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Abstract

We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump,
by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing
unbounded function /4 is called an order function. Informally, a set A is strongly jump-traceable if for each order function #, for
each input e one may effectively enumerate a set 7, of possible values for the jump J A(e), and the number of values enumerated
is at most A (e). A’ is well-approximable if can be effectively approximated with less than & (x) changes at input x, for each order
function i. We prove that there is a strongly jump-traceable set which is not computable, and that if A’ is well-approximable then A
is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability
in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A lowness property of a set A says that A is computational weak when used as an oracle and hence A is close to
being computable. In this article we study and compare some “combinatorial” lowness properties in the direction of
characterizing K-trivial sets.

A setis K-trivial when it is highly compressible in terms of Kolmogorov complexity (see Section 2 for the formal
definition). In [10], Nies proved that a set is K-trivial if and only if A is low for Martin-L6f-random (that is, each
Martin-Lof-random set is already random relative to A).

Terwijn and Zambella [13] defined a set A to be recursively traceable if there is a recursive bound p such that for
every f <r A, there is a recursive r such that for all x, | D, )| < p(x), and (D,(x))xeN is a set of possible values of
f:forall x, we have f(x) € D,(y). They showed that this combinatorial notion characterizes the sets that are low for
Schnorr tests.
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This property was modified in [11] to jump-traceability. A set A is jump-traceable if its jump at argument e, written
JAe) = {e}A (e), has few possible values.

Definition 1. A uniform r.e. family 7 = {Tp, T1, ...} of sets of natural numbers is a trace if there is a recursive
function & such that Vn |T,,| < h(n). We say that & is a bound for T. The set A is jump-traceable if there is a trace T
such that

Ve [J4(e) | = JA(e) € T,).
We say that A is jump-traceable via a function h if, additionally, 7 has bound /.
Another notion studied in [11] is super-lowness, first introduced in [1,9].

Definition 2. A set A is w-r.e. iff there exists a recursive function b such that A(x) = lims_, o g(x, s) for a recursive
{0, 1}-valued g such that g(x, s) changes at most b(x) times, that s, |{s : g(x, s) # g(x, s + 1)}| < b(x). In this case,
we say that A is w-r.e. via the function g and bound b. A is super-low iff A’ is an w-r.e. set.

Recall that a set A is low if A’ <7 (. The above definition of A being super-low is equivalent to A’ <;, . Hence
super-lowness implies lowness.

Both the classes of jump-traceable and of super-low sets are closed downward under Turing reducibility and
contained in the class of generalized low sets {A : A’ < A @ @'}. In [11] it was proven that these two lowness
notions coincide within the r.e. sets but that none of them implies the other within the w-r.e. sets.

In this article, we define the notions of strong jump-traceability and well-approximability of the jump, strengthening
super-lowness. In the strong variant of these notions we consider all order functions as the bound instead of just some
recursive bound. Here, an order function is a recursive, non-decreasing and unbounded function (intuitively, think of
a slowly growing but unbounded recursive function). Our first two results are:

e There is a non-computable strongly jump-traceable set;
o If A’ is well-approximable then A is strongly jump-traceable; the converse also holds, if A is an r.e. set.

Our approach is used to study interesting lowness properties related to plain and prefix-free Kolmogorov complexity.
We investigate the properties of sets A such that Kolmogorov complexity relative to A is only a bit smaller than
the unrelativized one. We prove some characterizations of jump-traceability and strong jump-traceability in terms of
prefix-free (denoted by K) and plain (denoted by C) Kolmogorov complexity, respectively:

e A is jump-traceable if and only if there is a recursive p, growing faster than linearly such that K (y) is bounded by
p(KA(y) + co) + c1, for some constants co and c1;

e A is strongly jump-traceable if and only if C (x) — C4(x) is bounded by 2 (C A(x)), for every order function 4 and
almost all x.

Recall that A is low for K iff K (x) < K4 (x) 4+ O(1) for each x. Nies [10] has shown that this property is equivalent
to being K -trivial. In particular, non-computable low for K sets exist. The corresponding property involving C is only
satisfied by the computable sets (because it implies being C-trivial by [3], which is the same as computable). The
characterization of strongly jump-traceable is via a property that states that C* is very close to C, while not implying
computability.

By [10], K-triviality implies jump-traceability. Recently, Cholak, Downey and Greenberg [4] have shown that for
r.e. sets A, strong jump-traceability implies K-triviality. They also prove that there is a K-trivial r.e. set that is not
strongly jump-traceable.

2. Basic definitions

If A is a set of natural numbers then A(x) = 1 if x € A; otherwise A(x) = 0. We denote by A | n the string of
length n which consists of the bits A(0) ... A(n — 1).

If A is given by an effective approximation and ¥ is a functional, we write ¥ (e)[s] for WSA *(e). From a partial
recursive functional ¥, one can effectively obtain a primitive recursive and strictly increasing function «, called a
reduction function for ¥, such that

VX Ve UX(e) = JX (a(e)).
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For each set A, we want to define K4 (y) as the length of a shortest prefix-free description of y using oracle A. An
oracle machine is a partial recursive functional M : {0, 1}*° x {0, 1}* > {0, 1}*. We write M4 (x) for M(A, x). M is
an oracle prefix-free machine if the domain of M is an antichain under inclusion of strings, for each A. Let (My) zeN
be an effective listing of all oracle prefix-free machines. The universal oracle prefix-free machine U is given by

UA(0410) = M} (o)
and the prefix-free Kolmogorov complexity relative to A is defined as
K4 (y) = min{lo| : U(0) =y},

where |o| denotes the length of . If A = {J, we simply write U (o) and K (y). As usual, U(o)[s] }= y indicates
that U (o) = y and the computation takes at most s steps. Schnorr’s Theorem states that A € {0, 1}°° is Martin-Lof
random iff the initial segments of A have high K -complexity, that is,

deVn K(A [ n) >n—c.

A set A is K-trivial iff the initial segments of A have low K-complexity, that is,
deVn K(A [n) < K(n) +c.

We say that A <k B iff
deVn K(A [n) < K(B |n)+ec.

The Kraft—Chaitin Theorem states that from a recursive sequence of pairs ((n;, 07));cN (known as requests) such that
Y ien 27" <1, we can effectively obtain a prefix-free machine M such that for each i there is a 7; of length n; with
M (t;) = 0i, and M(p) 1 unless p = 1; for some i.

If we drop the condition of the domain of M# being an antichain, we obtain a similar notion, called plain
Kolmogorov complexity denoted by C. Hence, C(y) will denote the length of the shortest description of y using
oracle A, when we do not have the restriction on the domain.

A binary machine is a partial recursive function M : {0, 1} x {0, 1}* — {0, 1}*. Let U be a binary universal
function given by

U0%10, x) = My (o, x),

where (M) is an enumeration of all partial recursive functions of two arguments. We define the plain conditional
Kolmogorov complexity C(y|x) as the length of the shortest description of y using U with string x as the second
argument, that is,

C(ylx) = min{|o| : U(o, x) = y}.

Let str : N — {0, 1}* be the standard enumeration of the strings. The string str(n) is that binary sequence bgb; .. . by,
for which the binary number 1bgb; . .. by, has the value n 4 1. Thus, str(0) = A, str(1) = 0, str(2) = 1, str(3) = 00,
str(4) = 01 and so on.

3. Strong jump-traceability

Recall that an r.e. set A is promptly simple if A is co-infinite and there is a recursive function p and an effective
approximation (Ay)scn of A such that, for each e,

[Wel =00 = 35 3x [x € Weyr1 \ Wes A x € Apgy)l. (1

In this section, we introduce a stronger version of jump-traceability and we prove that there is a promptly simple
(hence non-recursive) strongly jump-traceable set. We also prove that there is no single maximal order function that
suffices as the bounding function for all instances of jump-traceability.

Definition 3. A computable function 2 : N — N is an order function if h is non-decreasing and unbounded.

Notice that any reduction function is an order function.
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Definition 4. A set A is strongly jump-traceable iff for each order function 4, A is jump-traceable via h.

Clearly, strong jump-traceability implies jump-traceability. It is not difficult to see that strong jump-traceability is
closed downward under Turing reducibility.

Proposition 5. {A : A is strongly jump-traceable} is closed downward under Turing reducibility.

Proof. Suppose that A is strongly jump-traceable, B <7 A. We prove that B is jump-traceable via the given
order function h. Let ¥ be the functional such that ¥4 (x) = JB(x) for all x and let « be the reduction function
such that JA(a(x)) = ¥A(x). We know that A is jump-traceable via a trace (7;);eny With bound h, where
h(z) = h(min{y : y € NAa(y + 1) > z}). Observe that, since « is an order function, h also is. Clearly,

JBe) = T4 (a(e)) | = JB(e) € Ty

Now, ﬁ(oz(e)) = h(y) for some y such that «(y) < a(e) ory = 0. Then y < e and ﬁ(oz(e)) = h(y) < h(e). Hence
(Tw(i))ieN is a trace for the jump of B with bound 2. [

Clearly each computable set A is strongly jump-traceable, because we can trace the jump by

T z{{me)} it J4(e) 4
¢ ] otherwise.

In Theorem 7 below we show the existence of a non-computable strongly jump-traceable set. We need the following
result, proven in [8, Theorem 2.3.1]:

Lemma 6. The function m(x) = min{C(y) : y > x} is unbounded, non-decreasing and for every order function f
there is an xo such that m(x) < f(x) for all x > x¢. Also, m(x) = limg_, 5o Mg (x), where mg(x) = min{Cs(y) : x <
y < x + s} is recursive and mgs(x) > mgs11(x), for all x and s.

Observe that here Ax, s.C(x) is the standard recursive approximation from above of C(x) (that is As.Cs(x) — C(x)
when s — 0o and Cs(x) > Csq1(x)).

Theorem 7. There exist a promptly simple strongly jump-traceable set.
Proof. We construct a promptly simple set A in stages satisfying the requirements
P :|Wel =00 = FsTx [x € Wesq1 \ Wes A x € Agir]

These requirements will ensure that A is promptly simple (indeed, take p(s) = s + 1 in Eq. (1)). Each time we
enumerate an element into A in order to satisfy P,, we may destroy J4 (k) and then our trace for the jump of A
will grow. Hence, we must enumerate elements into A in a controlled way, and sometimes we should refrain from
putting elements into A. Since for any order function 4 there has to be a trace for J4 bounded by &, we will work
with the function m defined in Lemma 6, which grows slower than any order function. The rule will be that during
the construction, P, may destroy J Ak) at stage s only if e < m (k). (Observe that the restriction on P, imposed rule
may strengthen as s grows, because we may have m (k) > mgy1(k).) In this way, we will guarantee that the size of
our trace for J4 (e) will be bounded by m (e), which will suffice because m < h from some point on. As we will see,
the exact choice of the trace for J4 with bound & depends on /, and is made in a non-uniform way.

In the following construction we use the convention that W, ¢ C {0, 1, ..., s} for all indices e and stages s.
Construction of A. Let m; be the non-decreasing, unbounded function defined in Lemma 6.
Stage 0: set Ag = ¢ and declare P, unsatisfied for all e.
Stage s + 1: choose the least e < s such that

e P, yet not satisfied;
e There exists x such that x € W, ;41\ W, 5, x > 2¢ and for all k such that mg (k) < e, if JA(k)[s] is defined then x
is greater than the use of J4 (k)[s].

If such e exists, put the least such x into A for each such e. We say that P, receives attention at stage s + 1 and declare
P, satisfied. Otherwise, A;+1 = Ay. Finally, define A = |, A;.
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Verification. Clearly, P, receives attention at most once. So we can use below the fact that every requirement
influences the enumeration of A at most once.

To show that A is strongly jump-traceable, fix a recursive order function 4. We will prove that there exists an r.e.
trace T for J# as in Definition 1. Let / be any order function. By Lemma 6, there exists ko such that for all k > ko,
m(k) < h(k). Define the recursive function

_Jmin{s : mg(k) < h(k)} ifk > ko;
flk)y = {0 otherwise.

For k > ko and s > f(k), ms(k) will be below h(k), so J Ak) may change because P, receives attention, for
e < my(k) < h(k). Since each P, receives attention at most once, J4 (k) can change at most i (k) times after stage

f k). So
(JAW)s]: JAKs1 L As > f)} ifk > ko;

T = { {(JA®K)) if JAGk) | Ak < ko;
0 otherwise.

is as required.
Fix e such that W, is infinite and let us see that P, is met. Let s such that

Vk [m(k) <e = mg(k) =m(k)]

and s’ > s such that no P; receives attention after stage s’ for any i < e. Then, by the construction, no computation
JAk), m(k) < e can be destroyed after stage s’. So there is t > s’ such that for all kK where m; (k) < e, if JA®K)
converges then the computation is stable from stage # on. Choose 7’ > ¢ such that there is x € W,y 41 \ We i, x > 2e
and x is greater than the use of all converging J A (k) for all k where m, (k) < e. Now either P, was already satisfied
or P, receives attention at stage ¢’ + 1. In either case P, is met. [

Next we study the size of the trace bound for jump-traceability. Given an order function £, it is always possible to find
a jump-traceable set A for which 4 is too small to be a bound for any trace for the jump of A.

Theorem 8. For any order function h there is an r.e. set A and an order function h such that A is Jjump-traceable via
h but not via h.

Proof. We will define an auxiliary functional ¥ and we use «, the reduction function for ¥ (that is, ¥X(e) =
JX(a(e)) for all X and e), in advance by the Recursion Theorem. At the same time, we will define an r.e. set A and a
trace T for JA. Finally, we will verify that there is an order function h as stated.

Let T(0), T(1), ... be an enumeration of all the traces with bound 4, so that

T(e) ={T(e)o. T(e)1, ...},

the eth such trace, is as in Definition 1. Requirement P, tries to show that J 4 is not traceable via the trace T (e) with
bound 4, that is,

P, :3x UA(x) ¢ T(€)a)
and requirement N, tries to stabilize the jump when it becomes defined, that is,
Ne:[3%s J4@ls1 1] = T |-

The strategy for a single procedure P, consists of an initial action and a possible later action.
Initial action at stage s + 1:

o Choose a new candidate x, = (e,n), where n is the number of times that P, has been initialized. Define
T4 (x.)[s + 1] = 0 with large use.

Action at stage s + 1:

e Let x, = (e, n) be the current candidate. Put y into Ay, where y is the use of the defined A (x.)[s]. Notice that
in the construction this action will not affect J4 (i)[s] for i < e because of the choice of y;

e Define ¥4 (x.)[s + 1] = ¥4(x,)[s] + 1 with use y/ > y and greater than the use of all defined computations of
JAGW)[s + 1] fori < e.
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We say that P, requires attention at stage s + 1 if TA(x,)[s] € T (e)q(x,)[s] and we say that N, requires attention at
stage s + 1 if J A(e)[s] becomes defined for the first time.

Construction of A. We define T = {TO, Tl, ...} by stages. The sth stage of T, will be denoted by T, [s]. We start with
Ao = ¥ and T;[0] = ¢ for all i. At stage s + 1 we consider the procedures Nj for j < sand P; for j < s. We also
initialize the new Py. We look at the least procedure requiring attention in the order

Py, No, ..., P, N;.

If there is none, do nothing. Otherwise, suppose that P, is the first one. We let P, take action at s+ 1, changing A below
the use of ¥4 (x,)[s] and redefining ¥4 (x,)[s + 1] without affecting N; for i < e. We keep the other computations
of P; with the new definition of A, for j # i and large use. If N, is the least procedure requiring attention, there is y
such that J4(e)[s] {|= y. We put y into T,[s + 1] and initialize Pj fore < j < s. In this case, we say that N, acts.
Verification. Let us prove that P, is met. Take s such that all J4(i) are stable for i < e. Suppose that x, is the
actual candidate of P,. Since P, is not going to be initialized again, x. is the last candidate it picks. Each time
UA(x)[t] € T(e)a(x,t] fort > s, P, acts and changes the definition of UA(x,) to escape from 7' (€)q(x,). Since
IT(€)a(x,)| < h(a(xe)), there is s” > s such that T(€)g(x,)[s'] = T(€)a(x,)- By construction, TA(x s + 1] ¢
T (€)a(x,) and ¥4 (x,)[s’ + 1]is stable.

We say that N, is injured at stage s + 1 if we put y into A, and y is less or equal than the use of J4(e)[s]. We
define cp (k) as a bound for the number of initializations of P,, for r < k; and define ¢y (k) as a bound for the number
of injuries to N,, for r < k. Since Py is initialized just once and makes at most 2({0, 0)) changes in A, cp(0) = 1 and
cn(0) = h({0, 0)). The number of times that Py is initialized is bounded by the number of times that N, acts, for
r <k,so

cptk+1) =cpk) +cn (k).

Each time N, is injured, for » < k then N4 may also be injured; additionally, Ny may be injured each time Py
changes A. The latter occurs at most 2 ((k 4 1, i}) for the ith initialization of Py1. Hence

en(k+ D) =2exn®K)+ Y h(k+1,0)).
i<cp(k+1)

Once N, is not injured anymore, if J Ae) J then~J Ae) € fe. Since the number of changes of J A(k) is at most the
number of injuries t0~Ne, we define the function /(e) = cy(e) which is clearly an order function and it constitutes a
bound for the trace (7;);en. O

It is open whether there is minimal bound for jump-traceability. That is, given an order function #, there is a set A and
an order function & such that A is jump-traceable via & but not via a smaller function i ? If the answer is negative for
some order function %, then strong jump-traceability is equivalent jump-traceability for that single function A.

4. Well-approximability of the jump

We strengthen the notion of super-lowness and study the relationship to strongly jump-traceability.
Definition 9. A set D is well-approximable iff for each order function b, D is w-r.e. via b.

Clearly, if A" is well-approximable, then A is super-low. It is not difficult to see that well-approximability of the jump
is closed downward under Turing reducibility.

Proposition 10. {A : A’ is well approximable)} is closed downward under Turing reducibility.

Proof. Suppose A is such that A’ is well-approximable and let B <7 A. We prove that B’ is well-approximable via the
given order function . Define ¥ and « as in Proposition 5. We know that there is a recursive {0, 1}-valued g such that
A’ (x) = limy_, » g(x, s) and g(x, s) changes at most b(x) times, where b(z) = b(min{y : y e NAa(y + 1) > z}).
Then

lim g(a(x),s) = A'(a(x) = B'(x)

and g(a(x), s) changes at most l;(oc (x)) times. As in Proposition 5, I;(a(x)) <b(x). O
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We next prove that if A is r.e., then A is strongly jump-traceable iff A’ is well-approximable. We will need the
following two lemmas.

Lemma 11. Let f and f be order functions such that f(x) < f(x)for almost all x.

(1) If A is jump-traceable via f then A is jump-traceable via f ; .
(i) If A is well-approximable via f then A is well-approximable via f.

Proof. Assume that §Ix0 Vx[x>x0 = f(x) < f (x)]. For (i), suppose that T is a trace for J 4 with bound f. We
can define the trace T':

~ )Tk if x > xo;
T H{JA(x)} otherwise.

Hence, if x > xq then |Ty| = |Ty| < f(x) < f(x), and if x < xo then 1 = |Tx| < F(x).
For (ii), suppose that A is well-approximable via the {0, 1}-valued g(x, s) which changes at most f(x) times.
Define

. _ g(x, S) if x > X0;
g(x,s) = {A(x) otherwise.

If x > xg then g(x, s) changes at most f(x) < f(x) times, and if x < x then g does not change at all. [
Lemma 12. There exists a recursive y such that for all re. A:

(1) If A is jump-traceable via an order function h then A is super-low via the order function b(x) = 2h(y (x)) + 2;
@ii) If A is super-low via an order function b then A is jump-traceable via the order function h(x) = L%b(y(x))].

Proof. We follow the proof of [11, Theorem 4.1], together with Lemma 11.

(i) =(ii). Suppose that A is jump-traceable via h. By [11] A is super-low via a {0, 1}-valued recursive g such
that g(x, s) changes at most 22 («(x)) + 2 times. Here, « is a reduction function (hence primitive recursive) which
depends on A. The diagonal y of the Ackermann-function satisfies y(x) > «(x) for almost all x [12, Volume 2,
Theorem VIII.8.10]. Since 4 is an order function, 2(h o y) + 2 also is, and 2h(y (x)) + 2 > 2h(«(x)) + 2 for almost
all x. By Lemma 11, A is super-low via b(x) = 2h(y (x)) + 2.

(i1) =(1). Suppose that A is super-low via an order function b and the {0, 1}-valued function g. Again following
[11], there is a trace for J4 via L% (b o y)], for a primitive recursive o which depends on g. As we did in the previous

implication, L%b(y(x))] > L%b((x(x))) for almost all x. Thus A is jump-traceable via h(x) = L%b(y x)]. O
Theorem 13. Let A be an r.e. set. Then the following are equivalent:

(1) A is strongly jump-traceable;
(ii) A’ is well-approximable.

Proof. (i) =(ii). Given an order function b, let us prove that A is super-low via b. By part (i) of Lemma 12, it suffices to
define an order function £ such that 24 (y (x)) +2 < b(x) for almost all x. If b(x) > 4 then define i (y (x)) = LW]
and if b(x) < 4, define h(y(x)) = 1. Since y can be taken strictly monotone, the above definition is correct and we
can complete it to make A an order function.

(i1) =(i). Given an order function /, we will prove that A is jump-traceable via h. By part (ii) of Lemma 12, it
suffices to define an order function b such that L%b(y (x))] < h(x) for almost all x. The argument is similar to the
previous case. [

Later, in Corollary 18, we will improve this result and we will see that, in fact, the implication (ii) = (i) holds for
any A.

We finish this section by proving that the prefixes D [ n of a well-approximable set D have low Kolmogorov
complexity, of order logarithmic in n. Hence D is not Martin-L6f random and furthermore, its effective Hausdorff
dimension is 0. The latter is equivalent to say that there is no ¢ > 0 such that cn is a linear lower bound for the
prefix-free Kolmogorov complexity of D [ n for almost all n. In the following |r| denotes the length of the binary
representation of 7.
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Theorem 14. If D is well-approximable then for almost all n, K(D | n) < 4|n|.

Proof. Suppose that D(n) = limy;_, » g(n, s), where g is recursive and changes at most n times. Given n, there is a
unique s and some m < n such that g(m, s) # g(m,s + 1) but g(g,t) = g(g,t + 1) forallt > s and g < n. That
is, s is the first stage where g(0,s + 1) = D(0),...,g(n — 1,5 + 1) = D(n — 1) and m is the place where the last
change takes place. The stage s can be computed from m and the number k of stages with g(m, t) # g(m,t + 1). So
one can compute D [ n from m, n, k. Since k, m < n, one can, for almost all n, code m, n, k in a prefix-free way in
4|n| many bits. This is done by using a prefix of the form 170 followed by 2q bits representing n, 2¢q bits representing
m and 2q bits representing k as binary numbers; here g is just the smallest number such that 2¢q bits are enough. Since
k,m < n and since 2q < |n| + ¢ for some constant ¢ and since the additional necessary coding needed to transform
the above representation into a program for U is bounded by a constant, we have that there is a constant d such that

Vn K(D | n) <3|n|+ |n|/24+d

and then the relation K (D [ n) < 4|n| holds for almost all . In fact, using binary notation to store ¢ instead of 190,
it would even give

K(D | n) < 3(|n| + log(|n]))

for almost all n. [
5. Traceability and plain Kolmogorov complexity

We give a characterization of strong jump-traceability in terms of (relativized) plain Kolmogorov complexity. First
we show that if A’ is well-approximable then A satisfies the condition involving Kolmogorov complexity and hence
that any set A such that A’ is well-approximable is strongly jump-traceable.

Theorem 15. If A’ is well-approximable then for every order function h and almost all x, C(x) < C Ax)+h(CA(X)).

Proof. The idea of the proof is the following. Let & be any order function. Suppose that ¢, is a minimal A-program
for x. We know that there is a ¢ such that C(x) < |g.| + 2C(x|gx) + c. Since |g| = C?(x), we only need to
show that 2C (x|gy) + ¢ < h(]g.|) for almost all x. Given g, and the value of C(x|q,), we can find a program p, of
length C(x|¢,) which describes x with the help of ¢y, that is U (py, ¢x) = x. It can be shown that there is a recursive
{0, 1}-valued approximation of the bits of p, which changes few times (in the proof, this is done with the help of the
functional ¥). Hence, x can be described by the values of C(x|qy), g and py. We can represent p, with the number
of changes of the mentioned {0, 1}-valued approximation. This will show that C(x|q,) < 2|h(|g.|)| + O(1), which is
sufficient to get the desired upper bound on 2C (x|gy) + c.
Here are the details. Let ¥4 (m, n, q) be a functional which does the following:

(i) Compute x = U4(q). If UA(q) 1 then ¥4 (m,n, q) 1;
(i1) Find the first program p such that |p| = n and 0(p, q) = x. If there is no such p then ¥4(m, n, q) 1;
(iii) In case m ¢ [1,n] then WA(m,n,q) 1. Otherwise, if the mth bit of p is 1 then WA(m,n,q) J, else
y'/A (mv n, CI) T

Let « be a reduction function such that JA(«(m,n,q)) = ¥A(m,n,q). Choose an order function b such that
b(a(n,n,q)) < nh(|q|) for all n, g. We can approximate A’(x) with a {0, 1}-valued recursive function which changes
at most b(x) times.
Let ¢, be a minimal A-program for x, that is, U4(g,) = x and |g,| = CA(x). Let n, = C(x|gy). Then
UA(m, n,, qx) | iff the mth bit of p, is 1, where py is the first program such that | p,| = n, and U(px, qx) = X.
Since A’ is w-r.e. via b,

Px = A/(a(l, Nysqx)) - A/(a(nx» Ny, qx))
changes at most

ny max{b(a(m, ny,qx)) : 1 <m < ny} nyb(a(ng, ny, qx))

<
< n2h(|qx)
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many times. Since U (px,qx) = x and we can describe p, with ny, g, and the number of changes of
Al(a(l,nx, qy)) ... A'(a(ny, ny, qx)), we have
ny=C(x | qx) < 2lnel+ |n3h(lg:])| +O(1)
< 4inx| + |h(lgx D] + O(1). 2
To finish, let us prove that for almost all x, n, < 2|h(|gx|)| + O(1). Since C(x) < |gx| + 2n, 4+ O(1), this upper
bound of n, will imply that

C(x) < lgxl + h(gx)
= CA(x) + h(CA(x))

IA

for almost all x, as we wanted. Hence, let us see that ny < 2|h(|g«|)| + O(1) for almost all x. There is a constant
N such that for all n > N, 8|n| < n. We know that for almost all x, g, satisfies |h(|gx|)| = N. Suppose that x
has this property. Then either n, < [h(|gx|)| or 4|ny| < n,/2. In the second case ny, — 4|n,| > n,/2 and by (2),
ny/2 < |h(lgx])| + O(1). So, in both cases, we have ny < 2|h(|gx])| + O(1). O

To characterize strong jump-traceability, we need a lemma.
Lemma 16. Forall x € {0, 1}* andd € N,

[y : Ca.y) = C) +d) = 0@*2%).
Proof. Chaitin [2] has proved that

Vd,neN|{o :|lo|=n A C(o) < C(n) +d}| = 0@2%).

Let ¢ be such that Vx C(x) < str—!(x) + ¢. Consider the partial recursive function f(x, y,d) which enumerates all
strings z such that C(z) < str~'(x) 4+ d + c until it finds z = y. If z was the ith string to appear in the enumeration,
then f(x, y,d) is the number i written in binary with initial zeroes such that | f(x, y,d)| = str—'(x) +d 4+ ¢ + 1.

Notice that it is always possible to write f(x, y, d) in this way because there are at most 2% )+d+c+1 quch strings
z. If no such z exists, then f(x,y,d) 1. Let x and d be given. Consider y such that C(x, y) < C(x) 4 d. Since
C(x,y) < str~1(x) + d + ¢ then f(x,y,d) | and

C(f(x,y,d)) = C(x,y) +2|d|+0()
< C(x)+d+2|d|+0(1)
< Cetr ') +d+c+1)+d+4]d|+0(1).
The last inequality holds because we can compute the string x from the numbers str~'(x) + d + ¢ + 1 and d. Let
n=str-'(x)+d+c+1andd =d+4|d|+ O(1). For fixed x and d, the mapping y — f(x, y, d) is injective and
thus

Hy:Clx,y) =C@) +d}| <lfo:lol=n A C(o) < Cn)+d'}|

= 0029y = 0@@*2%).

This completes the proof.

Theorem 17. The following are equivalent:

(1) A is strongly jump-traceable;
(ii) For every order function h and almost every x, C(x) < CA(x) + h(CA)).

Proof. For any function f, let f(y) =y 4+ f(y) forall y.

(i) =(ii). Let hq be a given order function. It is sufficient to show that C(x) < h(CA(x)) + O(1) for almost all x,
where h = |ho/2]. Let @ be a reduction function such that J Ala(x)) = UAGstr(x)). Let T be a trace for J# with
bound g such that g(w(x)) < h(|str(x)]). Let m € N be such that UA(str(m)) = y and |str(m)| = CA(y). Since
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¥ € Ta(m), we can code y with m and a number not greater than g(«(m)) (representing the place (< g(a(m))) within
the enumeration of Ty (,) at which y is enumerated), using at most

Istr(m)| + g(a(m)) < CA(y) +h(CA(y))

many bits. Then Vy C(y) < h(CA(y)) + O(1).
(i1) =(i). Since there are at most 2" — 1 programs of length < n, Vn 3x [|[x| =n A n < C(x)]. Let ¢ be a constant
such that

Vx [JA(IxD) 4 = CAGx, JA(IxD) < x| +cl.

This last inequality holds because, given x, we can compute J4(|x|) relative to A.
Let 2 be any order function and let us prove that A is jump-traceable via . Define the order function g such that
for almost all e, 38(+¢) < h(e). By hypothesis, for almost all x, if J4(|x|) | then
Clx, JA(Ix]) < g(Ch(x, JA(Ix]))
= [x[+g(x|+¢c)+c.

Define the trace
T,={y:Vx[lx|=e¢ = C(x,y) <e+gle+c)+cl}

It is clear that for almost all e, if JA(e) | then JA(e) € T,, because given x such that |x|] = e, we have
C(x,J4(e) <e+ g(e + ¢) + c. To verify that for almost all e, |T,| < h(e), suppose that y € T,. Take x, |x| = e and
C(x) > e. Then

Cx,y) <e+gle+c)+c
<Ckx)+gle+c)+ec.

By Lemma 16, for almost all e there are at most 38 (eto) < h(e) such y’sin T,. 0O

In [11], it was proven that there is a super-low set which is not jump-traceable (namely, a super-low Martin-Lof
random set). In contrast, from Theorems 15 and 17 we can conclude that the strong version of super-lowness implies
strong jump-traceability.

Corollary 18. If A’ is well-approximable then A is strongly jump-traceable.
6. Variations on K-triviality

Throughout this section, let p : N — N be strictly increasing such that in addition lim, p(n) — n = oco. We call
p an estimation function if, in addition, p(n) = limg ps(n) where psy+1(n) < ps(n), and the function As, n.p,(n)
is recursive. An example of such a function is g(n) = n 4+ 5 - min{K(m) : m > n} with the approximation
gs(n) =n+5 -min{K;(m) : s > m > n}.

Recall that A is K -trivial iff

deVn K(A [ n) < K(n) +c.

Nies [10] has shown that A is K -trivial if and only if A is low for K, that is, 3c Vx K (x) < KA (x) + c. In this section
we weaken the notion of lowness for K:

Definition 19. (i) A set A is weakly p-low iff Vn K(A | n) < p(K(n) 4 cg) + ¢ for some constants ¢y and c;. Let
K[ p] denote the class of such sets.
(ii) A set A is p-low iff Vy K (y) < p(KA(y) + co) + ¢ for some constants ¢o and c1. Let M|[p] denote the class
of such sets.

Proposition 20. (i) If A € M[pland B <t A, then B € M|p].
(ii) If A € K[p] and either B <x A or B <y A, then B € K[p].
(iii) Suppose that p is an estimation function. Then no random set is in K[ p].
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(iv) If A, B € K[pl and A, B are r.e., then
A®B={2x:x € A}U{2x+1:x € B} € K[p].
(v) Mlpl <€ Klpl.
Proof. (i) Since B <7 A, there exists a constant ¢, such that for each string y, K A(y) < KB (¥) + ¢2. Then

K() < p(KA(y) +co) + 1
< p(KB(y) +co+c2) +c1.

(ii) This is trivial for <g. Now suppose that B = I' for a weak truth-table reduction I" with recursive bound f.
Without loss of generality, we may assume that f strictly increasing. Given A | f(n) we can compute n and B | n,
and then there is a constant ¢, such that for all n,

K(B|[n) <KA] fn)+c

< p(K(f(n)) + co) +c1 + c2.

Since f is recursive, we have K (f(n)) < K(n) + O(1) and hence B € K[p].

(iii) Assume that Vn K(A [ n) > n —c and A € K[p] via constants ¢y and c;. Since p is an estimation function,
p(n) = limg ps(n) where psy1(n) < ps(n), and the function As, n.pg(n) is recursive. Define the strictly increasing
recursive function p(0) = po(0) and p(k + 1) = po(j), where j = min{i : i > k A po(i) > p(k)}. Since p > p,
A € K[p]. Define the Kraft—Chaitin set {{i,n;) : i € Nt A n; = p(i +d + co) + ¢1 + ¢} for My with d given in
advance by the Recursion Theorem. Then K (n;) < i + d and hence p(K (n;) + ¢p) < p(i +d + co). Finally,

K(A [ n;) < p(K(n;)+co) +ci
<pli+d+cy)+ci=n—c

A

and this is a contradiction.
(iv) Ignoring constants, for each n,

K(A®B|n) <K(A®B |[2n)
max{K (A [ n), K(B | n)}
p(K(n)).

In the second inequality we used [6, Theorem 6.4].
(v) Again ignoring constants, for all n,

K(An) < p(K*(A | n)
< p(K*(n))
= p(K(n)).
This completes the proof. [J

=
=

IA

The following proposition shows a connection between jump-traceability and p-lowness. In Theorem 17 we proved a
similar result, relating strong jump-traceability and plain Kolmogorov complexity.

Proposition 21. (i) Suppose that p is a recursive function. There is a constant ¢ such that if A € M| p] via constants
co and ci then A is jump-traceable via h(x) = 2PCXITcoto+e+l.
(ii) There is a reduction function a such that if A is jump-traceable via h then A € M]|p] for p(z) = 3z +
2[h(a(25th).

Proof. For (i), we know that there is a constant ¢ such that K4 (J4(x)) < 2|x| + ¢ because we can compute J Ax)
from x and the oracle A. Define the trace

T, ={U(o) :lo| < pQlx|+co+c)+c1}.

Clearly |T,| < 2r@klrcotatatl jet y = JA(x). By hypothesis K(y) < p(K*4(y) + co) + ¢1 and then
K(y) < pQlx| +c¢+co) +ci. Hence y € Tx.
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For (i), let « be a reduction function such that J4 («(x)) = U4 (str(x)). Let T be a trace for J4 with bound 4 and
let us define the trace

fn = U Ty (x)-

x:|str(x)|=n
Notice that

Tl < ) h(ax)

x:|str(x)|=n

< 2"h(a(2"TY),

since « is increasing. Let m € N be such that U4 (str(m)) = yand |str(m)| = KA(y). Since y € Ty (), we know that
y € f‘| str(m)|» hence we describe y by saying “y is the ith element enumerated into ﬁ strem)|” - If we code [str(m)| in
unary and we code i with

2|l| S 2|2|str(m)\h(o[(zlstr(m)|+l))|
< 2fstr(m)| + 2| (@@ ™))

many bits, we have K (y) < p(KA(y)) + O(1), for p(z) = 3z + 2|h(a(2°T1))|. O

Corollary 22. A is jump-traceable iff there exists a recursive function p (of the type considered in this section) such
that A € M([p].

Figueira, Stephan and Wu [7, Proposition 6] used a universal machine which has the property that there is an
approximation K of K from the above with K, (x) = K(x) forall x € X where X = {x : Vy > x (K(y) > K(x))}.
For the following Theorem, such a universal machine is assumed. The example shows that there is a set in M|[q]
where ¢ is as defined at the beginning of Section 6 which is not K-trivial. Note that r differs from the function in
Lemma 6 only by using K instead of C and has the same properties as the function given there. In particular, for each
order function & we have r(n) < n + h(n) for almost each n, and thus the set constructed satisfies the analog for K
of the condition in Theorem 17 characterizing strong jump traceability. In contrast to this result, Cholak, Downey and
Greenberg [4] have shown that each strongly jump-traceable set is in Ag.

Theorem 23. Let r(n) = min{K (m) : m > n}and g(n) =n +5 - r(n). Then there is a set A € M[q]\ Ag.

Proof. Note that the set X = {x : Vy > x V¢ (K;(y) > K (x))} is co-r.e. and that it has a co-r.e. subset Y of the form
{0, ¥1, ...} such that, for all n, y, = K(yn+1) = Ky, ; (Yn+1). As K(0) > 0 one might have the undesirable property
that y,4+1 < yy, for some n. But as there are only finitely many numbers x with K(x) > x, one simply adds to the
construction of Y the condition that yy is taken to be the first element of X larger than these finitely many exceptions
and so one has the additional property that y,; > y, for all n.

Now one defines a partition Iy, I, ... of the natural numbers into intervals such that |I,| = K,(K,(x)) and
max(/,) + 1 = min(/;41). Note that none of these intervals is empty as K, (K (x)) > 0 for all x which is due to the
fact that a prefix-free universal machine is undefined on the empty input.

Having the partition, one defines a partial-recursive function v in stages s where one does the following algorithm
where ¥ is everywhere undefined before stage 0. The set A will be chosen such that its characteristic function is a
suitable extension of 1. Let 1y denote the approximation to i before stage s.

e Find the least x, y such that x < s,y € I, ¥4(y) is undefined and either (1) x ¢ Y, or (2) there is a string
o € {0, 1}mxU)+1 guch that K (o) < Ky(x) 4+ 0.5 - log(]1,]) and o is consistent with v, that is, ¥ (z) = o (z)
for all z € domain(ys) N {0, 1, ...max(Iy)}.

e In the case that no x, y were found, let {511 = V.

o In the case that x, y were found according to condition (1), let {511 (y) = 0 and let ¥541(z) = ¥ (z) for all z # y.

e In the case that x, y were found according to condition (2), let ¥511(y) = 1 — o(y) and let Ys41(z) = V¥ (z) for

all z # y.
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Now let A be a set whose characteristic function extends 1 and which is low for {2. Such a set A exists since ¥ defines
a Hlo class and Downey, Hirschfeldt, Miller and Nies [5] showed every Hlo class (of sets) has a member which is low
for (2.

Reviewing the construction of ¥, condition (1) enforces that v is defined on the complete interval I, if x ¢ Y
and condition (2) enforces that if x = y, and n is large enough then the Kolmogorov complexity of A [ max(/y,)
is at least K (y,) + log(|/,])/2. To see this, one should have in mind that x — max(/,) is a recursive injective
function, that K, (y,) = K (y,) and that the number of ¢ of length max(/y,) + 1 with K (o) < K(y,) + log(|1y,])/2
is bounded by a function proportional to /|1y, |. So there will for all sufficiently large n remain some elements in 7,
where ¥ is undefined. As the intervals I, are of unbounded length, this enforces that for sufficiently large n the value
of K(A [ max([y,)) is at least K (y,) + log(|/y,)/2 while on the other hand K (max(ly,)) is only a constant above
K (yn). So A is not K-trivial. Since every low for (2 set is either K -trivial or not A9, A is also not Ag, that is, not
limit-recursive.

Now it is shown that the set A constructed satisfies K4 (x) < ¢(K (x)) + ¢o for some constant ¢y and all x. This
needs some facts about the sequence yy, yi, . .. and the complexities of these strings relative to A.

For ease of notation, U4 denotes the universal prefix-free machine relative to A and U = U Y the unrelativized
one. Let a, be an input of shortest length such that U Aa,) = v, and let b, be an input of length y,_; such that
U(bn) = Yn.

Now consider all the n such that |a,| < y,—1 — 2y,—2. Then one has a prefix-free machine V4 and a partial-
recursive coding function 8 such that

o VA(b,_1ay) computes {2y, [ yo—1 — Ya—2 — C1;
o U(O(by—192 | yn—1 — yn—2 — c1)) computes min{s : {2 [ (yp—1 — Yn—2 —¢1) = 2 [ (yn—1 — Yu—2 — c1)}.

where the constant ¢ is so large that 6 can be chosen such that |6(b,—1d)| < y,—1 forall d € {0, 1}n-17Yn-27¢1,
As a consequence, the computation U (6 (b,—12 | yn—1 — Yu—2 — c1)) needs less than y, steps. Thus, VAb,_1ay)
computes 2 [ y,—1 — yu—2 — ¢y and |by_1a,| = yn—2 + lan| < Yn—1 — yn—2. Since {2 is random relative to A, this
can happen only for finitely many »n and one has that |a,| > y,—1 — 2y,—> for almost all n.

Now assume that n > 1 and |a,| > y,—1 — 2yn—2. Let E, = {e : U*(e) needs at least min(/y,) and at most
min(/y, ) — 1 steps}. Note that for e € Ej, b, is that string of length y, | for which U (b,,) terminates last within the
computation-time of U4 (e) and y, = U (b,). So one has a constant ¢, and for each e a prefix-free input d of length
le| + K (yp—1) + ¢3 such that UA(d) = y,. This gives that there is a constant c3 with

Z p—lel=c2=K(yn-1) _ pc3—lanl

eckE,

what using |a,| > y,—1 — 2yn, can be transformed to
Z Yn-1—€2=€3=3yp2—€ _ 1
eeE,

There is a partial-recursive function g such that g(b,) = |I,, U I,, U---U I, |. Now one can construct a prefix-free
machine which on input bd with U (b) being defined and |d| = g(b,) enumerates requests of weight at most 2-b—d
with the additional constraint that, in the case that b = b, and d is the restriction of A to Iy, U Iy, U---U I, , the
requests are just an enumeration of the set

{(1bul + g(bn) + le] + c2 + ¢34 3yn—2 — yu—1, U(e)) : € € Ep).

Recall that the weight of a request (i, j) is 27¢. So the sum of the weights of all requests is at most 1. Note from b, and

d one can compute yg, ¥1, ..., ¥y and Aon Iy U, U---UI, so that the enumeration is effective. By the inequality
Z Zyn—l_CZ_C3_3yn—2_e < 1.
eckE,

from the above one has that the bound on the weight of the requests is kept. Assume that |e| = K A(x)and UA(e) = x
and x is so large that e € E,, for an n satisfying that g(b,) < 2y,_» and that n does not fall under the finitely many
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exceptions considered above. Then there is a request of the form (|e| + g(b,) + ¢2 + ¢3 + 3y,—2, x). It follows from
the Kraft—Chaitin Theorem that there is a constant ¢4 with K4 (x) < |e| 4+ 5y,_2 + c4 for the n with e € E,,.

As for almost all n, |a,| > y,—1 — 2y,—2 and as one can compute y, relative to A from y,_, plus an upper bound
on y,, one has that for almost all » and every e with U A(e) need more than y, steps that [e] > y,—1 — 3y,—2 — ¢5
for some constant c¢s. Since r grows slower than every unbounded and non-decreasing recursive function and
Yn—1 — 3Yn—2 — ¢5 > yp—1/2 for almost all n, there is a constant cg such that 7(e) > r(y,) — c6 = Yn—2 — C6
where cg is independent of e, n as long as e € E,,. So one has that K(U%(e)) < le| + Sr(le]) + c4 + 5cs.

One can now cover the case, x = U“ (e) the finitely many x where U A (e) needs at most min(/y, ;) — 1 steps for
some of the finitely many exceptional n in the case distinction above by taking cq to be sufficiently much larger than
c4 + S5ce and obtains that

Vx K (x) < K*(x) + 5r(K4(x)) + co = (K (x)) + co
what completes the proof. [

One should note that the real difficulty of this construction stems from the fact that the constructed set has to be p-low
and not only weakly p-low. For estimation functions, the construction of weakly p-low sets is quite straightforward.
Note that the resulting set is not K-trivial as it is Turing complete.

Proposition 24. Let p be an estimation function. Then there is a Turing complete r.e. set A which is weakly p-low
and also satisfies the corresponding property for C: there are constants ck, cc such that K(A | x) < p(K(x)) + ck
and C(A | x) < p(C(x)) + cc for all x.

Proof. For defining an enumeration of A, fix a one-one enumeration bg, by, ... of the halting problem and
approximations Cy, K5 to C, K. Let Ag = . At stage s + 1, let a,, be the mth non-element of A in ascending
order. Now the set A;1 is computed as follows.

e Let n be the minimum of all m such that one of the following conditions holds:
. Ay > S
. by <m;
. ps(Ks(k)) — Kg(k) < m for some k witha,, <k <s;
. ps(Cs(k)) — Cs(k) < m for some k witha,, <k <'s.
eletAsy =A;U{x:a, <x <s}.

This set A satisfies the following properties:

A is co-infinite and r.e.;

A is Turing complete;

K(A | x) < p(K(x)) 4 ck for some constant cx and all x;
C(A | x) < p(C(x)) + cc for some constant c¢c and all x.

The first property states the obvious fact that A is r.e. by construction. The other fact that A is co-infinite needs some
more thought. Assume by way of contradiction that |A| = m for some finite number m. Let ag, a1, ..., au—1 denote
the non-elements of A in ascending order and assume that s is so large that the following conditions hold:

e if by <mthent < s;
e forall x € A — A, there is no k > x and no e > min{C (k), K (k)} such that p(e) — e < m;
eifx <a,_1+1thenx € A & x € A;.

Then one can see that the parameters ag, a1, ..., a;—1 chosen in the definition of step s coincide with the m least
non-elements of A and are just not enumerated. Furthermore, a,, is also defined as the next non-element of A;. Note
that a,, < s ass ¢ A,. Now one can see that a,, is not enumerated into A4 because the n selected is larger than m:
for all m" < m, n # m’ because otherwise ag, ay, ..., a,_1 would not remain outside A; furthermore, n # m as the
first and second item in the conditions on s together with the facts that p; approximates p from above and a,,, < s
imply that m does not satisfy the search-conditions. So a,, ¢ As41 and one can show by induction that a,, ¢ A; for
all ¢ > s, this contradicts the assumption that |A| = m. Therefore, A is co-infinite.
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The second property follows from the construction. If ag, ay, . . . are the non-elements of A in ascending order, then
by < m implies that s < a,,. Thus m is in the halting problem iff m € {bg, by, ..., by, } and so the halting problem is
Turing reducible to A.

The third property can be seen as follows: Given x and the shortest description o for x with respect to a fixed
prefix-free universal machine, let n be the number of non-elements of A below x. Then one can construct a prefix-free
machine which from input 1”?0c first evaluates the universal machine on o to get the value x and then searches for
a stage s such that A contains all but n elements below x. Having this x and s, the machine outputs Ay [ x. If o
and n are chosen correctly, then the output is correct. Thus one has that K (A [ x) is at most K (x) + n 4+ cx where
the constant cx comes from translating the given prefix-free coding of K(A [ x) of length K (x) + n + 1 for some
machine into inputs for the universal machine. Furthermore, for all sufficiently large s, K(x) +n < ps(K;(x)) as
otherwise the marker a,_1 would move. Therefore K (x) +n < p(K(x)) and A is weakly p-low.

The fourth property can be proven analogously; here the constructed machine is not prefix-free and o is the shortest
input producing x with respect to some fixed universal plain machine, nevertheless o and n can of course still be
recovered from 1”0c. The rest of the proof follows the previous item but is working with C in place of K. This
completes the proof of the whole result. [

For any estimation function p and the above constructed A € K[p], 2 <7 A and thus A ¢ M[p] by Proposition 20(i)
and (iii). Thus the inclusion from Proposition 20(v) is strict.

Corollary 25. For all estimation functions p, M[p] C K[p].
Proposition 26. For every estimation function p there is a whole Turing degree outside Ag contained in K[ p].

Proof. For any estimation function p one can consider the estimation function ¢ given as g(n) = n+log(p(n) —n)/2.
Then one can construct an r.e. set A as in Proposition 24 which is in K[q].

The set A is not recursive. Thus, due to Yates’ version of the Friedberg-Muchnik Splitting Theorem [12, Theorem
IX.2.4 and Exercise IX.2.5], one can construct a partial-recursive {0, 1}-valued function i with domain A such that
¥ ~1(0), ¥ ~1(1) form a recursively inseparable pair, that is, ¥ does not have a total extension. Actually, given a one-
one enumeration aop, a, . . . of A, this function ¥ can be inductively defined on this domain by taking 1 (ay) in {0, 1}
such that v (a,) differs from ¢, s (as) for the least e where either e = s or ¢, s(ay) is defined and ¥ (a;) = @, s(a;) for
all t < s with a; € domain(g, ).

Every total extension B of ¢ is in KC[p] as given any n and any x, the number m of places below x where ¥ is
undefined satisfies m < g(K(x)) — K(x). Let x1, x2, ..., x;,; be these places. Let o be the shortest input such that
the universal machine for K computes x. Then one can code B | x by 1"0B(x1)B(x2) ... B(x,)o and thus has that
K (B | x) is below p(K(x)). As one can take B to have hyperimmune-free Turing degree [12, Theorem V.5.34] and
as IC[p] is closed under wtt-reducibility, one has that a whole Turing degree outside Ag is contained in C[p]. O

Note that the above result also holds with C in the place of K, the proof is exactly the same. So given an
estimation function p, one can construct a hyperimmune-free Turing degree only consisting of sets E satisfying
C(E | x) < p(E(x)) for all x up to an additive constant. Unfortunately, it is not guaranteed that this degree is also
strongly jump-traceable, it is even a bit unlikely, as only the use of total E-recursive functions but not of the jump is
recursively bounded in the case of a set E of hyperimmune-free degree.
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