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THORN INDEPENDENCE IN THE FIELD OF REAL NUMBERS

WITH A SMALL MULTIPLICATIVE GROUP

ALEXANDER BERENSTEIN, CLIFTON EALY, AND AYHAN GÜNAYDIN

Abstrat. We haraterize þ-independene in a variety of strutures, fous-

ing on the �eld of real numbers expanded by prediate de�ning a dense multi-

pliative subgroup, G, satisfying the Mann property and whose pth powers are

of �nite index in G. We also show suh strutures are super-rosy and eliminate

imaginaries up to odes for small sets.

1. Introdution

We build on results of van den Dries and Günayd�n in [3℄. There the authors

investigate the model theory of pairs (K,G) where K is either an algebraially

losed �eld or a real losed �eld, and G is a multipliative subgroup of K×
with the

Mann Property. While the de�nition of the Mann property is somewhat lengthy

(and we postpone the preise de�nition to Setion 5), roughly the Mann Property

is a ondition insuring that linear equations have few solutions in G. Among other

things, the Mann property implies that G is small (in a tehnial sense de�ned

below). Moreover, suh groups are quite natural. Any group ontained in the

divisible hull of a �nitely generated group, i.e. any �nite rank group, has the Mann

property.

In the ase whereK is real losed (heneforth we distinguish this ase by referring

to K as R), the additional hypothesis that G is a dense subgroup of R>0
is used.

Among other results, van den Dries and Günayd�n obtain good desriptions

of the de�nable sets in both ases and a good desription of dimension when K is

algebraially losed, assuming G is ω-stable. In partiular, the pair (K,G) is shown
to be ω-stable of Morley rank ω.

We extend the results of [3℄ by obtaining a desription of dimension for R real

losed and G suh that for eah prime number, p, the subgroup of G onsisting

of pth-powers has �nite index in G. To do this, we need to re�ne slightly the

desription of de�nable sets, fousing on a ertain olletion of de�nable sets we

all �basi small�, and introdue the notion of þ-rank. In partiular, we prove that

the pair (R,G) is super-rosy of þ-rank ω. We then use this fat to obtain some

partial results about elimination of imaginaries.

Now we state these results preisely.

Theorem 1.1. Let R be a real losed �eld and G a dense subgroup of R>0
with the

Mann property and suh that for eah prime number, p, the subgroup of G onsisting
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of pth-powers in G has �nite index in G. Then in the language of ordered rings

augmented with a unary prediate for G, we have

(1) G has þ-rank 1, and
(2) (R,G) has þ-rank ω.

Hene, (R,G) is super-rosy.

Theorem 1.2. Let (R,G) be as in the previous theorem. Enlarge (R,G) by adding
su�iently many sorts of (R,G)

eq

so that the resulting struture has a ode for every

basi small subset of Rk
, for eah k. Then this struture eliminates imaginaries.

While our primary interest is in subgroups of R with the Mann property, we

obtain Theorems 1.1 and 1.2 as appliations of a more general result:

Theorem 1.3. Suppose that (R,+, . . . ) is an o-minimal expansion of a group in

the language L . Consider the expansion R = (R,G,+, . . . ) in the language LG =
L ∪ {G} where G is a unary prediate. Suppose that for eah R

′ = (R′, . . . ) with
R

′ ≡ R:

(1) G(R′) is small, and ontained in some interval, (a,∞) ⊆ R′
, in whih it is

dense.

(2) Eah LG-formula ψ(x) is equivalent to a boolean ombination

1

of formulas

of the form ∃~y
(
G(y1) ∧ · · · ∧ G(yj) ∧ ϕ(x, ~y)

)
where ϕ is an L -formula.

(3) For eah tuple ~a from R′
and D ⊆ G(R′)n, de�nable over ~a, there are an

L -de�nable set E, and a de�nable S, whih is a dense subset of G(R′)n,
with E and S over ~a, suh that D = E ∩ S. Furthermore, when n = 1,
D an be written as a �nite union of suh E ∩ S, where S is, in addition,

∅-de�nable.

Then R is super-rosy of þ-rank less than or equal to ω and þ-rank of G(R) is 1.

Moreover, if R inludes a �eld struture, the þ-rank of R equals ω.

For the de�nition of small, see 1.15.

The reader will note that if onditions (1) and (2) hold in a given model, they

hold in any elementarily equivalent model, and if ondition (3) holds in a su�iently

saturated model, it holds in any elementarily equivalent model. The reader will

further note that ondition (3) above seems quite tehnial. In many ases, a muh

more natural (and stronger) ondition holds. Namely,

(3)′ For eah de�nable D ⊆ G(R)k there is an L -de�nable set E suh that D =
E ∩ G(R)k.

However, in ases that are of partiular interest to us, suh as R = (R,G,+, ·)
and G(R) = 2Z3Z, (3)′ fails. To understand why (3) is not as unnatural as it may

�rst appear, the reader may skip ahead to Setion 5.

Theorem 1.4. Let R be as in the previous theorem. Enlarge R by adding su�-

iently many sorts of R
eq

so that the resulting struture has a ode for every basi

small subset of Rk
. Assume in addition, given any set of parameters A, and any

interval I de�ned over A, that scl(A)∩I is not ontained in any small set (see 1.15

and 2.12 for the appropriate de�nitions). Then this struture eliminates imaginar-

ies.

1

Throughout the paper, we use �boolean ombination of . . .� to mean �an element of the

ambient boolean algebra generated by . . .�.
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In addition to applying to strutures satisfying the onditions of Theorem 1.1,

Theorems 1.3 and 1.4 also apply to the strutures studied in [2℄, namely dense pairs

of o-minimal expansions of ordered abelian groups. Also we note that we answer

the question of Miller and Speissegger from [7℄ of whether (R, 2Z3Z) has o-minimal

open ore. (See the end of Setion 3 for de�nitions and the main part of the proof,

and Setion 5 for its appliation to expansions of the reals by groups with the Mann

Property.)

Conventions and Notation. An L -struture, e.g. R = (R,+R, ·R, <R, 0R, 1R),
onsists of an underlying set, e.g. R, together with an interpretation of eah sym-

bol from the language, e.g +R, ·R, <R, 0R, 1R. We drop the supersripts when no

onfusion results. Capital letters in the Fraktur font, e.g. M and R, indiate stru-

tures. The universes of these strutures are denoted by the orresponding apital

letters in the normal font. For instane, M and R are the respetive universes of

the strutures above.

We use the letters x, y, z, w as variables, and the letters, a, b, c, et., to indiate

elements of the universe of a struture. We distinguish between elements from M

and tuples from Mn
by using vetor notation for tuples. For example, ~x, ~y and ~a,~b

as opposed to x, y and a, b.
We use ϕ, ψ, and θ to indiate formulas. When no onfusion results, we suppress

the parameters, writing, for instane, ϕ(~x) even when the formula is not over the

empty set. Likewise, when we say de�nable, we mean de�nable with parameters.

To save ourselves from onstantly worrying about the length of our tuples, when

~x is an n-tuple, we write Mn
as M~x. The set de�ned by a formula ϕ(~x) is denoted

by ϕ(M~x).
We use apital letters in blakboard bold to indiate de�nable sets, e.g. D,E,

with the exeptions of N, Q, and R, whih are the sets of natural numbers, rational

numbers, and real numbers, respetively. We denote the omplement of D as Dc
.

We use f , possibly with subsripts, for de�nable funtions. Also α, β will always

indiate ordinals, m,n will always indiate natural numbers, and p will always

indiate a prime number.

If we wish to emphasize that a de�nable set is de�ned with parameters, we write

the parameters as a subsript. For example, suppose ψ(~y) de�nes E and ϕ(~x)
de�nes D, where we have suppressed the parameters in both ψ and ϕ. If we then

wish to emphasize that ϕ uses a parameter ~e ∈M~y, we write D~e. For instane, we

write

∃~y(ψ(~y) ∧ ϕ(M~x, ~y))

as ⋃

~e∈E

D~e.

For a set C, we denote by P(C) the power set of C.

De�nitions and Preliminaries. Now we introdue some de�nitions that we use

in the remainder of the paper, together with some propositions from other papers

whih we also use.

De�nition 1.5. Fix a theory, T , and a su�iently saturated model M |= T . We

work in M
eq

. Let ϕ(~x, ~y) be a formula without parameters, let

~b ∈M
eq

~y , and let C
be a set of size less than the degree of saturation of M.

3



For k ∈ N, the formula ϕ(~x,~b) is said to k-þ-divide over C if there is D ⊇ C suh

that tp(~b/D) is not algebrai and the set of formulas {ϕ(~x,~b′) : ~b′ |= tp(~b/D)} is

k-inonsistent. The formula is said to þ-divide over C if it k-þ-divides for some k.

The partial type π(~x,~b) is said to þ-fork over C if it implies a disjuntion of

formulas (with arbitrary parameters), eah of whih þ-divides over C.

We have de�ned what it means for a formula to þ-divide over a set C. Sometimes,

when the partiulars of C are not important, we will simply say that a formula þ-

divides.

Remark 1.6. By ompatness, if ϕ k-þ-divides, there is always a single formula

θ(~y, ~d) ∈ tp(~b/D) suh that the set of formulas {ϕ(~x,~b′) : M |= θ(~b′, ~d)} is k-
inonsistent.

Also by ompatness, if π(~x,~b) implies a disjuntion of formulas that þ-divide,

π implies a �nite disjuntion of suh formulas.

De�nition 1.7. Let A,B,C ⊂ M be smaller than the degree of saturation of

M. Then |⌣
þ

is de�ned as follows: A |⌣
þ

C
B if and only if tp(~a/BC) does not

þ-fork over C for any tuple ~a from A. If A |⌣
þ

C
B we say that A is þ-independent

from B over C. If it is lear from ontext, we will often just say independent for

þ-independent.

De�nition 1.8. A theory T suh that |⌣
þ

is symmetri for T is alled rosy.

Alternatively, rosiness ould be de�ned in terms of loal þ-ranks being �nite.

However, we will not have need of any loal ranks as the situation in whih we �nd

ourselves allows for a global þ-rank, as de�ned below.

When working with an independene relation, we an de�ne its foundation rank.

For þ-independene we have:

De�nition 1.9. Let p(x) ∈ S(A). For α an ordinal, we de�ne U

þ(p) ≥ α indu-

tively on α.

(1) U

þ(p(x)) ≥ 0.

(2) If α = β+1, we de�ne Uþ(p(x)) ≥ α if there is a tuple a and a type q(x, y)

over A suh that q(x, a) ⊃ p(x), Uþ(q(x, a)) ≥ β and q(x, a) þ-forks over A.

(3) If α is a limit ordinal, then U

þ(p(x)) ≥ α if U

þ(p(x)) ≥ β for all β < α.

Remark 1.10. It is perhaps worth noting that in a theory that is not rosy, þ-

forking may still be symmetri if one restrits the sorts that one onsiders. If

thorn independene satis�es symmetry when restrited to the real sorts, one alls

the theory real-rosy. For instane, the theory of algebraially losed valued �elds

is not a rosy theory, but þ-forking, restrited to the �eld, residue �eld, and value

group sorts, is an independene relation. Thus ACVF is real-rosy [4℄.

De�nition 1.11. þ-rank is the least funtion taking values in On∪{∞} satisfying
the following:

(1) þ-rank

(
ϕ(~x,~b)

)
≥ 0 if ϕ(~x,~b) is onsistent.

(2) þ-rank

(
ϕ(~x,~b)

)
≥ α + 1 if there is ψ(~x,~c) that þ-divides over ~b, suh that

ψ(~x,~c) ⊢ ϕ(~x,~b) and þ-rank

(
ψ(~x,~c)

)
≥ α.

(3) For λ a limit ordinal, þ-rank

(
ϕ(~x,~b)

)
≥ λ if þ-rank

(
ϕ(~x,~b)

)
≥ α for all

α < λ.
4



The relation between þ-rank and U

þ

-rank is given by the following ([4℄):

Fat 1.12. For any type, p, Uþ(p) ≤ min{þ-rank
(
ϕ
)
: ϕ ∈ p}.

In analogy with simple and stable theories, we make the following de�nition

(whih ould be equivalently stated in terms of U

þ

-rank, see [4℄):

De�nition 1.13. A omplete theory is super-rosy if every formula has ordinal

þ-rank.

The orollary of the Coordinatization Theorem of [8℄ stated below will simplify

our proof of super-rosiness:

Corollary 1.14. Given a omplete theory T , if every formula in one free variable

ϕ(x,~b) has ordinal þ-rank, then T is super-rosy.

De�nition 1.15. Let M := (M, . . .) be an ordered struture. A de�nable set

D ⊂Mk
is large i� there is some m, an interval I ⊆M and a funtion f : Dm

։ I.
A de�nable set S is small i� it is not large.

Note that this de�nition of small di�ers from the onventions of [3℄. There the

adjetive �small� also applies to sets that are not de�nable, but does not apply to

subsets of Mn
for n > 1. In addition, in [3℄, the notion of small set is de�ned

for arbitrary, possibly unordered, strutures. One of the ases we wish to onsider,

however, is dense pairs of ordered abelian groups. In this setting, a bounded interval

would be small under the de�nition of [3℄. Our de�nition for small, when restrited

to de�nable subsets of a model (R,G) satisfying the hypotheses of Theorem 1.3 will

turn out to be G-small, as de�ned in [2℄. When R in addition has a �eld struture

all three de�nitions will oinide (for de�nable subsets of R).

Fat 1.16. Let M be an o-minimal struture. Let {ϕ(M,~a)}~a∈A be a de�nable

family of subsets of M , eah of whih by o-minimality may be deomposed into

a �nite union of points and open intervals. Then the minimal number of points

and the minimal number of open intervals in any suh deomposition are de�nable

properties of ~a.

Unless stated otherwise, L denotes a language extending the language of ordered

abelian groups, G a unary prediate not in L , R = (R,G) denotes a struture

satisfying the onditions of Theorem 1.3, although one may think ofR as a struture

satisfying the onditions of Theorem 1.1. Following our normal onventions, we

should refer to the set de�ned by G(x) as G, but we simply write it as G. We use

R|L to denote the redut of R to L .

2. Small Sets

We �rst make a de�nition and a tehnial observation.

De�nition 2.1. A k-valued funtion, F : A
k

−→ B is a funtion from A to {S ∈
P(B) : |S| ≤ k}. The graph of suh an F is {(a, b) ∈ A × B : b ∈ F (a)}, and its

image is {b ∈ B : b ∈ F (a) for some a ∈ A}. If F : D → E where D ⊆ Rm,E ⊆ Rn
,

then we say F is de�nable in R, if its graph is.

We de�ne the omposition of suh funtions as follows:

De�nition 2.2. Consider F1 : A
k1−→ B and F2 : B

k2−→ C. We de�ne F2 ◦ F1 :

A
k3−→ C by setting F2◦F1(a) := {c : ∃b ∈ F1(a) and c ∈ F2(b)}, where k3 := k1 ·k2.

5



Lemma 2.3. LetM = (M,<, . . .) be any ordered struture, E,F be de�nable subsets

of Mm
, Mn

respetively, and F : E
k

−→ F be a k-valued funtion. Then there is a

funtion f : Ek → F with the same image as F . If there are two de�nable elements

of E then f has the same parameters as F .

Proof. Pik distint a1, a2 de�nable elements ontained in E (adding parameters

if neessary). Suppose that e ∈ E is not equal to a1. Set f((e, a1, . . . , a1)) to be

the least element of F (e), set f((a1, e, a1, . . . , a1)) to be the seond least element of

F (e), et. Now suppose that e = a1. Set f((e, a2, . . . , a2)) to be the least element

of F (e), et. Finally, for any ~e ∈ Ek
on whih f is not yet de�ned, set f(~e) equal

to the least element of F (a1). �

Let us make a ouple of observations about the notion of small as it applies in the

setting of groups. Let (M,+, . . . ) be an expansion of a group. Then the omplement

of any small set, S, is large. This an be seen, for instane, by onsidering the map

f : M2 → M given by (m1,m2) 7→ m1 +m2. Suppose some element, m0 ∈ M , is

not in the image of (Sc)2 under f . Then

m0 ∈
⋂

m/∈S

S+m.

Thus, m0 − S ontains Sc. Now the 2-valued funtion S
2

−→ M, s 7→ {s,m0 − s}
witnesses that S is large, whih is a ontradition. Atually we need a stronger

statement:

Lemma 2.4. Let (M,+, <, . . . ) be an expansion of an ordered group, and I =
(a, b) ⊆M be a nonempty interval, and S ⊆M a small set. Then I \ S is large.

Proof. Let f :M2 →M be de�ned as in the previous paragraph. Let J = (a+b, 2b).
We show that f

(
(I \ S)2

)
⊇ J . For a ontradition, let m0 ∈ J \ f

(
(I \ S)2

)
. Then,

reasoning as above, −(S ∪ Ic) +m0 ⊇ I \ S. Noting that

Ic +m0 = (−∞,−b+m0) ∪ (−a+m0,∞),

we see that this yields −S+m0 ⊇ (−b+m0, b), ontraditing the smallness of S. �

De�nition 2.5. We say a de�nable set D is small in an interval I if D∩ I is small.

We say a de�nable set D is osmall in an interval I if Dc ∩ I is small.

Here we return from onsidering arbitrary ordered groups to the setting of Theorem

1.3.

De�nition 2.6. A de�nable set X is basi if it is de�ned by a formula of the form

∃~y(G(~y) ∧ ϕ(~x, ~y)) where ϕ(~x, ~y) is a formula in L , and by G(~y), we mean G(y1) ∧
· · · ∧ G(yn). Furthermore, we will refer to formulas of the form ∃~y(G(~y) ∧ ϕ(~x, ~y))
as basi formulas.

Remark 2.7. Note that a set is basi if and only if it an be written as

⋃

~g∈Gn

ϕ(R~x, ~g).

where ϕ is an L -formula. Note also that �nite unions and intersetions of basi

sets are again basi. In partiular, an interval interset a basi set is again a basi

set.

6



For our purposes the above haraterization of de�nable sets is not quite su�-

ient; we obtain a more detailed desription in the ase of de�nable subsets of R
(as opposed to Rn

).

First we need to prove that if f1 and f2 are funtions Rn → R de�nable in L

then

⋃
~g∈Gn(f1(~g), f2(~g)) is a �nite union of intervals. This is lear when f1 and

f2 are funtions in one variable. In general, it is slightly less lear. However, it is

a onsequene of the ell deomposition theorem for o-minimal strutures and the

following two lemmas.

The �rst of the two lemmas shows that subsets of Gk
are in a sense well approx-

imated by L -de�nable sets. We already know that for any suh set, D, there is an

L -de�nable set E suh that D is dense in E ∩ Gk
. It is not the ase that D will

neessarily be dense in E. For instane, let (R,G) := (R, 2Q). Consider the plane,

P ⊂ R3
de�ned by z− 3y = 0. Let D := P∩G3

. Then D is just the opy of G lying

on the x-axis, and not dense in P. Clearly, in this example, had we hosen E as the

x-axis, rather than the plane P we would have obtained the density we desired. We

prove that in general, hoosing E arefully, we an in fat obtain density in E.

Lemma 2.8. For any D ⊆ Gn
, there is L -de�nable B suh that D is a dense subset

of B. Moreover B is de�ned over the same parameters as D.

Proof. Let D be de�nable over ~a. By the hypotheses of Theorem 1.3, we know that

there are an ~a-de�nable E and S suh that E is L -de�nable, S is a dense subset of

Gn
, and D = E ∩ S. We proeed by indution on the dimension, k, of E to �nd an

B ⊆ E, L -de�nable over ~a with D a dense subset of B. There is nothing to prove

for k = 0.
Now suppose we have proven the laim for j < k. We may assume that E is a

ell: write E as E1∪· · ·∪El, with eah Ei a ell de�ned over ~a. If Ei is of dimension

less than k, then we may apply the indutive hypothesis to Ei ∩ S. Thus we may

assume E is a ell of dimension k.
As E is a ell, we may hoose a projetion π : E → π(E) ⊆ Rk

so that π is a

homeomorphism. Now hoose an ~a-de�nable E′
and S′ suh that E′

is L -de�nable,

S′ is a dense subset of Gk
, and π(D) = E′ ∩ S′. Again, we may divide E′

into ells,

say E′
1 ∪ · · · ∪ E′

m. For eah i, either E′
i has dimension k, in whih ase it is open

and π(D)∩E′
i = E′

i ∩ S′ is dense in E′
i or E

′
i has dimension less than k and we may

apply indution to assume π(D) ∩ E′
i is a dense subset of E′

i. Thus π(D) is a dense

subset of E′
.

Now let B := π−1(E′). As π is a homeomorphism, D is a dense subset of B and

sine π is L -de�nable, so is B. We observe that B is de�nable over ~a. �

The seond of the two lemmas presents a ondition under whih a set de�nable

in (R,G) is atually an interval.

Lemma 2.9. Let B ⊆ Rn
be a ell suh that f1 and f2 are ontinuous on B, B∩Gn

is dense in B, and f1(~x) < f2(~x). Then
⋃

~g∈B∩Gn(f1(~g), f2(~g)) is an interval.

Proof. Let a = inf f1(B) and b = sup f2(B). Let d ∈ (a, b); we wish to show that

d ∈
⋃

~g∈B∩Gn

(
f1(~g), f2(~g)

)
. For some c1 ∈ B, f1(c1) < d. Clearly if f2(c1) > d,

we are done, so we may assume that f2(c1) < d. Likewise we may assume that

there is some c2 suh that d < f1(c2) < f2(c2). Note that (f1 + f2)(c1) < 2d while

(f1 + f2)(c2) > 2d. Thus, by the ontinuity of f1 and f2, and by the onnetedness

of B, there is c3 suh that (f1 + f2)(c3) = 2d. Sine f1 < f2, we onlude that
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d ∈ (f1(c3), f2(c3)). By the density of Gn ∩ B in B we may �nd ~g ∈ B ∩ Gn
suh

that d ∈ (f1(~g), f2(~g)). �

Corollary 2.10. If f1 and f2 are funtions Rn → R whih are de�nable in L ,

then

⋃
~g∈Gn(f1(~g), f2(~g)) is a �nite union of intervals.

Proof. Reall that R restrited to L is an o-minimal struture. Given f1 and f2,
L -de�nable n-ary funtions, we an deompose Rn

as a �nite union of disjoint ells,

Ci, where on eah Ci, f1, f2 are ontinuous, and either the funtions oinide on

every point of Ci or else one of the funtions is stritly larger on every point of Ci.

By Lemma 2.8, we may shrink eah Ci until we obtain a ell, Bi, suh that Bi ∩Gn

is a dense subset of Bi. By Lemma 2.9, on eah suh ell,

⋃
~g∈Bi∩Gn(f1(~g), f2(~g))

is an interval. �

Proposition 2.11. Let D ⊆ R be de�nable in R. Then there is a �nite partition

−∞ = a0 < a1 < · · · < am = ∞ of R suh that D is either small or osmall in

(ai−1, ai) for i = 1, . . . ,m. Furthermore, if D is de�nable from

~d, so is the partition

−∞ = a0 < a1 < · · · < am = ∞.

Proof. We �rst assume that D is basi. So D =
⋃

~g∈Gn ϕ(R,~g), where ϕ(x, ~y) is

an L -formula. By the o-minimality of R|L , eah ϕ(x,~g) de�nes a �nite union of

points and intervals, and there is a uniform bound on the number of these points

and intervals. By Fat 1.16, we may assume without loss of generality that eah

ϕ(x,~g) de�nes either a single point or a single interval.

First let us onsider the ase where ϕ(x,~g) is a single point. As there is a

de�nable surjetion from Gn
onto D, we see that D is small.

Now we onsider the ase where eah ϕ(x,~g) is an interval. There areL -de�nable

f1, f2 : R
n → R suh that ϕ(R,~g) = (f1(~g), f2(~g)). By Corollary 2.10,

⋃

~g∈Gn

(f1(~g), f2(~g))

is a �nite union of intervals. By o-minimality, the endpoints of these intervals

are de�nable over any parameters from whih the �nite union of intervals may be

de�ned.

Thus, we have our result if D =
⋃

~g∈Gn ϕ(R,~g).
Now assume D and E satisfy the onlusion. To omplete the proof, we must

show that Dc
and D ∪ E also have the desired property. But this is lear. �

De�nition 2.12. We say that ~e is in the small losure of A i� ~e is ontained in

a small set de�ned with parameters from A. We denote the small losure of A by

scl(A).

De�nition 2.13. We say that a set, S ⊂ Rk
, is G-bound i� there is an L -de�nable

f : Rn → Rk
suh that S ⊆ f(Gn).

It is lear that G-bound implies small. We proeed to prove the onverse.

Lemma 2.14. Any basi small set S is G-bound. Furthermore, assuming that

there are two de�nable elements of R, the funtion f witnessing that S is G-bound
is de�nable over the same parameters as S.
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Proof. Note that if S ⊂ Rk
is a basi small set, so is eah projetion of S to R; and

that artesian produts of G-bound sets are G-bound. Thus it su�es to onsider

small subsets of R.
Suppose that S is de�ned with parameters ~a. Let S be

⋃

~g∈Gn

ϕ(R,~g,~a)

where ϕ(x, ~y, ~z) is a parameter-free L -formula. Sine R|L is o-minimal, eah set

ϕ(R,~g,~a) is a �nite olletion of points and intervals. It is easy to see that any

set ontaining an open interval is large, so eah ϕ(R,~g,~a) is a �nite set. By o-

minimality, there is a uniform bound k to the size of ϕ(R,~g,~a) for eah ~g ∈ Gn
.

Thus mapping ~g to ϕ(R,~g,~a) gives us a k-valued (and ~a-de�nable) funtion, F ,
in the language L suh that F (Gn) = S. By 2.3, we may replae this with an

atual funtion, f . (Although if 0 is the only de�nable element of R, we may have

to add an additional parameter in R.) �

Remark 2.15. Note that even when 0 is the only de�nable element, S is still the

image G under a k-valued funtion whih is de�nable with the same parameters as

S.

Lemma 2.16. Let ϕ(x, ~d) de�ne D. Then there are a partition −∞ = a0 < · · · <
an = ∞ and basi small sets S1, . . . , Sn suh that D∩ [ai−1, ai] either is ontained in
Si, or ontains S

c
i ∩ [ai−1, ai]. Furthermore, the partition and eah Si are de�nable

over

~d.

Proof. Note that ϕ(x, ~d) is equivalent to a boolean ombination of basi formulas.

We proeed by indution, using repeatedly that the intersetion of a basi set with

an interval is again a basi set.

Suppose that ϕ(x, ~d) is a basi formula. By Proposition 2.11, there is a

~d-
de�nable partition −∞ = a0 < · · · < an = ∞ suh that D ∩ [ai−1, ai] either is

small or osmall. If D ∩ [ai−1, ai] is small, let Si := D ∩ [ai−1, ai]. If D ∩ [ai−1, ai]
is osmall in [ai−1, ai], then D ∩ [ai−1, ai] is a �nite union of intervals, by Lemma

2.10. Thus, sine it is small, [ai−1, ai] \ D is a �nite olletion of points. Let Si be

this �nite olletion of points. Note that in either ase, by Proposition 2.11, Si an

be de�ned over

~d.
Now suppose that ϕ = ϕ1 ∧ ϕ2. Let E1 := ϕ1(R, ~d) and let E2 := ϕ2(R, ~d).

By indution, there are a partition −∞ = b0 < · · · < bm = ∞ and basi small

sets S̃1, . . . , S̃m with the desired property with respet to E1. Likewise there are a

partition −∞ = c0 < · · · < cn = ∞ and basi small sets S̃m+1, . . . , S̃m+n with the

desired property with respet to E2. Let −∞ = a0 < · · · < al = ∞ be the union of

these two partitions. Then D ∩ [ai−1, ai] is either small or osmall.

If D∩[ai−1, ai] is small, then either E1 or E2 is small in [ai−1, ai]. Without loss of

generality, we may assume it is E1. Note that [ai−1, ai] is ontained in [bk−1, bk] for

some k. Let Si := S̃k ∩ [ai−1, ai]. As S̃k is

~d-de�nable and ontains E1 ∩ [bk−1, bk],
we see that Si satis�es the desired properties.

If D∩[ai−1, ai] is osmall, then both E1 and E2 are osmall in [ai−1, ai]. There are
j, k, suh that [ai−1, ai] ⊆ [bj−1, bj] and [ai−1, ai] ⊆ [ck−1, ck]. Thus, E1 ∩ [ai−1, ai]

ontains S̃cj ∩ [ai−1, ai], and E2 ∩ [ai−1, ai] ontains S̃cm+k ∩ [ai−1, ai]. Thus, D

ontains (S̃j ∪ S̃m+k)
c ∩ [ai−1, ai]. We let Si := (S̃j ∪ S̃m+k)

c ∩ [ai−1, ai]
9



Now suppose that ϕ = ¬ϕ0. Let E be de�ned by ϕ0. By indution there is

a partition −∞ = a0 < · · · < an = ∞ and basi small sets S1, . . . , Sn suh that

E ∩ [ai−1, ai] either is ontained in Si, or ontains Sci ∩ [ai−1, ai], and the Si are

de�ned from

~d. But this partition and these small sets work for D as well.

�

From the previous two lemmas (as well as Lemma 2.4), we obtain the following

two orollaries:

Corollary 2.17. If S is a small set, then it is ontained in a basi small set and,

hene, S is G-bound.

Proof. Let S ⊂ Rk
. Let πi be the projetion onto the ith oordinate. Let Si :=

πi(S). By Lemma 2.16, take S̃i, a basi small set ontaining Si. Then S̃1 × · · · × S̃k
is a basi small set ontaining S. As S is ontained in a G-bound set, it is itself

G-bound. �

Corollary 2.18. A tuple, ~e, is in the small losure of A if and only if there is an

LA-de�nable k-valued funtion, F (~x) and some ~g ∈ Gn
suh that ~e ∈ F (~g). Thus,

if ~a ∈ scl(~b) and ~b ∈ scl(~c) then ~a ∈ scl(~c).

Proof. If ~e ∈ scl(A) then there is a small set S~a de�ned with parameters ~a from A
that ontains ~e. The set S~a is ontained in a basi small set, also de�ned over A,
and this basi small set is the image of a k-valued funtion on Gn

. Conversely, suh

a set is G-bound, and hene small. Moveover, if ~a ∈ scl(~b) and ~b ∈ scl(~c) then this is

witnessed by k1 and k2-valued funtions, F1 and F2 respetively, with F1 = F1(~x,~b)
and F2 = F2(~y,~c). Thus F3 := F1(~x, F2(~y,~c)) witnesses that ~a ∈ scl(~c). �

In addition, we have the following orollary:

Corollary 2.19. A �nite union of small sets is again a small set.

Proof. Finite unions of G-bound sets are again G-bound, by Lemma 2.2 of [3℄. �

While we rely on [3℄ for the above proof, we note that the orollary also follows

as a speial ase of Proposition 2.22 below.

Remark 2.20. Sine scl is transitive, and scl(∅) is in�nite, (and in partiular,

ontains at least one non-zero element) we may add an element of scl(∅) to the

language without a�eting small losure. Thus we may assume that R ontains at

least two de�nable elements, and heneforth, we will assume that we may replae

eah k-valued funtion with an atual funtion.

Remark 2.21. Note that, unlike the algebrai losure of A, scl(A) depends on the

model ontaining A.

Although the following proposition is not used in the proofs of this artile's main

theorems, it is interesting to note that a small de�nable union of small sets is again

a small set.

Proposition 2.22. If D is small, and E~d is small for eah

~d ∈ D, then
⋃

~d∈D
E~d is

also small.
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Proof. First note that by Corollary 2.17, for eah

~d ∈ D there is a basi small set

ontaining E~d . By ompatness, the formula de�ning the basi small set may be

hosen uniformly in

~d. Thus, we may redue to the ase where D and eah E~d are

basi small.

Assume that the formula θ(~x, ~d) de�nes E~d for every

~d ∈ D. Then, sine E~d is a

basi small set, there are ψ(~y) ∈ tp(~d) and f(~x, ~y) suh that whenever

~d′ |= ψ(~y),

we have f(~x, ~d′) : Gk
։ E~d′ . Note that k, ψ, and f may depend on

~d. However by
ompatness, there is a �nite overing of D with sets de�ned by ψ1(~y), . . . , ψn(~y),
together with assoiated k1, . . . , kn and f1, . . . , fn. By taking k = max{k1, . . . , kn},
we see that there is a de�nable funtion

f(~x, ~y) : Gk × D →
⋃

~d∈D

E~d

suh that for any

~d ∈ D, f(~x, ~d) : Gk
։ E~d.

Now suppose that g : Gn
։ D witnesses that D is small. Then let h : Gk+n

։⋃
~d∈D

E~d be de�ned as follows:

h(~a1,~a2) := f(~a1, g(~a2)).

So

⋃
~d∈D

E~d is G-bound, and hene small. �

De�nition 2.23. For a set C, a funtion from P(C) to P(C) is a losure operator
i� for any A,B ⊆ C

(1) A ⊆l(A),
(2) A ⊆ B implies l(A) ⊆l(B),
(3) l(l(A))=l(A).

Furthermore, we say that a losure operator is �nitary when (2) is strengthened to

(2

′
) b ∈l(A) i� b ∈l(A0) for some �nite A0 ⊆ A.

If the losure also satis�es the Steinitz exhange property, then we say that the

losure operator gives rise to a pregeometry.

It is lear that the small losure satis�es (1), is �nitary, and, by Corollary 2.18,

satis�es (3). Thus we have proven:

Proposition 2.24. The small losure, scl is a �nitary losure operator on subsets

of R.

3. Super-rosiness of (R,G)

In this setion we prove Theorem 1.3. To do this, we will need to use the

following propositions from [4℄. Throughout this setion, we assume that (R,G) is
κ-saturated, for κ > 2|LG|

Proposition 3.1. If D has þ-rank α and f : D ։ E, then E has þ-rank less than

or equal to α. Furthermore, if the �bers of f are �nite, we have equality.

Proposition 3.2. If D has þ-rank α and E has þ-rank less than α, then þ-rank(D\
E) is α.

Proposition 3.3. If D has þ-rank α then Dn
has þ-rank at least αn, and equality

holds if α = 1.

Now we begin to analyze þ-dividing in (R,G). In what follows, L
eq

G refers to

the language of (R,G)
eq

.
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Lemma 3.4. Let ϕ(x,~b0) be a formula in L
eq

G with x a variable in the real sort. If

ϕ(R,~b0) is an in�nite set de�nable in L , then ϕ(x,~b0) does not þ-divide over the

empty set.

Proof. It may be worth pointing out that merely beause the set ϕ(R,~b0) is de�n-

able in L , we may not assume that ϕ is an L -formula. For instane,

~b0 may ome

from a sort that does not even exist in (R|L )
eq

.

Assume, for a ontradition, that ϕ(x,~b0) does þ-divide over the empty set.

That is, tp(~b0) is non-algebrai, and there is some θ(~y,~c) and some k ∈ N suh

that whenever

~b1, . . . ,~bk are distint elements of θ(R
eq

~y ,~c), we have that ϕ(x,
~b1) ∧

· · · ∧ ϕ(x,~bk) is inonsistent. Sine ϕ de�nes an in�nite L -de�nable set, by the

o-minimality of R|L , it de�nes a �nite olletion of points and open intervals.

First note that we may assume that for eah

~b |= θ(~y,~c), it is the ase that ϕ(x,~b)
de�nes a single interval, modifying ϕ and θ if neessary. (It is possible that for some

~b |= θ(~y,~c), ϕ(x,~b) de�nes a �nite olletion of points. First we modify θ to rule

out this possibility. Then we replae ϕ(x,~b) with a formula de�ning the least of the

intervals in the �nite olletion of points and intervals omposing ϕ(R,~b).)
Now we wish to redue to the ase where k = 2. We may assume that ϕ(x, ~y)

does not (k − 1)-þ-divide. Replae ϕ(x, ~y) with

ϕ̃(x, ~y1, . . . , ~yk−1) :=
∧

i<k

ϕ(x, ~yi)

and replae θ with

θ̃(~y1, . . . , ~yk−1) := θ(y1) ∧ · · · ∧ θ(yk−1) ∧
∧

i<j<k

~yi < ~yk.

Now ϕ̃ learly 2-þ-divides.
Now we would like to �nd a ontradition by onsidering the union of the sets

de�ned by ϕ(x,~b) for ~b |= θ, interseting with G, and noting that it violates (3) of

our assumptions on R from Theorem 1.3. First note that sine G is a dense subset

of (a,∞), we an assume that ϕ(R, b) is ontained in the losure of G for eah b |= θ
(possibly after re�eting the whole family over a and modifying θ. However, there is

still no immediate ontradition sine

⋃
~b|=θ ϕ(R,

~b)∩G might still be a �nite union

of intervals in G. We an modify ϕ(x,~b) one again to de�ne the interval with

half the length but the same enter as ϕ(x,~b). Now, the union of these interset G
annot be written as a �nite union of intervals interset a dense subset of G.

�

Now we have all the tools in plae to begin our proof of Theorem 1.3.

Theorem 1.3. R = (R,G) is super-rosy of þ-rank less than or equal to ω and

þ-rank of G is 1, Moreover, if R inludes a �eld struture, þ-rank of R equals ω.

Proof. First we wish to show that the þ-rank of G is 1. For a ontradition, suppose

that some formula ϕ(x,~b) whih de�nes an in�nite subset of G þ-divides over the

empty set. Say that k, θ(~y,~c) are suh that

∧
i≤k ϕ(x,

~bi) is inonsistent for any k

distint elements

~b1, . . . ,~bk satisfying θ(~y,~c).
12



Then, by (3) of the hypotheses of Theorem 1.3, ϕ(R,~b) is a �nite union of sets,

eah of whih is either a point or an interval interset an ∅-de�nable dense subset

of G. Without loss of generality, we may assume that for eah

~b′ |= θ(~y,~c), it is

the ase that ϕ(x,~b′) de�nes a single interval, ψ1(R,~b
′), interset an ∅-de�nable

dense subset of G. Whih ∅-de�nable set may depend on the type of

~b′, but one

suh set, ψ2(R), must our for in�nitely many

~b′. Modifying θ if neessary, we

may assume that for all

~b′ |= θ(~y,~c), we have that ϕ(x,~b′) de�nes the same set as

ψ1(x,~b
′) ∧ ψ2(x).

Thus we have that {ψ1(x,~b
′) ∧ ψ2(x) : ~b′ |= θ(~y,~c)} is k-inonsistent. But by

Lemma 3.4, ψ1(x,~b
′) does not þ-divide, and so we may �nd an in�nite B = {bi :

bi |= tp(~b/~c), i < α} suh that

⋂
~bi∈B ψ1(R,~bi) is nonempty and, hene, ontains an

open interval (d1, d2). But sine ψ2(x) is a dense subset of G,
⋂

~bi∈B

ϕ(R,~bi) ⊇ (d1, d2) ∩ ψ2(R) 6= ∅,

whih is a ontradition.

Seond, we wish to show that the þ-rank of x = x is no larger than ω. Suppose

that ϕ(x,~b) k-þ-divides over the empty set, where, again,

~b may ome from any

sort in R
eq

. We observe that it su�es to show that D~b := ϕ(R,~b) must be a small

set, sine any small set is G-bound, and thus we may apply Proposition 3.1 and

Proposition 3.3 to onlude that any G-bound set has �nite þ-rank. Then we will

have shown that any formula, ϕ(x,~b), whih þ-divides has �nite þ-rank, and, thus,

þ-rank

(
x = x

)
≤ ω.

Now assume for a ontradition that ϕ(x,~b) is not a small set. By 2.16 there is

some open interval I~b suh that D~b is osmall in I~b, that is, D~b ∩ I~b = I~b \ S~b where

S~b is a small set. Suppose that θ(~y,~c) is suh that for any

~b1, . . . ,~bk, eah realizing

θ(~y,~c), one has

D~b1
∩ · · · ∩ D~bk

= ∅.

Thus we have

∅ =
⋂

1≤i≤k

(D~bi
∩ I~bi

) =
⋂

1≤i≤k

I~bi
\

⋃

1≤i≤k

S~bi

Then it is not hard to see that

J := I~b1
∩ · · · ∩ I~bk

= ∅.

For if this were not the ase, J would be an open interval ontained in the small

set S~b1 ∪ · · · ∪ S~bk
, whih is impossible, by Corollary 2.19.

Thus, if ψ(x,~b) de�nes I~b, we see that ψ(x,~b) also þ-divides. But sine inter-

vals are L -de�nable, this ontradits the previous lemma. Thus we onlude that

þ-rank

(
x = x

)
is no greater than ω.

It remains to show that if R has a �eld struture, then þ-rank

(
x = x

)
is preisely

ω. Note that as G is small, R is an in�nite dimensional dcl(G)-vetor spae. Choose
(ci)i∈N independent vetors. Considering

c1G+ · · ·+ cn−1G+ cng,

and noting that one gets 2-inonsisteny as one varies g though G, it is lear that

Vn
~c := c1G+ · · ·+ cn−1G+ cnG
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has þ-rank n. As eah Vn
~c is a subset of R, þ-rank

(
R
)
≥ ω. �

Note that we have not only shown that R is super-rosy, but the following:

Corollary 3.5. Any formula ϕ(x,~b) that þ-divides de�nes a small subset of R.

This will allow us to show that, in ertain ases, small losure gives rise to a

pregeometry in Setion 7.

Finally, we should point out the following two orollaries:

Corollary 3.6. Dense pairs of o-minimal strutures (with at least a group stru-

ture) are superrosy. If the o-minimal struture is an expansion of a real losed �eld,

the þ-rank of the pair is ω.

Proof. See [2℄ to see a proof that dense pairs satisfy the hypotheses of Theorem

1.3. �

For the next orollary, we need a de�ntion and a fat from [7℄:

De�nition 3.7. An expansion of (R, <) is said to have o-minimal open ore if the

redut generated by the de�nable open sets is o-minimal.

Fat 3.8. An expansion of (R,+, ·) has o-minimal open ore if and only if eah

de�nable open subset of R has �nitely many onneted omponents.

Corollary 3.9. An expansion of (R,+, ·) whih satis�es the hypotheses of Theorem

1.3 has o-minimal open ore.

Proof. For a ontradition, let D be de�nable, open, and with in�nitely many on-

neted omponents. We may assume that D ⊂ (a,∞). We note that that given

d ∈ D, the onneted omponent of D ontaining d is de�nable, say by ϕ(x, d).
Being in the same onneted omponent is a de�nable equivalene relation, all it

E. Thus the onneted omponent of d may just as easily be de�ned by ϕ̃(x, d/E).
As d/E varies through the sort D/E, ϕ̃(x, d/E) þ-divides. But ϕ̃(x, d/E) is an

interval, and hene L -de�nable. This ontradits Lemma 3.4. �

4. Imaginaries

Pillay, building on ideas of Lasar, showed that a strongly minimal theory where

the algebrai losure of the empty set is in�nite eliminates imaginaries down to

�nite sets (see e.g. [6℄). What follows is the same argument, with small replaing

�nite, and it shows that R eliminates imaginaries down to small sets.

In this setion, we assume that (R,G) satis�es all the hypotheses of Theorem

1.4. That is, we add to the assumptions of the last setion, the assumption that

given any set A, and I any interval de�ned over A, that scl(A)∩ I is not ontained
in any small set.

Proposition 4.1. Let ϕ(~x, ~y) de�ne an equivalene relation, E, and let e be an

element of the sort R~x/E. Then there is an element,

~d, of R~x suh that e = ~d/E

and

~d ∈ scl(e).

Proof. Let π : Rn → Rn/E be the quotient map, and onsider D1 de�ned by

∃x2, . . . , xnπ(x1, x2, . . . , xn) = e.

In the ase that D1 is small, any element of D1 is in scl(e); let d1 be any suh

element. Otherwise, there is some interval suh that D1 is osmall in that interval.
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By our assumption on the small losure, it is not possible that scl(e) is ontained
in Dc

1. Let d1 be some element of scl(e) ∩ D1.

Proeed indutively and de�ne Di as

∃xi+1, . . . , xnπ(d1, . . . , di−1, xi, xi+1, . . . , xn) = e

and onsider the ases of Di small, or not, as above, to get

~d := (d1, . . . , dn).
Then di ∈ scl(~e, d1, . . . , di−1). By hoie of d1, . . . , di−1, together with the fat that

scl : P(R) → P(R) is a losure operator, this implies that di ∈ scl(e).
�

Now we may prove our elimination of imaginaries result:

Theorem 1.4. Enlarge R to R̃ by adding su�iently many sorts of R
eq

so that R̃

has a ode for every basi small subset of Rk
. Then R̃ eliminates imaginaries.

Proof. Take e ∈ R
eq

. We want to �nd c ∈ R̃ suh that c is interde�nable with e.

Take

~d suh that π(~d) = e and ~d ∈ scl(e). Thus ~d is in a basi small set, D, de�ned

over e; let c be the ode for D∩π−1(e). Clearly, c is de�ned over e. But e is de�ned
over any element of D ∩ π−1(e), and thus over c as well.

�

5. Groups with the Mann Property

We start by de�ning the Mann property for multipliative subgroups of �elds.

Let K be a �eld, and G a subgroup of K×
. For a1, . . . , an ∈ K, a solution

(g1, . . . , gn) of a1x1+· · ·+anxn = 1 in G is said to be nondegenerate if

∑
i∈I aigi 6= 0

for every non-empty subset I of {1, . . . , n}. We say G has the Mann property if

for every a1, . . . , an from K, the equation a1x1 + · · ·+ anxn = 1 has �nitely many

nondegenerate solutions in G.

Prior to this setion, we have assumed that (R,G) was as in Theorem 1.3. In

this setion we instead prove that (R,G) as in Theorem 1.1 satisfy the hypotheses

of Theorem 1.3. That is, we assume that R is a real losed �eld and G is a dense

subgroup of R>0
with the Mann property and suh that for eah p, the pth powers

in G have �nite index in G.
As noted in the introdution, most of the results about groups with the Mann

property that we need are found in [3℄. For instane, we have the following:

Fat 5.1. By of Lemma 6.1 of [3℄, if (R,G) satis�es the onditions of Theorem

1.1, then G is small.

Fat 5.2. By Theorem 7.5 of [3℄, if (R,G) satis�es the onditions of Theorem 1.1,

then any de�nable subset of R is a boolean ombination of basi sets.

However, we will need to strengthen the quanti�er elimination results obtained

there.

In the rest of this setion q is of the form pm, where p is a prime number and

m ∈ N.

For eah q and ~k = (k1, . . . , kn) ∈ Zn
let Dq,~k(~x) be the formula

G(x1) ∧ · · · ∧ G(xn) ∧ ∃y(G(y) ∧ xk1

1 · · ·xkn

n = yq).

Note that Dq,(0,...,0)(R~x) is all of G
n
, and for any g ∈ G, there is ~h ∈ Gn

suh that

Dq,1~k(g,R~x) equals ~hDq,~k(R~x).

15



We will write G[n]
to denote the elements of G that have nth roots in G.

Proposition 5.3. Let D ⊆ Gn
be de�nable in (R,G), then D is a boolean ombi-

nation of sets of the form F ∩ ~gDq,~k(R~x), where F is a semialgebrai set, ~g ∈ Gn
,

q is as above, and ~k ∈ Zn
.

Before proving this proposition, we reall some results from [3℄ that are used in

the proof of it.

Let (R1, G1) and (R2, G2) be two |R|+-saturated elementary extensions of (R,G).
Then in the proof of Theorem 7.1 of [3℄, the authors onstrut a bak and forth

system I, between (R1, G1) and (R2, G2), onsisting of isomorphisms ι : (R′
1, G

′
1) →

(R′
2, G

′
2) where R

′
i is a real losed ordered sub�eld of Ri of ardinality < |R|, G′

i ⊆
R′>0

i is a pure subgroup of Gi ontaining G, and R
′
i and Q(Gi) are algebraially

free over Q(G′
i) for i = 1, 2.

We also need the following lemma from [3℄.

Lemma 5.4. Let R be a real losed �eld with a sub�eld E and let H ⊆ R>0
be a

subgroup satisfying the Mann property. Suppose that H ′
is a subgroup of H suh

that for all a1, . . . , an ∈ E×
the equation a1x1 + · · · + anxn = 1 has the same

nondegenerate solutions in H ′
as in H. Then for any h ∈ H, if h is algebrai over

E(H ′) of degree d, then hd ∈ H ′
.

Now we prove Proposition 5.3.

Proof. By standard model theoreti arguments (see for instane 8.4.1 of [5℄), it is

enough to prove the following:

Claim. Let (R1, G1) and (R2, G2) be two |R|+-saturated elementary extensions of

(R,G). Take ~g1 ∈ Gn
1 and ~g2 ∈ Gn

2 suh that for any formula ϕ(~x) in the language

of ordered rings with parameters in R, for any g ∈ G, and for any q, ~k as above,

we have

(R1, G1) |= ϕ(~g1) ∧Dq,1~k(g,~g1) i� (R2, G2) |= ϕ(~g2) ∧Dq,1~k(g,~g2).

Then (R1, G1, ~g1) ≡R (R2, G2, ~g2).

Proof of the laim. By the remarks made before the proof, there is a bak and

forth system I between (R1, G1) and (R2, G2). It su�es to prove that there is an

element ι of I taking ~g1 to ~g2.
Sine ~g1 and ~g2 satisfy the same ordered �eld type over R, there is a ordered

�eld isomorphism ι : R′
1 → R′

2, mapping ~g1 to ~g2 equal to the identity on R, where
R′

i is the real losure of R(~gi) for i = 1, 2.

Consider G′
i := R′

i ∩ Gi. We wish to show that G′
i = G〈~gi〉 := {(g~g

~k
i )

1/m : g ∈

G,~k ∈ Zn,m ∈ N, g~g
~k
i ∈ G

[m]
i }. It is lear that G′

i ⊇ G〈~gi〉.
We use Lemma 5.4 to show G′

i ⊆ G〈~gi〉. To do this we need to hek that for all

a1, . . . an ∈ R, if a1x1 + · · · + akxn = 1 has a nondegenerate solution in Gi, then

this solution lies in G〈~gi〉. But sine (R,G) � (Ri, Gi), suh a solution lies even in

G. Now applying Lemma 5.4, we see that if g ∈ Gi is algebrai of degree d over

R(G〈~gi〉), then gd is in G〈~gi〉 and thus g itself is in G〈~gi〉.

Now we wish to show that ι(G′
1) = G′

2. An element of G′
1 is of the form (g~g

~k
1 )

1/m

for some g ∈ G,~k ∈ Zn,m ∈ N. Note ι((g~g
~k
1 )

1/m) = (g~g
~k
2 )

1/m
, and by our
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assumption on ~gi, (g~g
~k
1 ) is in G

[m]
1 if and only if (g~g

~k
2 ) is in G

[m]
2 . Thus ι is an

isomorphism between (R′
1, G

′
1) and (R′

2, G
′
2).

It remains to show that R′
i and Q(Gi) are algebraially free over Q(G′

i) and G
′
i

is a pure subgroup of Gi. The �rst follows from the assumption that (Ri, Gi) is an
elementary extension of (R,G), and G′

i is a pure subgroup of Gi, sine it equals

G〈~gi〉. �

Remark 5.5. Note that the proof of Proposition 5.3 does not require that the

subgroup of pth powers has �nite index. With this assumption, we see that in

addition, the subgroup of qth powers is of �nite index in G and therefore Dq,~k(R~x)

is of �nite index in Gn
. So Gn \Dq,~k(R~x) is a �nite union of osets of Dq,~k(R~x).

We also have the following lemma.

Lemma 5.6. For any q, and ~k ∈ Zn
, Dq,~k(R~x) is dense in Gn

.

Proof. We show that for any q, and ~k ∈ Zn
, Dq,~k(R~x) ⊇ (G[q])n, whih is enough

to prove the lemma, as (G[q])n is dense in Gn
. So let (gq1, . . . , g

q
n) ∈ (G[q])n. Then

(gq1)
k1 · · · (gqn)

kn = (gk1

1 )q · · · (gkn

n )q = (gk1

1 · · · gkn

n )q ∈ G[q].

Thus (gq1, . . . , g
q
n) ∈ Dq,~k(R~x). �

Corollary 5.7. Eah Dq,~k(R~x) is a �nite union of osets of (G[q])n. Moreover,

for any D ⊂ Gn
there is d ∈ N suh that D is a �nite union of sets of the form

F ∩ ~g(G[d])n where F is semialgebrai.

2

Proof. By the proof of Lemma 5.6, we have that (G[q])n is a subgroup of Dq,~k(R~x).

Sine (G[q])n is �nite index in Gn
, it is also �nite index in Dq,~k(R~x).

Next note that if d is the least ommon multiple of d1, d2, thenG
[d1]∩G[d2] = G[d]

.

Thus, given any �nite number of osets of (G[di])n for various di, one may replae

them by a �nite number of osets of (G[d])n, where d is the least ommon multiple

of the di. Using this observation, the reader may easily hek that for eah D ⊂ Gn

there is d ∈ N suh that D is a �nite union of sets of the form F ∩ ~g(G[d])n where

F is semialgebrai. �

Now we are in a position to prove the �rst of our main results.

Theorem 1.1. R = (R,G) is super-rosy of þ-rank equal to ω and þ-rank of G is

1.

Proof. Sine super-rosiness and þ-rank are properties of the theory, we may assume

that (R,G) is su�iently saturated. Conditions (1) and (2) of Theorem 1.3 are

lear; we will show (3) for (R,G) in a language expanded by naming eah element

of some model. Consider D ⊆ Gn
. First, we wish to show that D = E ∩ S, where E

is semialgebrai and S is a dense subset of Gn
. For the purposes of this proof, we

refer to suh sets as nie.

We have established, in the previous orollary, that D =
⋃m

i=1 Ei∩Si, where eah

Ei is semialgebrai, and eah Si is of the form ~g(G[d])n, and, in partiular, eah Si
is dense in Gn

. Thus D is a �nite union of nie sets. We wish to show that a �nite

union of nie sets is nie. Consider (E1 ∩ S1) ∪ (E2 ∩ S2). Let Ẽ1 := E1 \ E2 and

2

The authors thank Lou van den Dries for pointing out this Corollary.
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Ẽ2 := E2 \ E1. Let S̃1 := S1 \ S2 and S̃2 := S2 \ S1. Let E := (E1 ∪ E2) and let

S = (S1 ∪ S2) \ ((Ẽ2 ∩ S̃1) ∪ (Ẽ1 ∩ S̃2)). Note that

(E1 ∩ S1) ∪ (E2 ∩ S2) = E ∩ S.

Thus we want to show that S is dense in Gn
.

Suppose that S is not dense in Gn
. Then there is an semialgebrai open U ⊆

(R>0)n suh that S∩U = ∅. Thus S1∩U ⊆ Ẽ2∩ S̃1 and S2∩U ⊆ Ẽ1∩ S̃2. Sine S2 is

dense, the losure of S2∩U equals the losure of U, and is ontained in the losure of

Ẽ1. Thus, Ẽ1 must ontain all of U exept for a semialgebrai set, D1, of dimension

less than n. Likewise there is D2 suh that U \ D2 ⊆ Ẽ2. Thus U \ (D1 ∪ D2) is

ontained in Ẽ1 ∩ Ẽ2 = ∅, a ontradition.

Finally we note that by Corollary 5.7, if D ⊆ Gn
, then D =

⋃
i<k(Ei ∩ Si)

with eah Ei a semialgebrai set and eah Si a oset of (G[d])n. Sine (G[d])n is

a subgroup of �nite index, any model has representatives of eah oset, and thus,

after naming the elements any model, eah Si beomes ∅-de�nable, and we may

apply Theorem 1.3 to get that (R,G) in this expanded language is super-rosy of

þ-rank equal to ω and þ-rank of G is 1. Sine þ-rank is invariant under expansions

of the language by onstants, we are done. �

In [7℄, the question is raised whether (R, 2Z3Z) has o-minimal open ore. We are

now in a position to give an a�rmative answer to this question.

Corollary 5.8. If (R, G) is an expansion of the real �eld by a prediate for a dense

multipliative subgroup of R>0
with the Mann property, then (R, G) has o-minimal

open ore.

Proof. By Corollary 3.9. �

To prove the seond main result, that adding odes for the small sets de�nable

in R is su�ient to eliminate imaginaries, we must verify our assumptions at the

beginning of Setion 4: that given any set of parameters A, and any interval I
de�ned over A, the small losure of A interset I is not ontained in any small set.

To do this, we must �rst perform some þ-rank alulations within R.

De�nition 5.9. For n > 0 we de�ne G+n
indutively as

G+1 := G ∪ {0},

and G+(n+1) := (G ∪ {0}) +G+n.

Proposition 5.10. The þ-rank of G+n
is n.

Proof. Consider the map f : Gn → G+n
given by f(~g) = g1 + · · · + gn. We have

þ-rank of G+n
is less than or equal to n, sine f is surjetive.

For the onverse, de�ne Gn
I := {~g ∈ Gn :

∑
i∈I gi = 0} for any nonempty subset

I of {1, . . . , n}. Note that Gn
I is the image of Gn−1

under a de�nable map, thus is

of þ-rank at most n− 1. Now de�ne

Gn
nd

:= Gn \
⋃

∅6=I⊆{1,...,n}

Gn
I .

Note that þ-rank of Gn
nd

is n, and by the Mann property, the restrition of f to

Gn
nd

has �nite �bers. Therefore, by 3.1, þ-rank of G+n
is n. �

18



Proposition 5.11. Let A be any set, and I any interval de�ned over A. Then

scl(A) ∩ I is not ontained in any small set.

Proof. Note that scl(A) ontains scl(∅) whih in turn ontains G+n
. First we show

that ⋃

n>0

G+n

is not ontained in any small set. Assume it is ontained in a small set S. Sine

S is G-bound, there is a map f : Rk → R suh that S ⊆ f(Gk). Therefore by

Propositions 3.1 and 3.3, we have þ-rank of S is at most k, and thus, for eah n,
G+n

has þ-rank at most k ontraditing Proposition 5.10.

Let I = (b, c). Now let f : R → (b, c) be a de�nable bijetion. Note that

f(
⋃

n>0G
+n) is ontained in scl(A) ∩ I. If f(

⋃
n>0G

+n) were ontained in some

small set, say S, then f−1(S) would be a small set ontaining

⋃
n>0G

+n
, a ontra-

dition. �

Now we have proven the seond of main results:

Theorem 1.2 If one enlarges (R,G) by adding su�iently many sorts of (R,G)
eq

so that the resulting struture has a ode for every basi small subset of Rk
, then

this struture eliminates imaginaries.

6. The struture R>0/G

In this setion we assume that R has a �eld struture.

Proposition 6.1. Let C ⊂ R and let a, b ∈ R be suh that a, b 6∈ scl(C). Then

for every formula ϕ(x,~c) in tp(a/C) there is b′ ∈ R suh that b′/G = b/G and

b′ ∈ ϕ(R,~c).

Proof. We may assume that C = dcl(C). Let ϕ(x,~c) ∈ tp(a/C). By Lemma 2.16

there is a partition {c0, . . . , cn} of R, where ci ∈ C for i ≤ n suh that ϕ(x,~c) is
small or osmall when restrited to (ci, ci+1). Say a ∈ (ci, ci+1). Sine a 6∈ scl(C),
ϕ(R,~c) is osmall in (ci, ci+1). Sine b 6= 0, there is t ∈ R suh that tb = a.
Furthermore, sine multipliation by b is a ontinuous funtion, and sine G is

dense in R, we an �nd g ∈ G suh that b′ = gb ∈ (ci, ci+1). We may hoose g
þ-independent from b over C. Sine b 6∈ scl(C ∪ {g}) and multipliation by g is a

de�nable bijetion of R, we have that b′ 6∈ scl(C ∪{g}) and thus ϕ(x,~c) ∈ tp(b′/C).
�

Corollary 6.2. Let a, b ∈ R be suh that a, b 6∈ scl(A). Let aG = a/G, bG = b/G.
Then for any set A suh that aG and bG are þ-independent from A, tp(aG/A) =
tp(bG/A).

Proof. We may assume that a and b are independent from A. By the previous

proposition for every formula ϕ(x,~c) in tp(a/A) we an �nd b′ ∈ R suh that

b′/G = bG and b′ ∈ ϕ(R,~c). This implies that tp(aG/A) = tp(bG/A). �

Given any subset C ⊂ R, there is a unique type in R>0/G over C that ontains

only large sets. Thus the group R>0/G is de�nably onneted (in the sense of

having no proper de�nable subgroups of �nite index) and all de�nable subsets of

R>0/G are small or osmall.

Assume now that R is unountable and G is ountable. Then the de�nable small

sets are ountable. This raises the following question:
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Question 6.3. Is R>0/G quasi-minimal?

In [11℄, Zilber de�nes a quasi-minimal exellent lass, as a lass of strutures

losed under isomorphism, where eah de�nable set is ountable or o-ountable,

and with a losure operator satisfying three assumptions. When, in addition, the

losure operator satis�es the exhange property, he obtains that the lass is ategor-

ial in every unountable ardinal. We have that eah de�nable set is ountable or

o-ountable, and small losure satis�es exhange and an easily be seen to satisfy

the �rst of Zilber's three assumptions. However, we have been unable to verify that

the other two assumptions hold.

Even without the assumption that G is ountable, we may ask the following, less

ambitious, question:

Question 6.4. Is R>0/G superstable?

There is no obvious order de�nable within R>0/G, and if R>0/G does not have

the order property, it must be superstable, as þ-forking agrees with forking in stable

theories.

7. The U

þ

-rank

Throughout this setion, R denotes a struture satisfying the hypotheses of

Theorem 1.3.

In [1℄ Buehler used in�nite dimensional pairs to study the geometri properties

of a strongly minimal sets. He showed the pair has Morley rank one i� the strongly

minimal set is trivial, Morley rank two i� the strongly minimal set is loally modular

non trivial and ω otherwise. These results were generalized by Vassiliev in [10℄ to the

setting of simple theories using lovely pairs to analyze SU rank one pregeometries.

Dense pairs of o-minimal strutures were studied by van den Dries in [2℄, where

he showed they satisfy the hypothesies of Theorem 1.3. In what follows below, we

show that the same relationship exists between the pregeometry of a o-minimal

struture, and that of the orresponding dense pair (though, of ourse, here the

information yielded by the dense pair is already known).

Peterzil and Starhenko [9℄ showed that loally every o-minimal struture be-

haves as an expansion of a �eld, an ordered vetor spae, or is trivial. In the

analysis that follows below, we will deal with two ases: when R inludes a �eld

struture and when R|L is an ordered abelian group with no additional struture.

Reall that the U

þ

-rank �ounts� the number of times the type an þ-fork and

that 1-types in o-minimal strutures have U

þ

-rank at most one.

Lemma 7.1. Let g ∈ G and let C ⊂ R. Then U

þ(tp(g/C)) ≤ 1 and equality holds

i� g 6∈ dcl(C).

Proof. It follows from Theorem 1.3. �

7.1. Field ase. Now assume that R|L has a de�nable �eld struture. Then, as

G is small, R is an in�nite dimensional dcl(G)-vetor spae and we �x a ountable

family (ci)i∈ω of linearly independent vetors.

De�nition 7.2. Let g1, . . . , gn ∈ G and let A ⊂ R. We say that {g1, . . . , gn} is an

A-independent set if Uþ(tp(g1, . . . , gn/A)) = n.
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Lemma 7.3. Let g1, . . . , gn ∈ G and let C = {c1, . . . , cn}. Then

U

þ(tp(c1g1 + · · ·+ cngn/C)) ≤ n

and equality holds i� {g1, . . . , gn} is a C-independent set.

Proof. Clearly c1g1 + · · · + cngn ∈ dcl({g1, . . . , gn, c1, . . . , cn}), so by additivity of

the rank and the previous lemma,

U

þ(tp(c1g1 + · · ·+ cngn/C)) ≤ U

þ(tp(g1, . . . , gn/C)) ≤ n.

Furthermore sine C = {c1, . . . , cn} is a set of linearly independent vetors, there

is only one solution in Gn
for the equation c1x1 + · · · + cnxn = c1g1 + · · ·+ cngn,

so g1, . . . , gn ∈ dcl(g1c1 + · · ·+ gncn, C). If {g1, . . . , gn} is a C-independent set, we

get U

þ(tp(c1g1 + · · ·+ cngn/C)) = n. �

Proposition 7.4. Let a 6∈ scl(∅), then U

þ(tp(a)) = ω.

Proof. By Theorem 1.3 (and Fat 1.12), U

þ(tp(a)) ≤ ω.

Now we will show that tp(a/∅) has forking extensions of U

þ

-rank n for every n.
Let C = {c1, . . . , cn} and without loss of generality assume that C is þ-independent

from a. Let g1, . . . , gn ∈ G and assume that {g1, . . . , gn} is a C ∪ {a}-independent
set. Let b = a+ c1g1+ · · ·+ cngn. Then a, b 6∈ scl({c1, . . . , cn}). Thus U

þ(tp(c1g1+
· · ·+ cngn/C ∪ {b})) = n and sine a and c1g1 + · · ·+ cngn are interde�nable over

b, Uþ(tp(a/C ∪ {b})) = n. Thus Uþ(tp(a)) = ω. �

Corollary 7.5. If R|L has a de�nable �eld struture and a ∈ scl(B)\ scl(C), then

a 6 |⌣
þ

C
B.

Proof. We may assume C = ∅, as our hypotheses remain true after adding parame-

ters to the language. Sine a ∈ scl(B), some formula in tp(a/B) de�nes a G-bound

set, and Lemma 7.3 implies that U

þ(a/B) is �nite. On the other hand, U

þ(a) = ω
by Lemma 7.4. �

7.2. Pairs of groups with no additional struture. Assume now that L =
{+, 0, <}. Thus R|L is a divisible ordered abelian group. Furthermore suppose

that G a subgroup of R.

De�nition 7.6. Let n > 0 and let G/n = {r ∈ R : nr ∈ G}.

Lemma 7.7. The group G/n has þ-rank one.

Proof. Reall that G has þ-rank one. As R is divisible and torsion-free, multiplia-

tion by n is a de�nable bijetion between G/n and G, and thus the þ-rank of G/n
is one.

�

Proposition 7.8. a ∈ scl(B) if and only if there is b ∈ dcl(B) and n ∈ N>0
suh

that a ∈ b+G/n.

Proof. Right to left is lear.

Now assume that a ∈ scl(B). By Proposition 2.16, a is ontained in S, a basi

small set de�ned over B. Let ∃~y(G(~y) ∧ ϕ(x, ~y)) be a formula de�ning S. For eah

~g, ϕ(R,~g) is a �nite union of points and intervals. However, if for any ~g in Gk
,
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ϕ(R,~g) ontains a non-empty open interval, then S is not small. Thus, we may

redue to the ase where ϕ(x, ~y) is x = f(~y), where

f(~y) = b +

k∑

i=1

mi

ni
yi

for some b ∈ dcl(B), mi ∈ Z and ni ∈ N. Let n be the least ommon multiple of

the ni. Thus f(G
k) is ontained in b+G/n, and a ∈ f(Gk). �

Proposition 7.9. Let a ∈ R be suh that a 6∈ scl(∅). Then U

þ(tp(a)) = 2.

Proof. By Proposition 7.8, every small subset of R has þ-rank at most one, and by

Corollary 3.5, a þ-forking extension of tp(a) must inlude a formula de�ning a small

set. Thus U

þ(tp(a)) ≤ 2. It is easy to see that for g ∈ G, with tp(g) non-algebrai,

and g |⌣
þ a, we get U

þ(tp(a)) = U

þ(tp(a/g)) = U

þ(tp(a + g/g)). Now we laim

that a+ g |⌣
þ

g. If not, by Corollary 3.5 we would have a+ g ∈ scl(g) = scl(∅), and
thus a+ g ∈ c+G/n for some c ∈ dcl(∅), by Proposition 7.8. But then a+ g, and

hene a, would be in scl(∅), a ontradition. Thus Uþ(a) = U

þ(a+g/g) = U

þ(a+g),

and it su�es to show that U

þ(a+ g) = 2.
Consider the hain tp(a+ g/∅) ⊂ tp(a+ g/a) ⊂ tp(a+ g/a, g). If we show that

this is a þ-forking hain we will have shown that U

þ(a+ g) ≥ 2, and thus equal to

2. First note that tp(a + g/a) ontains a formula saying x ∈ G + a. This formula

is true of a+ g and þ-divides over the empty set. Thus, tp(a+ g/a) is a þ-forking

extension of tp(a+ g).
Seond, note that tp(a + g/a, g) is algebrai, and hene to show that it is a

þ-forking extension of tp(a + g/a), it su�es to show that the latter type is not

algebrai. But we hose g |⌣
þ a. Thus tp(g/a) is not algebrai, and neither is

tp(a+ g/a).
�

Now we get a orollary analogous to Corollary 7.5:

Corollary 7.10. If R|L is an ordered group with no additional struture, and

a ∈ scl(B) \ scl(C), then a 6 |⌣
þ

C
B.

Proof. By the previous proposition (after adding C to the language), we see that

U

þ(a/C) = 2. On the other hand, by Proposition 7.8, we see that a belongs to a

set of þ-rank one de�ned over B, namely a oset of G/n for some n. Thus Uþ(a/B)
is either zero or one. �

Remark 7.11. Note that we have shown that þ-forking in one variable is aused

by falling into some oset of G/n for some n. This may be seen as an analogue of

the fat from stable theories that the beautiful pair assoiated to a one-based theory

is again one-based.

7.3. Small losure is a pregeometry.

Corollary 7.12. If R|L either is an ordered group with no additional struture

or has a de�nable �eld struture, then the losure operator scl : P(R) → P(R)
de�nes a pregeometry.
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Proof. Let C ⊂ R and let a, b ∈ R be suh that a ∈ scl(C ∪ {b}) \ scl(C). Then

tp(a/C∪{b}) þ-forks over C by either Corollary 7.5 or 7.10. By symmetry, tp(b/C∪
{a}) also þ-forks over C, so by Corollary 3.5, b ∈ scl(Ca). �
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