
Post’s Problem for ordinal register machines:

an explicit approach

Joel David Hamkins

College of Staten Island of The City University of New York
Mathematics Dept., 2800 Victory Boulevard, Staten Island, NY 10314

The Graduate Center of The City University of New York
Ph.D. Programs in Mathematics and in Computer Science

365 Fifth Avenue, New York, NY 10016, USA

Russell G. Miller

Queens College of The City University of New York
Mathematics Dept., 65-30 Kissena Boulevard, Flushing, New York 11367

The Graduate Center of The City University of New York
Ph.D. Programs in Computer Science and in Mathematics

365 Fifth Avenue, New York, NY 10016, USA

Abstract

We provide a positive solution for Post’s Problem for ordinal register machines, and
also prove that these machines and ordinal Turing machines compute precisely the
same partial functions on ordinals. To do so, we construct ordinal register machine
programs which compute the necessary functions. In addition, we show that any set
of ordinals solving Post’s Problem must be unbounded in the writable ordinals.

Key words: Computability, ordinal computability, ordinal register machine, Post’s
Problem.

? Much of this paper was presented by the second author at the Computability in
Europe meeting, Siena, Italy, 19 June 2007, and appeared in an extended abstract
in [4].
1 The research of the two authors has been supported in part by grants from the
Research Foundation of CUNY and by support for their attendance at the Bonn
International Workshop in Ordinal Computability. The first author is additionally
thankful to the Institute for Logic, Language and Computation and the NWO (Be-
zoekersbeurs B62-612) for supporting his stays at the Universiteit van Amsterdam
in 2006 and 2007.

Preprint submitted to Elsevier 30 January 2008



1 Definitions

Ordinal register machines, or ORM’s, are defined and described by Koepke
and Siders in [8]. They generalize the traditional finite-time register machines:
the registers are now allowed to contain any ordinal value, not just natural
numbers, and the (finite) program runs through ordinal time, with its state
at limit-ordinal stages determined in a natural way by taking liminf’s of the
cells and states at the preceding stages.

Koepke and Siders proved in [8] that the sets of ordinals computable by an
ORM, with finitely many ordinal parameters, are precisely the constructible
sets of ordinals, i.e. those lying in Gödel’s constructible universe L. Various
other results on computability in ordinal time and space have been proven
by set-theoretic methods. (See [2,6,7], for example.) These proofs tend to be
quick and clean, and avoid actually dealing with the ORM’s themselves. Our
intention in this paper is to develop actual ORM programs to answer two of
the basic questions about computability under such machines. We will address
Post’s Problem for ORM’s, and also compare the computational capabilities
of ORM’s with those of the ordinal Turing machines (OTM’s) described by
Koepke in [6]. In doing so, we will illustrate the power of the special type of
ORM known as an ordinal stack machine, first described in [8].

Since the ordinal register machine programs are finite, they each refer to only
finitely many registers, and the memory used by any ORM algorithm is corre-
spondingly limited to these fixed finite number of ordinal values at any time.
This contrasts with the situation for OTM’s, and also with the situation for
the infinite time Turing machines of Hamkins and Lewis [2], where the algo-
rithms can store information stretching out on a transfinite tape. One is led
to suspect that ORM’s are less powerful than OTM’s, but in fact we will show
that they compute precisely the same class of partial functions on ordinals.

The original version of Post’s Problem applied to finite-time Turing machines.
It asked whether there exists a computably enumerable set A which is neither
computable nor complete. That is, it required ∅ <T A <T ∅′, where ∅′ is the
jump of the empty set, or equivalently the Halting Problem for finite-time
Turing machines. Post’s Program for solving this problem was to discover
a nonvacuous property of c.e. sets, expressible using only the containment
relation ⊆, which would guarantee that A was incomplete and noncomputable.

Post’s Program was the genesis of the notions of simple, hypersimple, and
hyperhypersimple sets, all of which properties Post originally hoped would
fulfill his program. In fact, none of these properties implies incompleteness,
and Post did not live to see the solution of the problem that bears his name.
Post’s Program was completed by Harrington and Soare [5] in 1991, but his

2



Problem was solved much earlier, in 1956 and 1957, with the invention of the
finite injury priority method (independently) by Friedberg [1] and Muchnik
[9]. A good description of this method appears in section VII.2 of [12].

The notion of a computably enumerable subset of ω extends naturally to our
context: a set of ordinals is ORM-enumerable, or semidecidable, if it is the do-
main (equivalently, the range) of some ORM-computable function. Shortly we
will also define the jump operation for ORM’s. Then we will ask the analogue
of Post’s Problem for sets of ordinals under computation by ORM’s.

We often conflate ORM’s with the partial functions they compute, which we
enumerate as ϕ0, ϕ1, . . . by effectively coding their programs, just as for finite-
time Turing and register machines. In this context we disregard ORM’s with
ordinal parameters. Functions of arity > 1 can be considered by effectively
identifying finite tuples of ordinals with single ordinals.

We write ϕe,σ(α) ↓ to signify that the program ϕe converges on input α in
strictly fewer than σ steps. This notation is different from the common usage
in finite-time computability theory, where ϕe,s(n)↓ denotes convergence in ≤ s
steps; our way is more appropriate in a context where we must deal with limit
ordinals.

An ordinal α is ORM-writable if there is an ordinal register machine ϕe which,
on input 0, halts and outputs α. Briefly, ϕe(0)↓= α for some e ∈ ω. Also, an
ordinal σ is ORM-clockable if some computation ϕe(0) halts after exactly σ
steps: ϕe,σ(0) ↑, but ϕe,σ+1(0) ↓. Notice that it is ORM-computable whether
σ is clockable, since we can run all computations ϕe(0) for σ-many steps and
check whether any of them halted after exactly σ steps. On the other hand,
the set of writable ordinals is ORM-enumerable, but not ORM-computable,
essentially because a computation which halts after a very long number of
steps could still have a relatively small ordinal as its output.

(To see that ϕe does not compute the set of writable ordinals, consider a
program q which, on input 0, goes through every pair 〈α, σ〉 of ordinals in
turn and runs ϕe(α) for σ steps. If it finds that ϕe,σ(α) ↓= 0, then it copies
that α into its output register and halts, thus contradicting ϕe’s claim by
showing that α is writable, even though ϕe(α) = 0. Otherwise it goes on to
the next pair 〈α, σ〉. But if this program q never halts, then 0 /∈ range(ϕe), so
either way ϕe does not compute the set of writable ordinals.)

Oracle computation for ORM’s, with an oracle X which is a set or class of
ordinals, is normally defined by choosing one specific register ri as the oracle
register and allowing the machine to execute instructions of the form “if the
content of ri lies in X, then execute instruction number j.” Intuitively, the
oracle will answer any question about membership of individual ordinals in
X. Notice that to ask whether γ ∈ X, however, the machine itself must first

3



write γ in ri, possibly using its input to do so. We write Y ≤ORM X to denote
that some ORM with oracle X computes the characteristic function of a set
Y of ordinals.

The weak jump ∅♦ of the empty set for ORMs is the set

∅♦ = {e ∈ ω : ϕe(0)↓}.

We have approximations to the weak jump:

∅♦
σ = {e : ϕe,σ(0)↓};

these are nested upwards and are computable uniformly in σ. Also notice that
σ is clockable iff ∅♦

σ 6= ∅♦
σ+1, and that for limit ordinals λ, ∅♦

λ = ∪σ<λ∅♦
σ . (This

would fail if we had kept the finite-time notation for ϕe,λ(α)↓.) We also have
the strong jump ∅� of ∅ and its computable approximations ∅�

σ :

∅� = {〈e, α〉 : ϕe(α)↓} ⊂ ω ×ON ∅�
σ = {〈e, α〉 : ϕe,σ(α)↓}.

The strong jump is the actual halting problem in ORM-computability; the
weak jump, roughly analogous to the jump in finite-time computability, is
just the most convenient way to diagonalize and build a noncomputable set.
In finite time, of course, the jump and the halting problem are computably
isomorphic, but in our context this is no longer true; indeed ∅♦ <ORM ∅�, with
strict inequality.

The version of the following lemma for infinite time Turing machines was a
significant result, proved by Philip Welch in [13], but in the ordinal register
machine context we observe it easily:

Lemma 1 For ordinal register machines, the supremum γ of the clockable
ordinals equals the supremum λ of the writable ordinals.

PROOF. Every clockable ordinal α is writable: just run the computation
ϕp(0) which halts after α steps, adjusting the machine so that at each step, it
increments the ordinal in a new step register. When ϕp(0) halts, transfer the
contents of the step register to the output register and then halt. Thus γ ≤ λ.
Conversely, if α = ϕq(0) is writable, then ϕq(0) takes at least α many steps to
halt, since after β steps, an easy induction shows that no register can contain
any ordinal larger than β. Hence λ ≤ γ. 2

4



2 Post’s Problem

Now we begin to consider Post’s Problem. First we ask whether there exist
relatively simple ORM-enumerable sets (subsets of ω, for instance) which are
noncomputable and incomplete. The answer is no.

Theorem 2 No subset C ⊆ ω satisfies ∅ <ORM C <ORM ∅♦. Indeed, the
same holds for subsets C ⊆ ρ, for any writable ordinal ρ.

PROOF. Consider a set C ⊆ ρ with ∅ ≤ORM C ≤ORM ∅♦ and ρ writable.
This part of the proof is similar to that of Theorem 2.1 in [3], the corresponding
result for infinite time Turing machines.

Recall that ∅♦
σ = {e ∈ ω : ϕe,σ(0) ↓}. This is a computable enumeration

of the semidecidable set ∅♦. By assumption there is a program q such that
ϕ∅♦

q computes the characteristic function of C. This gives us a computable
approximation to C:

Cσ = {β < ρ : (∃δ ≥ σ)[ϕ∅♦
σ

q,δ(β)↓= 1 & (∀θ)[σ < θ ≤ δ =⇒ ∅♦
σ = ∅♦

θ ]]}.

Since ϕ∅♦

q is the characteristic function of C, it must be total. Indeed, since
∅♦

γ = ∅♦, we must have Cσ = C for all σ ≥ γ. Therefore we can compute,
uniformly in β and σ, whether β ∈ Cσ: having written ρ and checked that
β < ρ, just run ϕ∅♦

σ
q (β) until we reach a stage δ ≥ σ such that either ∅♦

δ 6= ∅♦
σ

(so β /∈ Cσ) or ϕ∅♦
σ

q,δ(β)↓. If we find that this computation halts and outputs 1,
before the approximation to ∅♦ changes, then β ∈ Cσ; if it outputs a different
value, then β /∈ Cσ. (In finite-time computability, the analogous process is the
construction of a computable approximation to an arbitrary set ≤T ∅′.)

Lemma 3 With this approximation, if Cσ 6= Cσ+1, then σ + 1 is clockable
(and hence σ is writable).

PROOF. If ∅♦
σ 6= ∅♦

σ+1, then some computation ϕe(0) converged in (σ + 1)-
many steps, so (σ +1) is clockable. Otherwise, the definition of Cσ shows that
Cσ = Cσ+1, as follows. To check whether some β < ρ lies in Cσ, we find the

least δ ≥ σ for which either ∅♦
σ 6= ∅♦

δ , or ϕ∅♦
σ

q,δ(β) ↓. If δ ≥ σ + 1, then we find
the same δ when checking whether β ∈ Cσ+1, so the answer is the same. If

δ = σ, then ϕ∅♦
σ

q,σ(β)↓, and hence ϕ
∅♦

σ+1

q,σ+1(β)↓= ϕ∅♦
σ

q,σ(β) as well, since the oracle
has not changed. 2

We now consider two cases. First, if there exists some β < γ(= λ) such
that Cβ = C, then C is ORM-computable. To compute C, we run some

5



fixed program ϕp(0) which writes the least writable ordinal δ ≥ β and then
computes Cδ. By Lemma 3, Cσ = Cβ = C for every σ with β ≤ σ < δ.
But then ∅♦

δ = ∅♦
β as well, since ∅♦

δ contains those programs which halt before
stage δ, and so the definition of Cσ shows that Cδ = Cβ = C. Hence we have
computed C.

Otherwise there is no such β, and in this case ∅♦ ≤ORM C, since with a C-
oracle we can search for the least σ such that Cσ = C. (Here we need to know
that C is contained in ρ, as assumed by the theorem. We can write ρ, and then
to verify that C = Cσ, we need only check that all α < ρ lie in C iff they lie in
Cσ.) But by assumption, the σ we find is ≥ γ (in fact precisely γ), and when
we find it, we write it on the output tape and halt. Thus γ is C-writable, and
with γ it is easy to compute ∅♦. 2

So Post’s Problem has a negative solution when we restrict to sets C such that
the supremum of C is writable. This is a large class of sets: it includes every
non-cofinal subset of γ. However, without this restriction, the same problem
has a positive solution. We prove this by a construction in the style of Friedberg
and Muchnik. First we give a necessary lemma.

Lemma 4 (Reflection Lemma for ORM’s) Suppose ϕA
e (x) ↓= 0, where

x is a writable ordinal and A is a semidecidable set of ordinals with ORM-
computable enumeration 〈Aσ〉 such that Aγ = A. (This means that Aσ ⊆ Aτ

for all σ < τ , that Aβ = ∪σ<βAσ for limit ordinals β, and that there is a
computable function f(α, σ) with value 1 if α ∈ Aσ and 0 if not.) Assume
also that every σ with Aσ 6= Aσ+1 is clockable. Then for every β less than
the supremum γ of the clockable ordinals, there exists a clockable limit ordinal
τ > β such that ϕAτ

e,τ (x)↓= 0.

The same would hold if we replaced “clockable” by “writable” throughout the
lemma. However, clockability will be the property we need.

PROOF. Our proof mirrors that of the Reflection Lemma for infinite time
Turing machines (Lemma 4.3 in [3]). Consider the algorithm which, on input
0, writes x and then searches and outputs the least nonclockable ordinal σ > β
such that ϕAσ

e,σ(x)↓= 0.

Now Aγ = A, and since ϕA
e (x) ↓= 0, there are plenty of ordinals σ > γ > β

for which ϕAσ
e,σ(x)↓= 0. But our algorithm runs on input 0 with no oracle, so

its own halting time is clockable and greater than its output. Therefore there
must exist a nonclockable stage σ between β and γ such that ϕAσ

e,σ(x)↓= 0. Let
τ be the least clockable ordinal > σ. Then τ is a limit ordinal and Aσ = Aτ ,
by our condition on changes to the enumeration of A, so this τ satisfies the
lemma. 2

6



Theorem 5 There exist ORM-incomparable enumerable sets A and B of or-
dinals, both ≤ORM ∅♦. It follows that ∅ <ORM A <ORM ∅♦(<ORM ∅�), and
likewise for B.

PROOF. We build the ORM-enumerable sets A and B as follows, to satisfy
the usual Friedberg-Muchnik requirements for all e ∈ ω:

Re : (∃xe)[ϕ
A
e (xe)↓= 0 iff xe ∈ B] Se : (∃ye)[ϕ

B
e (ye)↓= 0 iff ye ∈ A].

These have the standard priority ranking: each Re has higher priority than
Se, which has higher priority than Re+1. At each stage σ we will have an
approximation xe,σ to xe, which converges to xe as σ grows, and similarly for
ye.

Set A0 = B0 = ∅, and start with approximation xe,0 = ye,0 = e to the witness
elements xe and ye. We will redefine xe,σ+1 6= xe,σ at only finitely many stages
σ, namely those stages at which S-requirements of higher priority than Re

act, and the same holds symmetrically for ye,σ.

If τ is a limit ordinal, define Aτ = ∪σ<τAσ, with xe,τ = limσ→τ xe,σ, and
similarly for Bτ and ye,τ . (Notice that each xe,σ is eventually constant as σ
approaches τ , so these limits exist.)

For successor ordinals τ = σ+1, if σ is either unclockable or a successor ordinal
itself, then we preserve the settings at stage σ + 1: Aσ+1 = Aσ, xe,σ+1 = xe,σ,
and so on. Only if σ is a clockable limit ordinal do we act at the successor
stage σ + 1, as follows.

At such a stage σ + 1, we fix the highest-priority requirement, say Re, which
requires attention, by which we mean that xe,σ < σ and ϕAσ

e,σ(xe,σ) ↓= 0 and
xe,σ /∈ Bσ. (The last condition means that we have not already used this
witness element to satisfy requirement Re.) We act by enumerating xe,σ into
Bσ+1, with Aσ+1 = Aσ. We then set xi,σ+1 = xi,σ for all i ∈ ω, and yi,σ+1 = yi,σ

for all i < e. The lower-priority S-requirements are injured at this stage, for
we redefine

ye+j,σ+1 = ye+j,σ + (xe,σ + σ) + j + 1

for each j ∈ ω. Notice that since xe,σ < σ, we will have Bσ+1 ⊆ σ (by
induction on the preceding stages). Induction also makes clear that the new
witness elements ye+j,σ+1 are all clockable, since the clockable ordinals are
closed under addition and σ is clockable. If there is no requirement Re which
requires attention at stage σ + 1, then we preserve all settings from stage σ.

If the highest-priority requirement requiring attention at stage σ + 1 is an S-
requirement, say Se, we simply interchange A with B and the x-witnesses with

7



the y-witnesses in the above paragraph. At this stage, we preserve yi,σ+1 = yi,σ

for all i, and xi,σ+1 = xi,σ for all i ≤ e, with

xe+j,σ+1 = xe+j,σ + (ye,σ + σ) + j

for each j > 0 in ω, but not for j = 0. This reflects the fact that Re has higher
priority than Se. Otherwise, the entire process is symmetric in A and B.

The point of the redefinition of the y-elements when we satisfy Re is that
since the computation ϕAσ

e (xe,σ) = 0 converged in ≤ σ steps, the only oracle
questions it can have asked involved membership of ordinals ≤ xe,σ + σ in the
oracle set. The elements which may later enter A are the witness elements yi,ρ

at stages ρ > σ. By redefining ye+j,σ+1 > xe,σ + σ for all j ≥ 0 at stage σ + 1,
we ensure that any of these elements that later enters A will not change the
oracle computation ϕA

e (xe,σ) = 0, since the computation cannot have asked
whether such large elements were in A. (It is possible for ye+j,ρ to be redefined
yet again at a stage ρ+1 > σ+1, but our formula also ensures that it is always
redefined to be larger than it had been before.) Of course, if a higher-priority
y-witness element later enters A, it could change this computation, but the
usual finite-injury argument shows that eventually we will reach a stage after
which no higher-priority requirement acts again. So, using induction on the
requirements according to their priority, we see that for every e, the witness
elements xe = limσ xe,σ and ye = limσ ye,σ exist, and that if xe ∈ B, then
ϕA

e (xe)↓= 0, and symmetrically.

A further argument is necessary for the converse, using the Reflection Lemma
4. The point of restricting our construction to clockable stages was to ensure
that every witness element xe,σ and ye,σ at every stage is a writable ordinal,
i.e. equal to ϕp(0) for some program p. The clockable limit stages were chosen
precisely because, being clockable, they were writable, as are their successors
and the stage 0. (Also, clockability is easier to check than writability!) Then,
if we redefined any xi,σ+1 at stage σ + 1, we set it equal to a sum of writable
ordinals, and similarly for ye,σ+1. So, by induction on stages, all witness ele-
ments are writable, and thus all elements of A and B are writable. But we
can write the stage at which a writable ordinal enters a semidecidable set, so
Aγ = A and Bγ = B, as required by the Reflection Lemma.

Now suppose that xe never entered B. Then for all sufficiently large clockable
limit ordinals δ, ϕAδ

e,δ(xe) either diverges or converges to a nonzero value, so
by the Reflection Lemma, the full computation ϕA

e (xe) cannot converge to
0. Thus again xe witnesses that ϕA

e does not compute B, so B 6≤ORM A. A
symmetric result holds for ye, so A and B are ORM-incomparable sets.

We have called this process a construction, and indeed it enumerated elements
into A and B, without ever removing them. Nevertheless, it remains to show
that A and B are actually ORM-enumerable, of course, since the description

8



above did not use ORM’s. The heart of the proof of Theorem 5 is the following
lemma.

Lemma 6 There exists an ORM which decides, for arbitrary ordinal inputs α
and σ, whether α ∈ Aσ+1−Aσ; and similarly for B. We refer to the algorithms
for these machines as the entry algorithms for A and B.

PROOF. We use an ordinal stack machine, which is a special type of ordi-
nal register machine. In an ordinal stack machine, along with finitely many
registers, we have finitely many stacks, each of which (at any single stage of
operation) consists of a descending (hence finite) sequence of ordinals. We can
push a new ordinal from a register onto one of these stacks, provided that it
is strictly less than all ordinals currently on the stack; and we can pop the
smallest ordinal off of any stack and transfer it to a register, where it can be
compared to the contents of other registers, etc., by the usual register opera-
tions. In [8], Koepke and Siders use the Cantor normal form of an ordinal to
prove that the functions on ordinals computable by ordinal stack machines are
precisely those computable by regular ORM’s, so we may prove our lemma by
giving two stack-machine programs (one for A, one for B) which answer the
question for arbitrary α and σ.

Our stack machine accepts the inputs α and σ. It immediately pushes σ on
top of its stage stack, and pushes the ordinal (ωσ +α) on top of its input stack.
These will stay on these stacks for the rest of the operation of this machine,
but occasionally the entry algorithm will call itself and push smaller ordinals
above them, which are then popped off the stack when the subroutine ends.
Of course, we have access to the value σ from the top of the stage stack any
time we need it, and from the two stacks together we can also compute the
value of α whenever we need it.

The reason for not simply pushing α onto the input stack is that the entry
algorithm may later call itself, with inputs τ and β. We will ensure that τ < σ,
but we may have to allow β ≥ α, in which case we could not push β onto a
stack above α. However, pushing ωτ + β onto the stack above ωσ + α will be
legal, because we will always have β < σ and τ < σ.

We give the details for the entry algorithm which decides whether α entered
B at stage σ + 1. The entry algorithm for A is quite similar, of course, and in
fact is used by the algorithm for B. Given α and σ, we execute the following
steps.

(1) If α ≥ σ, or if σ is not a clockable limit stage, then output 0. Oth-
erwise, go on. (In our construction, a witness element α only enters B
at successors of clockable limit stages > α. These properties are indeed
ORM-decidable.)

9



(2) For each e < ω, check whether xe,σ = α. If such an e exists, then go on to
Step 3. Notice that if e exists, then it is unique, and we can always use
it in subsequent steps by using this same process to search for it again.
If no such e exists, output 0. (Only witness elements for R-requirements
ever enter B. We prove in Lemma 7 that we can compute xe,σ uniformly
from e and σ.)

(3) With the e from the previous step, we now simulate the operation of
the program ϕe on input α with oracle Aσ for σ steps. Of course, we
have no Aσ-oracle, so whenever our simulation asks whether some β < σ
lies in Aσ, we simply use the entry algorithm to check (for all τ with
0 ≤ τ < σ, starting with 0) whether β entered A at stage τ . Notice that
this is allowed by our stack machine, since each such τ and β is strictly
less than σ, even though the β might be > α. (The construction ensured
that Aσ ⊆ σ, so if the simulation asks whether some β ≥ σ lies in Aσ, we
answer “no” immediately, without using the entry algorithm to check.)
Thus we can determine whether ϕAσ

e,σ(α) ↓= 0. If not, output 0; if so, go
on.

(4) Now run the entry algorithm with α and with each stage τ < σ, to see if
α ∈ Bσ. If so, output 0, since α /∈ Bσ+1 −Bσ. If not, go on.

(5) Now compute xi,σ for each i < e, and run the entry algorithm with
each such xi,σ and with stage σ to determine whether any higher-priority
requirement than Re enumerated any element into B at stage σ + 1. For
this we do not push σ onto the stage stack, because to do so would be
illegal. Nor do we pop it off that stack at the end, because we want it to
stay there until the end of the run of the entry algorithm on α and σ.
However, we do push (ωσ +xi,σ) onto the input stack, which is legal since
xi,σ < xe,σ for i < e, and take it off again when we move on to the next
i. If we find any such xi,σ which entered B at stage σ + 1, then output 0.

Also, we compute yi,σ for each i < e and use the entry algorithm for A
to determine whether any such yi,σ entered A at stage σ+1. Here we must
be careful, because this run of the entry algorithm for B might have been
called by the entry algorithm for A. So we check the top (i.e. smallest)
element of the stage stack from the entry algorithm for A. If that element
equals σ, then we leave it there, and just push ωσ + yi,σ onto the input
stack, which is safe, because if the entry algorithm for A was already
running and needed to know about xe,σ entering B, it must have been
asking about an element yj,σ with j ≥ e > i, so that ωσ +yj,σ > ωσ +yi,σ.

When the entry algorithm for A concludes, we find σ on top of its stage
stack and consider the top two elements, say β < δ, on its input stack. (If
there is only one element β on the input stack, then we pop β off its stack
and σ off its stack, leaving nothing on either stack.) Now β must equal
ωσ + yi,σ. Then we pop δ off the input stack and find the largest term of
its Cantor normal form, say δ = ωτ + θ for some τ and θ. If τ = σ, then
we leave δ on top of the input stack and σ on top of the stage stack. If
τ 6= σ, then we leave δ on top of the input stack, but remove σ from the

10



stage stack. Thus, even though we left no specific indicator, when calling
the entry algorithm for A, of whether we had added a new σ on top of
the stage stack or not, we have still determined at the conclusion of that
algorithm whether or not a new σ had been added, and if it had, then
we have now removed it again.

Having completed the entry algorithm for A, we now know whether
any yi,σ with i < e entered A at stage σ + 1. If so, then output 0; if not,
then output 1. This completes the entry algorithm for B.

(If any higher-priority requirement Ri or Si enumerated an element
into B at stage σ + 1, then Re would not enumerate an element of its
own. If not, then all conditions are satisfied for α = xe,σ to enter B at
stage σ + 1.)

We define an analogous entry algorithm to check whether an arbitrary α en-
tered A at an arbitrary stage σ + 1, of course. Indeed, these two algorithms
call each other in certain cases, as detailed in Item (5). Because Re has higher
priority than Se, the entry algorithm for A must check in Item 5 whether any
xi,σ with i ≤ e entered B at stage σ + 1, rather than just checking for i < e.
Otherwise, the entry algorithms are symmetric in A and B.

Both entry algorithms are computable by stack machines, and the proof that
they give the correct answer is a fairly simple double induction, first on stages
σ, and for each individual stage, on inputs α < σ. The one twist to be noted
is that we promised a separate algorithm to compute xe,σ for arbitrary e and
σ; and since this algorithm is used in the entry algorithm, it can only call the
entry algorithm for smaller stages.

Lemma 7 There are ORM’s which compute xe,σ and ye,σ, uniformly in e and
σ, We refer to their programs as the witness algorithms for A and B. These
ORM’s use the entry algorithm from Lemma 6, but they only push stages < σ
onto the stage stack. (That is, they only ask whether elements entered A or B
at stages τ + 1 with τ < σ.)

PROOF. The witness algorithm is allowed to call itself, but only with de-
scending stages, just like the entry algorithms. To compute ye,σ, we start with
e = ye,0 in the output register of a stack machine. Then go through all ordi-
nal stages τ = 0, 1, . . .. As long as τ + 1 ≤ σ, we use the witness algorithm
to compute x0,τ , . . . , xe,τ and then the entry algorithm to check whether any
β = xi,τ with i ≤ e entered B at stage τ + 1. If so, then ye,τ+1 will have been
redefined to equal ye,τ + β + τ + (e− i) + 1, so we write this new value in the
output register in place of ye,τ . Otherwise we leave the output register as it is.
When τ + 1 finally equals σ + 1, we halt, and the value in the output register
will be ye,σ.

11



Notice that the corresponding routine for computing xe,σ asks only about
elements yi,τ with i < e. This mirrors the priority ranking of the requirements,
and is important for seeing that the inductive argument for correctness of this
algorithm is well-founded. This proves Lemma 7, and also Lemma 6. 2

With Lemma 6, it is clear that the sets A and B are ORM-enumerable. A, for
instance, is the domain of the ORM-computable function which, on input α,
starts with σ = 0, asks for each σ in turn whether α enters A at stage σ + 1,
and halts, putting α in the domain, if it ever receives a positive answer.

ORM-enumerability immediately implies that A ≤ORM ∅�, but we claim that
A ≤ORM ∅♦ as well. Given any ordinal x, we check first whether x is clockable.
If not, then x /∈ A. (When choosing witness elements, we made sure they were
all clockable.) Otherwise, there is an ORM program q which writes x and then
gives x as an input to the ORM-computable function whose domain is A. We
can compute this q uniformly from x, and x ∈ A iff q ∈ ∅♦. The same proof
works for B, so we have a pair of ORM-incomparable semidecidable sets below
∅♦, as Theorem 5 claimed. 2

3 Ordinal Time Turing Machines

An ordinal Turing machine, or OTM, runs a finite program, using a single
tape (equivalently, finitely many tapes) of ordinal length. That is, this tape
has one cell for each ordinal, on which a single bit (0 or 1) can be written. The
head moves left and right on the tape just as a finite-time Turing machine
does, reading cells and writing over them, with an exception occurring when
the head attempts to move left from a cell with a limit ordinal position. In this
case, we write the current cell position in Cantor normal form and subtract 1
from the rightmost nonzero coefficient to get the new ordinal position of the
head. (A simpler alternative is for the head to move all the way back to the
zero-ordinal cell if it is instructed to move left when sitting on a limit-ordinal
cell. This gives equivalent computing power.) At limit-ordinal stages, every
cell sets itself to the liminf of the bits it has held up to that stage, and the
machine enters a special limit state (or equivalently, enters the liminf of the
states it has been in up till that stage). The input to an OTM can be any set of
ordinals, described by an appropriate string of bits on the tape. However, if we
wish to consider only ordinal inputs, we usually represent input α by setting
the first α bits on the tape to 1 and the rest to 0. Outputs are evaluated
similarly, depending on whether we see them as ordinals or sets of ordinals.
For more details about OTM’s, see [6].

The original conception of machine computation in infinite time was the infi-

12



nite time Turing machine of Hamkins and Lewis in [2], which runs in ordinal
time but still has a tape of length ω. Such a machine can be simulated by an
OTM in which the limit-state instruction always sends the head back to the
zero-ordinal cell.

Theorem 8 Let f be any partial function from ordinals to ordinals. Then f
is computable by an ordinal Turing machine iff f is computable by an ordinal
register machine. Moreover, the program for the ORM is computable in finite
time from the program for the OTM and vice versa.

PROOF. The proof of the converse, where f is assumed to be computed by
an ORM, is straightforward, especially if one allows the OTM to have as many
tapes as the ORM has registers. (This is equivalent to a single-tape OTM, of
course.) The ORM operations can all be simulated by the OTM, and so the
ORM program translates easily (by a finite-time computation) into an OTM
program.

For the more substantial direction, assume that we have a program for an
ordinal Turing machine with a single one-way ordinal tape, such that, if the
tape begins with the first ξ-many cells set to 1 and the rest to 0 (representing
the input ξ), then the OTM halts iff ξ ∈ dom(f), with the first f(ξ) cells set
to 1 and the rest to 0 when (and if) it enters the halting state. To see that
some ORM also computes f on ordinals, we need the following lemma.

Lemma 9 There are two ordinal stack machines M and N such that on input
〈δ, σ, ξ〉, M outputs the value written in cell δ on the OTM tape at stage σ
when the OTM runs with input ξ, and N outputs the pair 〈q, β〉, where β is
the position of its reading head of the OTM and q is the state it is in after
σ steps on input ξ. The programs of M and N are computable in finite time
from the OTM program.

PROOF. M and N will be allowed to call each other, but we will make sure
that they only push smaller values onto each other’s stacks when doing so, of
course. Each machine has a single input register containing the value ξ, since
this will stay fixed throughout their computations. Each machine also has a
stage stack, and a cell stack, and M has two other stacks s1 and s2, while N
has s1, s2, and s3.

To begin the run of the machine M, we consider δ. If δ ≥ max(ξ, σ), then we
output 0 immediately, since the reading head of a Turing machine, starting
on the leftmost cell, cannot reach cell δ in < δ steps. Likewise, if σ ≤ δ < ξ,
we output 1, because then cell δ began with a 1 in it and cannot have been
reached by the head within σ stages. Otherwise we have δ < σ. In this case

13



we push σ onto stage stack of M, and ωσ +δ onto its cell stack, allowing us to
recover each of σ, δ, and ξ (from the input register) whenever we need them.

We check whether σ is a successor ordinal, determining its immediate prede-
cessor τ if it is one. If so, then we run N on the value 〈δ, τ, ξ〉 to determine the
state q of the OTM after stage τ and the position β of its head at that stage,
If β 6= δ, we simply run M on input 〈δ, τ, ξ〉 and output this value, since the
content of cell δ cannot change between stages τ and τ + 1 = σ unless the
head is on cell δ at stage τ . If δ = β, we push ωσ + q onto stack s1, run M
on input 〈δ, τ, ξ〉 to determine the content of cell δ at stage τ , get the state
q back from stack s1, consult the program for the OTM to determine what
value i the OTM wrote on cell δ at step σ (i.e. going from stage τ to stage σ),
and output i.

If σ was a limit ordinal, then we push ωσ onto the stack s1 and run the
following loop:

Determine the τ such that s1 contains ωσ + τ . Halt if τ = σ, and otherwise
run M on input 〈δ, τ, ξ〉, yielding an output i. Pop the current value off
stack s2, pushing ωσ + i onto s2 in its place, and pop the current value
ωσ + τ off stack s1, pushing ωσ + τ + 1 onto s1 in its place. Then repeat the
loop.

When this loop stops, pop the top value ωσ + i off stack s2, recover i from
it, and output i. At each stage τ ≤ σ, the smallest element on stack s2 was
ωσ + i, where i was the bit written in cell δ at stage τ in the operation of the
OTM. (By induction, this holds at limit stages as well as successor stages, since
OTM’s and ORM’s both take liminfs at limit stages.) So the i we recovered
above was the correct output for M.

The machine N actually never uses the δ from its input 〈δ, σ, ξ〉. It pushes σ
onto its stage stack and checks whether σ is a successor ordinal. If σ = τ + 1,
say, then it runs machine N on input 〈δ, τ, ξ〉 to determine the state q and
head location β of the OTM at stage τ . Pushing ωσ + q onto its stack s1 and
ωσ + β onto s2, it then runs M on input 〈β, τ, ξ〉 to find the content i of cell
β at stage τ , recovers q from s1, and consults the OTM program to determine
operation of the machine at stage σ: since it was in state q and reading an i at
stage τ , the program tells what state q′ it must enter at stage σ, and also tells
whether the head will move left or right. If the head moves right, we output
〈q′, β + 1〉. If the head moves left, then we determine the Cantor normal form
of β, chop off the last term, leaving some γ < β (or 0 if β = 0), and output
〈q′, γ〉. (For the simpler form of OTM, of course, we just output 〈q′, 0〉, since
those OTM’s automatically return their head to cell 0 in this situation.)

If σ is a limit ordinal, then the operation of N is very similar to that of M in
the corresponding situation. Instead of pushing ωσ + i onto stack s2, however,

14



we push ωσ + q onto s2 and ωσ +β onto s3, where 〈q, β〉 is the output of N on
input 〈δ, τ, ξ〉. When the loop ends, we pop the new values ωσ + q off s2 and
ωσ + β off s3, recover q and β from them, and output 〈q, β〉.

A careful reading shows that each machine M and N , on input 〈δ, σ, ξ〉, only
calls itself or the other machine with inputs where the middle term τ is < σ.
This means that all values pushed onto stacks in the preceding instructions
really are smaller than the values currently on top of those stacks. It also
shows that the obvious inductive argument for the correctness of the outputs
of M and N is well-founded. This completes the proof of Lemma 9. 2

The ORM which computes f is easily built from M and N . Starting with an
input ξ in its input register, it sets its stage register r0 to 0, then runs the
following loop:

Run N with input 〈0, σ, ξ〉, where σ is the value in r0 and ξ is the value
in the input register. If the output of N indicates that the OTM is not in
the halting state at stage σ, then increment r0 and repeat. If the OTM is
in the halting state, set the output register r1 to 0 and run the following
loop. Run M on input 〈δ, σ, ξ〉, with ξ still from the input register, δ from
r1, and σ from r0. If the output of M is 1, then increment r1 and repeat;
otherwise halt.

So if the OTM never halts on input ξ, neither does our ORM. If the OTM halts
at some stage σ, then according to our conventions, its tape contains f(ξ)-
many consecutive 1’s at that stage, followed by 0’s. In this case, the second
loop of the ORM keeps incrementing the output register r1 until r1 contains
f(ξ), at which point M indicates that the next cell on the OTM tape at stage
σ is a 0, so the ORM halts with f(ξ) written in r1.

Finally, it is clear that the program for our ORM uses the OTM program
practically verbatim in two spots (namely the successor-ordinal cases for M
and N , which are where the OTM instructions matter) and does not depend
on the OTM program anywhere else. So our ORM program is uniformly finite-
time computable from the OTM program, as claimed. 2

The obvious next question has to do with runtimes. If the OTM in question is
an α-Turing machine, i.e. halts in fewer than α steps (or not at all) on inputs
less than α, can we compute the same function f using an α-register machine?
(And conversely?) An α-register machine halts in fewer than α steps (or not at
all) and never writes any ordinal ≥ α in any register. The α-Turing machines,
of course, cannot reach any cell with a number greater than or equal to α in
fewer than α steps, so it is not necessary to state any restriction on memory
for α-TM’s; and it is unnecessary for α-RM’s as well in the case where α is

15



a power of ω. (Such powers α = ωγ are characterized by the property that
(∀β < α)β + α = α, so on input β < α, the input register cannot reach α
in fewer than α steps.) Koepke has shown in [7] that for admissible α, the
α-Turing machines and the α-register machines both compute precisely the
α-partial recursive functions, as defined in α-recursion theory, for instance in
[10]. So for these α, the answer is yes.

4 Softer proofs of the results

In the preceding arguments, we provided detailed ORM procedures for con-
structing a solution to Post’s Problem and simulating an ordinal Turing ma-
chine. We are pleased to have done so, and we believe that the procedure
helps illustrate several useful techniques of ORM computation. Nevertheless,
this part of the argument can be completely eliminated by making use of the
main theorem of [8]. The structure of our argument for Post’s Problem, for
example, was first to provide a set-theoretical definition of the sets A and B
in terms of their approximations Aσ and Bσ, which ensured that A and B
would be ORM-incomparable, and then to provide a detailed ORM algorithm
to decide the entry problems α ∈ Aσ+1−Aσ and α ∈ Bσ+1−Bσ, which ensured
that A and B would be ORM-enumerable. The point we would like to make
now is that once we have given the initial set-theoretic construction of the sets
Aσ and Bσ, we can simply observe that this construction can be carried out
inside Gödel’s constructible universe L, in such a way that the construction is
absolute to initial segments of L. That is, if some level of the constructibility
hierarchy Lη satisfies that an ordinal α has entered A at stage σ, then this is
truly the case. Therefore, in order to determine whether or not α enters A at
stage σ, we need only search for an ordinal η such that Lη satisfies the set-
theoretical assertion “α enters A at stage σ”. But the question of whether Lη

satisfies a given set-theoretical assertion ϕ(α, σ) is uniformly ORM-decidable
from input (η, α, σ, pϕq), by the main result of [8]. Consequently, both A and
B are ORM-enumerable, as desired. A similar analysis applies to Theorem 8.

In addition, we would like to mention that an even softer argument for Post’s
Problem can be made by appealing to the Sacks-Simpson [11] solution of Post’s
problem in α-recursion theory. It has been observed by Koepke in [7], after
the Bonn International Workshop on Ordinal Computability 2007, that for
any admissible ordinal α, the subsets of α that are computable in α-recursion
theory are exactly the sets that are ORM-computable with parameters in
time less than α. Using the admissible ordinal γ, the supremum of the ORM-
clockable ordinals, one may now transfer the solution of Post’s problem from γ-
recursion theory over to ordinal register machines. Koepke provides the details
of this idea in [7] in the case of ordinal Turing machines, but explains how
this argument also applies to ordinal register machines.

16



References

[1] R.M. Friedberg, Two recursively enumerable sets of incomparable degrees of
unsolvability, Proc. Nat. Acad. Sci. (USA) 43 (1957) 236–238.

[2] J.D. Hamkins & A. Lewis, Infinite time Turing machines, Journal of Symbolic
Logic 65 2 (2000) 567–604.

[3] J.D. Hamkins & A. Lewis, Post’s problem for supertasks has both positive and
negative solutions, Arch. Math. Logic 41 (2002) 507–523.

[4] J.D. Hamkins & R.G. Miller, Post’s Problem for ordinal register machines, in:
eds. B. Cooper, B. Löwe, & A. Sorbi, Computation and Logic in the Real World
– Third Conference on Computability in Europe, CiE 2007, Lecture Notes in
Computer Science 4497 (Springer-Verlag, Berlin, 2007) 358–367.

[5] L. Harrington & R.I. Soare, Post’s Program and incomplete recursively
enumerable sets, Proc. Nat. Acad. Sci. (USA) 88 (1991) 10242–10246.

[6] P. Koepke, Turing computations on ordinals, Bulletin of Symbolic Logic 11 3
(2005) 377–397.

[7] B. Dawson, P. Koepke, & B. Seyfferth, Ordinal machines and admissible
recursion theory, submitted for publication.

[8] P. Koepke & R. Siders, Register computations on ordinals, submitted for
publication.

[9] A.A. Muchnik, On the unsolvability of the problem of reducibility in the theory
of algorithms, Dokl. Akad. Nauk SSSR, N.S. 109 (1956) 194–197 (Russian).

[10] G.E. Sacks, Higher Recursion Theory (Berlin, Springer-Verlag, 1990).

[11] G.E. Sacks and Stephen G. Simpson, The α-finite injury method, Annals of
Mathematical Logic 4 (1972) 343–367.

[12] R.I. Soare, Recursively Enumerable Sets and Degrees (New York, Springer-
Verlag, 1987).

[13] P. Welch, The lengths of infinite time Turing machine computations, Bulletin
of the London Mathematical Society 32 2 (2000) 129–136.

17


