
ar
X

iv
:0

71
2.

14
99

v1
 [

cs
.L

O
]

 1
0

D
ec

 2
00

7

On the computational complexity of

cut-reduction

Klaus Aehlig

Computer Science

Swansea University

Swansea SA2 8PP, UK

k.t.aehlig@swansea.ac.uk

Arnold Beckmann

Computer Science

Swansea University

Swansea SA2 8PP, UK

a.beckmann@swansea.ac.uk

October 26, 2018

Abstract

We investigate the complexity of cut-reduction on proof notations,
in particular identifying situations where cut-reduction operates feasibly,
i.e., sub-exponential, on proof notations. We then apply the machinery
to characterise definable search problem in Bounded Arithmetic.

To explain our results with an example, let E(d) denote Mints’ con-
tinuous cut-reduction operator which reduces the complexity of all cuts
of a propositional derivation d by one level. We will show that if all sub-
proofs of d can be denoted with notations of size s, and the height of d
is h, then sub-proofs of the derivation E(d) can be denoted by notations
of size h · (s+O(1)). Together with the observation that determining the
last inference of a denoted derivation as well as determining notations for
immediate sub-derivations is easy (i.e., polynomial time computable), we
can apply this result to re-obtain that the Σb

i -definable functions of the
Bounded Arithmetic theory Si

2 are in the i-th level of the polynomial time

hierarchy of functions FPΣ
b
i−1 .

1 Introduction and Related Work

Since Gentzen’s invention of the “Logik Kalkül” LK and the proof of his “Haupt-
satz” [Gen35a, Gen35b], cut-elimination has been studied in many papers on
proof theory. Mints’ invention of continuous normalisation [Min78, KMS75]
isolates operational aspects of normalisation, that is the manipulations on (in-
finitary) propositional derivations. These operational aspects are described in-
dependently of the system’s proof theoretic complexity, but at the expense of
introducing the void logical rule of repetition to balance derivation trees.

Γ (R)
Γ

1

http://arxiv.org/abs/0712.1499v1
k.t.aehlig@swansea.ac.uk
a.beckmann@swansea.ac.uk

Note that this rule is both logically valid and preserves the sub-formula property,
which in particular means that it does not harm computational tasks related to
derivations as long as it does not occur too often.

It is well-known that, using (R), the cut-elimination operator becomes a
primitive recursive function which is continuous w.r.t. the standard metric on
infinitary trees: the normalisation procedure requires only as much informa-
tion of the input as it produces output, using (R) as the last inference rule of
the normal derivation, if the result cannot immediately be determined (“please
wait”).

In fact, associating some of the repetition rules with computation steps
bounds for the simply-typed lambda calculus can be obtained that bound the
sum of the number of computation steps and the size of the output [AJ05],
strengthening earlier results by Beckmann [Bec01]. Using Schütte’s ω-rule [Sch51]
this method can also be applied to Gödel’s [Göd58] system T .

In this report, we will re-examine this situation. We will show that the cut-
reduction operator can be understood as a polynomial time operation natural
way, see Observation 9.12. We will work with proof notations which give implicit
descriptions of (infinite) propositional proofs: a proof notation system will be a
set which is equipped with some functions, most importantly two which compute
the following tasks:

• Given a notation h, compute the last inference tp(h) in the denoted proof.

• Given a notation h and a number i ∈ N, compute a notation h[i] for the
i-th immediate sub-derivation of the derivation denoted by h.

Implicit proof notations given in this way uniquely determine a propositional
derivation tree, by exploring the derivation tree from its root and determining
the inference at each node of the tree. The cut-reduction operator will be
defined on such implicitly described derivation trees. For this, we build on
Buchholz’ technical very smooth approach to notation systems for continuous
cut-elimination [Buc91, Buc97]. Our main result of the first part of the report in
particular implies the following statement, as can be seen from Corollary 9.11.
Let 2n(x) denote the n-fold iteration of exponentiation 2x.

Let d be some propositional derivation, and assume that all sub-
proofs of d can be denoted with notations of size bounded by s,
and that the height of d is h. Then, all sub-proofs of the derivation
obtained from d by reducing the complexity of cut-formulae by k
can be denoted by notations of size bounded by 2k−1(2h) · s.

Observe that the size of notations is exponential only in the height of the original
derivation. In the second part of this report we will identify situations occurring
in proof-theoretical investigations of Bounded Arithmetic where this height is
bounded by an iterated logarithm of some global size parameter, making these
sizes feasible.

2

Bounded Arithmetic has been introduced by Buss [Bus86] as theories of
arithmetic with a strong connection to computational complexity. For sake
of simplicity of this introduction, we will concentrate only on the Bounded
Arithmetic theories Si2 by Buss [Bus86]. These theories are given as first or-
der theories of arithmetic in a language which suitably extends that of Peano
Arithmetic where induction is restricted in two ways. First, logarithmic induc-
tion is considered which only inducts over a logarithmic part of the universe of
discourse.

ϕ(0) ∧ (∀x)(ϕ(x) → ϕ(x + 1)) → (∀x)ϕ(|x|) .

Here, |x| denotes the length of the binary representation of the natural num-
ber x, which defines a kind of logarithm on natural numbers. Second, the
properties which can be inducted on, must be described by a suitably restricted
(“bounded”) formula. The class of formulae used here are the Σb

i -formulae
which exactly characterise Σp

i , that is, properties of the i-th level of the poly-
nomial time hierarchy of predicates. The theory’s Si2 main ingredients are the
instances of logarithmic induction for Σb

i formulae.
Let a (multi-)function f be called Σb

j -definable in Si2, if its graph can be

expressed by a Σb
j -formula ϕ, such that the totality of f , which renders as

(∀x)(∃y)ϕ(x, y), is provable from the Si2-axioms in first-order logic. The main
results characterising definable (multi-) functions in Bounded Arithmetic are
the following.

• Buss [Bus86] has characterised the Σb
i -definable functions of S

i
2 as FP

Σb
i−1 ,

the i-th level of the polynomial time hierarchy of functions.

• Kraj́ıček [Kra93] has characterised the Σb
i+1-definable multi-functions of

Si
2 as the class FPΣb

i [wit,O(log n)] of multi-functions which can be com-
puted in polynomial time using a witness oracle from Σp

i , where the num-
ber of oracle queries is restricted to O(log n) many (n being the length of
the input).

• Buss and Kraj́ıček [BK94] have characterised the Σb
i−1-definable multi-

functions of Si2 as projections of solutions to problems from PLSΣ
b
i−2 , which

is the class of polynomial local search problems relativised to Σp
i−2-oracles.

We will re-obtain all these definability characterisations by one unifying
method using the results from the first part of this report in the following
way. First, we will define a suitable notation system HBA for propositional
derivations which are obtained by translating Bounded Arithmetic proofs. The
propositional translation used here is well-known in proof-theoretic investiga-
tions; the translation has been described by Tait [Tai68], and later was inde-
pendently discovered by Paris and Wilkie [PW85]. In the Bounded-Arithmetic
world it is known as the Paris-Wilkie translation.

Applying the machinery from the first part we obtain a notation system
CHBA of cut-elimination for HBA. CHBA will have the property that its implicit

3

descriptions, most notably the functions tp(h) and h[i] mentioned above, will
be polynomial time computable.

This allows us to formulate a general local search problem on CHBA which
is suitable to characterise definable multi-functions for Bounded Arithmetic.
Assume that (∀x)(∃y)ϕ(x, y), describing the totality of some multi-function, is
provable in some Bounded Arithmetic theory. Fix a particularly nice formal
proof p of this. Given N ∈ N we want to describe a procedure which finds some
K such that ϕ(N,K) holds. Invert the proof p of (∀x)(∃y)ϕ(x, y) to a proof
of (∃y)ϕ(x, y) where x is fresh a variable, then substitute N for all occurrences
of x. This yields a proof of (∃y)ϕ(N, y). Adding an appropriate number of
cut-reduction operators we obtain a proof with all cut-formulae of (at most) the
same logical complexity as ϕ. It should be noted that a notation h(N) for this
proof can be computed in time polynomial in N .

The general local search problem which finds a witness for (∃y)ϕ(N, y) can
now be characterised as follows. Its instance is given by N . The set of solutions
are those notations of a suitable size, which denote a derivation having the
property that the derived sequent is equivalent to (∃y)ϕ(N, y) ∨ ψ1 ∨ · · · ∨ ψl

where all ψi are “simple enough” and false. An initial solution is given by
h(N). A neighbour to a solution h is a solution which denotes an immediate
sub-derivation of the derivation denoted by h, if this exists, and h otherwise. The
cost of a notation is the height of the denoted derivation. The search task is to
find a notation in the set of solutions which is a fixpoint of the neighbourhood
function. Obviously, a solution to the search task must exist. In fact, any
solution of minimal cost has this property. Now consider any solution to the
search problem. It must have the property, that none of the immediate sub-
derivations is in the solution space. This can only happen if the last inference
derives (∃y)ϕ(N, y) from a true statement ϕ(N,K) for some K ∈ N. Thus K
is a witness to (∃y)ϕ(N, y), and we can output K as a solution to our original
witnessing problem.

Depending on the complexity of logarithmic induction present in the Bounded
Arithmetic theory we started with, and the level of definability, we obtain lo-
cal search problems defined by functions of some level of the polynomial time
hierarchy, and different bounds to the cost function. For example, if we start
with the Σb

i -definable functions of Si2, we obtain a local search problem defined

by properties in FPΣb
i−1 , where the cost function is bounded by |N |O(1). Thus,

by following the canonical path through the search problem which starts at
the initial value and iterates the neighbourhood function, we obtain a path of

polynomial length, which describes a procedure in FPΣb
i−1 to compute a witness.

Other research related to our investigations is a paper by Buss [Bus04] which
also makes use of the Paris-Wilkie translation to obtain witnessing results by
giving uniform descriptions of translated proofs. However, Buss’ approach does
not explicitely involve cut-elimination. Dynamic ordinal analysis [Bec03, Bec06]
characterises the heights of propositional proof trees obtained via the Paris-
Wilkie translation and cut-reduction. Therefore, it is not surprising that the

4

bounds obtained by dynamic ordinal analysis coincide with the bounds on cost
functions we are exploiting here.

The potential of our approach to the characterisations of definable search
problems via notation systems is that it may lead to characterisations of so
far uncharacterised definable search problems, most notably the Σb

1-definable
search problems in Si2 for i ≥ 3.

2 Proof Systems

Let S be a set. The set of all subsets of S will be denoted by P(S), the set of
all finite subsets of S will be denoted by Pfin(S).

Definition 2.1 (sequent). Let F be a set (of formulae), ≈ a binary relation on
F (identity between formulae), and rk: P(F)×F → N a function (rank). A se-
quent over F ,≈, rk is a finite subset of F . We use Γ,∆, . . . as syntactic variables
to denote sequents. With ≈∆ we denote the set {A ∈ F : (∃B ∈ ∆)A ≈ B}.

We usually write A1, . . . , An for {A1, . . . , An} and A,Γ,∆ for {A} ∪ Γ ∪∆,
etc. We always write C-rk(A) instead of rk(C, A).

We repeat standard Buchholz notation for proof systems [Buc97].

Definition 2.2. A proof system S over F ,≈, rk is given by

• a set of formal expressions called inference symbols (syntactic variable I);

• for each inference symbol I an ordinal |I| ≤ ω, a sequent ∆(I) and a
family of sequents (∆ι(I))ι<|I|.

Proof systems may have inference symbols of the form CutC for C ∈ F ;
these are called “cut inference symbols” and their use will (in Definition 2.4) be
measured by the C-cut rank.

Notation 2.3. By writing
. . .∆ι . . . (ι < I)

(I)
∆

we declare I as an infer-

ence symbol with |I| = I, ∆(I) = ∆, ∆ι(I) = ∆ι. If |I| = n we write
∆0 ∆1 . . . ∆n−1

∆
instead of

. . .∆ι . . . (ι < I)

∆
.

Definition 2.4 (Inductive definition ofS-quasi derivations). If I is an inference
symbol of S, and (dι)ι<|I| is a sequence of S-quasi derivations, then d :=

5

I(dι)ι<|I| is an S-quasi derivation with

Γ(d) := ∆(I) ∪
⋃

ι<|I|

(Γ(dι) \ ≈∆ι(I)) (endsequent of d)

last(d) := I (last inference of d)

d(ι) := dι for ι < |I| (sub-derivation)

C-crk(d) := sup({C-rk(I)} ∪ {C-crk(dι) : ι < |I|}) (cut-rank of d)

where C-rk(I) :=

{
C-rk(C) + 1 if I = CutC

0 otherwise

hgt(d) := sup {hgt(dι) + 1: ι < |I|} (height of d)

sz(d) := (
∑

ι<|I|

sz(dι)) + 1 (size of d)

3 The infinitary proof system

Definition 3.1. Let C = {⊤,⊥,
∧
,
∨
} be the set of (symbols for) connectives

for infinitary logic. Their arity is given by |⊤| = |⊥| = 0 and |
∧
| = |

∨
| = ω. We

define a negation of the connectives according to the de Morgan laws: ¬(⊤) = ⊥,
¬(⊥) = ⊤, ¬(

∧
) =

∨
, and ¬(

∨
) =

∧
.

Definition 3.2. The set of all infinitary formulae L∞ together with their rank
is inductively defined by the clause: if c ∈ C and Aι ∈ L∞ for ι < |c| then
c(Aι)ι<|c| ∈ L∞ and C-rk(c(Aι)ι<|c|) = supι<|c|(C-rk(Aι) + 1).

Notation

We denote ⊤() by ⊤ and ⊥() by ⊥.

Definition 3.3. ¬ denotes the operation on L∞ which computes negation ac-
cording to the de Morgan rules, i.e.

¬
(
c(Aι)ι<|c|

)
:= ¬(c)

(
¬(Aι)

)
ι<|c|

Definition 3.4. The set of all infinitary formulae of finite rank is denoted with
F∞. The identity between F∞-formulae is the “true” set-theoretic equality.

Definition 3.5. The infinitary proof system S∞ is the proof system over F∞

which is given by the following set of inference symbols:

(Ax)
⊤

. . . Aι . . . (ι < ω)
(
∧

A) A
for A =

∧
(Aι)ι<ω ∈ F∞

Ai
(
∨i

A) A
for A =

∨
(Aι)ι<ω ∈ F∞ and i < ω

6

C ¬C(CutC)
∅

for C ∈ F∞

∅
(Rep)

∅

Definition 3.6. The S∞-derivations are the S∞-quasi derivations.

With a S∞-derivation d = I(dι)ι<|I| we can associate a function from N<ω

to S∞ by letting d(〈〉) := last(d) and

d(〈i〉⌢ s) :=

{
di(s) if i < |I|

Ax otherwise

4 Notation system for infinitary formulae

Definition 4.1. A notation system for (infinitary) formulae is a set F of “for-
mulae”, together with four functions tp : F → {⊤,⊥,

∧
,
∨
}, ·[·] : F × N → F ,

¬ : F → F , and rk: P(F) × F → N called “outermost connective”, “sub-
formula”, “negation” and “rank”, and a relation ≈ ⊆ F × F called “inten-
sional equality”, such that tp(¬(f)) = ¬(tp(f)), ¬(f)[n] = ¬(f [n]), C-rk(f) =
C-rk(¬f), C-rk(f [n]) < C-rk(f) for n < | tp(f)|, and f ≈ g implies tp(f) = tp(g),
f [n] ≈ g[n], ¬(f) ≈ ¬(g) and C-rk(f) = C-rk(g).

It should be noted that if F is a notation system for formulae, then so is
F/ ≈ in the obvious way; moreover, in F/ ≈ the intensional equality is true
equality in the quotient. The reason why we nevertheless explicitly consider
an (intensional) equality relation is that we are interested in the computational
complexity of notation systems and therefore prefer to take notations as the
strings that arise naturally, rather than working on the quotient. Note that
the latter would require us to compute canonical representations anyway and
so would just push the problem to a different place.

It should also be noted that the intensional equality is truly intensional.
Two formulae are only equal, if they are given to us as being equal. The obvi-
ous extensional equality would be the largest bisimulation, that is, the largest
relation ∼⊂ F × F satisfying f ∼ g → tp(f) = tp(g) ∧ f [n] ∼ g[n] ∧ C-rk(f) =
C-rk(g) ∧ ¬f ∼ ¬g. However, as most extensional concepts, the largest bisimu-
lation is undecidable in almost all interesting cases and therefore not suited for
an investigation of effective notations.

Definition 4.2. Let F = (F , tp, ·[·], rk,≈) be a notation system for infinitary
formulae. The interpretation [[f]]∞ of f ∈ F is inductively defined as

[[f]]∞ = tp(f)([[f [ι]]]∞)ι<| tp(f)|

Observation 4.3. The following properties hold.

1. f ∼ g ⇔ [[f]]∞ = [[g]]∞,

2. f ≈ g ⇒ [[f]]∞ = [[g]]∞.

7

5 Semiformal proof systems

Let F = (F , tp, ·[·], rk,≈) be a notation system for infinitary formulae.

Definition 5.1. The semiformal proof system SF over F is the proof system
over F which is given by the following set of inference symbols:

(AxA)
A for A ∈ F with tp(A) = ⊤

. . . C[n] . . . (n ∈ N)
(
∧

C) C
for C ∈ F with tp(C) =

∧

C[i]
(
∨i

C) C
for C ∈ F with tp(C) =

∨
and i ∈ N

C ¬C(CutC)
∅

for C ∈ F with tp(C) ∈ {⊤,
∧
}

∅
(Rep)

∅

Abbreviations

For tp(C) ∈ {⊥,
∨
} let

C ¬C(CutC)
∅

denote
¬C C(Cut¬C)

∅
.

Definition 5.2. The SF -derivations are the SF -quasi derivations.

Later in our applications, we will be concerned only with derivations of
finite height, for which we can formulate slightly sharper upper bounds on cut-
reduction than in the general (infinite) case (2α versus 3α). Thus, from now on
we will restrict attention to derivations of finite height only.

Definition 5.3. Let d ⊢α
C,m Γ denote that d is an SF -derivation with Γ(d) ⊆

≈Γ, C-crk(d) ≤ m, and hgt(d) ≤ α < ω .

Definition 5.4. The interpretation [[d]]∞ of a SF -derivation d = I(dι)ι<|I| is
defined as

[[d]]∞ := [[I]]∞([[dι]]∞)ι<|I|

where [[I]]∞ is defined by

[[AxA]]∞ := Ax

[[
∧

A]]∞ :=
∧

[[A]]∞

[[
∨i

A]]∞ :=
∨i

[[A]]∞

[[CutC]]∞ := Cut[[C]]∞

[[Rep]]∞ := Rep

Observation 5.5. Γ([[d]]∞) ⊆ [[Γ(d)]]∞

Proof. Induction on d. The “⊆”, instead of the expected “=” is due to the
fact, that only formulae are removed from the conclusion that are intensionally
equal; compare also Observation 4.3.

8

6 Cut elimination for semiformal systems

Let F = (F , tp, ·[·], rk,≈) be a notation system for infinitary formulae, and SF

the semiformal proof system over F . We define Mints’ continuous cut-reduction
operator [Min78, KMS75] following the description given by Buchholz [Buc91].
The only modification is our explicit use of intensional equality.

Theorem 6.1 (and Definition). Let C ∈ F with tp(C) =
∧
, and k < ω be given.

We define an operator IkC such that: d ⊢α
C,m Γ, C ⇒ IkC(d) ⊢

α
C,m Γ, C[k].

Proof by induction on the build-up of d: W.l.o.g. we may assume that Γ = Γ(d)\
≈{C}.

Case 1. last(d) ∈ {
∧

D : D ≈ C}. Then

IkC(d) := Rep(IkC(d(k)))

is a derivation as required.

Case 2. I := last(d) /∈ {
∧

D : D ≈ C}. Then

IkC(d) := I(IkC(d(i)))i<|I|

is a derivation as required.

Theorem 6.2 (and Definition). Let C ∈ F with tp(C) ∈ {⊤,
∧
} be given.

We define an operator RC such that: d0 ⊢α
C,m Γ, C & d1 ⊢β

C,m Γ,¬C

& C-rk(C) ≤ m ⇒ RC(d0, d1) ⊢
α+β
C,m Γ.

Proof by induction on the build-up d: W.l.o.g. we may assume that Γ = (Γ(d0)\
≈{C}) ∪ (Γ(d1) \ ≈{¬C}). Let I = last(d1).

Case 1. ∆(I)∩≈{¬C} = ∅. Then ∆(I) ⊆ Γ and d1(i) ⊢
βi

C,m Γ,¬C,∆i(I) with

βi < β for all i < |I|. By induction hypothesis we obtain RC(d0, d1(i)) ⊢
α+βi

C,m

Γ,∆i(I) for i < |I|. Hence

RC(d0, d1) := I(RC(d0, d1(i)))i<|I|

is a derivation as required.

Case 2. ∆(I)∩≈{¬C} 6= ∅. Then tp(C) 6= ⊤, because otherwise there is some
D ∈ ∆(I) with tp(D) = ⊥, but this is not satisfied by any of the inference
symbols of the semiformal system SF . Hence tp(C) =

∧
. We obtain that

I =
∨k

D for some k ∈ N and D ≈ ¬C, and d1(0) ⊢β0

C,m Γ,¬C,¬C[k] with

β0 < β. By induction hypothesis we obtain RC(d0, d1(0)) ⊢
α+β0

C,m Γ,¬C[k]. The

Inversion Theorem shows IkC(d0) ⊢
α
C,m Γ, C[k]. Now C-rk(C[k]) < C-rk(C) ≤ m,

hence
RC(d0, d1) := CutC[k](I

k
C(d0),RC(d0, d1(0)))

is a derivation as required.

9

Theorem 6.3 (and Definition). We define an operator E such that:
d ⊢α

C,m+1 Γ ⇒ E(d) ⊢2α−1
C,m Γ.

Proof by induction on the build-up of d: W.l.o.g. we may assume that Γ = Γ(d).

Case 1. last(d) = CutC . Then C-rk(C) ≤ m and d(0) ⊢α0

C,m+1 Γ, C and

d(1) ⊢α0

C,m+1 Γ,¬C with α0 < α. By induction hypothesis we obtain E(d(0)) ⊢2α0−1
C,m

Γ, C and E(d(1)) ⊢2α0−1
C,m Γ,¬C.

Case 1.1. tp(C) ∈ {⊤,
∧
}, then by the last TheoremRC(E(d(0)),E(d(1))) ⊢

2·2α0−2
C,m

Γ, and
E(d) := Rep(RC(E(d(0)),E(d(1))))

is a derivation as required.

Case 1.2. tp(C) /∈ {⊤,
∧
}, then R¬C(E(d(1)),E(d(0))) ⊢2·2α0−1

C,m Γ. Continue
as before.

Case 2. I := last(d) 6= CutC . Then

E(d) := I(E(d(i)))i<|I|

is as required.

Remark 6.4. Immediately from the definition we note that the operators I, R,
and E only inspects the last inference symbol of a derivation to obtain the last
inference symbol of the transformed derivation. It should be noted that this
continuity would not be possible without the repetition rule.

7 Notations for derivations and cut-elimination

Let F be a notation system for formulae, and SF the semiformal proof system
over F from Definition 5.1.

Definition 7.1. A notation system for SF is a set H of notations and functions
tp: H → SF , ·[·] : H × N → H, Γ : H → Pfin(F), crk : P(F) × H → N, and
o, |·| : H → N\{0} called denoted last inference, denoted sub-derivation, denoted
end-sequent, denoted cut-rank, denoted height and size, such that C-crk(h[n]) ≤
C-crk(h), tp(h) = CutC implies C-rk(C) < C-crk(h), o(h[n]) < o(h) for n <
| tp(h)|, and the following local faithfulness property holds for h ∈ H:

∆(tp(h)) ∪
⋃

ι<| tp(h)|

(
Γ(h[ι]) \ ≈∆ι(tp(h)))

)
⊆ ≈Γ(h) .

Proposition 7.2.

Γ(h[j]) ⊆ ≈
(
Γ(h) ∪∆j(tp(h))

)

10

Definition 7.3. Let H = (H, tp, ·[·], o, |·|) be a notation system for SF . The
interpretation [[h]] of h ∈ H is inductively defined as the followingSF -derivation:

[[h]] := tp(h)([[h[n]]])n<| tp(h)|

Observation 7.4. For h ∈ H we have

last([[h]]) = tp(h)

[[h]](ι) = [[h[ι]]] for ι < | tp(h)|

Γ([[h]]) ⊆ ≈Γ(h)

We now extend a notation system H for SF to notation system for cut-
elimination on H, by adding notations for the operators I, R and E from the
previous section.

Definition 7.5. The notation system CH for cut-elimination on H is given by
the set of terms CH which are inductively defined by

• H ⊂ CH,

• h ∈ CH, C ∈ F with tp(C) =
∧
, k < ω ⇒ I

k
Ch ∈ CH,

• h0, h1 ∈ CH, C ∈ F with tp(C) ∈ {⊤,
∧
} ⇒ RCh0h1 ∈ CH,

• h ∈ CH ⇒ Eh ∈ CH,

where I,R,E are new symbols, and functions tp : CH → SF , ·[·] : CH×N → CH,
Γ : CH → Pfin(F), crk: P(F) × CH → N, o : CH → N \ {0} and |·| : CH → N

defined by recursion on the build-up of h ∈ CH:

• If h ∈ H then all functions are inherited from H.

• h = I
k
Ch0: Let Γ(h) := {C[k]} ∪ (Γ(h0) \ ≈{C}), C-crk(h) := C-crk(h0),

o(h) := o(h0), and |h| := |h0|+ 1.

Case 1. tp(h0) ∈ {
∧

D : D ≈ C}. Then let tp(h) := Rep, and h[0] :=
I
k
Ch0[k].

Case 2. Otherwise, let tp(h) := tp(h0), and h[i] := I
k
Ch0[i].

• h = RCh0h1: Let I := tp(h1). We define Γ(h) := (Γ(h0)\≈{C})∪(Γ(h1)\
≈{¬C}), C-crk(h) := max{C-crk(h0), C-crk(h1)}, o(h) := o(h0) + o(h1),
and |h| := |h0|+ |h1|+ 1.

Case 1. ∆(I) ∩≈{¬C} = ∅: Then let tp(h) := I, and h[i] := RCh0h1[i].

Case 2. Otherwise, tp(C) 6= ⊤, because if not there would be some
D ∈ ∆(I) with tp(D) = ⊥, but this is not satisfied by any of the inference

symbols of the semiformal system SF . Hence tp(C) =
∧
. Thus I =

∨k
D

for some k ∈ N and D ≈ ¬C. Then let tp(h) := CutC[k] and h[0] := I
k
Ch0,

h[1] := RCh0h1[0].

11

• h = Eh0: Let Γ(h) := Γ(h0), C-crk(h) := C-crk(h0) ·− 1, o(h) := 2o(h0) − 1,
and |h| := |h0|+ 1.

Case 1. tp(h0) = CutC : Then let tp(h) := Rep and
let h[0] := RCEh0[0]Eh0[1] if tp(C) ∈ {⊤,

∧
},

let h[0] := R¬CEh0[1]Eh0[0] if tp(C) /∈ {⊤,
∧
}.

Case 2. Otherwise, let tp(h) := tp(h0), and h[i] := Eh0[i].

Proof. The just defined system is a notation system for SF in the sense of
Definition 7.1. To prove this we have to show that

o(h[n]) < o(h) for n < | tp(h)| (1)

and that the local faithfulness property for Γ holds. We start by proving (1) by
induction on the build-up of h ∈ CH.

If h ∈ H then (1) is inherited from H. If h = I
k
Ch0 then h[n] = I

k
Ch0[n

′] for
some n′ and (1) is immediate by induction hypothesis.

Now let us consider the case h = RCh0h1. If h[n] = RCh0h1[n
′] for some n′

then (1) is immediate by induction hypothesis. The other case is that h[0] =
I
k
Ch0 for some k. We compute

o(h[0]) = o(IkCh0) = o(h0) < o(h0) + o(h1) = o(h)

since o(h1) > 0.
Finally, let us consider the case h = Eh0. If h[n] = Eh0[n] then (1) is

immediate by induction hypothesis. Otherwise, we are in the case h[0] =
RC(Eh0[i])(Eh0[j]) for some C, i, j. By induction hypothesis we obtain that
o(h0[i]) ≤ o(h0)− 1 and o(h0[j]) ≤ o(h0)− 1. Hence

o(RC(Eh0[i])(Eh0[j])) = o(Eh0[i]) + o(Eh0[j]) = 2o(h0[i]) − 1 + 2o(h0[j]) − 1

< 2 · 2o(h0)−1 − 1 = 2o(h0) − 1 = o(h)

We now turn to the local faithfulness property of Γ which we also prove by
induction on the build-up of h ∈ CH. We abbreviate

∗(h) := ∆(tp(h)) ∪
⋃

ι<| tp(h)|

(
Γ(h[ι]) \ ≈∆ι(tp(h)))

)
,

then we have to show ∗(h) ⊆ ≈Γ(h).

• If h ∈ H then the local faithfulness property is inherited from H.

• If h = I
k
Ch0, then Γ(h) := {C[k]} ∪ (Γ(h0) \ ≈{C}).

Case 1. tp(h0) ∈ {
∧

D : D ≈ C}. Then Γ(h0[k]) ⊆ ∗(h0)∪≈{C[k]} hence

∗(h) = ∅ ∪ Γ(IkCh0[k])

= {C[k]} ∪
(
Γ(h0[k]) \ ≈{C}

)

⊆ {C[k]} ∪
(
∗ (h0) \ ≈{C}

)

i.h.
⊆ {C[k]} ∪

(
≈Γ(h0) \ ≈{C}

)
⊆ ≈Γ(h)

12

Case 2. Otherwise, we compute

∗(h) = ∆(tp(h0)) ∪
⋃

ι<| tp(h0)|

(
Γ(IkCh0[ι]) \ ≈∆ι(tp(h0))

)

= ∆(tp(h0)) ∪
⋃

ι<| tp(h0)|

([
{C[k]} ∪

(
Γ(h0[ι]) \ ≈{C}

)]
\ ≈∆ι(tp(h0))

)

⊆ {C[k]} ∪
([

∆(tp(h0)) ∪
⋃

ι<| tp(h0)|

(
Γ(h0[ι]) \ ≈∆ι(tp(h0))

)]
\ ≈{C}

)

= {C[k]} ∪
(
∗ (h0) \ ≈{C}

)

i.h.
⊆ {C[k]} ∪

(
≈Γ(h0) \ ≈{C}

)
⊆ ≈Γ(h)

• h = RCh0h1: Let I := tp(h1). We have Γ(h) := (Γ(h0) \≈{C})∪ (Γ(h1) \
≈{¬C}).

Case 1. ∆(I) ∩≈{¬C} = ∅: We compute

∗(h) = ∆(I) ∪
⋃

ι<|I|

(
Γ(RCh0h1[ι]) \ ≈∆ι(I)

)

= ∆(I) ∪
⋃

ι<|I|

([
Γ(h0) \ ≈{C} ∪ Γ(h1[ι]) \ ≈{¬C}

]
\ ≈∆ι(I)

)

⊆ Γ(h0) \ ≈{C} ∪
([

∆(I) ∪
⋃

ι<|I|

(
Γ(h1[ι]) \ ≈∆ι(I)

)]
\ ≈{¬C}

)

= Γ(h0) \ ≈{C} ∪ ∗(h1) \ ≈{¬C}

i.h.
⊆ Γ(h0) \ ≈{C} ∪ ≈Γ(h1) \ ≈{¬C} ⊆ ≈Γ(h)

Case 2. Otherwise, we compute

∗(h) = Γ(IkCh0) \ ≈{C[k]} ∪ Γ(RCh0h1[0]) \ ≈{¬C[k]}

=
(
{C[k]} ∪

(
Γ(h0) \ ≈{C}

)
\ ≈{C[k]}

∪
(
Γ(h0) \ ≈{C} ∪ Γ(h1[0]) \ ≈{¬C}

)
\ ≈{¬C[k]}

⊆ Γ(h0) \ ≈{C} ∪
(
Γ(h1[0]) \ ≈{¬C[k]}

)
\ ≈{¬C}

⊆ Γ(h0) \ ≈{C} ∪ ∗(h1) \ ≈{¬C}

i.h.
⊆ Γ(h0) \ ≈{C} ∪ ≈Γ(h1) \ ≈{¬C} ⊆ ≈Γ(h)

• h = Eh0: Then Γ(h) := Γ(h0).

13

Case 1. tp(h0) = CutC : Assume tp(C) ∈ {⊤,
∧
}, then

∗(h) = Γ(RCEh0Eh1)

= Γ(Eh0[0]) \ ≈{C} ∪ Γ(Eh0[1]) \ ≈{¬C}

= Γ(h0[0]) \ ≈{C} ∪ Γ(h0[1]) \ ≈{¬C}

= ∗(h0)
i.h.
⊆ ≈Γ(h0) ⊆ ≈Γ(h)

The case that tp(C) /∈ {⊤,
∧
} runs similar.

Case 2. Otherwise, we compute

∗(h) = ∆(tp(h0)) ∪
⋃

ι<| tp(h0)|

(
Γ(Eh0[ι]) \ ≈∆ι(tp(h0))

)

= ∆(tp(h0)) ∪
⋃

ι<| tp(h0)|

(
Γ(h0[ι]) \ ≈∆ι(tp(h0))

)

= ∗(h0)
i.h.
⊆ ≈Γ(h0) = ≈Γ(h)

Remark 7.6. For the computation of Γ, the cut-elimination operators IkC , RC

and E behave like the following inference symbols:

C
(IkC) C[k]

,
C ¬C(RC)

∅
,

∅
(E)

∅
.

Definition 7.7. Let CH be the notation system for cut-elimination on H. The
interpretation [[h]] is extended inductively from H to CH by defining

[[IkCh]] = IkC([[h]])

[[RCh0h1]] = RC([[h0]], [[h1]])

[[Eh]] = E([[h]]).

Proposition 7.8. For h ∈ CH we have

last([[h]]) = tp(h)

[[h]](ι) = [[h[ι]]] for ι < | tp(h)|

C-crk([[h]]) ≤ C-crk(h)

Proof. By induction on the build-up of h ∈ CH. If h ∈ H then the assertion
is inherited from H and Observation 7.4. The remaining cases follow from
Theorems 6.1, 6.2 and 6.3.

14

8 An Abstract Notion of Notation

We are now interested in studying the size needed by the notations for sub-
derivations of derivations obtained by the cut-elimination operator. To avoid
losing the simple idea in a blurb of notation, we abstract our problem to a simple
term-rewriting system.

Definition 8.1. An abstract system of proof notations is a set D of “deriva-
tions”, together with two functions |·|, o(·) : D → N \ {0}, called “size” and
“height”, and a relation →⊆ D×D called “reduction to a sub-derivation”, such
that d→ d′ implies o(d′) < o(d).

Observation 8.2 (and Definition). Let F be a notation system for formu-
lae and SF the semiformal proof system over F . A notation system H =
(H, tp, ·[·], o, |·|) for SF gives rise to an abstract system of proof notations by
letting D = H and defining d→ d′ iff there exists an n < | tp(d)| with d′ = d[n].

Definition 8.3. If D is an abstract system of proof notations, then D̃, the
“cut elimination closure”, is the abstract notation system extending D that is
inductively defined by

d ∈ D

d ∈ D̃

d ∈ D̃

Id ∈ D̃

d ∈ D̃ e ∈ D̃

Rde ∈ D̃

d ∈ D̃

Ed ∈ D̃

|Id| = |d|+ 1 |Rde| = |d|+ |e|+ 1 |Ed| = |d|+ 1

d→ d′ in D
d→ d′

d→ d′

Id→ Id′
e→ e′

Rde→ Rde′
d→ d′

Ed→ Ed′

Rde→ Id

d→ d′ d→ d′′

Ed→ R(Ed′)(Ed′′)

o(Id) = o(d) o(Rde) = o(d) + o(e) o(Ed) = 2o(d) − 1

where E, R, I are new symbols.

Proof. We have to show that whenever d → d′ for d, d′ ∈ D̃ then o(d) > o(d′).
We show this by Induction following the inductive definition of the → relation
in D̃. If d → d′ holds in D̃ because it already holds in D then o(d) > o(d′) is
inherited from D. The cases Id→ Id′, Rde→ Rde′ and Ed→ Ed′ are immediate
by induction hypothesis.

For the remaining cases we argue as follows. In case Rde → Id we calculate
o(Rde) = o(d) + o(e) > o(d) = o(Id), since o(e) > 0.

In the case Ed → R(Ed′)(Ed′′) thanks to d → d′ and d → d′′ we have
o(d) ≥ o(d′) + 1 and o(d) ≥ o(d′′) + 1. So, we calculate o(R(Ed′)(Ed′′)) =
o(Ed′)+o(Ed′′) = 2o(d

′)−1+2o(d
′′)−1 < 2o(d

′)+2o(d
′′)−1 ≤ 2o(d)−1 = o(Ed).

Let F be a notation system for formulae, SF the semiformal proof system
over F , H a notation system for SF , CH the notation system for cut-elimination

15

on H with denoted height o and size |·|, and let D be the abstract system of
proof notations associated with H according to Observation 8.2.

Definition 8.4. The abstraction h of h ∈ CH is obtained by dropping all sub-
and superscripts. It can be defined by induction on the build-up of h ∈ CH:

• h ∈ H ⇒ h := h,

• h = I
k
Ch0 ⇒ h := Ih0,

• h = RCh0h1 ⇒ h := R h0 h1,

• h = Eh0 ⇒ h := Eh0.

We denote the set of abstractions for h ∈ CH by CH.

Observation 8.5 (and Definition). The set of abstractions CH for CH is a

subsystem of the cut-elimination closure H̃ of H in the following sense: Let →
denote the reduction to sub-derivation relation of H̃, and define a reduction to
sub-derivation relation ❀ of CH in the obvious way by h ❀ h′ iff there exists
an n < | tp(h)| with h′ = h[n]. Then CH = H̃ and ❀⊆→.

9 Size Bounds

We now prove a bound on the size of (abstract) notations for cut-elimination.

By induction on the build up of D̃ we assign every element a measure that
bounds the size of all derivations reachable from it via iterated use of the →-
relation. A small problem arises in the base case; if d → d′ in D̃ because this
holds in D we have no means of bounding |d′| in terms of |d|. So we use the
usual trick [AS00] when a global measure is needed and assign each element d of

D̃ not a natural number but a monotone function ϑ(d) such that |d′| ≤ ϑ(d)(s)
for all d →∗ d′ whenever s ∈ N is a global bound on the size of all elements in
D.

Definition 9.1. An abstract system D of proof notations is called s-bounded
(for s ∈ N), if for all d ∈ D it is the case that |d| ≤ s.

Definition 9.2. If D is an abstract system of proof notations and d ∈ D, then
by Dd we denote the set Dd = {d′ | d →∗ d′} ⊂ D considered an abstract
system of proof notation with the structure induced by D. Here →∗ denotes
the reflexive transitive closure of →.

Definition 9.3. For D an abstract system of proof notations and d ∈ D we say
that d is s-bounded if Dd is.

Definition 9.4. By S we denote the set of all monotone functions from N to
N.

16

Definition 9.5. For D an abstract system of proof notations we define, a “size
function” ϑ(d) ∈ S for every d ∈ D̃ by induction on the inductive definition of

D̃ as follows.

• For d ∈ D we set ϑ(d)(s) = s.

• ϑ(Id)(s) = ϑ(d)(s) + 1

• ϑ(Rde)(s) = max{|d|+1+ϑ(e)(s) , ϑ(d)(s)+1}

• ϑ(Ed)(s) = o(d)(ϑ(d)(s) + 2)

Proof. The monotonicity of the defined function ϑ(d) is immediately seen from
the definition and the induction hypothesis.

Proposition 9.6. If D is s-bounded then for every d ∈ D̃ we have |d| ≤ ϑ(d)(s).

Proof. By induction on the inductive definition of D̃.
If d ∈ D then ϑ(d)(s) = s ≥ |d|, since D is s-bounded. We calculate

ϑ(Id)(s) = ϑ(d)(s) + 1 ≥ |d| + 1 = |Id|, where we used that ϑ(d)(s) ≥ |d| by
induction hypothesis. Also, ϑ(Rde)(s) ≥ |d|+1+ϑ(e)(s) ≥ 1+ |d|+ |e| = |Rde|,
using the induction hypothesis for e. Finally, ϑ(Ed)(s) = o(d)(ϑ(d)(s) + 2) ≥
ϑ(d)(s)+1 ≥ |d|+1 = |Ed|, where for the first inequality we used that o(d) ≥ 1,
and for the second inequality we used the induction hypothesis.

Theorem 9.7. If D is s-bounded, d ∈ D̃ and d→ d′, then ϑ(d)(s) ≥ ϑ(d′)(s).

Proof. Induction on the inductive definition of the relation d→ d′ in D̃.
If d→ d′ because it holds in D then ϑ(d)(s) = s = ϑ(d′)(s).
If Id → Id′ thanks to d → d′ then ϑ(Id)(s) = ϑ(d)(s) + 1 ≥ ϑ(d′)(s) + 1 =

ϑ(Id′)(s), where the inequality is due to the induction hypothesis.
If Ed→ R(Ed′)(Ed′′) thanks to d→ d′ and d→ d′′ we argue as follows

ϑ(R(Ed′)(Ed′′))(s)
= max{|Ed′|+1+ϑ(Ed′′)(s) , ϑ(Ed′)(s)+1}
= max{|d′|+2+o(d′′)(ϑ(d′′)(s)+2) , o(d′)(ϑ(d′)(s) + 2)}
≤ max{ϑ(d′)(s)+2+o(d′′)(ϑ(d′′)(s)+2) , o(d′)(ϑ(d′)(s) + 2)}
≤ max{ϑ(d)(s)+2+o(d′′)(ϑ(d)(s)+2) , o(d′)(ϑ(d)(s) + 2)}
≤ max{ϑ(d)(s)+2+(o(d) − 1)(ϑ(d)(s)+2) , (o(d) − 1)(ϑ(d)(s) + 2)}
= ϑ(d)(s)+2+(o(d) − 1)(ϑ(d)(s)+2)
= o(d)(ϑ(d)(s)+2)
= ϑ(Ed)(s)

where for the first inequality we used Proposition 9.6, for the second the induc-
tion hypothesis, for the third that, since d → d′ and d → d′′, both o(d′) and
o(d′′) are bounded by o(d)− 1.

If Ed → Ed′ thanks to d → d′ then ϑ(Ed′)(s) = o(d′)(ϑ(d′)(s) + 2) ≤
o(d)(ϑ(d′)(s) + 2) ≤ o(d)(ϑ(d)(s) + 2) = ϑ(Ed)(s).

17

If Rde→ Rde′ thanks to e→ e′, then

ϑ(Rde′)(s)
= max{|d|+1+ϑ(e′)(s) , ϑ(d)(s)+1}
≤ max{|d|+1+ϑ(e)(s) , ϑ(d)(s)+1}
= ϑ(Rde)

where for the inequality we used the induction hypothesis.
If Rde→ Id then ϑ(Rde)(s) ≥ ϑ(d)(s) + 1 = ϑ(Id)(s).

Now we draw the desired consequences of our main theorem by putting
things together.

Lemma 9.8. If D is s-bounded, and d ∈ D̃ then D̃d is ϑ(d)(s)-bounded.

Proof. We first show by induction on the inductive definition of the reflexive
transitive closure that for every d′ ∈ D̃d = {d′ ∈ D̃ | d→∗ d′} we have ϑ(d)(s) ≥
ϑ(d′)(s). The case d = d′ is trivial and if d→∗ d′ → d′′ then ϑ(d)(s) ≥ ϑ(d′)(s)
by induction hypothesis and ϑ(d′)(s) ≥ ϑ(d′′)(s) by Theorem 9.7.

Now, by Proposition 9.6 we know that ϑ(d′)(s) ≥ |d′| for d′ ∈ D̃. So, with

the previous claim, for d′ ∈ D̃d we get ϑ(d)(s) ≥ ϑ(d′)(s) ≥ |d′|, which is the
claim.

Corollary 9.9. If d ∈ D is s-bounded then Ed is o(d)(s + 2)-bounded and EEd
is 2o(d) · o(d) · (s+ 4)-bounded.

Proof. Let d ∈ D be s-bounded and h := o(d). First we observe that (̃Dd)d′ =

D̃d′ for any d′ ∈ (̃Dd). So we can assume without loss of generality that D is
s, h-bounded.

Lemma 9.8 now gives us that Ed is ϑ(Ed)(s)-bounded and EEd is ϑ(EEd)(s)-
bounded. We calculate ϑ(Ed) = o(d)(ϑ(d)(s) + 2) = o(d)(s + 2) ≤ h(s+ 2) and
ϑ(EEd) = o(Ed)(ϑ(Ed)(d) + 2) = o(Ed)(h(s+2)+ 2) ≤ (2h − 1)(h(s+2)+ 2) ≤
2h · h · (s+ 4).

Even though the above Corollary covers all the case usually needed in prac-
tise, it is interesting to consider the general case. Recall that iterated exponen-
tiation 2n(x) is defined inductively by setting 20(x) = x and 2n+1(x) = 22n(x).
An easy induction shows that the height o(End) of the n-times cut-reduced
derivation d is bounded by 2n(d).

Lemma 9.10. ϑ(End)(s) ≤ 2n−1(2 · o(d)) · s for all n ≥ 1, s ≥ 2 and o(d) ≥ 2.

Proof. Induction on n. For the case n = 1 we compute ϑ(Ed)(s) = o(d)(s+2) ≤
2o(d)s.

For n = 2 we compute ϑ(EEd)(s) = (2o(d)−1)(o(d)(s+2)+2). For o(d) = 2
and o(d) = 3 we directly compute that this is bounded by 22o(d)s. For o(d) ≥ 4
we compute ϑ(EEd)(s) ≤ 2o(d)4o(d)s ≤ 22o(d)s.

Now assume that the claim holds for n ≥ 2. We then compute ϑ(EEnd)(s) =
o(End)(ϑ(End)(s) + 2) ≤ 2n−1(2

o(d) − 1) · (2n−1(2 · o(d)) · s+2) ≤ 2n−1(2
o(d) −

1) · 2 · 2n(o(d)) · s ≤ 2n(o(d)) · 2n(o(d)) · s ≤ 2n(2 · o(d)) · s

18

As an immediate Corollary we obtain

Corollary 9.11. If d ∈ D is s-bounded of height o(d) = h for s ≥ 2 and h ≥ 2,
then Ek(d) is 2k−1(2 · h) · s-bounded for all k ≥ 1.

In Corollary 9.11 one should note that the tower of exponentiations has
height only k− 1. Hence there is one exponentiation less than the height of the
denoted proof.

We conclude this section by remarking that the cut-elimination operator can
be viewed as a polynomial time computable operation. Assume we modify the
size function on D̃ to ϑk by changing all ϑ to ϑk and defining for the last case

• ϑk(Ed)(s) = (k + 1) · (ϑ(d)(s) + 2)

Then we obtain as before forD s-bounded, d ∈ D̃ and k ∈ N, that |d| ≤ ϑk(d)(s),
and d→ d′ implies ϑk+1(d)(s) ≥ ϑk(d)(s). Hence, for d ∈ D, D s-bounded, and
Ed →k d′, we obtain |d′| ≤ ϑk(Ed)(s) ≤ (k + 1) · (s + 2). From this we can
conclude the following observation: Let f [i1, . . . , ik] := f [i1] . . . [ik].

Observation 9.12. The cut-reduction operator for infinitary propositional logic
is a polynomial time operation in the following sense.

Let F and H be some notation systems for infinitary formulae and the semi-
formal system SF . Assume that F and H are polynomial time computable, and
that in addition also the functions

F × N<ω → F

A, (i1, . . . , ik) 7→ A[i1, . . . , ik]

and

H× N<ω → H

h, (i1, . . . , ik) 7→ h[i1, . . . , ik]

are polynomial time computable.
Then, CH and the function

H× N<ω → CH

h, (i1, . . . , ik) 7→ (Eh)[i1, . . . , ik]

are polynomial time computable.

10 Bounded Arithmetic

Our proof-theoretic investigations are very much independent of the exact choice
of the language. Therefore, we will be very liberal and allow symbols for all
ptime functions.

19

Definition 10.1 (Language of Bounded Arithmetic). The language LBA of
Bounded Arithmetic contains as non-logical symbols {=,≤} for the binary rela-
tion “equality” and “less than or equal”, and a symbol for each ptime function.
In particular, it includes a constant ca for a ∈ N whose interpretation in the
standard model N is cNa = a, unary function symbols | · | and 2|·| which have their
standard interpretation given by (|ca|)N = n and (2|ca|)N = 2n where n is the
length of the binary representation of a, and the binary function symbols min
and # whose standard interpretation are minimisation and (ca # cb)

N = 2n·m

where n and m are the lengths of the binary representations of a resp. b. We
will often write n instead of cn, and 0 for c0.

Atomic formulae are of the form s = t or s ≤ t where s and t are terms.
Literals are expressions of the form A or ¬A where A is an atomic formula.
Formulas are build up from literals by means of ∧ , ∨ , (∀x), (∃x). The negation
¬C for a formula C is defined via de Morgan’s laws. Negation extends to sets
of formulae in the usual way by applying it to their members individually.

Let C be a set of LBA-formulae (think of Σb
i), and A an LBA-formula. We

define the C-rank of A, denoted C-rk(A), by induction on the build-up of A:

• If A ∈ C ∪ ¬C, let C-rk(A) := 0.

• If A = B ∧ C or A = B ∨ C, let C-rk(A) := 1 +max{C-rk(B), C-rk(C)}.

• If A = (∀x)B or A = (∃x)B, let C-rk(A) := 1 + C-rk(B).

We will use the following standard abbreviations.

Definition 10.2 (Abbreviations). The expression A → B denotes the expres-
sion ¬A ∨ B. The expression s < t denotes ¬t ≤ s. Bounded quantifiers are
introduced as follows: (∀x ≤ t)A denotes (∀x)Ax(min(x, t)), (∃x ≤ t)A denotes
(∃x)Ax(min(x, t)), (∀x < t)A denotes (∀x ≤ t)(x < t → A), (∃x < t)A denotes
(∃x≤ t)(x < t ∧ A), where x may not occur in t.

Definition 10.3 (Bounded Formulas). The set BFOR of bounded LBA-formulae
is the set of LBA-formulae consisting of literals and closed under ∧ , ∨ , (∀x≤t),
(∃x≤ t).

We now define a restricted (also called “strict”) delineation of bounded for-
mulae.

Definition 10.4. The set sΣb
d is the subset of bounded LBA-formulae whose

elements are of the form

(∃x1 ≤ t1)(∀x2 ≤ t2) . . . (Qxd ≤ td)(Q̄xd+1 ≤ |td+1|)A(~x)

with Q and Q̄ being of the corresponding alternating quantifier shape, and A
being quantifier free.

Definition 10.5. As axioms we allow all disjunctions of literals, i.e., all dis-
junctions A of literals such that A is true in N under any assignment. Let us
denote this set of axioms by BASIC.

20

We will base the definition of Bounded Arithmetic theories on a somewhat
stronger normal form of induction. Let | · |m denote the m-fold iteration of the
function symbol | · |.

Definition 10.6. Let Ind(A, z, t) denote the expression

Az(0) ∧ (∀z < t)(A → Az(s z)) → Az(t) .

The set Φ-LmIND consists of all expressions of the form

Ind(A, z, 2||t|m|)

with A ∈ Φ, z a variable and t an LBA-term.

This restricted form of induction implies the usual form, because the follow-
ing can be proven from BASIC alone.

Ind(A(min(t, z)), z, 2|t|) → Ind(A(z), z, t)

11 Notation system for Bounded Arithmetic for-

mulae

Let FBA be the set of closed formulae in BFOR. We define the outermost
connective function on FBA by

tp(A) :=

⊤ A true literal

⊥ A false literal∧
A is of the form A0 ∧ A1 or (∀x)B∨
A is of the form A0 ∨ A1 or (∃x)B ,

and the sub-formula function on FBA × N by

A[n] :=

A A literal

Amin(n,1) A is of the form A0 ∧ A1 or A0 ∨ A1

Bx(n) A is of the form (∀x)B or (∃x)B .

The rank and negation functions for the notation system are those defined for
LBA.

We didn’t have much choice on how to render BFOR into a notation system
for formulae. Nevertheless, the above definition already shows that we have to
work with a non-trivial intensional equality. The reason is that, even though in
the process of the propositional translation we can make sure that we only have
closed formulae, this still is not enough; we do have other closed terms than just
the canonical ones.

21

Consider, for example, an arithmetical derivation ending in

...
B(f(0))

∃x.B(x)

where f is some function symbol. In the propositional translation we have to
provide some witness i for the

∨i
∃x.B(x)-inference. The “obvious” choice seems

to take i = fN(0). But this would require a derivation of (∃x.B(x))[fN(0)] =
B(fN(0)). The translation of the sub-derivation, on the other hand, gives us a
derivation of B(f(0)). So, in order to make this a correct inference in the propo-
sitional translation, he have to consider B(f(0)) and B(fN(0)) as intensionally
equal. Note that both formulae are extensionally equal.

We will now define an intensional equality which provides the above de-
scribed identification. For t a closed term its numerical value tN ∈ N is defined
in the obvious way. Let →1

N
denote the rewriting relation obtained from

{
(t, tN) : t a closed term

}
.

For example,
(∀x)(x ≤ ⌊ 1

2 (5 · 3)⌋) →
1
N (∀x)(x ≤ 7) .

Let ≈N denote the reflexive, symmetric and transitive closure of →1
N
.

Proposition 11.1. The just defined system consisting of FBA, tp, ·[·], ¬, rk
and ≈N forms a notation system for formulae in the sense of Definition 4.1.

Remark 11.2. It is an open problem what the complexity of ≈N is (assuming
a usual feasible arithmetisation of syntax). However, if the depth of expressions
is restricted, and the number of function symbols representing polynomial time
functions is also restricted to a finite subset, then the relation ≈N is polynomial
time decidable. I.e., let ≈N

k denote the restriction of ≈N to expressions of depth
≤ k in which at most the first k function symbols occur. Then, for each k, the
relation ≈N

k is a polynomial time predicate.

From now on, we will assume that FBA implicitly contains such a constant
k without explicitly mentioning it. All formulae and terms used in FBA are
thus assumed to obey the abovementioned restriction on occurrences of function
symbols and depth. We will come back to this restriction at relevant places.
The next observation already makes use of this assumption.

Observation 11.3. All relations and functions in FBA are polynomial time
computable.

Proof. Under the just fixed convention, the relation ≈N is actually ≈N
k for some

k.

Definition 11.4. Let BA∞ denote the semiformal proof system over FBA ac-
cording to Definition 5.1.

22

12 A notation system for BA∞

Definition 12.1. The finitary proof system BA⋆ is the proof system over
BFOR,≈N which is given by the following set of inference symbols.

(Ax∆) if
∨
∆ ∈ BASIC

∆

A0 A1(
∧

A0∧A1
)

A0 ∧ A1

Ak
(
∨k

A0∨A1
) (k ∈ {0, 1})

A0 ∨ A1

Ax(y)(
∧y

(∀x)A)
(∀x)A

Ax(t)
(
∨t

(∃x)A) (∃x)A

¬F, Fy(s y)
(INDy,t

F)
¬Fy(0), Fy(2

|t|)

¬F, Fy(s y)
(INDy,n,i

F) (n, i ∈ N)
¬Fy(n), Fy(n+ 2i)

C ¬C(CutC)
∅

According to Definition 2.4, a BA⋆-quasi derivation h is equipped with func-
tions Γ(h) denoting the endsequent of h, hgt(h) denoting the height of h, and
sz(h) denoting the size of h.

In our finitary proof system Schütte’s ω-rule [Sch51] is replaced by rules
with Eigenvariable conditions. Of course, the precise name of the Eigenvariable
does not matter, as long as it is an Eigenvariable. For this reason, we think
of the inference symbols

∧y
(∀x)A, IND

y,t
F , and INDy,n,i

F in BA⋆-quasi derivations
as binding the variable y in the respective sub-derivations. Fortunately, we
don’t have to make this intuition precise, as we will always substitute only
closed (arithmetical) terms into BA⋆-derivations and therefore no renaming of
bound variables will be necessary; hence we don’t have to define what this
renaming would mean. Note, however, that the details of Definition 12.2 of
BA⋆-derivations and Definition 12.4 of substitution become obvious with this
intuition on mind.

Definition 12.2 (Inductive definition of ~x : d). For ~x a finite list of disjoint
variables and d = Id0 . . . dn−1 a BA⋆-quasi-derivation we inductively define the
relation ~x : d that d is a BA⋆-derivation with free variables among ~x as follows.

• If ~x, y : h0 and I ∈ {
∧y

(∀x)A, IND
y,t
F , INDy,n,i

F } for some A,F, t, n, i, and

FV(Γ(Ih0)) ⊂ {~x} then ~x : Ih0.

• If ~x : h0 and FV((∃x)A),FV(t) ⊆ {~x} then ~x :
∨t

(∃x)Ah0.

• If ~x : h0, ~x : h1 and FV(C) ⊆ {~x} then ~x : CutCh0h1.

• If FV(∆) ⊆ {~x} then ~x : Ax∆,

• If ~x : h0, ~x : h1 and I =
∧

A0∧A1
with FV(A0 ∧A1) ⊂ {~x} then ~x : Ih0h1.

• If ~x : h0 and I =
∨k

A0∨A1
with FV(A0 ∨ A1) ⊂ {~x} then ~x : Ih0.

23

A BA⋆-derivation is a BA⋆-quasi derivation h such that for some ~x it holds
~x : h. We call a BA⋆-derivation h closed, if ∅ : h.

Proposition 12.3. If ~x : h then FV(Γ(h)) ⊆ {~x}. In particular FV(Γ(h)) = ∅
for closed h.

Proof. Trivial induction on the inductive definition of ~x : h.

Definition 12.4. For h a BA⋆-derivation, y a variable and t a closed term
of Bounded Arithmetic we define the substitution h(t/y) inductively by set-
ting (Ih0 . . . hn−1)(t/y) to be I(t/y)h0(y/t) . . . hn−1(t/y) if I is not of the form∧y

(∀x)A, IND
y,t
F , or INDy,n,i

F with the same variable y, and Ih0 . . . hn−1 other-
wise.

Substitution for inference symbols is defined by setting

Ax∆(t/y) = Ax∆(t/y)∧
A0∧A1

(t/y) =
∧

(A0∧A1)(t/y)

∨k
A0∧A1

(t/y) =
∨k

(A0∧A1)(t/y)∧z
(∀x)A(t/y) =

∧z
((∀x)A)(t/y)

∨t′

(∃x)A(t/y) =
∨t′(t/y)

((∃x)A)(t/y)

INDz,t′

F (t/y) = IND
z,t′(t/y)
F (t/y) INDz,n,i

F (t/y) = INDz,n,i
F (t/y)

We now show the substitution property for BA⋆-derivations. The formu-
lation of Lemma 12.5 might look a bit strange with “⊆” instead of the more
familiar equality. The reason is, that a substitution may make formulae equal
which are not equal without the substitution.

Recalling however Definition 5.3, we note that derivations h in fact prove
every superset of Γ(h). Of course, an easy consequence of Lemma 12.5 is that
if Γ(h) ⊂ ∆ then Γ(h(t/y)) ⊂ ∆(t/y).

Lemma 12.5. Assume ~x : h and let y be a variable and t a closed term, then
~x \ {y} : h(t/y) and moreover Γ(h(t/y)) ⊆ (Γ(h))(t/y).

Proof. We argue by induction on the build-up of h.
In the cases where no substitution occurs (as h = I . . . with I of the form∧y

(∀x)A, IND
y,t
F , or INDy,n,i

F with the same variable y) both claims are trivial.
Otherwise, by induction hypothesis, we know that the sub-derivations are

BA⋆-derivations with the correct set of free variables; since substitution is also
carried out in the inference symbols, the y in the variable conditions for CutC
and

∨t
(∃x)A will also disappear due to the substitution. The Eigenvariable con-

dition z 6∈ FV(Γ(h)) will follow once we have shown the second claim.
For the second claim we compute by induction hypothesis

Γ((h(t/y))(ι)) = Γ((h(ι))(t/y)) ⊆ Γ((h(ι)))(t/y)

24

Hence

Γ(h(t/y)) = ∆(last(h(t/y))) ∪
⋃

ι<| last(h)|

(
Γ((h(t/y))(ι)) \ ≈N∆ι(last(h(t/y)))

)

i.h.
⊆ ∆(last(h))(t/y) ∪

⋃

ι<| last(h)|

(
Γ((h)(ι))(t/y) \ ≈N∆ι(last(h))(t/y)

)

!!!
⊆

(
∆(last(h)) ∪

⋃

ι<| last(h)|

(
Γ((h)(ι)) \ ≈N∆ι(last(h))

))
(t/y)

= Γ(h)(t/y)

This finishes the proof.

We will now define the ingredients for a notation system for BA∞, which
forms the embedding of BA⋆ into BA∞.

Let HBA be the set of closed BA⋆-derivations.
For each h ∈ HBA we define the denoted last inference tp(h) as follows: Let

h = Ih0 . . . hn−1,

tp(h) :=

AxA if I = Ax∆, where A is the “least” true literal in ∆∧
A0 ∧ A1

if I =
∧

A0 ∧ A1∨k
A0 ∨ A1

if I =
∨k

A0 ∨ A1∧
(∀x)A if I =

∧y
(∀x)A∨tN

(∃x)A if I =
∨t

(∃x)A

Rep if I = INDy,t
F

Rep if I = INDy,n,0
F

CutFy(n+2i) if I = INDy,n,i+1
F

CutC if I = CutC

For each h ∈ HBA and j ∈ N we define the denoted sub-derivation h[j] as
follows: Let h = Ih0 . . . hn−1. If j ≥ | tp(h)| let h[j] := Ax0=0. Otherwise,
assume j < | tp(h)| and define

h[j] :=

hmin(j,1) if I =
∧

A0 ∧ A1

h0 if I =
∨k

A0 ∨ A1

h0(j/y) if I =
∧y

(∀x)A

h0 if I =
∨t

(∃x)A

IND
y,0,|t|N

F h0 if I = INDy,t
F

h0(n/y) if I = INDy,n,0
F

INDy,n,i
F h0 if I = INDy,n,i+1

F and j = 0

INDy,n+2i,i
F h0 if I = INDy,n,i+1

F and j = 1

hj if I = CutC

25

The denoted end-sequent function on HBA is given by Γ computed according
to Definition 2.4. The size function |·| on HBA is given by |h| := sz(h).

To define the denoted height function we need some analysis yielding an
upper bound to the log of the lengths of inductions which may occur during
the embedding (we take the log as this bounds the height of the derivation tree
which embeds the application of induction). Let us first assume m is such an
upper bound, and let us define the denoted height om(h) of h relative to m: For
a BA⋆-derivation h = Ih0 . . . hn−1 we define

om(h) :=

om(h0) + i+ 1 if I = INDy,n,i
F

om(h0) +m+ 1 if I = INDy,t
F

1 + supi<n om(hi) otherwise

Observe that om(h) > 0 (in particular, o(Ax∆) = 1).
To fill the gap of providing a suitable upper bound function of BA⋆-derivations

we first need to fix monotone bounding terms for any term in LBA.

Bounding terms

For a term t we define a term bd(t) which represents a monotone function with
the following property: If FV(t) = {~x} then

(∀~n) t~x(~n)
N ≤ bd(t)~x(~n)

N

Let x0, x1, x2, . . . be a fixed list of free variables. We fix for each function symbol
f of arity n a monotone bounding term Tf with FV(Tf) ⊆ {x0, . . . , xn−1}. E.g.,
assume that we have fixed for each function symbol f in our language a number
cf ∈ N such that (∀~n)|fN(~n)| ≤ max{2, |~n|}2

cf
holds. We then can define

Tf := (max{2, ~x}) # . . .# (max{2, ~x})︸ ︷︷ ︸
2cf times

.

As the only exception we demand that T|·| := |x0|.

Now, let t be a term. If t is a closed term, let bd(t) := tN. If t = ft1 . . . tn
is not a closed term, let bd(t) := (Tf)~x(bd(t1), . . . , bd(tn)).

Bounding terms for BA⋆-derivations

For h ∈ HBA, the bounding term bd(h) is intended to bound any variable which
occurs during the embedding of h, and the term | ibd(h)| is intended to bound
the length of any induction which occurs during the embedding of h.

26

Let h = Ih0 . . . hn−1 be in HBA.. We define

bd(h) :=

max(bd(h0(bd(t)/y)), bd(t)) if I =
∧y

(∀x≤t)A

max(bd(h0), bd(t)) if I =
∨t

(∃x)A

max(bd(h0(2
| bd(t)|/y)), 2|bd(t)|) if I = INDy,t

F

max(bd(h0(n+ 2i/y)), n+ 2i) if I = INDy,n,i
F

max(bd(h0), . . . , bd(hn−1)) otherwise.

ibd(h) :=

ibd(h0(bd(t)/y)) if I =
∧y

(∀x≤t)A

max(ibd(h0(2
| bd(t)|/y)), 2|bd(t)|) if I = INDy,t

F

max(ibd(h0(n+ 2i/y)), 2i) if I = INDy,n,i
F

max(ibd(h0), . . . , ibd(hn−1)) otherwise.

Now we can define the denoted height function o(h) := o| ibd(h)|(h) for h ∈
HBA.

Theorem 12.6. The just defined system consisting of HBA, tp, ·[·], Γ, o(·) and
| · | forms a notation system for BA∞ in the sense of Definition 7.1.

Proof. First, we observe that o(·) satisfies the following monotonicity property:

m ≤ m′ ⇒ om(h) ≤ om′(h) . (2)

We also observe the following substitution property by inspection:

om(h(t/y)) = om(h) . (3)

We prove the following slightly more general assertion:

m ≥ | ibd(h)| & i < | tp(h)| ⇒ om(h[i]) < om(h) (4)

Then the assertion of the theorem follows using the monotonicity property (2),
as ibd(h[i]) ≤ ibd(h).

The proof of (4) is by induction on the build-up of h. Let h = Ih0 . . . hn−1.
First assume that h[i] = hj(t/y). The definition of om immediately shows

that in this case om(h) = 1 + supi<n om(hi). The substitution property (3)
shows that om(hj(t/y)) = om(hj). Hence

om(h) > om(hj) = om(hj(y/k)) = om(h[i]) .

The remaining cases are the following ones:

If h = INDy,t
F h0, then h[0] = IND

y,0,|t|
F h0. As |t| ≤ | bd(t)| < | ibd(h)| ≤ m

we obtain

om(h[0]) = om(h0) + |t|+ 1 < om(h0) +m+ 1 = om(h) .

If h = INDy,n,k+1
F h0, then h[i] = INDy,n′,k

F h0 for some n′ Hence

om(h[i]) = om(h0) + k + 1 < om(h0) + k + 2 = om(h) .

27

Thus, assertion (4) is proven. The Theorem follows using the next Propo-
sition which shows the local faithfulness property of the denoted end-sequent
function Γ.

Proposition 12.7. Γ satisfies the local faithfulness property: Let h ∈ BA⋆,
then

∆(tp(h)) ∪
⋃

ι<| tp(h)|

(
Γ(h[ι]) \ ≈N∆ι(tp(h)))

)
⊆ ≈NΓ(h) .

Proof by induction on o(h). Let h = Ih0 . . . hn−1 ∈ HBA. We abbreviate

∗(h) := ∆(tp(h)) ∪
⋃

ι<| tp(h)|

(
Γ(h[ι]) \ ≈N∆ι(tp(h)))

)
.

Case 1. I = Ax∆: Let A be the “least” true literal in ∆, then

∗(h) = ∆(AxA) = {A} ⊆ ∆ = Γ(h)

Case 2. I =
∧

C for C = A0 ∧ A1: tp(h) =
∧

C , h[0] = h0 and C[0] = A0, and
h[ι] = h1 and C[ι] = A1 for ι > 0, hence

∗(h) = {A0 ∧ A1} ∪ (Γ(h0) \ ≈N{A0}) ∪ (Γ(h1) \ ≈N{A1})

= Γ(h)

Case 3. I =
∨k

A0 ∨ A1

Case 4. I =
∧y

(∀x)A: tp(h) =
∧

(∀x)A, and h[ι] = h0(ι/y) and ((∀x)A)[ι] =

A(ι/x) for ι ∈ N hence

∗(h) = {(∀x)A} ∪
⋃

i∈N

(Γ(h0(i/y)) \ ≈N{A(i/x)})

⊆ {(∀x)A} ∪
⋃

i∈N

(Γ(h0)(i/y) \ ≈N{A(i/x)})

(1)
= {(∀x)A} ∪

⋃

i∈N

(Γ(h0) \ ≈N{A})

= Γ(h)

(1): uses Eigenvariable condition.

Case 5. I =
∨t

(∃x)A: tp(h) =
∨tN

(∃x)A and h[0] = h0, hence

∗(h) = {(∃x)A} ∪ (Γ(h0) \ ≈N{A(t
N/x)})

= {(∃x)A} ∪ (Γ(h0) \ ≈N{A(t/x)})

= Γ(h)

28

Case 6. I = INDy,t
F : tp(h) = Rep and h[0] = IND

y,0,|tN|
F h0, hence

∗(h) = ∅ ∪ Γ(IND
y,0,|tN|
F h0)

= {¬Fy(0), Fy(0 + 2|t
N|)} ∪ (Γ(h0) \ ≈N{¬F, Fy(s y)})

⊆ ≈N{¬Fy(0), Fy(2
|t|)} ∪ (Γ(h0) \ ≈N{¬F, Fy(s y)})

⊆ ≈NΓ(h)

Case 7. I = INDy,n,0
F : tp(h) = Rep and h[0] = h0(n/y), hence

∗(h) = ∅ ∪ Γ(h0(n/y))

⊆ Γ(h0)(n/y)

(2)

⊆ ≈N{¬Fy(n), Fy(sn)} ∪ (Γ(h0) \ ≈N{¬F, Fy(s y)})

⊆ ≈N

(
{¬Fy(n), Fy(n+ 1)} ∪ (Γ(h0) \ ≈N{¬F, Fy(s y)})

)

= ≈NΓ(h)

(2) uses Eigenvariable condition.

Case 8. I = INDy,n,i+1
F : tp(h) = CutFy(n+2i), h[0] = INDy,n,i

F h0, and h[1] =

INDy,n+2i,i
F h0, hence (abbreviating Ξ := Γ(h0) \ ≈N{¬F, Fy(s y)})

∗(h) = ∅ ∪
(
Γ(INDy,n,i

F h0) \ ≈N{Fy(n+ 2i)}
)

∪
(
Γ(INDy,n+2i,i

F h0) \ ≈N{¬Fy(n+ 2i)}
)

=
((

{¬Fy(n), Fy(n+ 2i)} ∪ Ξ
)
\ ≈N{Fy(n+ 2i)}

)

∪
((

{¬Fy(n+ 2i), Fy(n+ 2i+1)} ∪ Ξ
)
\ ≈N{¬Fy(n+ 2i)}

)

⊆ {¬Fy(n), Fy(n+ 2i+1)} ∪ Ξ

= Γ(h)

Case 9. I = CutC : tp(h) = CutC and h[ι] = hι for ι < 2, hence

∗(h) = ∅ ∪ (Γ(h0) \ ≈N{C}) ∪ (Γ(h1) \ ≈N{¬C})

= Γ(h)

Observation 12.8. The following relations and functions are polynomial time
computable: the finitary proof system BA⋆, the set of BA⋆-quasi derivations and
the functions h 7→ Γ(h), h 7→ hgt(h), and h 7→ sz(h) denoting the endsequent,
the height and the size for a BA⋆-quasi derivation h; the bounding term t 7→
bd(t) for terms t occurring in FBA and the relations bd(h) ≤ m and ibd(h) ≤ m
on HBA × N; the set HBA and the functions h 7→ tp(h), h, i 7→ h[i], h 7→ Γ(h),
m,h 7→ om(h) and h 7→ |h|.

29

Proof. For bounding terms we use our assumption that a fixed (finite) num-
ber of function symbols and term depth is only allowed, which implies that
terms can only denote a fixed finite number of different polynomial time com-
putable functions. That bd(h) ≤ m is polynomial time computable is clear as
the computation of bd(h) computes a monotone increasing sequence of values
by successively applying one of the finitely many polynomial time computable
functions, and once the bound m is exceeded during this process we can already
output NO.

As the function bd(h) in general may not be polynomially bounded, we
cannot conclude in general that o(h) is polynomial time computable. However,
the function m,h 7→ omin(| ibd(h)|,m)(h) is polynomial time computable and will
be sufficient in our applications.

13 Computational content of proofs

Let us start by describing the idea for computing witnesses using proof trees.
Assume we have a BA proof of an existential formula (∃y)ϕ(y) and we want to
compute a k such that ϕ(k) is true – in case we are interested in definable func-
tions, such a situation is obtained from a proof of (∀x)(∃y)ϕ(x, y) by inverting
the universal quantifier to some n ∈ N. Assume further, we have applied some
proof theoretical transformations to obtain a BA∞ derivation d of (∃y)ϕ(y) with
C-crk(d) ≤ C-rk(ϕ) for some set of formulae C (the choice of C depends on the
level of definability we are interested in). Then we can define a path through d,
represented by sub-derivations

d = d0, d1, d2, . . .

with

• dℓ+1 = dℓ(i) for some i ∈ | last(dℓ)|

• Γ(dℓ) = (∃y)ϕ(y),Γℓ where all formulae A ∈ Γℓ are false and satisfy
C-rk(A) ≤ C-rk(ϕ).

As d is well-founded, such a path must be finite, i.e. ends with some dℓ say.
In this situation we must have that last(dℓ) =

∨k
(∃y)ϕ(y) and that ϕ(k) is true.

Hence we can output k.
Such a path can be viewed as the canonical path to the following local search

problem: Let F be a set of possible solutions, which is a subset of BA∞ contain-
ing only those d′ which satisfy that Γ(d′) ⊆ {(∃y)ϕ(y)} ∪ Γ′ where all formulae
A ∈ Γ′ are false and satisfy C-rk(A) ≤ C-rk(ϕ). Furthermore, assume d ∈ F and
that F is closed under the following neighbourhood function N : BA∞ → BA∞

which is defined by case distinction on the shape of last(d′) for d′ ∈ F :

• last(d) = AxA cannot occur as all atomic formulae in Γ(d′) are false.

30

• last(d) =
∧

A0∧A1
, then A0 ∧A1 must be false, hence some of A0, A1 must

be false. Let N(d) := d(0) if A0 is false, and d(1) otherwise.

• last(d) =
∧

A0∨A1
, then A0 ∨A1 must be false, hence both A0, A1 must be

false. Let N(d) := d(0).

• last(d) =
∧

(∀x)A(x). As (∀x)A(x) is false there is some i such that A(i) is

false. Let N(d) := d(i).

• last(d) =
∨k

(∃x)A(x). If (∃x)A(x) is different from (∃y)ϕ(y) then (∃x)A(x)

must be false; let N(d) := d(0). Otherwise, let N(d) = d(0) in case ϕ(k)
is false, and N(d) = d in case it is true (in which case we found a true
solution to the original search problem).

• last(dℓ) = CutC . If C is false let N(d) := d(0), otherwise let N(d) := d(1).

The idea in the following will be to use proof notations from HBA to denote
this search problem. This way we will obtain characterisations of the definable
functions of Bounded Arithmetic theories.

The level of proof theoretic reduction will be adjusted in such a way that
occurring formulae which have to be decided fall exactly in the computational
class under consideration. So our main concern in order for this strategy to
be meaningful is to find feasible upper bounds for the length of such reduction
sequences and for the complexity of derivation notations occurring in them.

13.1 Complexity notions for BA⋆

In order to handle the complexity of BA⋆ proof notations occurring in the set of
possible solutions, we need some notions describing key complexity properties
of them which we will provide first.

Although tp(A) =
∧

for any A starting with a ∀, and thus we can denote in-
finitely many direct sub-formulae by A[n] for all n ∈ N, only finitely many carry
non-trivial information, because all quantifiers (and in particular this outermost
∀) are bounded. The next definition makes this formal by assigning first to each
closed formula in FBA, then to each inference symbol in BA∞, and finally to
each proof notation in CHBA, its range.

Definition 13.1. Let A be a formula in FBA. We define the range of A, denoted
rng(A), by

rng(A) :=

0 if A a literal ,

2 if A = B ∧ C or A = B ∨ C ,

tN + 1 if A = (∀x ≤ t)B or A = (∃x ≤ t)B .

Let I be an inference symbol of BA∞. We define the range of I, denoted

31

rng(I), by

rng(I) :=

0 if I = AxA ,

1 if I =
∨k

C or I = Rep ,

rng(C) if I =
∧

C ,

2 if I = CutC .

For h ∈ CHBA we define

rng(h) := rng(tp(h)) .

Definition 13.2. We extend the definition of bounding terms bd(h) and ibd(h)
from HBA to CHBA in the following way by induction on the build-up of h ∈
CHBA:

• If h ∈ HBA then the definition of bd(h) and ibd(h) are inherited from the
definition of bd resp. ibd(h) on HBA.

• If h = I
k
Ch0 then

bd(h) :=

{
bd(h0) if k < rng(C) ,

0 otherwise .

ibd(h) := ibd(h0)

• bd(RCh0h1) := max{bd(h0), bd(h1)}, ibd(RCh0h1) := max{ibd(h0), ibd(h1)}.

• bd(Eh0) := bd(h0), ibd(Eh0) := ibd(h0).

Lemma 13.3. Let h ∈ CHBA.

1. If j < rng(h) then bd(h[j]) ≤ bd(h) and ibd(h[j]) ≤ ibd(h).

2. If tp(h) =
∨k

C then k ≤ bd(h).

Proof by induction on the build-up of h.

Definition 13.4. For h ∈ BA⋆ ∪ CHBA we define the set of decorations of h,
deco(h) ∈ Pfin(BFOR), by induction on the build-up of h. Let h = Ih0 . . . hn−1.
We define

deco(h) := deco(I)
(⋃

i<n

deco(hi)
)

where

deco(I)(S) :=

{
S ∪∆(I) ∪ {F} if I = INDy,t

F or I = INDy,a,i
F ,

S ∪∆(I) otherwise .

Observation 13.5. We have Γ(h) ⊆ deco(h).

Definition 13.6. Let CompHBA be the set of all h ∈ CHBA which have the
property that all occurrences of IkC in h satisfy k < rng(C).

32

Definition 13.7. Let Φ be a finite set of formulae in BFOR, and let K ∈ N

be a size parameter. With ΦK we denote the set of formulae which result from
formulae in Φ by substituting free variables by constants from {ci : 0 ≤ i ≤ K}.

Lemma 13.8. Let h ∈ CompHBA and Φ ∈ Pfin(BFOR) such that deco(h) ⊆ Φ,
and Φ is closed under negation and taking sub-formulae. Let j,K ∈ N and y be
a variable.

1. If j ≤ K and C ∈ Φ, then C[j] ∈ ΦK .

2. If j ≤ K then deco(h(j/y)) ⊆ ΦK .

3. ∆(tp(h)) ⊆ deco(h)bd(h) (subscript bd(h) needed e.g. for INDy,n,i+1
F).

4. If j < rng(h) then deco(h[j]) ⊆ Φbd(h).

Proof. For 4., consider the case that h = RCh0h1, tp(h1) =
∨k

¬C and j = 0, i.e.
h[0] = I

k
Ch0. By 3. we have ¬C ∈ Φbd(h1), hence C ∈ Φbd(h). Also k ≤ bd(h1)

by Lemma 13.3, 2. Hence, C[k] ∈ Φbd(h) by 1. Now we compute

deco(h[0]) = {C[k]} ∪ deco(h0) ⊆ Φbd(h) ∪ Φ = Φbd(h) .

Lemma 13.9. For h ∈ CHBA we have that the cardinality of Γ(h) is bounded
above by 2 · sz(h).

Proof. Let the cardinality of a set S be denoted by card(S). We observe that
card(∆(I)) ≤ 2 for any I ∈ BA∞. Thus we can compute for h = Ih0 . . . hn−1 ∈
CHBA

card(Γ(h)) ≤ card(∆(I)) +
∑

i<n

card(Γ(hi)) ≤ 2 +
∑

i<n

2 · sz(hi) = 2 · sz(h) .

13.2 Search problems defined by proof notations

We identify the notation system HBA for BA∞ with the abstract system of
proof notations associated with it according to Observation 8.2. For s ∈ N a
size parameter we define

Hs
BA := {h ∈ HBA : |h| ≤ s} .

Then Hs
BA is an s-bounded, abstract system of proof notations, because we

observe that h ∈ HBA and h→ h′ implies |h′| ≤ |h|.
Remember that h for h ∈ CHBA denotes the abstraction of h which allows us

to view CHBA as a subsystem of H̃BA (see Definition 8.4 and Observation 8.5).

Definition 13.10. For h ∈ CHBA we define ϑ(h)(s) := ϑ(h)(s).

33

Theorem 9.7 now reads as follows:

Corollary 13.11. If h ∈ CHs
BA and h→ h′, then ϑ(h)(s) ≥ ϑ(h′)(s).

Definition 13.12. We define a local search problem L parameterised by

• a finite set of bounded formulae Φ ⊂ BFOR,

• a “complexity class” C given as a polynomial time computable set of LBA-
formulae (usually C = Σb

i for some i),

• a size parameter s ∈ N,

• an initial value function h· : N → CompHs
BA, where ha is presented in the

form E . . .Eh(a/x) for some BA⋆-derivation h,

• a formula (∃y)ϕ(x, y) ∈ Φ with ¬ϕ ∈ C,

such that, for a ∈ N,

• Γ(ha) = {(∃y)ϕ(a, y)},

• C-crk(ha) ≤ 1,

• o(ha) = 2|a|
O(1)

,

• ϑ(ha)(s) = |a|O(1),

• deco(ha) ⊆ Φa,

in the following way:

• The set of possible solutions F (a) ∈ Pfin(CompHs
BA) is given as the set of

those h ∈ CompHs
BA which satisfy:

i) Γ(h) ⊆ {(∃y)ϕ(a, y)} ∪∆ for some ∆ ⊆ C ∪ ¬C such that all A ∈ ∆
are closed and false,

ii) C-crk(h) ≤ 1,

iii) o(h) ≤ o(ha),

iv) ϑ(h)(s) ≤ ϑ(ha)(s),

v) bd(h) ≤ bd(ha) and ibd(h) ≤ ibd(ha),

vi) deco(h) ⊆ Φbd(ha);

• The initial value function is given by i(a) := ha;

• the cost function is defined as c(a, h) := o(h); and

34

• the neighbourhood function is given by

N(a, h) :=

h[j] if tp(h) =
∧

C , j < rng(C) and C[j] false ,

h[0] if tp(h) =
∨i

C and C 6= (∃y)ϕ(a, y)

or tp(h) =
∨i

(∃y)ϕ(a,y) and ϕ(a, i) false ,

h[0] if tp(h) = CutC and C false ,

h[1] if tp(h) = CutC and C true ,

h[0] if tp(h) = Rep ,

h otherwise .

(Observe that the just defined neighbourhood function is a multi-function due
to case

∧
C .)

Proof. First observe that the initial value is indeed a possible solution, i(a) =
ha ∈ F (a).

Let h ∈ F (a), h′ := N(a, h). Then we show

1. h 6= h′ implies h→ h′ and o(h′) < o(h),

2. h′ ∈ F (a).

For h = h′ the assertions are obvious. So let us assume h 6= h′. Then h′ = h[j]
for some j < rng(h) by construction. Hence, the first claim is obvious.

For the second claim, we consider i)–vi) of the definition of h′ ∈ F (a): ii)
is clear; iii) is obvious; for iv) observe that h → h′, thus ϑ(h′)(s) ≤ ϑ(h)(s)
by Corollary 13.11; for v) observe that j < rng(h) implies bd(h′) ≤ bd(h)
and ibd(h′) ≤ ibd(h) by Lemma 13.3; for vi) observe that j < rng(h) im-
plies deco(h′) ⊆ (Φbd(ha))bd(h) = Φbd(ha) by Lemma 13.8, 2., because bd(h) ≤
bd(ha). And finally for i) we first observe that the first condition that Γ(h) \
{(∃y)ϕ(a, y)} is a subset of C ∪ ¬C consisting only of closed formulae, is satis-
fied, as C-crk(h) ≤ 1. For the second condition of i) let I := tp(h). We have by
Proposition 7.2 that

Γ(h[j]) ⊆ ≈N

(
Γ(h) ∪∆j(I)

)

thus it is enough to show that
∨
∆j(I) is false.

• I =
∧

C : ∆j(I) = {C[j]} and C[j] false by construction.

• I =
∨i

C : then j = 0. If C 6= (∃y)ϕ(a, y), then ∆0(I) = {C[i]}. Now C
is false by i) of h ∈ F (a), hence C[i] must be false as well. Otherwise,
∆0(I) = {ϕ(a, i)}, and ϕ(a, i) false by construction.

• I = CutC : If j = 0, then ∆0(I) = {C} and C false by construction.
Otherwise, j = 1, then ∆1(I) = {¬C} and ¬C false by construction.

• I = Rep: then j = 0 and ∆0(I) = ∅ and nothing is to show.

35

Proposition 13.13 (Complexity of L). F ∈ PC, i, c ∈ FP, and N ∈ FPC [wit, 1].

Proof. First observe that the functions a 7→ i(a) = ha, a 7→ bd(ha), a 7→
ibd(ha), a 7→ o(ha), a 7→ ϑ(ha), and a 7→ deco(ha) are polynomial time com-
putable.

Furthermore, the relations CompHs
BA, C-crk(h) ≤ 1, bd(h) ≤ m, ibd(h) ≤ m

and deco(h) ⊆ Φm are polynomial time computable, and once ibd(h) ≤ m is
established we also can compute o(h) ≤ m′ and then o(h) in polynomial time.
Hence c ∈ FP

Also, the functions tp(h) and h[i] are polynomial time computable on CHBA,
which shows N ∈ FPC [wit, 1].

For F ∈ PC observe that Γ(h) ⊆ deco(h) ⊆ Φbd(ha), hence condition h ∈
F (a), i), is a property in PC .

Proposition 13.14 (Properties of L). 1. N(a, h) = h implies tp(h) =
∨i

(∃y)ϕ(a,y)

with ϕ(a, i) true. Thus, the local search problem L defines a multi-function
by mapping a to i (this is called the computed multi-function).

2. The search problem L in general defines a search problem in PLSC, assum-
ing that we turn the neighbourhood (multi-)function into a real function,
which can easily be achieved by using an intermediate PLSC search prob-
lem which looks for the smallest witness for the case tp(h) =

∧
C . Then

N ∈ FPC.

3. Assume o(ha) = |a|O(1). Then the canonical path through L, which starts
at ha and leads to a local minimum, is of polynomial length with terms of
polynomial size, thus the computed multi-function is in FPC [wit, o(ha)].

13.3 Σb
i -definable multi-functions in Si−1

2

Let i ≥ 2 and assume that Si−1
2 ⊢ (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈ Σb

i ,
ϕ ∈ Πb

i−1. By partial cut-elimination we obtain some BA⋆-derivation h such
that

• FV(h) ⊆ {x},

• Γ(h) = {(∃y)ϕ(x, y)},

• Σb
i−1-crk(h) ≤ 1, and

• o(h(a/x)) = O(||a||).

We define a search problem by stating its parameters:

• Φ := deco(h) is a finite set of formulae in BFOR,

• as the “complexity class” we take C := Σb
i−1,

• for the size parameter we choose s := |h|,

36

• the initial value function is given by ha := h(a/x),

• the formula is as given, (∃y)ϕ(x, y).

This defines a local search problem according to Definition 13.12, because

• Γ(ha) = Γ(h(a/x)) = Γ(h)(a/x) = {(∃y)ϕ(a, y)},

• as h ∈ Hs
BA we have h(a/x) ∈ Hs

BA, hence ϑ(ha)(s) = s = O(1)

• deco(ha) ⊆ Φa by Lemma 13.8, 1.

As o(ha) = O(||a||), Proposition 13.14, 3., shows that the computed multi-

function of this search problem is in FPΣb
i−1 [wit, O(log n)], which coincides with

the description given by Kraj́ıček [Kra93].

13.4 Σb
i -definable functions in Si

2

Let i > 0 and assume that Si2 ⊢ (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈ Σb
i , ϕ ∈

Πb
i−1. By partial cut-elimination we obtain some BA⋆-derivation h such that

• FV(h) ⊆ {x},

• Γ(h) = {(∃y)ϕ(x, y)},

• Σb
i−1-crk(h) ≤ 2, and

• o(h(a/x)) = O(||a||).

We define a search problem by stating its parameters:

• Φ := deco(h) is a finite set of formulae in BFOR,

• as the “complexity class” we take C := Σb
i−1,

• for the size parameter we choose s := |h|,

• the initial value function is given by ha := Eh(a/x),

• the formula is as given, (∃y)ϕ(x, y).

This defines a local search problem according to Definition 13.12, because

• Γ(ha) = {(∃y)ϕ(a, y)},

• Σb
i−1-crk(ha) ≤ 1,

• o(ha) = 2o(h(a/x)) − 1 = 2O(||a||) = |a|O(1),

• as h(a/x) ∈ Hs
BA we have

ϑ(ha)(s) = ϑ(Eh(a/x))(s)

= o(h(a/x)) · (ϑ(h(a/x))(s) + 2)

= O(||a||) · (s+ 2) = O(||a||)

37

• deco(ha) ⊆ Φa.

As o(ha) = |a|O(1), Proposition 13.14, 3., shows that the computed multi-

function of this search problem is in FPΣb
i−1 [wit, nO(1)] = FPΣb

i−1 [wit].
But this immediately implies that the Σb

i -definable functions of Si2 are in

FPΣb
i−1 , because a witness query to (∃z < t)ψ(u, z) can be replaced by |t| many

usual (non-witness) queries to χ(a, b, u) = (∃z < t)(a ≤ z < b∧ ψ(u, z)) using a
divide and conquer strategy. This characterisation coincides with the one given
by Buss [Bus86].

13.5 Σb
i -definable multi-functions in Si+1

2

Let i > 0 and assume that Si+1
2 ⊢ (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈ Σb

i ,
ϕ ∈ Πb

i−1. By partial cut-elimination we obtain some BA⋆-derivation h such
that

• FV(h) ⊆ {x},

• Γ(h) = {(∃y)ϕ(x, y)},

• Σb
i−1-crk(h) ≤ 3, and

• o(h(a/x)) = O(||a||).

We define a search problem by stating its parameters:

• Φ := deco(h) is a finite set of formulae in BFOR,

• as the “complexity class” we take C := Σb
i−1,

• for the size parameter we choose s := |h|,

• the initial value function is given by ha := EEh(a/x),

• the formula is as given, (∃y)ϕ(x, y).

This defines a local search problem according to Definition 13.12, because

• Γ(ha) = {(∃y)ϕ(a, y)},

• Σb
i−1-crk(ha) ≤ 1,

• o(ha) = 2o(Eh(a/x)) − 1 = 2|a|
O(1)

,

• as h(a/x) ∈ Hs
BA we have

ϑ(ha)(s) = ϑ(EEh(a/x))(s)

= o(Eh(a/x)) · (ϑ(Eh(a/x))(s) + 2)

= |a|O(1) · (O(||a||) + 2) = |a|O(1)

• deco(ha) ⊆ Φa.

By Proposition 13.14, 2., this defines a search problem in PLSΣ
b
i−1 . This

coincides with the description given by Buss and Kraj́ıček [BK94].

38

13.6 Σb
i+1-definable multi-functions in Σb

i+j-L
2+jIND

Let i ≥ 1, j ≥ 0, and assume that Σb
i+j -L

2+jIND ⊢ (∀x)(∃y)ϕ(x, y) with

(∃y)ϕ(x, y) ∈ Σb
i+1, ϕ ∈ Πb

i . By partial cut-elimination we obtain some BA⋆-
derivation h such that

• FV(h) ⊆ {x},

• Γ(h) = {(∃y)ϕ(x, y)},

• Σb
i -crk(h) ≤ j + 1, and

• o(h(a/x)) = O(|a|3+j).

We define a search problem by stating its parameters:

• Φ := deco(h) is a finite set of formulae in BFOR,

• as the “complexity class” we take C := Σb
i ,

• for the size parameter we choose s := |h|,

• the initial value function is given by ha := E . . .E︸ ︷︷ ︸
j times

h(a/x),

• the formula is as given, (∃y)ϕ(x, y).

This defines a local search problem according to Definition 13.12, because

• Γ(ha) = {(∃y)ϕ(a, y)},

• Σb
i -crk(ha) ≤ 1,

• o(ha) ≤ 2j(o(h(a/x))) = 2j(O(|a|3+j)),

• as h(a/x) ∈ Hs
BA we have

ϑ(ha)(s) = ϑ(E . . .E︸ ︷︷ ︸
j×

h(a/x))(s)

= o(E . . .E︸ ︷︷ ︸
(j−1)×

h(a/x)) · (ϑ((E . . .E︸ ︷︷ ︸
(j−1)×

h(a/x))(s) + 2)

= 2j−1(O(|a|3+j)) · (ϑ((E . . .E︸ ︷︷ ︸
(j−1)×

h(a/x))(s) + 2)

= · · · = O(|a|)

• deco(ha) ⊆ Φa by Lemma 13.8, 1.

As o(ha) = O(||a||), Proposition 13.14, 3., shows that the computed multi-

function of this search problem is in FPΣb
i [wit, 2j(O(log2+j n))], which coincides

with the description given by Pollett [Pol99].

39

Acknowledgements

The authors gratefully acknowledge support by the Engineering and Physical
Sciences Research Council (EPSRC) under grant number EP/D03809X/1.

References

[AJ05] Klaus Aehlig and Felix Joachimski. Continuous normalization for the
lambda-calculus and Gödel’s T . Annals of Pure and Applied Logic,
133(1–3):39–71, May 2005.

[AS00] Klaus Aehlig and Helmut Schwichtenberg. A syntactical analysis of
non-size-increasing polynomial time computation. In Proceedings of
the Fifteenth IEEE Symposium on Logic in Computer Science (LICS
’00), pages 84 – 91, June 2000.

[Bec01] Arnold Beckmann. Exact bounds for lengths of reductions in typed
λ-calculus. Journal of Symbolic Logic, 66(3):1277–1285, 2001.

[Bec03] Arnold Beckmann. Dynamic ordinal analysis. Arch. Math. Logic,
42:303–334, 2003.

[Bec06] Arnold Beckmann. Generalised dynamic ordinals—universal measures
for implicit computational complexity. In Logic Colloquium ’02, vol-
ume 27 of Lect. Notes Log., pages 48–74. Assoc. Symbol. Logic, La
Jolla, CA, 2006.

[BK94] Samuel R. Buss and Jan Kraj́ıček. An application of Boolean com-
plexity to separation problems in bounded arithmetic. Proc. London
Math. Soc. (3), 69(1):1–21, 1994.

[Buc91] Wilfried Buchholz. Notation systems for infinitary derivations.
Archive for Mathematical Logic, 30:277–296, 1991.

[Buc97] Wilfried Buchholz. Explaining Gentzen’s consistency proof within
infinitary proof theory. In Computational logic and proof theory (Vi-
enna, 1997), volume 1289 of Lecture Notes in Comput. Sci., pages
4–17. Springer, Berlin, 1997.

[Bus86] Samuel R. Buss. Bounded arithmetic, volume 3 of Studies in Proof
Theory. Lecture Notes. Bibliopolis, Naples, 1986.

[Bus04] Samuel R. Buss. Bounded arithmetic and constant depth Frege proofs.
In Complexity of computations and proofs, volume 13 of Quad. Mat.,
pages 153–174. Dept. Math., Seconda Univ. Napoli, Caserta, 2004.

[Gen35a] Gerhard Gentzen. Untersuchungen über das logische Schließen. I.
Mathematische Zeitschrift, 39:176–210, 1935.

40

[Gen35b] Gerhard Gentzen. Untersuchungen über das logische Schließen. II.
Mathematische Zeitschrift, 39:405–431, 1935.

[Göd58] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunkts. Dialectica, 12:280–287, 1958.

[KMS75] G. Kreisel, G.E. Mints, and S.G. Simpson. The use of abstract lan-
guage in elementary metamathematics: Some pedagogic examples. In
R. Parikh, editor, Logic Colloquium, volume 453 of Lecture Notes in
Mathematics, pages 38–131. Springer, 1975.

[Kra93] Jan Kraj́ıček. Fragments of bounded arithmetic and bounded query
classes. Trans. Amer. Math. Soc., 338(2):587–598, 1993.

[Min78] Grigori E. Mints. Finite investigations of transfinite derivations. Jour-
nal of Soviet Mathematics, 10:548–596, 1978. Translated from: Zap.
Nauchn. Semin. LOMI 49 (1975). Cited after Grigori Mints. Selected
papers in Proof Theory.Studies in Proof Theory. Bibliopolis, 1992.

[Pol99] Chris Pollett. Structure and definability in general bounded arith-
metic theories. Ann. Pure Appl. Logic, 100(1-3):189–245, 1999.

[PW85] J. Paris and A. Wilkie. Counting problems in bounded arithmetic.
In A. Dold and B. Eckmann, editors, Methods in Mathematical Logic
(Proceedings Caracas 1983), number 1130 in Lecture Notes in Math-
ematics, pages 317–340. Springer, 1985.

[Sch51] Kurt Schütte. Die unendliche Induktion in der Zahlentheorie. Math-
ematische Annalen, 122:369–389, 1951.

[Tai68] William W. Tait. Normal derivability in classical logic. In J. Barwise,
editor, The Syntax and Semantics of Infinitatry Languages, number 72
in Lecture Notes in Mathematics, pages 204–236. Springer, 1968.

41

	Introduction and Related Work
	Proof Systems
	The infinitary proof system
	Notation system for infinitary formulae
	Semiformal proof systems
	Cut elimination for semiformal systems
	Notations for derivations and cut-elimination
	An Abstract Notion of Notation
	Size Bounds
	Bounded Arithmetic
	Notation system for Bounded Arithmetic formulae
	A notation system for BA
	Computational content of proofs
	Complexity notions for BA
	Search problems defined by proof notations
	bi-definable multi-functions in Si-12
	bi-definable functions in Si2
	bi-definable multi-functions in Si+12
	bi+1-definable multi-functions in bi+j-L2+jIND

