untyped Bohm theorem

For any untyped-termsa andb, if sandt are closed untyped normalterms,
ands #gy t then, there is a conte&]] such that

Cls| =gy @ and Cft] =g, b

We could not prove the typed version of the statement in tiséegy IMLL. But
so far we proved the typed version of the statement w.r.t g M@miited fragment
including additive connectives of Linear Logic (see Seatfr). Also note that the
weak statement and the strong statement are trivially atpnv in the untyped
AK-calculus (i.e., the usuadl-calculus) and in the simply type@dcalculus (if type
instantiation is allowed) because both systems allow aincésd weakening.
Although currently we have not developed applications efttireorem, Statman’s
typical ambiguity theorem has several applications in ttations of programming
languages (for example [SP00]). Intuitionistic Linear imlgas become more im-
portant because game semantics is successful as a methiog fyilly abstract
semantics for many programming languages and Intuiti@riigtear Logic can be
seen as a foundation for game semantics. We hope that outr cestributes to
further analysis of proofs and further applications on kinkeogic.

Related worksOur work is obviously based on that of [Sta83] (see also
[Sta80,Sta82,SD92]). As we said before, however, our resul not be derived
directly from that of [Sta83], mainly because of lack of wstrected weakening in
IMLL. It is also interesting that unlike ours, the separapitesult of [Sta83] can-
not be obtained simply by substituting a type which has owy tlosed normal
terms: a type which should be instantiated depends on themaadrumber of oc-
currences of variables if you want to restrict the type toehamly a finite number
of closed terms, since the simply typed lambda calculusvallonrestricted con-
traction. Of course, you can choose a type which has infinitelny closed terms
like the Church integer. But IMLL does not have such a type.

On the other hand, recently, some works [DP00,Jol00, TArF)3,LT04] other
than [DP01] have been also done on similar topics to typedBtiteorem. How-
ever, the system with which [Jol00] and [DP00,DPO01] deathis simply typed
lambda calculus or the free cartesian closed category,MbL.| The works of



[TdF00,TdF03,LT04] are technically completely differérmm ours.

The structure of the papeBection 2 and 3 give a definition of IMLL proof nets
and an equality on them. Section 4 and 5 give a proof of weaddgdhm theorem
on the implicational fragment of IMLL (for short IMLL). Séion 6 describes a re-
duction of an unequation of IMLL proof nets to that of IIMLL qof nets. By the
reduction we complete a proof of weak typed B6hm theorem onLINsection 7
discusses extensions of our result to IMLL with the multiptive constant, MLL,
and IMLL with additives.

2 The IMLL systems

In this section, we present intuitionistic multiplicatipeoof nets. We also call these
IMLL proof nets

Definition 1 (MLL formulas) MLL formulas (or simply formulas) (F) is inclively
constructed from atomic formulas (P) and logical connesgiv

e P=p

e F=P|F®F|F2F.

In this paper, we only consider MLL formulas with the only pngpositional vari-
able p. All the results in this paper can be easily extenddteagyeneral case with

denumerable propositional variables, since we just stlgstip for these proposi-
tional variables.

Definition 2 (IMLL formulas) An IMLL formula is a pairA, pl) where A is an
MLL formula and pl is an element ¢f-, —}, where+ and — are called Danos-
Regnier polarities. A formuldA, pl) is written as A&'. A formula with+ (resp.
—) polarity is called+-formula or positive formula (resp--formula or negative
formula).

Figure 1 shows the links we use in this paper. In Figure 1,

(1) InID-link, At andA™~ are called conclusions of the link.

(2) In Cut-link, A" andA~ are called premises of the link.

(3) In®-link (resp.»*-link) A* (resp.A™) is called the left premis&8~ (resp.
B™) the right premise and® B~ (resp.AB™) the conclusion of the link.

(4) In @*-link (respectivelys~-link), A* (resp.A~) is called the left premise,
B* (resp.B™) the right premise and® B (resp.A®B™) the conclusion of
the link.



A" A A" B A" B A B A F’
.
A A \/ \/_ \/+ \/+ -
cut AS®B A®B A%B A%B
ID-link Cut-link & -link ®"-link »" —link ® —link

Fig. 1. the links we use in this paper

Figure 2 shows thdMLL proof netsare defined inductively, whe@~ andD™ are

a list of —-formulas! If @ is an IMLL proof net and® is defined without using
clauses (4) and (6), then we say tieais an IIMLL proof net. In the definition
of IMLL proof nets, we permit 'crossings’ of links, becausetiIMLL system has
an exchange rule. A typical example of such a crossing isahiigure 20. In an
IMLL proof net©, a formula occurrencAis a conclusion 0® if Ais not a premise
of a link.

1) is an IMLL proof net.
AT A

@ it [ ca<] and [ p-g-g+] are IMLL proof nets,then CA: DB~ E*J is an IMLL proof net.
= =P E
A®B™

@3) if LC'AJ and LD'A'E"J are IMLL proof nets,then CA*" D~ A~E ] isan IMLL proof net.
\Ct/
u

4 if |—C' A‘J and |_ D- B+J are IMLL proof nets,then c- A D-g" is an IMLL proof net.

A®B
5) if c-A- B is an IMLL proof net, then c-A- B is an IMLL proof net.
N,
A »B
® if A B D is an IMLL proof net, then c- A /B D is an IMLL proof net.
Nz
A »B

Fig. 2. the definition of IMLL proof nets

Next we give the graph-theoretic characterization of IMLiogf nets, following
[Gir96], because we use this in the proof of Lemma 3. The dctaraation was
firstly proved in [Gir87] and an improvement was given in [CHR8irst we define
IMLL proof structures Figure 3 shows that IMLL proof structures are defined in-
ductively, whereC andD are a list whose element is-aformula or a+-formula.
Note that the rules from (1) to (6) can be regarded to be gépedaones of that
of IMLL proof nets. So, the set of the IMLL proof nets is a subséthe set of
the IMLL proof structures. For example, Figure 4 shows twaragles of typical
IMLL proof structures that are not IMLL proof nets.

In order to characterize IMLL proof nets among IMLL proofisttures, we intro-
duceDanos-Regnier graphd.et © be an IMLL proof structure. We assume that
we are given a functio®from the set of the occurrences flinks in © to {0, 1}.
Such a function is calledswitching functiorfor ©. Then the Danos-Regnier graph
Osfor ©@ andSis a undirected graph such that

(1) the nodes are all the formula occurrence®jrand
(2) the edges are generated by the rules of Figure 5.

1 An anonymous referee requested to give a correspondengedretMLL proof nets and
linear lambda calculus. But the correspondence is a wellvknfact (see [MOO03]). To do
such a thing would just make this paper lengthy unnecegs&ol we refuse the request.



Theorem 1 ([Gir87] and [DR89]) An IMLL proof structure® is an IMLL proof
net iff for each switching function S f@, the Danos-Regnier grapBs is acyclic
and connected.

A meaning of the theorem is that even though we obtain an IMtdopstructure
from an illegal derivation as a derivation of IMLL proof neifsthe proof structure
satisfies the criterion of the theorem, then we obtain a ldgalation of IMLL
proof nets for the IMLL proof structure, i.e., the IMLL prosfructure is an IMLL
proof net. Figure 6 shows the situation: the left derivatbirigure 6 is an illegal
derivation of IMLL proof nets. But since the derived IMLL pobstructure satisfies
the criterion of the theorem, the IMLL proof structure is &fLIL proof net and we
obtain the right derivation of Figure 6 for the IMLL proof net
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(12)

is an IMLL proof structure.
A

A
if _c a+l and D B~ are IMLL proof structures,then C A D B~ is an IMLL proof structure.
T—
A®B~
it | ca+land I_D—A_—l are IMLL proof structures,then '_(:_ALI I_D—A_—l is an IMLL proof structure.
T——
Cut
if . |and + | are IMLL proof structures,then , | isanIMLL proof structure.
|_C A J |_D B J P! C A‘ D B
IN-L:}
if C A B is an IMLL proof structure, then C A B is an IMLL proof structure.
~~ .
A%B
if _ is an IMLL proof strucure, then _ is an IMLL proof structure.
C A B C A\/B
AB
if |_c a+l and D B~ -l areIMLL proof structures,then EC A*:I ED B_] is an IMLL proof structure.
TS o
B BA
if LC E'J and L D F'J are IMLL proof structures,then C E- = is an IMLL proof structure.
E%F
if C A B is an IMLL proof structure, then CA B is an IMLL proof structure.
B®A™
if R R is an IMLL proof strucure, then . + | isan IMLL proof structure.
D B C . D B C
N
B®C

if C A A is an IMLL proof structure, then C A A is an IMLL proof structure.
Rof

if c and D are IMLL proof structures,then C D ] is an IMLL proof structure.

Fig. 3. the definition of IMLL proof structures

C L O
P PP

PeoP P¥P

Fig. 4. two examples of IMLL proof structures

Next we define reduction on IMLL proof nets. Figure 7 showsrtwrite rules we
use in this paper. The ID and multiplicative rewrite rules asual ones. The mul-
tiplicative n-expansion is the usua-expansion in Linear Logic. We denote the
reduction relation defined by these five rewrite rules¥¥. The one step reduction

of —=*is

denoted by-. In the following subsection we show that strong normaliz-



) if oceurs in @men A———A" isan edge of @S
AT A

2 if A A~ occurs in @ then A= A" is an edge of @S
Cut
@3) if A+ B~ occursin @ then A+ and /B_ are two edges of @S
A®B” A®B~ A®B”
4) it A" B occursin @ then A" and B* are two edges of @S
\/+ \ + +
A®B A®B A®B
I _ A B -
(5) it A B occursin @ and S( \/+ ) :O then A is an edge of @S
e A%B N
Ax»B Ax»B
o A B .
(6) it A B occursin @ and S( \/ ) - 1 then B is an edge of @S
+
e A%B R
AxB A3B
™ if A~ B occursin and S( A_\/B_) —O then A~ isanedge of (@)g
\/_ A%B _
A»nB A B
(8) if A_\/B_ occurs in @ and S( A_\/B_) = 1 then B is an edge of @S
AxB A3nB AnB

Fig. 5. the rules for the generation of the edges of a DanagiiRegraphog

+ + + +
poop P p PP P
+ +

popt P p P r</p
P%P l l PP

+ + + +
Poppp mopt PP
Pz P p®p+ pP®p p®p+

Fig. 6. an illegal derivation and a legal derivation of thenedMLL proof net

ability and confluence w.r:+> holds. Hence without mention, we identify an IMLL
proof net with the normalized net.

Abbreviations In the following we use an abbreviation using linear impiica
—o instead ofg in order to relate our IMLL formulas to usual IMLL formulas in
the linear lambda calculus (for example, in [MOO03]).

(1) abA™) =sabAT)" abbA~) =sablA")”

(2) sablfp™) =sablip™) =p

(3) sablA® B~) =sablA") —osabifB~) sablfAwB")=sablfA~)—osabl{B™)
(4) sabllA® B")=sablA")xsabl{B") sablfAsB)=sablA~)xsablB™)



[ ] | _ . .
A®B Ax3B

A+(—)A_(+) ATO A®B A»B
Cut l multiplicative eta—expansion 1 l multiplicative eta—expansion 2
ID rewrite rule ,_|_‘—\ ,_|_‘—\

Lo A" B A B A" B* A B
I A \/+ A N
A®B A »B A®B A B
A B~ A” B* A" B* A” B”
A®B A%B ®B A»nB
T~ &
lmumpllcatlve rewrite rule 1 lmultlpllcauve rewrite rule 2
A" B~ A~ B A B* A~ B~

Fig. 7. the rewrite rules we use in this paper

For example, abtps (((p® p)2(p@ p))ep) ") is p—o(((p—p) @ (p—p)) —p)".
We identify an IMLL formulaA® with ablh(A®), wheree = + or —. The notation is

confusing a little bit: for example, abpep~) = p® p~. This is due to the mis-
match between the proof-nets notation and the linear lanthdtaulus notation.

However, from surrounding contexts, i.e., from whetlgeor —o is used, we can
easily judge which notation is adopted.

2.1 Strong normalizability and confluence on the IMLL system

We believe that these two theorems are folklore. We just tjiedollowing proofs
by a request for an anonymous referee. The strong normaiigabalmost trivial.
The confluence on IMLL is more complicated because in the IMlith the multi-
plicative n-expansion one-step confluence does not hold unlike the IMithout
the rewrite rule. But we do not think that the proofs that weediere are difficult to
understand. If you have no doubt about the strong normaligaénd confluence
on the IMLL system, you can skip this subsection.

Definition 3 (the SN size of an ID-link and the SN size of a Cutihk) The SN size
of an ID-link is the size of a conclusion, that is, the numbiethe occurrences of
logical connectives in the premise. Note that the choicevben a conclusion and
the other conclusion is indifferent. Also note that the $¢ sif an ID-link with two
atomic formulas as the conclusions is 0. The SN size of aitlutd the size of a
premise plus 1. With regard to the SN size of a Cut link, theeseamark about
the choice between a premise and the other premise as that i-8ink is also
applied. Also note that the SN size of a Cut-link with two a¢disrmulas as the
premises is 1.



Definition 4 (the SN size of an IMLL proof net) The SN size of an IMLL proof
net® is the sum of the SN sizes of all the occurrences of Cut-linddB-links in
o.

Proposition 1 (Strong normalizability on the IMLL system) Let® be an IMLL
proof net.© is strong normalizing.

Proof. Let® — @. Then in any case whef@ reduces t®’ by a rule in
Figure 7, we can easily see the SN sizé&bfs less than that g®. O

For example, the SN size & in Figure 8 is 9. Thel®; — O by the ID rewrite
rule, where®; is the IMLL proof net of Figure 9. The SN size @&k is 0. On the
other hand®1 — @3 by the multiplicativen-expansion 1, wher®s is the IMLL

proof net of Figure 10. The SN size 6% is 8.

’—l PSP
((P-oP) @ P) <o PR P)” ((P-0P)® P) Lo P P)*

(((P-oP) P®P)) —op-of PR P)*

po( pP®P)*

Fig. 8. an example of IMLL proof nets with Cut-link3;

+p+

\/ _
(P-oP)®P" PSP .
PP

((P>P)® P)4a( P P)”

P0( pRP)*

(((p-oM) g P)—ﬂmd p&P)*

Fig. 9. the IMLL proof netd, obtained from®; by the ID rewrite rule

Next, we consider the confluence on the IMLL system.

Figure 8, Figure 9, and Figure 10 show a counterexample ebtapeconfluence in
the IMLL system with the multiplicativg-expansion, sinc®s of Figure 10 can not
reach®; of Figure 9 exactly by one-step. Nevertheless, applyingnbéiplicative
n-expansion three times ©3, we can obtair®,4 and applying the multiplicative
rewrite rule four times and the ID rewrite rule on atomic foras five times t®4
of Figure 11, we can obtai®.

We also give another example. Figure 12, Figure 13, and €i@dralso show a
counterexample of one-step confluence in the IMLL systerh thi¢ multiplicative



(P—OP)£D PP~ (P-oP)o P~ PP \/ p&p*

((P-0p) @ P)¥0( P P)~ ((P-0P)® P40 P P)*

p0( p®P)*

(((p-oP) /O(W—op—q pep)*

Fig. 10. the IMLL proof net23 obtained fron®1 by the multiplicativen-expansion 1

n-expansion, sinc®j of Figure 14 can not read®, of Figure 13 exactly by one-
step. Although we can obtai®), from ©; by applying the multiplicative rewrite
rule two times and the 1D rewrite rule two times, we can alstapbe’, from O,

first obtaining®), of Figure 15 from®} by the multiplicativen-expansion three
times and second applying the multiplicative rule six tinaesl the ID rule ten

times.
In the following we formalize the intuition.

+ 7 P d ﬁ
M+ +
AV ,L J:r \/ 2 + J) p*
p¥op® P pLop™
N, /. N\ \\ N/ _
(P-oP)@P" PP (P-0P)RP™ PP o’

((P-0P) @ P)¥( P@P)™ ((P-0P)@ P4 P®P)"  ((PXQP)® P)¥0( PR P)”

p~o( P P)*

(((P-oP)@ P —ﬂmd pep)*

Fig. 11. the IMLL proof net®, obtained from®3 by applying the multiplicative
n-expansion three time

\/i FLJT ‘p\/:p'a' *Jf

p¥op®  p*

VARV

(p-oP)BP" PP (P-oP)®P~ PP

((p—op)M® Py~ ((p—op)W[o( P®P)” ((P-oP)® p)[o( p®P)*

(((P-oP) @ Pr<a( P& P)) -o((P-oP)® P)-o PR P)*

Fig. 12. another example of IMLL proof nets with Cut-lin€%

Definition 5 (the maximal n-expansion of an ID-link) Let © be the IMLL proof
net consisting of exactly one ID-link with"Aand A~ as the conclusions. The maxi-
mal n-expansion 0® is the IMLL proof net exactly with’-Aand A~ as the conclu-
sions that does not have any ID-links except ID-links witly atomic conclusions



N N N/ N/

(P-oP)®P"  PRP  (P-oP)H P~ PP

((D—OD)M@D)’ ((p—op)asaké«gp)+

(((P-0P)® P)-0o( PO P)) o((P-0P) & P)-o( P P)*

U Faamnl

Fig. 13. the IMLL proof ne®®, obtained from®] by the ID rewrite rule

"
+ ,L 7
p¥op*  p* Jf p\/op' ol L*

N\ _
(P-oP)HP"  PRP (P-P)P~ PRP"  (p-oP)eP” PP (P-oP)oP”  peP*

((ww)Mw)‘ ((p—op)QW@w)' ((p—op)®k)4®p)+

(((P-oP) @ PX<a( P& P)) -o((P-oP)® P)-o PR P)*

Fig. 14. the IMLL proof ne®; obtained from®; by the multiplicativen-expansion 1

(((P-0P) @ Pr<a( P& P)) -o((P-oP)® P)-o PR P)*

Fig. 15. the IMLL proof net®, obtained from®; by applying the multiplicative
n-expansion three time

obtained from® by applying multiplicative)-expansion rules maximally. We de-
note then-expansion 0® by n-expand(A,A").

Lemma 1 Let be an IMLL proof net with A (respectively A) as a conclusion.
Then we le® be the IMLL proof net connectirid andn-expand(A,A~) by a Cut-
link with A" (respectively A) onll and A™ (respectively A) onn-expand(A,A")
as the premises. Then there is an IMLL proof Aésuch thatm —* M’ and® —*
M’, wherell’ is an IMLL proof net obtained frofl by applying the multiplicative
n-expansion to some (possibly zero) subformula occurreatds (resp. A’) of
.

Proof. We prove this lemma by induction @& (resp.A~). We only consider
A", The case oA~ is similar.

10



(1) The base step: the case whAreis an atomic formula™.
Thenn-expandA™,A™) is an IMLL proof net consisting exactly one
ID-link with p™, p~ as the conclusions. Then we can easily see@hat I
by ID rewrite rule. So, it is OK to lefl’ bell.
(2) The induction step: the case whédre is not an atomic formula.
(a) the case wher&" onT1 is a conclusion of an ID-link:

Let M’ be the IMLL proof net obtained frofl by replacing the
ID-link with n-expand@A™,A™). Thenll —* M’. Moreover it is easily
see to®@ — M’ by the ID rewrite rule.

(b) the case wherA™ on Tl is not a conclusion of an ID-link:
(i) the case wherA™ is a conclusion ofg-link:

ThenA™ must have the forrd; —o A, ™. Let @ be the IMLL
proof net such tha® — @' by the multiplicative rewrite rule 1.
Then the grapl®” obtained from®’ by removingg-link with the
conclusionA; —o Ay is a subproof net o®’. Then®” can be
regarded as an IMLL proof net obtained from an IMLL proof net
andn-expandQ;, A;) by connecting a Cut-link. Lfl; be the
IMLL proof net obtained from®” by removingn-expandf|, A7)
and its associated Cut-link. By inductive hypothesis, we @atain
an IMLL proof netM} such thaf1; —* M} and® —* M}, where
M7 is obtained fronT1, by applying the multiplicative)-expansion
to some subformula occurrencesAgf of M. Againl’ can be
regarded as an IMLL proof net obtained from an IMLL proof net
andn-expandf], A;) by connecting a Cut-link. Lefl; be the
IMLL proof net obtained fronf1) by removingr]-expandAg,Ag)
and its associated Cut-link. By inductive hypothesis agaacan
obtain an IMLL proof nef}, such thafl, —* M} andM’} —* 5,
whereflT} is obtained fronTl, by applying the multiplicative
n-expansion to some subformula occurrenceA}bbf M,. Finally
let the IMLL proof net obtained froml’, by adding-link with the
conclusionA; Ayt bel’. It can be easily seen th@—* I1’,

M —* M’, andr’ is obtained fron1 by applying the multiplicative
n-expansion to some subformula occurrenceaofo Ao of M.
(i) the case wherd" is a conclusion ofz-link:

ThenA™ must have the form\y ® A>™. Let @ be the IMLL
proof net such tha® — ©' by the multiplicative rewrite rule 2. On
the other hand there is an IMLL subproof &t (resp.l,) of I
(and also ofY’) such thaf; (resp.ly) is the maximal subproof
net of 1 among the subproof nets with with a conclusmih (resp.
Ag) 2. Let the IMLL proof net obtained by connectifity (resp.
M) andn-expandf;, A7) (resp.n-expandf;, A;)) by a Cut-link
be®; (resp.0y). @1 and®; is also an IMLL subproof net o®'.

By applying inductive hypothesis ©1 (resp.©@,) andl14 (resp.

2 Such a maximal subproof net is called “empire” in the literat(see [Gir87])

11



M2), we obtainM] (resp.M5) from M1 (resp.,) by some
n-expansions such that, —* M} (resp.MN —* M5) and®, —* M}
(resp.©2 —* I%). The IMLL proof net obtained fron®’ by
replacing®; and®; by M} andrly is an IMLL proof net obtained
from I by applying the multiplicative-expansion to some
subformula occurrences 8f ® A" of M.

O

Lemma 2 (Weak Confluence)In the IMLL system we assume tl@at— ©; and
© — ©,. Then there is an IMLL proof n&3 such that®; —* ©3 and©, —* Os.

Proof. The problematic cases are four critical pairs in Figure @4 be the
left contractum in the pairs ar@, be the right contractum. Then we Bf be the
IMLL proof net obtained fron®; by applying the multiplicative-expansion to
©1 until there are no any ID-links with non-atomic conclusioNste that

©1 —* ©1. Next we apply Lemma 1 t®;. Then we can fin@®3 such that

©2 —* ©3. Hence®| —* ©3. O

Proposition 2 (Confluence) The IMLL system is confluent.

Proof. From Proposition 1 and Lemma 2 by Newman’s Lemma.

[ ] [ ]

A®B” ApB AgB~ AsB A®BT AgB

+ + 4 -

A B A\/ A B
A®B_ A3B" AgB~ A3B" A®BTAx3B
\/ \/
Cut
A®B~ AxB~ A@B AgB~ A@B AnB~
Cut Cut

NN\ . NNV _
A®B A3B AgB A3B A®B AxB
~_ ~._
Cut Cut

Fig. 16. all the critical pairs
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3 An equality on closed IMLL proof nets

In this section, we define an equality on closed IMLL proofsnet
Definition 6 An IMLL proof net® is closed if® has exactly one conclusion.

Next we consider the forms of normal IMLL proof nets. [@te a normal IMLL
proof net with the positive conclusioh™ and the other conclusiongy ,---,B,,.

We consider the unique abstract syntax folg#t ™), T(B; ), -, T(B,,) determined

by A*,B[,---,B,, whereT (AT) (resp.T(B;") (1 <i < n))isthe unique abstract

syntax tree determined by" (resp.B;” (1 <i < n)). For example, when leA"

be p—o(p® p) —-((p—opep)@(pep))*, Figure 17 is the abstract syntax tree

T(AT).

Then we define a s& of alternating sequences of nodes of the fofdgt™), T(B;),--, T(By)
and{L,R,ID} as follows:

(1) A" € Pg;

(2) If s, A1 @A™ € Po, Wheresis an alternating sequence, treA; @ Ay ™, L, Af €
Po ands, A1 ® A,",R,A; € Pg;

(3) If s,A1—o Ayt € Pg, thens, Ay oAy, R, A} € Pg;

(4) If s,p* € Pg, thens,p™,ID, p~ € Pg;

(5) If s,A~ € PgandA’" is the right premise of @ -link L, thens A~ R, A" @ A~ ¢
Po, whereA” © A~ is the conclusion of;

(6) Ifs,A~ € PgandA’" isthe left premise of & -link L, thens, A, L ,A"92A’" ¢
Po, whereA A" is the conclusion of;

(7) Ifs,A” € PgandA’" istheright premise of @ -link L, thens A’ ,R,A"2A'~ €
Po, whereA”sA’ " is the conclusion of..

We say thas, B~ € Pg is amain pathof @, if B~ is neither a premise ab~-link

nor-e~-link in ©. Then we calB™ the headodf the main path. Note that & is an

IIMLL proof net, then® has exactly one main path. If the positive conclusion of a

subproof net o® is the left premise of &~ -link in a main path, then we call the

subproof net direct subproof nedf ©.

For example, Figure 18 shows a closed IMLL proof ngheb(p® p) —((p—p@p) @ (p2p))",
where we give abbreviations to some formula occurrencesterare exactly four

main paths in the IMLL proof net:

(1) A",R,A{,R,AJ,L,AL R pop",L,p",ID,p
1 2 3
(2) AT, R,AT,RAJ.LAR,p®pT,R,p™,ID,p™,R, pRp~
(3) AT, R,AT,RAJ R, pept,L,p"ID,p ,L,pop-
(4) A", R,AT,RAJ.R,pop",R,p",ID,p~

The head of the path (3) ® p~. Note that there is no direct subproof net of the
IMLL proof net.
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p- PR p p p
A4

(P-oPeP)®(PeP)*

(P® P)-d(P-P@P)B(PeP))"
P-dp® P)-A(P-PRP)@(PP))*

Fig. 17. the abstract syntax tree@fo(p® p) —((p—opp) @ (pep))"

+ p+
\/+ o g

(P-0P@P)@(PP)" (=A2)

(P@P)-A(P-Pe P (P P)) (ZAT)
P-oP® P)-A(P-PRP)®(PoP)) (=A")

Fig. 18. a closed IMLL proof net op—o(p® p) —o((p—o p@ p) @ (p@ p))*+

Next, we define an equality on normal IMLL proof nets. Since dedine IMLL
proof nets inductively, it seems a reasonable definitiotittiiaproof nets are equal,
if these are the same w.r.t forms and orders of applied ral&gure 2. But if we
defined an equality in this way, then there would be two défeédMLL proof nets
with the form of Figure 19, since there are two orders of aaphules in order to
define the IMLL proof net. Because this is unreasonable, viilee&lan equality in
the following way.

[ | | |
(< M A
pOp p®p

(p®p) 3 p*

(P®P) 3 ((P®P) 3 P)"

ps (P ®P)®((P®P) 3 p)

Fig. 19. an IMLL proof net

Definition 7 (an equality on normal IMLL proof nets) Let®; and®; be two nor-
mal IMLL proof nets with the same positive conclusion. TBen= O if

(1) For each main path d®4 there is completely the same main pati®n More-
over there is no any path i@, other than these corresponding paths, i.e., there
is a bijection from the set of the main paths®f to that of©,, which can be
regarded as an identity map and
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[

P>Pep’(=AT) p&p*

(P-oP®P)®(PP)" (=A3)

(P@P)-A(P-P® P (P P))" (=AT)
P-oP® P)-A(P-PRP)R(PeP)) (=A%)

Fig. 20. another closed IMLL proof net gfi—o(p® p) —o((p—o p@ p) @ (p p))*

(2) The head of a main path ®; is a premise of a*-link L’ iff the correspond-
ing head of©; is also a premise of the*-link L” with the same position as
L and

(3) If a direct subproof net 0®; is @ and the corresponding subproof net®$
is @, then® = ©” and

(4) A head of a subproof net &; is a premise of ag*-link L’ in a main path
of @1 iff that of the corresponding subproof net®j is also a premise of the
2 -link L” with the same position as.L

For example, the IIMLL proof net of Figure 18 (let the net ®¢) and that of
Figure 20 (let the net b®,) are two IMLL proof nets with the same conclu-
sion. But®; # ©,, because there is no corresponding patt®into the path
AT.R,Al,R,AJ,R,p@p",L,p",ID,p~,L,pxp~in O;.

If the structure of proof nets is forgotten and collapsestusual lambda calcu-
lus (see [Gir98]), our equality corresponds to the unionhef isualn-equality
and the equivalence up to bijective replacement of freeabées. But also note that
our equality is not that of proof nets as graphs: for examipige consider graphs
whose nodes are links and whose edges are formulas (i.eosER&gnier style’s
proof-nets, see [DR95]), those of Figure 18 and Figure 2@quel, because such
graphs have no information about whether a premise of a $§in&ft or right. On
the other hand, it has a subtle point to extend our equalitygadragment including
the multiplicative constari: the topic will be given elsewhere.

4 Third-order reduction on IIMLL proof nets

In this section and the next section we only consider IIMLbgfmets. We assume
that we are given two closed IIMLL proof ne® and®, with the same conclusion
such tha®; # O,. In this section we show that we can find a contéjtsuch that
C[©1] andC|[O,] have different normal forms and orders less than 4-th order.

Definition 8 (hole axioms) A hole axiom with the positive conclusion 4 a link
with the form shown by Figure 21.

15



A+

one hole axiom
Fig. 21. one-hole axiom link

Definition 9 (extended IIMLL proof nets and one-hole contexs) Extended IIMLL
proof nets are inductively defined by using the rules of Fegliexcept for clauses
(4) and (6) and that of Figure 22. A one-hole context (for $lvantext) is an ex-
tended IIMLL proof net with exactly one one-hole axiom.

We useC[],Co[],C1]], . . . to denote one-hole contexts.

Remark. Unlike [Bar84], there is no capture of free variables witasl to our
notion of contexts, since we are working on closed proof.nets

A" isan extended IIMLL proof net.
Fig. 22. extended IIMLL proof nets

Definition 10 Let® be an IIMLL proof net with the positive conclusior And J]]
be a one-hole context with the one-hole axiom Ahen GO] is an IIMLL proof
net obtained from ¢ by replacing one-hole axiom'Aby ©.

Definition 11 (depth) The depth of an IIMLL proof neéd (denoted bydeptH©))
is inductively defined as follows:

(1) If the main path 0® does not includex~-links, thendepti{©) is 1.
(2) Otherwise, when all the direct subproof net€udire Oy, ..., O, depti®) is
max{deptH©®,),...,deptH®On)} + 1.

The depth of a positive formula occurrence i © is depth®) — depth@’) + 1,
where®' is the subproof net dd which is the least among subproof nets including
AT,

Definition 12 (the order of a positive IIMLL formula) The order of an IIMLL for-
mula A", denoted byrderA™) is inductively as follows:

(1) If AT is an atomic formula p thenordelA") is 1.
(2) IfATis AL —o...—0A,—op", thenorderA™) is

max{ordefA]),...,order(A})} + 1.

We define theorder of a closed IIMLL proof net®© as the order of the positive
conclusion.

Definition 13 (the measure w.r.t linear implication) Let® be an IIMLL proof net.
The measure d® w.r.t linear implication denoted bgneasure,(©) is the sum of
depths of all the positive formula occurrencesaof
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Lemma 3 Let® be an IIMLL proof net with the positive conclusion

An—o...—o(Bm—o...—o(Cg—ocl)—o...—oBl—op)—o...—oAl—opJr

and the form shown in Figure 23. Then there is an IIMLL prodfwi¢h the positive
conclusion

ngN—o...—o(Bm—o...—oCl—o...—oBl—op)—o...—oAl—op+.

Proof. The proof structure of Figure 24 obtained from Figure 23 by
manipulating some links is also an IIMLL proof net (the inbie part of® is
never touched), because all the Danos-Regnier graphs t¥ittieproof structure
of Figure 24 can be regarded as a subset of that of Figure 2@ ifollowing way:

¢ In the’g-link with the conclusion
Cr—oAy—o...—o(Bp—o...—0C;—...—0B;—0 p)—o...—oAl—op+, if C, is
chosen, then identif§Z, with the conclusion of thep-link;

e otherwise, identify the other premise with the conclusibthe "g-link.

If the proof structure of Figure 24 were not an IMLL proof niiat is, did not
satisfy the criterion of Theorem 1, théhwould not be an IMLL proof net by
Theorem 1. This is a contradiction.

+

(Cz—ocl) 0-—081 op Af\/’f
N
Bm Aopt

B\o ~0(C,-0C1) -0- ~oBl op”

\

(Bn—0--~0(C2-0C1)—0-—0B,~0pP)— 0-—0A1 op’

AXO"'_O(Bm_O"'_O(Cz_Ocl) -0--~0B;-0pP)-0-~0A;-0P"

Fig. 23. An IIMLL proof net before reduced

Proposition 3 Let ®1 and®; be two closed IIMLL proof nets with the same posi-
tive conclusion and an order greater than 3 such ®at~ ©,. Then there is a con-

text J] such thatmeasure,(©1) > measure,(C[®1]), measure, (©2) > measure, (C[O2)),
and CO,] # C[O7].

Proof. Since®1 has an order greater than 3, the positive conclusigddias
the form

An—o...—o(Bm—o...—0By,1—0(Cp—Cy) —oBy_1—o...—0Bj—op)—o...—0A;—op"

for somek (1 < k<m).
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4

CiY0.-0B1—0P" AT p

B+

AN

R Al—op+
Bn>0-—0C1—0-~0B;—0P

(Bm_O"‘_OC1_0'-"OBl_Op)_O"‘_0A1_0p+
An 3

Ant0-~0(Bn-0--~0C1-0-~0B,-0P)-0-~0A,~0P"

C2~0A,~0--~0(By=0-~0C1~0--~0B1~0P)—-0--—0A;—0P"

Fig. 24. The IIMLL proof net after reduced

On the other hand, there is an IIMLL proof net thatfjiexpansion of ID-link with
the conclusion

Ap—o...—o(Bm—o...—0By11 —(Cy—0Cq) —o0Bg_1—o0...—0B1—op)—o...—0A;—op_

and
An—o...—o(Bp—o...—0Byy1 —0(Cp—0Cy) —0By_1—o0...—0B1—op) —o...—0A;—op.

Then by Lemma 3 we can obtain an IIMLL proof rigtwhose conclusions are

exactly

Ap—o...—o(Bp—o...—0By;1—0(Cy—Cq) By 1—o0...—0B;—op)—o...—0A;—op”

and

Cy—oA,—o...—o(Bp—o...—oBy;1—0C;—-o0Bk 1—o0...—0B;— p)—o...—oAl—op+.

Then letC|| be the context obtained frof by connectind1’s negative
conclusion and one-hole axiom via Cut-link. Then the nunadbéne positive
formula occurrences @; is equal to that o€[©,]. The positive formula
occurrences; —Cy ™ oceurs in@; and depth 2, but not i6[©1], while the
positive formula occurrence

Cy—oA,—o...—o(Bp—o...—o0By;1—0C;—-o0Bk_1—o0...—0B;— p)—o...—oAl—opJr

occurs inC[®4] and has depth 1, but not @;. The other formula occurrences in
©; are the same as that6{®;]. So, it is obvious that
measure,(01) > measure,(C[O1]).
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Note that in Proposition 3 the construction@jf only depends on the selection of
a positive subformula occurrence®f. Since®, has a closed IIMLL proof net
with the same positive conclusion 6f, we can easily see that

measure,(02) > measure, (C[O2)).

Next in order to prov€[0;] # C[©,], we consider the following cases:

(1) the case where the"-link of ©; and that 0f®, to be manipulated b§|]
does not contribute to the unequality®f and©,:

It is obviousC[®;] # C[O2] sinceC]] does not influence the rest.

(2) the case where the"-link of ©; and that 0f®, to be manipulated b§|]
contributes to the unequality &1 and©:

Then, the negative premise of tise -link in ©1 differs from that in®, (as
occurrences). Since the positionGf®] of the manipulated>-link by C[]
is the same as that D[©;] and the position ilC[®4] of the premise of the
27 -link differs that inC[®2], it is obviousC[@;] # C[©,]. O

Example 1 Let© be the IIMLL proof net shown in the left side of Figure 25. Then
measure, (01) = 10. From Proposition 3 we obtain the context shown in Figure 26.
By applying the context t®; and normalizing the resulting net, we obtain the
IIMLL proof net®, shown in the right side of Figure 25. Thereasure,(©;) = 9.

P +

O

pop (p-op)Sop”
Mop

((p-op)-o(p-op)-op)-op" p

((p-op)-o p-op)=op"

p-op)-o p-op)-op”

Fig. 25. An IIMLL proof net before reduced and the IIMLL prooét after reduced

|
"

v o p - p o Jf
\/p' (p— OP) op p¥op* p\o/p‘
Lp—o((p—op)-o p—op)—op*J

(p—op)*6(p-op) op*
Wp‘

Cut p

((p-op)-o p-opprop’
p-op)-o p-op)-op"
Fig. 26. A context

Corollary 1 Let ©1 and ©2 be closed IIMLL proof nets with the same positive
conclusion and an order greater than 3 such tRat# ©,. Then there is a context
C|[] such that §©,] # C[©,] and both have an order less than 4.

Proof. By Proposition 3 we find a natural numbe(n > 0) and a sequence of
contextsCy[],Ca|l, . ..,Cn[] such thaty[Cy[...Ch[O1]...]] # C1[Cy[...Cn[O2] .. .]]
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and both have an order less than 4. Then it is obvious that ther contexC|]
such thaC[B] = C1[Cy]...Cy[@].. ]] for any IIMLL proof net® with the same
positive conclusion a®; and®,. O

5 Value separation in third-order IIMLL proof nets

We assume that we are given two different normal IIMLL proefs®; and ©,
with the same conclusion and with an order less than 4. Hoyvesecan not per-
form a separation directly. We need type instantiation.

Definition 14 (Type instantiation) Let® be an IIMLL proof net and A be an MLL
formula. The type instantiated proof nefA/p| of © w.r.t A is an IIMLL proof net
obtained fron® by replacing each atomic formula occurrence p by A.

In the following, given two closed IIMLL proof net®1 and®, with the same con-
clusion and with an order less than 4 such tBat# ©,, we consider two type in-
stantiated proof net®1[p—o(p—o p) —(p— p) - p/ P| ANAO2[p—o(p—o p)—o(p— p)— p/ P

5.1 The definable functions onp(p—op) —o(p—op)—p

Figure 27 shows the two closed normal proof netpesn(p—o p) —o(p—o p) —o p.
We call the left proof net @nd the right one .]We discuss the definable functions
on{0,1} in proof nets.

(p-op)*q p-op)-op”

p-op)-o p-op)-op" p-qp-op)-o p-op)-op*

Fig. 27. the two normal forms op—o(p—o p) —o(p—op) —op

There are 20 closed normal proof netsmh(p—o p) —(p—o p) —o p) —o(p—o(p—o p) —o(p—o p) —o p).
Then we can easily see that all the one-argument functioq®di} are definable

by these proof nets. Table 1 shows these definable functions. As to two-argument
functions, there are 112 closed normal proof nets of

3 Among these 20 proof nets, 18 proof nets define a constantidare; or e, of Table 1.
A remarkable point of our separation result is that even ifolveose two different proof
nets that denote the same constant function among such pet&fwe can find a context
that separates these two proof nets.
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(p—o(p—op) —o(p—o p) —o p) —o(p—o(p—o p) —o(p—o p) —o p) —o(p—o(p—o p) —o(p—o p) —o p). FOr €Xxam-
ple, Figure 28 shows such a proof net. The 112 proof nets deifirtevo-argument
functions on{0, 1}. Table 2 shows these six functions. In general, forafry> 1),
all the closed normal proof nets on

n
A

(p—o(p—op) —o(p—o p) —o p) —o... o(p—o(p—o p) —o(p—o p) —o p) ~o(p—o(p—o p) —o(p—o p) —o p)

define &+ 2 functions? We can define

(1) two constant functions that always returorQL,
(2) nprojection functions, which return the value of an argundrectly, and
(3) nfunctions that are the negation of a projection function.

On the other hand, the number of all theargument functions 040,1} is 22",
Although we only have very limited number of definable fuons, nevertheless
we can establish a separation result.

Remark. In the following discussions, we identify an IIMLL formulaithr an
another IIMLL formula that is different only up to a permudtat: for example,
p—o(p—op)—o(p—op)—opand(p—op)—op—o(p—op)—op. If we restrict
[IMLL formulas to IIMLL formulas with an order less than 4 awaly with
occurrences of only one atomic formydawe find that there are only two IIMLL
formulas that have exactly two closed normal IIMLL proofsiahat is,
p—o(p—op)—o(p—op)—opandp—o p—o(p—op—op)—o p. But unlike
p—o(p—o p) —o(p—o p) — p, We can not obtain our separation result by
instantiatingp — p—o(p—o p—o p) —o p for a propositional variable: Only two
functions are definable by closed IIMLL proof nets of

(p—o p—o(p—op—op) —o p) o(p-op-o(p-op-op) op), that is,e3 ande, of Table 1° We
can not define the two constant functiamsande,. Without these constant
functions, we can not separate two closed proof nets of Eigidrby instantiating
p—op—o(p—op—op)—opfor p. Thatis, for any context|] with
p—op—o(p—op—op)—op as the conclusion,

4 The number of the closed normal proof nets of

n

(p-o(p—op) —o(p—op) —o p) ... =o(p—o(p—o p) —o(p-o p) —o p) —o(p—o(p—o p) —o(p—o p) o p) is
n+1 2n—1

nt-2-( Z k+(n+1)-2n+ z k-+2n), which is equal ton! - (9n? + 9n + 2). Among

them, the number of the non constant functionslis2 - n. In Appendix A the detail is
given.

® The closed normal proof nets @f- p—o(p—op-op) - p) -o...~o(p— p—o(p—o p—o p) o p) —o(p-o p-o(p—o p—o p) o p)
are interesting. We can only define parity check functioke exclusive or’. We can judge

whether the number of the occurrences of 1 (or 0) of a givenese withn bits is odd or

even by any such a definable function.
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C[O[p-o p—o(p—p-op)—p/p]] = C[1[p—o p-o(p— p— p)—p/P]]. This is a justification
of our choice ofp—o(p—o p) —(p—o p) — p.

(P-0p)*Q(p-op)-op"

bt

P44 p-0p)-q(P-0p)-0F" P~ p-0p)¥ P-0p)-0p" p-op)-¢ p-op) -op*
(P~ p-0p) o P-0P) ~0pY<d P p-0p) - P-0P) -0p)

(P~Q(p-0p) ~( P-0P) ~OP-T(P— P-0p) ~o P-0P) ~0p) ~¢( P~ P-0p) - P-0p) ~op)”

Fig. 28. a normal form orp—(p—o p)—(p—o p) — p) -o(p—(p—o p) —(p—o p) — p) (p—(p—op) =(p—op) — p)

Table 1
all the definable functions om —o(p—o p) —o(p—o p) —o p) —o(p—o(p—o p) —o(p—o p) —o p)

Table 2
all the definable functions by 112 <closed normal proof nets on

(p—o(p—op) —o(p—op)—op)—o(p—o(p—op)—o(p—op)—op)—o(p-o(p—op)—o(p—op)—op)

5.2 Separation

The main purpose of the subsection is to prove the followhegtem.
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Theorem 2 Let®; and®; be IIMLL proof nets with the same conclusion and with
an order less than 4 such th@y # ©,. Then there is a context/Csuch that

C[O1[p-o(p-op)—o(p-op)—op/pP]] = 0 and GOz[p-o(p-op)—(p-op)<p/p]] = 1.

In order to prove the theorem, we need some preparations.

At first we remark that given a closed normal IIMLL proof n@twith an order
less than 4, we can associate a composHaf second order variable€s,, ... Gy,
where eacl; (1 <i < m) occurs inF linearly and corresponds to a second order
negative formula occurrence in the conclusior@énd, the way thaGi,...,Gn
compose is determined by the structur@®afwve can easily definE inductively on
the depth o).

n

Let A~ be a second order negative IIMLL formula, thatAd)as the fornp—o--- —op—o p.
Then we define arityA) asn.

Proposition 4 Let © be a normal closed IIMLL proof net with an order less than
4, Al ,..., A, be the second order negative formula occurrences in thelgsion

of ©, and n be the number of all the occurrences of ip the conclusion oP.
Moreover, let g, ..., gm be functions such that each(d <i < m) is definable by a
closed proof net on

arity(Ay)

A

(p—o(p—op) —o(p—op)—p)—o...—o(p—o(p—o p) —o(p—op) — p)—o(p—o(p—o p)—(p—<p)—op),

ci1,...,Chbe asequence ¢D,1}, and f be the linear composition of g. ., gm cor-
responding t@®. Then there is a contex{{&Guch that §O[p—o(p—p) <(p-op) < p/p]] =*
ciff f(ca,...,cn) =c, where cis an element ¢0,1}.

Proof. The conclusion 0®[p—o(p-op)-(p—p)—p/p] has the form

Bk —---—oB1—o(p—o(p—op) —o(p—op) — p). Moreover, each; (1 <i < k)
has a closed IIMLL proof ne®; with the conclusiomB;” corresponding to any of
01,---,0mOr C1,...Cqy. Then we can construct an cont€(t shown in Figure 290

@
=B | |

: p-q( p-op) - P-0P)-0p~ p-q p—op)—o( P-0p)-op”

gi Mp) -q(p-op)-op™
Bx .

L B,-0..~0B,-0p-(p-op)~a p-op)-op*—

Bi>0.-~0B;-0P~ pP-0p)—d P—0p) —0p~

Cut

Fig. 29. a context
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We note that the construction Gf] only depends on the conclusion @n not on
O itself.

Proof of Theorem 2.We know by Proposition 4 that we can identify a cont@it
with an assignment of definable functions{1} and values if{0,1} to the two
linear composition§; andF corresponding t®; and®,. Since the conclusion
of @, is the same as that &», F; andF, are different expressions such that

(a) each variable; (1 < j < n) occurs linearly in botlir, andF, and
(b) each second order varialile(1 <i < m) also occurs linearly in botk; and
F.

We consider the two cases depending on the @agnd©, differ:

(1) the case where there ard <i <m) andj; andj2 (1< j1, jo < n) such that
Gi(...,Xj,,...) ocecurs inFy andGi(.. ., Xj,,...) occurs inF and j1 # jo,
wherex;j, andx;, have the same position (&:

Then, there i55; with the least depth among su@f's. Note that the
expressiork; (resp.F,) can be regarded as a tree and the path f@nto the
root of F, is the same as that &. To eachGy occurrence in the path we
assign the projection function w.r.t the argument selebtethe path. To
otherGy we assign the constant function that always returria @ddition,
we assign qresp. ) to xj, (resp.x;,). To otherx, we assign OThenitis
obvious that by the assignmdnt (resp.R) returns (resp._).

(2) otherwise:

There isi (1 <i < m) such that the position d&; in F; differs from that of
F>. Then, there iy with the least depth among su@'s in F; or F.
Without loss of generality, we can assume tBatin F; has the least depth.
Then toG; we assign the constant function that always returrsghin note
that the expressiof; (resp.F2) can be regarded as a tree and the path from
immediately outet, of Gy to the root off; is the same as that &. To
eachGy occurrence in the path we assign the projection function the
argument selected by the path. To otfgrwe assign the constant function
that always returns.0fo anyx, we assign OThen it is obvious that by the
assignmenk; (resp.R,) returns 1(resp. Q. O

Corollary 2 (Weak Typed B6hm Theorem on IIMLL) Let®; and®, be IIMLL
proof nets with the same conclusion such Bat# ©,. Then there is a context/C

such that @01 [p—o(p—o p) —~(p—p)—p/p|] = 0and GOz[p—-(p— p) < (p-p) < p/p] =
1
Proof. By Corollary 1 and Theorem ZJ

In the following we explain the proof of Theorem 2 by two exde®p

Example 2 We explain the case (1) of the proof of Theorem 2, using Fig0réet
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©; (resp.>) be the left (resp. right) IIMLL proof net of Figure 30. Thepexssion

F1 (resp. k) corresponding td; (resp.©y) is G1(Gz(Xs, Ga(X4,X3)), G3(X2,X1))
(resp. G(G2(x5,Ga(x1,X3)),G3(X2,X4))). Then we pay attention to the second ar-
gument of G, that is, % of F; and % of F», because the argument in 5 not the
same as that of fFand Gg has the least depth among such second order variables.
Following the proof, we let the contex{|®e the corresponding to the assignment
X1=0,%=0,%=0,%=0,%=1X%=0, G, = 3, Gy = f1, G3 = 3, G4 = f1]

(see Table 2). Then|®;] —* 0and O, —* 1.

Example 3 We explain the case (2) of the proof of Theorem 2, using Figl@nd
Figure 32. Let®1 (resp.©;) be the IIMLL proof net of Figure 31 (resp. Figure 32).
The expressioniHresp. k) corresponding t®; (resp.©») is

G1(Hs(xa), G2(H2(H1(x3)), Ga(X2, X1))) (resp. G.(Hz(xa), G2(Ha(Ga(X2, X1)), H1(X3)))).
Then we pay attention to thes@nd H; that have the position in the second argu-
ment of G in F; and R, respectively, because the second argument,dh®; are

not the same as that obland & has the least depth among such second order
variables. Following the proof, we let the context 6e the corresponding to the
assignment [x=0,% =0, %=0,x%=0, G, = f3, Go = f3, Gz = 1, Hy =&,

Ho = e, H3 = e ] (see Table 1 and Table 2). Then®;] —* 0 and O] —* 1.

(p~0oP-op) +a(P—ap—op) —ol P—~oP—0p) —oP—oP—oP—cP—cP-op* (p—0p~op) +a(P-ap—op) —ol P—oP—0p) ~oP—oP—oP—cP—cP-op*

(p—op-op) m—dp—w—w) ~o(P-aP-0p) ~op—-oP-oP-aP-P-op*  (p-ap—op) L@—d p—aP—op) —d P—oP—0p) —0P—oP—oP—P—oP—op*

Fig. 30. an example of the case (1) of the proof of Theorem 2

6 An extension to the IMLL case

At first we define a special form of third-order IMLL formulas.

Definition 15 (simple third-order IMLL formulas) An IMLL formula A is sim-
d

ple if A has the formB—o---—oBe—op®---®@p (c>0,d > 1,e> 0), where
ky Ky m
— -\ - .
B=p®--®@p—o-—opR---@pop®---@pK >01<j<4,64>1m>
1,1<i<e).
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v /
0 0p+

P-<—op*
p—P—cp—op*
B40p—dP—ap—op”

(P-oP-0p)4P-0p—-cP-cP-op”

(P—0p~0p) “a(P-0P-0p) ~aP—aP—cP-ap-op*

(P~0p~0p) a(P-aP—op) ~d P-0P-0p) ~P-op-cP—cp-op*

(P—op) =dP~op—op) — P-aP-0p) ~d P-aP—op) ~P-oP - -cp—op*

(P-0p) - P-0p) ~a P—0P—0p) ~d P-aP-0p) — P—0P—0p) ~AP-oP - -aP-op*
(P—0p)=q( p-0p) ~a( P-op) ~o P~aP—0p) ~d P~ -0p) - P-oP-0p) P -aP—cP—ap—op*

Fig. 31. an example of the case (2) of the proof of Theorem 2

—
L,

p~p-op*
P-a0-op-op*
B-0p-cP—op-op”

(P—oP—op)¥P-op-aP-ad—op*

(P—aP~0p) “a(P—op—0p) ~aP-aP-cP-cp-op*

(P-op-0p) ~q(P-0P~0p) ~d P-0p-0p) ~P—op—aP—cp—op*

(P-op) “qP-0p—0p) -d P-aP-0p) ~a P—oP—0p) ~cP-aP - -cP-0p*

(P—op) “(P-0p) ~d P-oP-0p) ~d P-aP—0p) —d P-0P—0p) ~cP-op-ad—cP-op*
(P—0p)=Q(p-0p) -0 P-op) ~d P~aP—0p) ~d P~0p-0p) - P-oP-0p) ~cP-aP—cP—ap—op*

Fig. 32. an example of the case (2) of the proof of Theorem 2

Proposition 5 Let ©; and ©, be closed IMLL proof nets with the same positive
conclusion such thad; # ©,. Then there is a context{Csuch that §O©,| # C[©7]
and the positive conclusion of closed IMLL proof nef®g and C©,] is simple.

Proof. Basically the same method as that of Corollaryl.

For example, the same conclusion of two IMLL proof nets ofufegg18 and Fig-
ure 20 is not simple. By giving an appropriate context, we tansform these

IMLL proof nets to two IMLL proof nets with a simple formula &se conclusion
in Figure 33.
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(r@P)®(pop)*

(r@P&(pep)*

(reP=d(P@P)(pep))*

d(reP)e(pop))*

(Pep)

~dpep) ~A(POP)® (P p))* —o(pp) ~A(PRP)®(pp))*

p“op-oPep) ~d(PRP)® (p® p))* p£op-aP®p) ~d(P® P)® (P D))"
Fig. 33. two different IMLL proof nets

Proposition 6 Let ©; and ®, be closed IMLL proof nets with the same positive
simple conclusion such th@ # ©,. Then there is a contextiGuch that §O4] #
C[©-] and the positive conclusion of closed IIMLL proof nef®¢ and O] has

an order less than 4.

Proof. Let the positive simple conclusion &f; and®, be A™ in Definition 15.
Then it is obvious to be able to construct an IMLL proof net efhihas

Ya(m—1) d
conclusionsA~ andp—o---—op—oCg—o0---—Ce—o(p—o---— p—op)—op™,

G
Y1k
,—/ﬁ ; B .
whereCi =p—o---—op—op(1<i<e).ltisalso obvious to be able to construct

a contexC|| such thatC[@] # C[©;] and the positive conclusion &f®;] and
C[O,] is an intended IIMLL formulat

For example, there is an IMLL proof net exactly with—o p1 —o(p2® p3) —((pPs ® ps) ® (p7 @ Ps))~
and p, —o ps —o p1 —o p3 —o(Ps —o Ps —o P7 —o Pg—o Po) —o Po as the conclusions,
where the indices of the atomic formyparepresent the pairings of ID-links. From
the IMLL proof net, we can construct a context that trans®tmo IMLL proof
nets of Figure 33 to two IIMLL proof nets of Figure 34.

—1
+ p+ P~

p\_{p_

pXop—ap™~
p<op-op-a~
pZop-op-op-ap~

(p-op-op—-op—-apy=op *
P =qP -oP—~0op-0p—aP) —op

+ +

P=d(P 0P -0p-0p~ap) —op

p£cp —d p—oP-op—op-ap)-oP * pZcp —d p—op-op—op-ap)—op *
P Xop-ap - P —oP —op—op-ap) —op * p £op —cp —{ p —oP —op—op—ad) —op *
PP -op—ap —d p-oP—~op—op-aP) —op * p=<cp ~op~ap —d P ~0P ~op—op—cP) —op *

Fig. 34. two different IIMLL proof nets
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From Proposition 5, Proposition 6, and Theorem 2, we obtarfallowing corol-
lary.

Corollary 3 (Weak Typed Bohm Theorem on IMLL) Let ®1 and ©, be IMLL
proof nets with the same conclusion such Bat# ©,. Then there is a context/C

such that QO1[p-o(p—p)—~(p—-p)—op/p]] =0and GO[p-o(p-p)—<(p—-p)—p/pP|] =
1.

7 Concluding remarks

Our result is easily extendable to IMLwith the multiplicative unitl under a rea-
sonable equality on the extended system, because the haaliye unit can be
considered as a degenerated IMLL formula. For exanmpléas just one closed
proof net and the closed proof nets bro p—o(p—o p) —o(p—op) —op " have al-
most the same behaviour as thatpfo(p—o p) —o(p—o p) —o p'. However, our
separation result w.r.t IMLL with is stated as follows:

Let ©®1 and®, be closed IMLL withl proof nets with the same positive conclu-
sion such tha®1 # ©,. Then there is a contefd]] such thatC|®;] andC[O;]
are closed proof nets df—o 1" andC[@,] # C[O,)].

There are two closed normal proof netslofo17: one consists of exactly three
links (an axiom link forl™, a weakening link fod~, and arz-link). Let the proof
netbeff,; _,+. The other consists of exactly two links (an ID-link with and1*
and az-link). Let the proof net bect;__4+. The proof is similar to that of IMLL
without 1.

However in a symmetric monoidal closed category (SMCC, faneple, see [MOO03]),
ff, .1+ andtt, 4+ are interpreted into the same arraly, wherel is the mul-
tiplicative unit of a SMCC. To avoid such an identificatiohis possible to relax
conditions of SMCC: one is to remove the axidm=r;. The other is that we do
not assume is isomorphic td ®I; just we assumeis a retract ot @I, that is, we
remove two axiomsa;la 1 = id) A @ndra,; ral= idasi. The relaxation is quite
natural: for example, without these axioms we can deriveontgmt equations like
o) AB;lazB = la®idg. In the relaxed SMCC, proof nets of IMLL withcan be an
internal language.

On the other hand, our result cannot be extended to classidéplicative Linear
Logic (for short MLL) directly, because all MLL proof netsmaot be polarized by
IMLL polarity. For example, the MLL proof net of Figure 35 aqawmt be transformed
to an IMLL proof net by type instantiation.

As an another direction, fragments including additive awiives may be studied.
Currently it is proved that our method can be applied to aimsetl fragment of

28



intuitionistic multiplicative additive linear logic. Theestriction is as follows:

(1) With-formulas must positively occur only &R A;
(2) Plus-formulas must negatively occur only/as A.

Moreover we can also prove the strong statement of typed Btikorem w.r.t the
fragment. Our ongoing work is to eliminate the restriction.

skl
NoONS bR

°
5]
Z
®
°

Fig. 35. A counterexample

Acknowledgements

The author thanks Jean-Jacques Levy, the organizer of the Bieorem workshop
at Crete island. If he had not attended the workshop, he waatd not obtain the
result. He also thanks Martin Hyland, Masahito Hasegawa&allBoversi, Alex
Simpson, and Izumi Takeuchi for helpful comments on thedopi

References

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax arem&htics, North
Holland,1984.

[DPO00] Kosta Dosen and Zoran Petric. The Maximality of thedy Lambda Calculus and
of Cartesian Closed CategorieBublications de I'Institut Mathematiqué&8(82), pp.
1-19, 2000.

[DPO01] Kosta Dosen and Zoran Petric. The Typed Bohm TheorEtactronic Notes in
Theoretical Computer Scienceol. 50, no. 2, Elsevier Science Publishers, 2001.

[DR89] Vincent Danos and Laurent Regnier. The structure woftiplicatives. Archive for
Mathematical Logic28:181-203, 1989.

[DR95] Vincent Danos and Laurent Regnier. Proof-nets anibedti space. In J.-Y.
Girard, Y. Lafont, and L. Regnier, editors, Advances in lan&ogic, pages 307-328.
Cambridge University Press, 1995.

[Gir87] J.-Y. Girard. Linear Logic.Theoretical Computer Sciencg0:1-102, 1987.

[Gir96] J.-Y. Girard. Proof-nets: the parallel syntax feopf-theory. In Ursini and Agliano,
editors,Logic and Algebra, New York, Marcel Dekk&®©96.

29



[Gir98] J.-Y. Girard. Light Linear Logiclnformation and Computatignl43 175-204,
1998.

[Jol00] T. Joly. Codages, séparabilité et représentatmifodctions dans divers lambda-
calculs typés. These de doctorat, Université Paris VII, 2a00.

[LTO4] O. Laurent and L. Tortora de Falco. Slicing polarizadditive normalization. In
T. Ehrhard,J.-Y. Girard,P. Ruet and P. Scott eds, LineaidiogComputer Science, pp.
247-282, Cambridge University Press, 2004.

[MOO03] A.S. Murawski and C.-H.L. Ong. Exhausting strategi@oker games and full
completeness for IMLL with UnitTheoretical Computer Scienc294.:269-305, 2003.

[SP0OO0] A. Simpson and G. Plotkin Complete axioms for catiegbfixedpoint operators.
LICS’2000, pp 30-41, 2000.

[SD92] R. Statman and G. Dowek. On Statman'’s Finite Compkxte Theorem. Technical
Report CMU-CS-92-152, Carnegie Mellon University, 1992.

[Sta80] R. Statman. On the existence of closed terms in thedtyambda-calculus I. In
Hindley, J. R. and Seldin, J. P. eds, To H. B. Curry Essays amiiimatory Logic,
Lambda Calculus and Formalism, pp. 511-534, Academic P16§9.

[Sta82] R. Statman. Completeness, Invariance and lamisdiadbility. The Journal of
Symbolic Logic47:17-26, 1982.

[Sta83] R. Statman\-definable functionals an@h-conversion.Arch. math. Logik23:21-
26. 1983.

[TdFOO] L. Tortora de Falco. Réseaux, cohérence et expageobsessionnelles. Thése de
doctorat, Université Paris VII, Jan. 2000.

[TdFO3] L. Tortora de Falco. Obsessional experiments farehr Logic Proof-nets.
Mathematical Structures in Computer Scient®:799-855,2003.

A A classification

In this appendix we clafsify the closed normal IIMLL prootsef
(p—o(p—op)~o(p—o p) o p) —o...~o(p—o(p—o p) ~o(p—o p) —o p) —o(p-o(p—o p) —o(p-o p) - p). First we
introduce a lineak-term assignment system to normal IIMLL proof nets, sing® it
easier to discuss the classification in termBmpflong normal lineaA-terms than in
terms of normal IIMLL proof nets. Figure A.1 shows the terrsigament system.
It is easy to see that all the assigned terms are lineagrAdng normal, because
to each ID-link with atomic conclusions a different variakg assigned and the first
argument in an application term introduced in rule (2) iseafsva variable.

Second we consider the closed normal limeéerms assigned tp—o(p—o p) —o(p—o p) —o p.
While the linearA-term Ax.Af.Ag.g(fx) corresponds to the IIMLL proof net,0
AX.Af.AQ. f(gx) corresponds to.1
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A + is a legal linear lambda term assignment,

where to each ID-link a different variable is assigned.

2 if L X J and|\ v J
X11AT o XmiAn t AL Y B Y1:BI -¥niBn u:C"

are legal linear term assgnments, then

L X J L Yizt/y] J
X1:AT o XnlAm t AT Zt:B Y1:B; -YaiBn ul[zt/y]:C*

Z AF0B™

is a legal linear term assgnment, where Y[zt /Y] and u[zt /Y] are Yand u

in which the occurrences of Y are replaced by Z t respectively.

3) if X is a legal linear term assgnment, then

LXIATX1IAT - XniAn U:B™

X is a legal linear term assgnment.

L XA X1:A] o XniAn U:B™

Ax.u:A=oB"
Fig. A.1. A linearA-term-assignment system

A.1 The closed normal terms oi-o(p—o p) —o(p—o p) — p) —o(p—o(p—o p) —o(p—o p) —o p)

Next we classify the closefh-long normal terms of

(p—o(p—o p) —o(p—o p) —o p) —o(p—o(p—o p) —o(p—o p) — p) @S a preliminary step. Since the closed
Bn-long normal terms on the formula have always the famx.A f.Ag.t, we only

write down the body instead of writing down the whole term in the following.

We classify them according to the surrounding contexts afdg.

(a) The case wherky.f(gy) or Ay.g(fy) occurs as a subterm:
(1) Fx(Ay1.y1)(Ay2.f(gy2)) and (2)Fx(Ay1.y1)(Ay2.9(fy2)) and
(3) Fx(Ay1.f(gy1)) (Ay2.y2) and (4)Fx(Ay1.9(fy1))(Ay2.y2)

(b) The case where bofty. fy andAy.gy occur as a subterm:
(5) Fx(Ay1. fy1)(Ay2.9y2) and (6)Fx(Ay1.gy1) (Ayz. fy2)
While the first term denotes the identity function{d 1}, the second term the
negation. The terms of the other cases are a constant farati{0,1}. Note
that in order for a term to denote a non-constant functiomhénterm,f and
g must occur in the second argument and the third argumentsaparately,
because foF, Ax A f.Ag.g(fx) or Ax.A f.Ag. f(gX) is substituted.

(c) The case whergy. fy (respectively\y.gy) occurs as a subterm, bAy.gy (re-
spectivelyAy. fy) does not:
(7) F(FX(Ay1.y1)(Ay2.9y2)) and (8)g(Fx(Ay1.y1)(Ay2.fy2)) and
(9) F(FX(Ay1.9y1) (Ay2.y2)) and (10)g(Fx(Ay1. fy1)(Ay2.y2)) and
(A1) F () (Ay1.y1) (Ay2.9y2) and (12)F (gx)(Ay1.y1)(Ayz. fy2) and
(L3) F(Fx)(Ay1.9y1) (Ay2.y2) and (14)F (gx) (Ay1- fy1) (Ay2.y2).

(d) The case where neith&y.f(gy), Ay.g(fy), Ay.fy, norAy.gy occurs as a sub-
term:
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(15) f(g(Fx(Ay1.y1)(Ay2.y2))) and (16)g( f (FX(Ay1.y1)(Ay2.y2))) and
(17) f(F(g¥)(Ay1.y1)(Ay2.y2)) and (18)g(F (fx)(Ay1.y1)(Ay2.y2)) and
(L9)F(f(9%)(Ay1.y1)(Ay2.y2) and (20)F (g(x))(Ay1.y1)(Ay2.Y2)

A.2 The general case

Finally, we classify the closed normal terms of
n

A

{(p—o(p—op) —o(p—o p) —o p) ~o...~o(p—o(p—o p) o(p—o p) o p) ~o(p—o(p—o p) ~o(p— p) = p). SiNCe

the close@n-long normal terms on the formula has always the fafq - - - AR, AXA f.AQ.t,
we only write down the body instead of writing down the whole term in the fol-
lowing.

The classification proceeds in the same fashion as that giréveous subsection:

(a) The case whergy. f(gy) or Ay.g(fy) occurs as a subterm:
In this caset has the form

Fi(- - (Fr1(Fn X ton—1ton)ton—aton—2) - - - )tat2

or a permutation ofiF,. .., F,} of the form, wheré; (1 <i < 2n) isAy.f(gy),
Ay.g(fy) or Ay.y, but any ofAy.f(gy) andAy.g(fy) exclusively occurs once.
The total number of such termsnsx 2 x 2n.

(b) The case where bofty. fy andAy.gy occur as a subterm:
In this caset has the form

Fa(-- - (Fno1(Fn X ton_1ton)ton_ston—2) - - tato

or a permutation ofF,...,F,} of the form, wherd; (1 <i < 2n) is Ay.fy,
Ay.gy or Ay.y, and botmy. fy andAy.gy occur exactly once. The total number
of such terms isl x 2x 2nCy =n! x 2 x zﬁi‘llk: n! x 2 x (2n®—n). Among
such terms the total number of the terms in which there i§ar i < n) such
that both the second argument and the third argumeRt @fe exactiyAy. fy
or Ay.gyis n! x 2 x n. Only such limited terms are a non-constant function,
i.e., a projection or the negation of such a projection. ©tbens of the case
and the terms of the other cases are a constant function.

(c) The case wherky. fy (respectivelyAy.gy) occurs as a subterm, bAy.gy (re-
spectivelyAy. fy) does not:
In this caset has the form

hl(Fl(hZ(FZ(' e (hn—l(Fn—l(hn(Fn(hn+1x)t2n—1t2n) )th—3th—2>) e ')t3t4) >t2t1>

or a permutation ofiF,. .., F,} of the form, wherdn; (1 <i <n+1) is empty
or g (resp.f), andg (resp.f) occurs exactly once. Moreovgr(1 < j < 2n)
isAy.y or Ay.fy (resp.Ay.gy) andAy. fy (resp.Ay.gy) occurs exactly once. The
total number of such termsig x 2 x ((n+1) x 2n).
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(d) The case where neith&y.f(gy), Ay.g(fy), Ay.fy, norAy.gy occurs as a sub-
term:
In this caset has the form

hl(Fl(hZ(Fz(' e (hn—l(Fn—l(hn(Fn(hn+1x)t2n—1t2n) )th—3th—2>) e ')t3t4) >t2t1>

or a permutation ofFy, ..., R} of the form, wherdn; (1 <i <n+1) is empty,
f, g, f(g[]), org(f[]), and bothf andg occur exactly once. Moreovéyr(1 <
i < 2n) is alwaysAy.y. The total number of such termsmié x 2 x zﬂﬁk =
n x (P2 43n+2).
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