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a b s t r a c t

A monadic formula ψ(Y ) is a selector for a monadic formula ϕ(Y ) in a structure M if ψ
defines inM a unique subset P of the domain and this P also satisfies ϕ inM. If C is a class
of structures and ϕ is a selector for ψ in everyM ∈ C, we say that ϕ is a selector for ϕ
over C.
For a monadic formula ϕ(X, Y ) and ordinals α ≤ ω1 and δ < ωω , we decide whether

there exists a monadic formula ψ(X, Y ) such that for every P ⊆ α of order-type smaller
than δ, ψ(P, Y ) selects ϕ(P, Y ) in (α,<). If so, we construct such a ψ .
We introduce a criterion for a classC of ordinals to have the property that everymonadic

formula ϕ has a selector over it. We deduce the existence of S ⊆ ωω such that in the
structure (ωω, <, S) every formula has a selector.
Given a monadic sentence π and a monadic formula ϕ(Y ), we decide whether ϕ has a

selector over the class of countable ordinals satisfying π , and if so, construct one for it.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Definition 1.1 (Uniformization). Let ϕ(X̄, Ȳ ),ψ(X̄, Ȳ ) be formulas and C a class of structures. We say thatψ uniformizes (or
is a uniformizer for) ϕ over C iff for allM ∈ C:

1. M |= ∀X̄∃≤1Ȳψ(X̄, Ȳ ),
2. M |= ∀X̄∀Ȳ (ψ(X̄, Ȳ )→ ϕ(X̄, Ȳ )), and
3. M |= ∀X̄

(
∃Ȳϕ(X̄, Ȳ )→ ∃Ȳψ(X̄, Ȳ )

)
.

Here X̄, Ȳ are tuples of distinct variables and ‘‘∃≤1Ȳ . . .’’ stands for ‘‘there exists at most one . . .’’. The class C is said to have
the uniformization property iff every formula ϕ has a uniformizer ψ over C.
If C = {M} consists of a single structure, we speak of uniformization inM rather than over C.

In [5], Lifsches and Shelah characterize all trees having the uniformization property with respect to formulas of the second-
order monadic logic of order (MLO). This logic extends first-order logic by allowing quantification over subsets of the domain.
The binary relation symbol ‘<’ is its only non-logical constant. In this paper, we assume that ‘<’ is interpreted as a linear
order of the domain. Thus, our structures are chains (or chains expanded by finitely many subsets of the domain). Note that
we also assume that the free-variables in a formula are of second order, i.e. they range over subsets of the domain.1
Lifsches and Shelah show in particular that an ordinal α has the uniformization property iff α < ωω . So, already in

(ωω, <) there are formulas lacking a uniformizer. This naturally leads to the following algorithmic problem:

∗ Corresponding author.
E-mail addresses: rabinoa@post.tau.ac.il (A. Rabinovich), shomrata@post.tau.ac.il (A. Shomrat).

1 If the variables Ȳ in ϕ of the previous definition were individual variables, ranging over elements of the domain, then the problem of constructing a
uniformizer for ϕ would become trivial in an ordinal α. Indeed, for any tuple P̄ of subsets of α, one could choose the lexicographically minimal tuple Q̄ of
elements of α such that (α,<) |= ϕ(P̄, Q̄ ).

0168-0072/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2009.12.004
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Definition 1.2 (Uniformization problem). The uniformization problem over a class C is:

Input a formula ϕ(X̄, Ȳ );
Task determine whether ϕ has a uniformizer over C, and if so, construct one for it.

Since α < ωω has the uniformization property, for such α the uniformization problem consists only in computing a
uniformizer for each formula. While Lifsches and Shelah took no interest in decidability and computability issues, from
their proof one can extract an algorithm as follows:

Proposition 1.3 (Uniformization Below ωω). There is an algorithm that, given k ∈ ω and ϕ(X̄, Ȳ ), computes a ψ(X̄, Ȳ ) that
uniformizes ϕ in every ordinal smaller than ωk.

In the Appendix, we present a detailed proof of this proposition.
Whenwe turn to (ωω, <), things get trickier. So far, we have been unable to solve the uniformization problem in (ωω, <).

We succeeded, however, in solving some partial cases.
First, note that, strictly speaking, the input to the uniformization problem is not only a formula, but a formula plus a

partition of its free-variables into domain variables X̄ and image variables Ȳ .2 Selection is the special case of uniformization
where there are no domain variables:

Definition 1.4 (Selection). Let ϕ(Ȳ ),ψ(Ȳ ) be formulas and C a class of structures. We say thatψ selects (or, is a selector for)
ϕ over C iff for everyM ∈ C:

1. either both formulas are not satisfied inM, or
2. ψ defines inM a unique tuple P̄ and this P̄ also satisfies ϕ inM.

We say that C has the selection property iff every formula ϕ has a selector ψ over C.
The selection problem over C is the restriction of the uniformization problem to formulas ϕ(Ȳ ) given without domain

variables.

Selection is treated in [9]. There we show, among other things:

Proposition 1.5. For each α ≥ ωω , there are formulas lacking a selector in (α,<).

On the other hand,

Proposition 1.6 (Solvability of Selection in α ≤ ω1). There exists an algorithm that, given α ∈ [ωω, ω1] and a formula ϕ(Ȳ ),
decides whether ϕ has a selector in (α,<), and if so, constructs one for it.3

The present paper continues the line of work began in [9] by tackling a problem which could be said to lie ‘‘in between’’
selection and the full uniformization problem.
The task of constructing a uniformizer is intuitively harder than that of constructing a selector in that a uniformizer must

respond to a given tuple substituted for the domain variables X̄ with an appropriate tuple to be substituted for the image
variables Ȳ ; it must (uniformly) answer a variety of challenges. In selection the X̄ simply do not appear in the formula. Put
more abstractly, their variability has been reduced to zero. A natural move therefore, when the X̄ do appear in the formula,
is to place various restrictions on the subsets of the domain substituted for them. One restriction which comes to mind is
to consider formulas ϕ(x̄, Ȳ )where the x̄ are individual variables, i.e. range over elements of the domain. Once we show the
solvability of the uniformization problem for such formulas, our next stepmay be to allow X̄ to range only over finite subsets
of the domain, or perhaps over sets of order-type ω, etc. These examples are generalized by the following definition.

Definition 1.7 (δ-Uniformizer). For ordinals δ and α, let P<δ(α) := {P ⊆ α | otp(P) < δ}.4

Let ϕ(X̄, Ȳ ), ψ(X̄, Ȳ ) be formulas. We say that ψ is a δ-uniformizer for ϕ in (α,<) iff clauses (1)-(3) of Definition 1.1
hold in (α,<) when the X̄ variables are restricted to range over members of P<δ(α).

The main result of this paper is:

Proposition 1.8 (Solvability of Bounded Uniformization). There is an algorithm that, given ordinals α ∈ [ωω, ω1] and δ < ωω

and a formula ϕ(X̄, Ȳ ), decides whether ϕ has a δ-uniformizer in (α,<), and if so, constructs one.

2 In the few cases where we use letters other than X and Y , we shall state explicitly which variables are to be taken as domain variables and which as
image variables.
3 Section 2.3 will clarify what we mean by the algorithm being given an ordinal as input. For now, the reader can read the proposition as stating merely
that for each α ∈ [ωω, ω1], there is an algorithm which solves the selection problem in (α,<). A similar comment applies to Proposition 1.8.
4 As usual, otp(P) denotes the order-type of P .
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Roughly speaking, our proof proceeds by reducing this problem to uniformization over the class of ordinals smaller than δ
and to selection in (ωω, <) (or in (ω1, <)when α = ω1). Proposition 1.3 tells us the former is solvable, while Proposition 1.6
handles the latter.
This paper expands on [9] in yet another direction. Thereweweremainly interested inwhether a formulaϕ has a selector

in (α,<) for a particular α ≤ ω1. Here we ask whether it has a selector over a given class C of countable ordinals.
First, we prove the solvability of the selection problem over definable classes of countable ordinals. That is, given a

sentence π and a formula ϕ(Ȳ ), we decide whether ϕ has a selector over the class of countable ordinals satisfying π . When
one exists, we construct it. Our proof reduces this problem to the bounded uniformization problem solved in Proposition 1.8.
Next, by Proposition 1.5, any class C of ordinals which has an α ≥ ωω as a member lacks the selection property. On the

other hand, by Proposition 1.3, any C bounded below ωω has it. It is therefore natural to ask whether there are unbounded
C ⊆ ωω which have the selection property. We provide a simple necessary and sufficient condition for a class C ⊆ ωω to
have this property, which implies the existence of unbounded C’s having it.
In [9] we show that the formula stating ‘‘Y is an unbounded ω-sequence’’ has no selector in (ωω, <). On the other hand,

given any formula ϕ(Ȳ ), there is a ψ(X, Ȳ ) such that if any unbounded ω-sequence S ⊆ ωω is substituted for X , then
ψ(S, Ȳ ) selects ϕ in (ωω, <). Thus, with an unboundedω-sequence S as parameter, we can select every formula in (ωω, <).
This does not entail, however, that (ωω, <, S) has the selection property, because the formulas ϕ for whichψ as above were
constructed do not themselves refer to S. In fact, it is easy to find unbounded ω-sequences S ⊆ ωω such that (ωω, <, S)
lacks the selection property. This lead us to ask:

Question 1.9 ([9]). Is there a finite tuple P̄ of subsets of ωω such that (ωω, <, P̄) has the selection property?

Using the existence of unbounded subclasses ofωω having the selection property, we are able here to provide an affirmative
answer to this question. In fact, we shall show:

Proposition 1.10. There are P ⊆ ωω such that:

(a) (ωω, <, P) has the selection property,
(b) the monadic theory of (ωω, <, P) is decidable, and
(c) given a formula ϕ, we can compute a selector for ϕ in (ωω, <, P).5

The paper is organized as follows. In Section 2, we fix our notations and terminology. We also recall the basics of the
‘composition method,’ the main technical tool used in our proofs. Section 3 introduces an abstract framework for studying
the selection problem over classes of chains (expanded by finitely many monadic predicates). Using this framework, we
present a condition both necessary and sufficient for a formula ϕ to have a selector over a class C of chains, when C satisfies
certain assumptions (see Lemmas 3.16 and 3.23). Section 4 shows that these assumptions apply in the case of bounded
uniformization, which allows us to prove Proposition 1.8. In Section 5, we handle the selection problem over definable
classes of countable ordinals, as explained above. Finally, Section 6 treats selection over classes C ⊆ ωω , which are not
necessarily definable and proves Proposition 1.10. As mentioned, the Appendix provides a proof of Proposition 1.3.
Note finally that, for the convenience of the reader, our treatment of selection over classes of countable ordinals was

kept almost entirely independent from our proof of the solvability of bounded uniformization. There is only one point in
Sections 5 and 6 where familiarity with either Section 3 or 4 is truly required, namely, in proving Proposition 1.10. There we
make use of the Inheritance Lemma (3.12). To understand this lemma (proved in Section 3.2), the reader must familiarize
himself/herself with the notations and definitions of Section 3.1. The technically more complicated conditions developed in
Sections 3.3 and 3.4 are unnecessary. In any case, the reader who is willing to accept this one application of Lemma 3.12 on
faith, can read the last two sections of this paper directly after Section 2.

2. Preliminaries and background

2.1. Notation and terminology

We use n, k, l,m, p, q for natural numbers, α, β, γ , δ, ζ , µ for ordinals. Our ordinals are von Neumann ordinals: an
ordinal is identicalwith the set of all ordinals below it. In particular, 0 = ∅, 1 = {0} = {∅}, 2 = {0, 1}, etc.ω = {0, 1, 2, . . .}
is the set of natural numbers. ω1 is the first uncountable ordinal. We write α + β , αβ , αβ for the sum, multiplication and
exponentiation, respectively, of ordinals α and β .
For sets A and B, we denote by BA the set of all functions from B into A.
We use the expressions ‘‘chain’’ and ‘‘linear order ’’ interchangeably.We use standard notation for sub-intervals of a chain:

if (A, <) is a chain and b < a are in A, we write (b, a) := {c ∈ A | b < c < a}, [b, a) := (b, a) ∪ {b}, etc.
We use the symbol ‘∼=’ for isomorphism.

5 Here ϕ is allowed to refer to P .
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2.2. The Monadic Logic of Order (MLO)

2.2.1. Syntax
The vocabulary of MLO consists of monadic second-order variables Xi (i ∈ ω) and binary relation symbols ‘<’ and ‘⊆’.

Atomic formulas take the form Xi < Xj or Xi ⊆ Xj. All other formulas are built up from these by means of the usual Boolean
connectives and second-order quantifiers ∃Xi, ∀Xi. The quantifier depth of a formula ϕ is denoted by qd(ϕ).
We use upper-case letters X , Y , . . . to denote variables; with an overline, X̄ , Ȳ , etc. to denote finite tuples of variables

(always assumed distinct).

2.2.2. Semantics
A structure is a tuple M := (A, <M, P̄M) where: A is a non-empty set, <M is a binary relation on A, and P̄M

:=

〈PM
0 , . . . , P

M
l−1〉 is a finite tuple of subsets of A.

If lg(P̄M) = l, we callM an l-structure. If<M linearly orders A, we callM an l-chain. When the specific l is unimportant,
we simply say thatM is a labeled chain.
SupposeM is an l-structure and ϕ a formula with free-variables among X0, . . . , Xl−1. We define the relationM |= ϕ

(read:M satisfies ϕ) as follows:M |= Xi ⊆ Xj iff PM
i ⊆ P

M
j , andM |= Xi < Xj iff there are b <M a in A with PM

i = {b},
PM
j = {a}. The Boolean connectives are handled as usual and quantifiers range over subsets of A.

6

Let M be an l-structure. The monadic theory of M, MTh(M), is the set of all formulas with free-variables among
X0, . . . , Xl−1 satisfied byM.
Henceforth, we omit the superscript ‘M ’ in ‘<M ’ and ‘P̄M ’. We often write (A, <) |= ϕ(P̄), meaning (A, <, P̄) |= ϕ. Note

also the following notations endemic to this paper:

Notation 2.1. LetM := (A, <, P̄) be a structure, Q̄ a finite tuple of subsets of A. The expansion ofM by Q̄ isM_Q̄ := (A, <,
P̄, Q̄ ), where we write ‘P̄, Q̄ ’ meaning the tuple obtained by concatenating P̄ and Q̄ .

Definition 2.2. Let l1, l2 ∈ ω,M an l1-structure, ϕ(X̄, Ȳ ) a formula with lg(X̄) = l1 and lg(Ȳ ) = l2.

1. The relation defined by ϕ inM is
D(ϕ,M) := {Q̄ ∈ l2P (dom(M)) |M_Q̄ |= ϕ}.

2. Of every Q̄ ∈ D(ϕ,M), we say that it satisfies ϕ inM.
3. WhenD(ϕ,M) is a singleton {Q̄ }, we say that ϕ defines Q̄ inM and that Q̄ is definable inM.

2.2.3. First-order variables
We occasionally wish to have a variable range only over elements of the domain (equivalently, singleton subsets thereof).

Since it is easy to write a formula Sing(X) stating ‘‘X is a singleton set’’, this can be achieved without formally adding first-
order variables to our vocabulary. To distinguish them,we denote by lower-case letters x, y, etc., those variables ranging only
over elements of the domain. For instance, ‘‘Let ϕ(x, Y ) be a formula . . . ’’ implies that ϕ has the form ‘‘Sing(X) ∧ ϕ′(X, Y )’’
for some formula ϕ′.

2.2.4. Restriction
Notation 2.3. LetM := (A, <, P̄) be a structure and ∅ 6= D ⊆ A. The restriction ofM to D is the structureM�D := (D, <,
P̄∩̌D)where P̄∩̌D := 〈P0 ∩ D, . . . , Pl−1 ∩ D〉.

Lemma 2.4 (Restriction). Let ϕ(Ȳ ) be a formula, U a variable not appearing in ϕ. We can compute a formula ϕ�U(Ȳ ,U) such
that for every lg(Ȳ )-structureM and every non-empty subset D of its domain,

M_D |= ϕ�U(Ȳ ,U) iff M�D |= ϕ(Ȳ ).

That is, ϕ�U holds inM with U interpreted as D iff ϕ holds in the restriction ofM to D.
When this is the case, we say that ϕ holds inM restricted to D.

We are mostly interested in the case whereM is a labeled chain and D is an interval [b, a) for some b < a inM.

2.3. The monadic theory of countable ordinals

Büchi (for instance [2]) has shown that there is a finite amount of data concerning any ordinal≤ω1 which determines its
monadic theory:

6 Our definition is equivalent to the standard definition of MLO which allows both first-order and second-order variables over the signature ‘<’.
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Theorem 2.5. Let α ∈ [1, ω1]. Write α = ωωβ+ ζ where ζ < ωω (this can be done in a unique way). Then the monadic theory
of (α,<) is determined by:

1. whether α is countable or α = ω1,
2. whether α < ωω , and
3. ζ .

We can associate with every α ≤ ω1 a finite codewhich holds the data required in the previous theorem. This is clear with
respect to (1) and (2). As for (3), if ζ 6= 0, write

ζ =
∑
i≤n
ωn−i · an−i, where n, ai ∈ ω for i ≤ n and an 6= 0

(this, too, can be done in a unique way), and let the sequence 〈an, . . . , a0〉 encode ζ . The following is then implicit in [2]:

Theorem 2.6 (Monadic Decidability Theorem). There is an algorithm that, given a sentence ϕ and the code of an α ∈ [1, ω1],
determines whether (α,<) |= ϕ.

Comment. In this paper, whenever we say that an algorithm is ‘‘given an ordinal . . . ’’ or ‘‘returns an ordinal . . . ’’, we mean
the code of the ordinal. This holds in particular for Propositions 1.6 and 1.8 (which fulfils the promise made in footnote 3).

Finally, note that the monadic theory of a structureM ‘‘knows’’ which formulas uniformize which others in a structureM.

Definition 2.7 (Uniformization Axiom). For formulas ϕ(X̄, Ȳ ), ψ(X̄, Ȳ ), the (ψ, ϕ)-uniformization axiom, denoted uni-ax
(ψ, ϕ), is the conjunction of the sentences appearing in the definition of uniformization (Definition 1.1).
When discussing the special case of selection, we write sel-ax(ψ, ϕ) instead of uni-ax(ψ, ϕ).

Clearly, ψ uniformizes ϕ inM iffM |= uni-ax(ψ, ϕ).

2.4. Elements of the composition method

Our proofs make use of the technique known as the composition method.7 To fix notations and to aid the reader not
familiar with this technique, we briefly review those definitions and results that we require. A more detailed presentation
can be found in [11] or [4], for instance.

2.4.1. Hintikka formulas and n-types
Notation 2.8. Let n, l ∈ ω. Denote by Formn,l the set of formulas of quantifier depth ≤n and with free-variables among
X0, . . . , Xl−1.

Definition 2.9. Let n, l ∈ ω andM,N be l-structures. We say thatM and N are n-equivalent, denotedM ≡n N , iff for
every ϕ ∈ Formn,l,M |= ϕ iffN |= ϕ.

Clearly, ≡n is an equivalence relation. For any n ∈ ω and l > 0, the set Formn,l is infinite. However, it contains only
finitely many semantically distinct formulas. So, there are finitely many≡n-classes of l-structures. In fact, we can compute
‘‘representatives’’ for these classes:

Lemma 2.10 (Hintikka Lemma). For n, l ∈ ω, we can compute a finite Hn,l ⊆ Formn,l such that:

(a) For every l-structureM, there is a unique τ ∈ Hn,l such thatM |= τ .
(b) If τ ∈ Hn,l and ϕ ∈ Formn,l, then either τ |= ϕ or τ |= ¬ϕ. Furthermore, there is an algorithm that, given such τ and ϕ,
decides which of these two possibilities holds.

Any member of Hn,l we call an (n, l)-Hintikka formula.

Definition 2.11 (n-Type). For n, l ∈ ω andM an l-structure, we denote by typen(M) the unique member of Hn,l satisfied by
M and call it the n-type ofM.

Thus, typen(M) determines (effectively) which formulas of quantifier depth≤ n are satisfied byM.

7 Originating in [3], and adapted and ingeniously applied to the case of MLO in [10].
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2.4.2. The ordered sum of labeled chains
We occasionally make use of the following notation.

Notation 2.12. Let l ∈ ω and {P̄α | α ∈ I} a family of l-tuples of sets. For each α ∈ I , let P̄α := 〈Pα0 , . . . , P
α
l−1〉. Then the

-̌union of {P̄α | α ∈ I} is:⋃̌
α∈I

P̄α :=

〈⋃
α∈I

Pα0 , . . . ,
⋃
α∈I

Pαl−1

〉
.

From a family of labeled chains which is itself indexed by a linear order, there is a natural way of obtaining a new labeled
chain:

Definition 2.13. Let l ∈ ω, I := (I, <I) a linear order, and S := 〈Mα | α ∈ I〉 a sequence of l-chains. Write Mα :=

(Aα, <α, P̄α) and assume Aα ∩ Aβ = ∅whenever α 6= β are in I . The ordered sum ofSw.r.t. I is the l-chain∑
I

S :=

(⋃
α∈I

Aα, <I,S,
⋃̌
α∈I

P̄α
)
,

where:

if α, β ∈ I , a ∈ Aα , b ∈ Aβ , then b <I,S a iff β < α or β = α and b <α a.

If the domains of theMα are not disjoint, replace them with isomorphic l-chains that have disjoint domains, and proceed
as before.

The next proposition says that taking ordered sums preserves n-equivalence.

Proposition 2.14. Let n, l ∈ ω. Assume:

1. (I, <) is a linear order,
2. 〈M0

α | α ∈ I〉 and 〈M
1
α | α ∈ I〉 are sequences of l-chains, and

3. for every α ∈ I ,M0
α ≡

n M1
α .

Then
∑

α∈I M
0
α ≡

n ∑
α∈I M

1
α .

2.4.3. The composition theorem
Notation 2.15. Let I and H be sets. An H-partition of I is a sequence B̄ := 〈Bτ | τ ∈ H〉 of disjoint sets such that⋃
τ∈H Bτ = I .

Proposition 2.14 justifies the following definition.

Definition 2.16. Let (I, <) be a chain, n, l ∈ ω and B̄ an Hn,l-partition of I . For every α ∈ I denote by τα the unique τ ∈ Hn,l
such that α ∈ Bτ . Fix ϕ ∈ Formn,l.
We say that B̄ induces ϕ w.r.t. (I, <) iff whenever 〈Mα | α ∈ I〉 is a sequence of l-chains such that typen(Mα) = τα for

each α ∈ I , we have

typen
(∑
α∈I

Mα

)
|= ϕ.

The next fundamental result of Shelah’s ([10]) says that we may define in (I, <) the class of ϕ-inducing partitions.

Theorem 2.17 (Composition Theorem). Let n, l ∈ ω and ϕ ∈ Formn,l. We can compute a formula ϑϕ Ind(V̄ ) where V̄ := 〈Vτ |
τ ∈ Hn,l〉 such that if (I, <) is a chain and B̄ an Hn,l-partition of I, then:

(I, <) |= ϑϕ Ind(B̄) iff B̄ induces ϕ w.r.t. (I, <).

Finally, as a special case of inducement, Proposition 2.14 allows us also to define the sum of Hintikka formulas.

Definition 2.18. Let n, l ∈ ω and τ0, τ1 ∈ Hn,l. The sum of τ0 and τ1, denoted τ0+τ1, is an element ofHn,l such that whenever
M0,M1 are l-structures with typen(Mi) = τi for i ∈ 2, we have typen(M0 +M1) = τ0 + τ1.

Since the monadic theory of (2, <) is decidable, the Composition Theorem yields:

Lemma 2.19. λn, l ∈ ω.λτ0, τ1 ∈ Hn,l.τ0 + τ1 is recursive.
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3. Conditions for selectability over classes of labeled chains

Definition 3.1. Let (A, <) be a linear order. Call S ⊆ A a segment of (A, <) if (b, a) ⊆ S whenever b < a are in S.

Here we present the notion of a split class: a class C of labeled chains is split by a formula θ if θ defines in everyM ∈ C
a partition ofM into subsegments. We use this notion to prove the Inheritance Lemma (3.12), which provides a sufficient
condition for C to have the selection property. This lemma is, however, too weak to be used in proving Proposition 1.8, and
we therefore generalize it into the Sufficiency-of-Safety Lemma, where a sufficient condition for a specific formula ϕ to have
a selector overC is given. Finally, in Section 3.4 we show that – under the appropriate assumptions onC – this last sufficient
condition is also necessary for ϕ to have a selector.

3.1. Basic framework

3.1.1. Two stages of selection over split classes
Definition 3.2 (Splitting). Let l1 ∈ ω,M an l1-chain with domain A, and θ(X̄, x, y) a formula with lg(X̄) ≤ l1 and x and y
first-order variables.8

1. We call θ a splitting ofM iff θ defines inM an equivalence relation on the elements of A whose classes are segments
ofM.

2. If θ splitsM, denote by ∼M
θ the equivalence relation defined by θ inM, denote by IM/θ the set of ∼M

θ -classes, and let
IM/θ := (IM/θ , <) denote IM/θ ordered by representatives. Call IM/θ the indexing order ofM w.r.t. θ .

3. Let C be a class of labeled chains. We call θ a splitting of C iff θ splits everyM ∈ C.

Throughout this section, fix l1 ∈ ω, a class C of l1-chains and a splitting θ of C. Note thatM =
∑
S∈IM/θ

M�S for every

M ∈ C. Fix a formula ϕ(X̄, Ȳ ) with lg(X̄) = l1. To decide whether ϕ has a selector over C, one must decide whether it is
possible to definably pick in everyM ∈ C a unique tuple Q̄ such thatM_Q̄ |= ϕ. Write

n := qd(ϕ), l2 := lg(Ȳ ), l := l1 + l2.

By Proposition 2.14, the n-types of the summands (M_Q̄ )�S (for S ∈ IM/θ ) determine whetherM_Q̄ |= ϕ. Accordingly, we
may try and break the task of selecting Q̄ into two stages roughly as follows:
Partition the indexing order: choose an Hn,l-partition B̄M

:= 〈BM
τ | τ ∈ Hn,l〉 of IM/θ which induces ϕ w.r.t. IM/θ (recall

Definition 2.16) and further satisfies:

(Coh) for every S ∈ IM/θ ,M�S |= ∃ȲτS ,

where τS is the unique τ ∈ Hn,l such that S ∈ Bτ .
Local selection: for each S ∈ IM/θ , select a Q̄S ∈ l2P (S) such that typen((M�S)

_Q̄S) = τS . Then Q̄ :=
⋃̌
S∈IM/θ

Q̄S ought to do
the trick. Thus, intuitively, B̄M instructs one which n-type to realize in each summandM�S so that, globally, one satisfies ϕ.
Note that had we not required that B̄M satisfy (Coh), there would be cases where we could not choose Q̄S in compliance

with it; for instance, suppose l1 = l2 = 1,M = (A, <, P), and τS(X, Y ) implies ‘‘Y is a non-empty subset of X ’’, but P ∩ S
happens to be empty.

3.1.2. Type partitions of the indexing order
By the Composition Theorem, whether a partition B̄M of IM/θ induces ϕ is fully determined by the monadic theory

of (IM/θ )
_B̄M . No reference to M itself is necessary. With regard to condition (Coh), things stand differently. There is,

generally, no reason to assume that the monadic theory of IM/θ ‘‘knows’’ whether a given τ ∈ Hn,l is satisfiable in M�S

(where S ∈ IM/θ ). This may clearly involve the particularM. Note, however, that ∃ȲτS ∈ Formn+l2,l1 , so (Coh) is equivalent
to the requirement that

(Coh’) for each S ∈ IM/θ , typen+l2(M�S) |= ∃ȲτS .

This motivates the two following definitions.

Definition 3.3 (Coherence). Let I be a set, n, l1, l2 ∈ ω, T̄ an Hn+l2,l1-partition of I , and B̄ an Hn,l1+l2-partition of I . We say
that T̄ and B̄ are coherent iff for every S ∈ I , σ ∈ Hn+l2,l1 and τ ∈ Hn,l1+l2 ,

if S ∈ Tσ ∩Bτ , then σ(X̄) |= ∃Ȳτ(X̄, Ȳ ).

Definition 3.4 (k-Type Partition). Let k,m ∈ ω,M anm-chain and θ a splitting ofM. For each τ ∈ Hk,m, write Tτ (M/θ) :=

{S ∈ IM/θ | typek(M�S) = τ }. The k-type partition ofM w.r.t. θ is TyPartk(M/θ) := 〈Tτ | τ ∈ Hk,m〉.

8 See the discussion in Section 2.2.3.
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Thus, (Coh) is the requirement that TyPartn+l2(M/θ) and B̄M be coherent. Note that in IM/θ
_ TyPartn+l2(M/θ), this is

expressible by a formula:

Lemma 3.5 (Coherence Lemma). For n, l1, l2 ∈ ω, we can compute a formula ϑCoh(Ū, V̄ ), with Ū indexed by Hn+l2,l1 and V̄ by
Hn,l1+l2 , which in every chain (I, <) states:

‘‘Ū and V̄ are coherent partitions of the domain.’’

Proof. Compute Cohn,l1,l2 := {(σ , τ ) ∈ Hn+l2,l1 × Hn,l1+l2 | σ |= ∃Ȳτ } using (b) of the Hintikka Lemma. Then the following
does the job:

ϑCoh(Ū, V̄ ) := ∀x
( ∨
(σ ,τ )∈Cohn,l1,l2

(x ∈ Uσ ∩ Vτ )
)
∧ ‘‘Ū and V̄ are partitions’’. �

Finally, the next observation follows immediately from the definitions of coherence and inducement:

Lemma 3.6. Let n, l1, l2 ∈ ω,M an l1-chain, θ a splitting ofM, and Q̄ an l2-tuple of subsets of dom(M). Then:

(a) TyPartn+l2(M/θ) and TyPartn(M_Q̄/θ) are coherent.
(b) If ϕ ∈ Formn,l1+l2 and Q̄ ∈ D(ϕ,M), then TyPartn(M_Q̄/θ) induces ϕ w.r.t. IM/θ .

3.1.3. Interpreting IM/θ inM

Bywhatwas just stated, the first stage of the selection scheme suggested above amounts to selecting in IM/θ
_ TyPartn+l2

(M/θ) a partition B̄M such that IM/θ
_ TyPartn+l2(M/θ)_B̄M satisfies both ϑϕ Ind(V̄ ) and ϑCoh(Ū, V̄ ). But, we of course are

looking for a selector for ϕ that would work inM. To this end, we now show thatM interprets IM/θ
_ TyPartn+l2(M/θ).

Definition 3.7. Let A be a set and∼ an equivalence relation on A. We say that a subset T ⊆ A respects∼ iff T is the union of
∼-classes. A finite tuple 〈Tτ | τ ∈ H〉 of subsets of A is said to respect ∼ iff Tτ does for all τ ∈ H .

Notation 3.8. Let A be a set and∼ an equivalence relation on A. If T ⊆ A, let (T� ∼) denote the set of∼-classes of members
of T , and if T̄ := 〈Tτ | τ ∈ H〉 is a finite tuple of subsets of A, let (T̄� ∼) := 〈(Tτ� ∼) | τ ∈ H〉.

Lemma 3.9 (Interpretation Lemma). Let θ(X̄, x, y) be a formula. Set l1 := lg(X̄). Given formulas χ(X̄, W̄ ) and ϑ(W̄ , V̄ ), we
can compute a formula ϑ_χ�θ (X̄, V̄ ) with the following property:

IfM is an l1-chain split by θ , χ(X̄, W̄ ) defines inM a tuple T̄ , and B̄ ∈ lg(V̄ )P (dom(M)), then:

M_B̄ |= ϑ_χ�θ iff B̄ respects∼
M
θ and IM/θ

_(T̄�∼M
θ )

_(B̄�∼M
θ ) |= ϑ .

Applying the lemma with T̄ =
⋃̌
TyPartn+l2(M/θ) interprets IM/θ

_ TyPartn+l2(M/θ) inM, as desired.

Proof. First, it is easy to write a ϑresp(W ) which says ‘‘W respects ∼M
θ ’’. Indeed, this is equivalent to W being a union of

∼
M
θ -classes. To ensure ϑ�θ is satisfied only by T̄ which respect∼

M
θ , we assume it has the form ϑ? ∧

∧
i<lg(W̄ ) ϑresp(Wi). The

definition of ϑ? itself proceeds by induction on ϑ . We leave to the reader the proof that ϑ�θ has the desired property.
(Sing(W ))? says ‘‘W is a ∼M

θ -class’’. (W < W ′)? says ‘‘both W and W ′ are ∼M
θ -classes and there exist w ∈ W and

w′ ∈ W ′ such thatw < w′’’. If ϑ = W ⊆ W ′ or ϑ = Emp(W ), let ϑ? := ϑ . Finally, (ϑ ∧ ϑ ′)? := ϑ? ∧ ϑ ′?, (¬ϑ)? := ¬(ϑ?)
and (∃Zϑ)? := ∃Z(ϑresp(Z) ∧ ϑ?). �

Remark 3.10. Suppose W̄ = Ū, V̄ and ϑT̄ (X̄, Ū) defines in M a tuple T̄ respecting ∼M
θ . Then the lemma tells us that

∃Ū
(
ϑT̄ (X̄, Ū)∧ϑ�θ (X̄, Ū, V̄ )

)
defines inM the class of tuples B̄which respect∼M

θ and such that IM/θ
_(T̄/ ∼M

θ )
_(B̄/ ∼M

θ )
|= ϑ�θ .

3.2. Inheritability of the selection property

Notation 3.11. Let C be a class of labeled chains and θ a splitting of C. Define:
IndC/θ

_ TyPart := {IM/θ
_ TyPartk(M/θ) |M ∈ C ∧ k ∈ ω},

SmdC/θ := {M�S |M ∈ C ∧ S ∈ IM/θ }.

The following lemma is a natural generalization of Proposition 6.1 in [5].

Lemma 3.12 (Inheritance Lemma). Let C be a class of chains and θ a splitting of C.
If IndC/θ

_ TyPart and SmdC/θ have the selection property, then so does C.
If further, selectors are computable over IndC/θ

_ TyPart and SmdC/θ , then the same holds over C.
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Proof. Assume C is a class of l1-chains for some l1 ∈ ω. Let ϕ(X̄, Ȳ )with lg(X̄) = l1. Assuming solvability of selection over
IndC/θ

_ TyPart and over SmdC/θ , we present an algorithm for the construction of a selector ψ for ϕ over C, together with
a proof for the correctness of the construction. The proof will make it clear that even without the solvability assumption,
existence of a selector follows.9Write n := qd(ϕ), l2 := lg(Ȳ ), l := l1 + l2.
(1) Compute ϑϕ Ind(V̄ ) as in the Composition Theorem and ϑCoh(Ū, V̄ ) as in the Coherence Lemma (computed from n, l1, l2).
Recall that Ū is indexed by Hn+l2,l1 and V̄ by Hn,l. Let ϑ1(Ū, V̄ ) := ϑϕ Ind ∧ ϑCoh.
(2) Since IndC/θ

_ TyPart has the selection property and since selectors are computable over it, we may compute a selector
ϑ sel1 (Ū, V̄ ) for ϑ1 over this class.
(3) Write a formula χ(X̄, Ū)which defines

⋃̌
TyPartn+l2,l1(M/θ) in everyM ∈ C. This formula says:

‘‘for every σ ∈ Hn+l2,l1 and∼
M
θ -classW ,W ⊆ Uσ iff σ(X̄) holds restricted toW ’’.

(4) Compute (ϑ sel1 )
_χ

�θ (X̄, V̄ ) as in the Interpretation Lemma (Ū here is W̄ there).
Fix M ∈ C in which ϕ is satisfied. By Lemma 3.6, ϑ1(TyPartn+l2(M/θ), V̄ ) is satisfied in IM/θ . Indeed, for any Q̄ ∈

D(ϕ,M), TyPartn(M_Q̄/θ) satisfies it. Since ϑ sel1 selects ϑ1 in IM/θ
_ TyPartn+l2(M/θ), there exists a unique B̄M such that

IM/θ |= ϑ
sel
1 (TyPart

n+l2(M/θ), B̄M). By construction of ϑ1, this B̄M is coherent with TyPartn+l2(M/θ) and induces ϕ. Write
B̄M
:=

⋃̌
B̄M . By the Interpretation Lemma, ϑB̄M (X̄, V̄ ) := (ϑ sel1 )

_χ

�θ (X̄, V̄ ) defines B̄
M inM. This concludes the stage of

partitioning the index order in the two-stage scheme of selection described in Section 3.1.1.
(5) For each τ ∈ Hn,l, compute a selector Ψτ for τ over SmdC/θ . This can be done because SmdC/θ has the selection property
and selectors are computable over this class.
(6) Let ψ ′(X̄, Ȳ ) say:

‘‘For every V̄ which satisfies ϑB̄M , every∼
M
θ -classW , and every τ ∈ Hn,l,

Ψτ (X̄, Ȳ ) holds restricted toW iffW ⊆ Vτ .’’

Finally, let ψ := ψ ′ ∧ ∃Ȳϕ. Let us show that ψ selects ϕ over C.
FixM ∈ C. If ϕ is not satisfied inM, then because ∃Ȳϕ is a conjunct of ψ , neither is ψ . Assume then that ϕ is satisfied.

By construction of ϑB̄M , ψ actually reads:

‘‘For every∼M
θ -classW and τ ∈ Hn,l, Ψτ (X̄, Ȳ ) holds restricted toW iffW ⊆ B

M
τ .’’

Fix S ∈ IM/θ and let τS ∈ Hn,l such that S ⊆ BM
τS
. Note that this is equivalent to S ∈ BM

τS
where B̄M is as above. Since B̄M is

coherent with TyPartn+l2(M/θ), τS is satisfied inM�S . Since ΨτS selects τS inM�S , there is a unique Q̄S ∈ l2P (S) satisfying
ΨτS inM�S . We have typen(M�S

_Q̄S) = τS , of course. Let Q̄ :=
⋃̌
S∈IM/θ

Q̄S . Then Q̄ satisfiesψ inM. Also, typen(M_Q̄ ) |= ϕ,

since B̄M induces ϕ. Finally, let Q̄ ′ ∈ D(ψ,M) and S ∈ IM/θ . Then Q̄ ′∩̌S satisfies ΨτS inM�S . But, ΨτS defines Q̄S inM�S , i.e.,
Q̄ ′∩̌S = Q̄S and Q̄ ′ = Q̄ is the unique tuple which satisfies ψ inM. Done. �

If IndC/θ has the uniformization property, then IndC/θ
_ TyPart has the selection property. Hence, we obtain the following

corollary:

Corollary 3.13. Let C be a class of chains and θ a splitting of C. Assume:
1. IndC/θ has the uniformization property and
2. SmdC/θ has the selection property.

Then C has the selection property.
If further, both the uniformization problem over IndC/θ and the selection problem over SmdC/θ are solvable, then so is the

selection problem over C.

Comment. In [6], the selection and uniformization properties for classes of structures constructed by the Feferman–
Vaught generalized product (introduced in [3]) were investigated. It was shown that if classes K1 and K2 have the selection
(respectively, uniformization) property, then the generalized product of these classes has the selection (respectively,
uniformization) property. A splitting of a chain provides a representation of the chain as an ordered sum of chains.
The ordered sum of chains is an instance of the generalized sum construct [10,8]. There is a natural generalization of
Corollary 3.13 to the tree sum of trees — another instance of the generalized sum construct. It is interesting to investigate
what instances of the generalized sum inherit the uniformization and selection properties.

As mentioned in the introduction, Sections 3.3, 3.4 and 4 are all geared towards the proof of Proposition 1.8. The reader
more interested in our treatment of selection over classes of countable ordinals, may proceed directly to Section 5 without
loss of continuity.

9 Wherever we write ‘‘we can compute a formula’’ replace ‘‘there exists a formula’’, etc.
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3.3. Sufficient condition for selectability when SmdC/θ lacks the selection property

We now generalize the Inheritance Lemma by relaxing the assumption that SmdC/θ has the selection property. We shall
have a finite family D of subclasses of SmdC/θ . GivenM ∈ C, we shall attempt to select the partition B̄M of IM/θ so that
whenever S ∈ BM

τ for some type τ ,M�S belongs to a subclass S ∈ D over which τ has a selector, say Ψ S
τ . If this can be done

in each relevantM, then at stage (5) of the construction above, we could use Ψ S
τ instead of a selector over SmdC/θ (which

may not exist). The next two definitions formalize (and slightly refine) this idea.

Definition 3.14 (Multi-partition). Let C be a class of labeled chains and θ(X̄, x, y) a splitting of C.

1. A multi-partition (m.p. for short) F for C/θ is given by fixing, for eachM ∈ C, a partition F̄M
:= 〈FM

d | d ∈ D〉 of the set
IM/θ of∼M

θ -classes where D is some fixed finite set.
2. For d ∈ D, let Sd := {M�S | M ∈ C ∧ S ∈ FM

d }. Also, D := {Sd | d ∈ D}. We call members of D summand subclasses and
D the subclass family of F.10

3. A formula θF(X̄, Z̄)with Z̄ indexed by D is said to define F iff in everyM ∈ C, it defines
⋃̌

F̄M
:= 〈

⋃
FM
d | d ∈ D〉.

11

4. We write IndC/θ
_ TyPart_ F := {IM/θ

_ TyPartk(M/θ)_FM
|M ∈ C ∧ k ∈ ω}.

Agreement. d↔ Sd is a natural 1-1 correspondence between D andD. In what follows, we shall therefore assume D = D.
Note that, under this agreement, if S ∈ D and an∼M

θ -class S belongs to FM
S , thenM�S ∈ S.

Definition 3.15 (Safety). Let l1 ∈ ω, C a class of l1-chains, and θ a splitting of C and F an m.p. for C/θ with subclass family
D. Let n, l2 ∈ ω and ϕ ∈ Formn,l1+l2 . We say that F is safe for ϕ iff for everyM ∈ C in which ϕ is satisfied, there exists an
Hn,l1+l2-partition B̄sf of IM/θ which induces ϕ, is coherent with TyPartn+l2(M/θ), and satisfies, for every τ ∈ Hn,l1+l2 and
S ∈ Bsfτ ,

(Safe) if S ∈ D is such that S ∈ FM
S , then τ is selectable over S.

We want to show that if IndC/θ
_ TyPart_ F has the selection property and a safe-for-ϕ and definable m.p. F for C/θ exists,

then ϕ is selectable over C. Note that if SmdC/θ has the selection property and D = {SmdC/θ }, then F is safe for every ϕ
(because (Safe) holds vacuously). Thus, this result generalizes the Inheritance Lemma. The next lemma proves it but also
adds conditions under which a selector for ϕ is computable.

Lemma 3.16 (Sufficiency-of-Safety Lemma). Let C be a class of labeled chains, ϕ a formula. Suppose there are:

a splitting θϕ of C,
a formula θϕF which defines an m.p. F

ϕ for C/θϕ with subclass family Dϕ such that IndC/θϕ
_ TyPart_ Fϕ has the selection

property.

Then there is a formula ψ with the following property:

if Fϕ is safe for ϕ, then ψ selects ϕ over C.

Assume further that we can compute θϕ and θϕF from ϕ, and solve the following problems:

(Ind-sol) Selection over IndC/θϕ
_ TyPart_ Fϕ .

(S-sol) Assume ϕ ∈ Formn,l. Given τ ∈ Hn,l and S ∈ Dϕ , decide whether τ has a selector over S, and – if so – construct one for
it.12

Then, ψ can be computed from ϕ.

Proof. The proof is an easy generalization of the one given for the Inheritance Lemma and we only indicate the necessary
changes to be made. Assume C is a class of l1-chains for some l1 ∈ ω. Let ϕ(X̄, Ȳ ) be given with lg(X̄) = l1. Set n := qd(ϕ),
l2 := lg(Ȳ ), and l := l1 + l2. Proceed as follows.
(0) Compute θϕ(X̄, x, y) and θϕF (X̄, Z̄) (with Z̄ := 〈ZS | S ∈ Dϕ

〉).
(1) Let ϑϕ Ind(V̄ ) and ϑCoh(Ū, V̄ ) as in (1) of the proof of the Inheritance Lemma. By assumption (S-sol), we can compute for
every S ∈ Dϕ ,

SelSn,l := {τ ∈ Hn,l | τ is selectable over S}.

10 Since it will always be clear which m.p. F is under discussion, we omit mention of F in our notation for D, though the latter clearly depends on the
former.
11 Note that for every d ∈ D,

⋃
FM
d is the set of elements of dom(M)whose∼M

θ -class is in FM
d .

12 Note that for any particular ϕ, the problem is trivially solvable, since Hn,l is finite. We mean, of course, that there is a uniform in ϕ algorithm solving
this problem for every ϕ. It is important to stress that we do not assume here that the full selection problem over S is solvable.
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Define formulas:

ϑSafe(Z̄, V̄ ) :=
∧

S∈Dϕ

∀x ∈ ZS
 ∨
τ∈SelSn,l

x ∈ Vτ

, and
ϑ1(Ū, Z̄, V̄ ) := ϑϕ Ind ∧ ϑCoh ∧ ϑSafe.

The conjunct ϑSafe in ϑ1 is meant to ensure we select a partition B̄sf of IM/θϕ which satisfies condition (Safe).
(2) Compute a selector ϑ sel1 (Ū, Z̄, V̄ ) for ϑ1 over IndC/θϕ

_ TyPart_ Fϕ .
(3) Compute a formula χ(X̄, Ū, Z̄)which defines in everyM ∈ C the concatenation of

⋃̌
TyPartn+l2(M/θϕ) and

⋃̌
F̄M .

(4) Compute a formula (ϑ sel1 )
_χ

/θϕ (X̄, V̄ ) as in the Interpretation Lemma, letting W̄ there be the concatenation of Ū and Z̄ .
LetM ∈ C where ϕ is satisfied. Assume Fϕ is safe for ϕ. Then there exists a partition B̄sf of IM/θϕ as in Definition 3.15.

Then ϑ1(TyPartn+l2(M/θϕ), F̄M, B̄sf) holds in IM/θϕ . In particular, ϑ1(TyPartn+l2(M/θϕ), F̄M, V̄ ) is satisfied in IM/θϕ . By
choice of χ and ϑ sel1 , and by the Interpretation Lemma, (ϑ

sel
1 )

_χ

/θϕ (X̄, V̄ ) defines inM the -̌union of a unique partition B̄sf of
IM/θϕ which is coherent with TyPartn+l2(M/θϕ), induces ϕ, and satisfies (Safe).
(5) For every S ∈ Dϕ and τ ∈ SelSn,l, compute a selector Ψ

S
τ for τ over S.

(6) Then the required ψ(X̄, Ȳ ) is the conjunction of ∃Ȳϕ and:

‘‘For the unique Z̄ which satisfies θϕF (i.e.
⋃̌

F̄M) and the unique V̄ which satisfies (ϑ sel1 )
_χ

/θϕ (X̄, V̄ ) (i.e.
⋃̌

B̄sf), for every
∼
θ
M-classW , τ ∈ Hn,l and S ∈ Dϕ:

Ψ S
τ (X̄, Ȳ ) holds restricted toW iff

(
W ⊆ Vτ andW ⊆ ZS

)
.’’ �

3.4. Universal structures and the necessity of safety

The main result of this subsection is the Necessity-of-Safety Lemma (3.23) which introduces an assumption concerning
m.p’.s F forC/θ underwhich the fact that F is safe forϕ (recall Definition 3.15) is not only sufficient but also necessary for the
existence of a selector for ϕ over C. This condition is tailored to our needs, so it is doubtful whether the lemma enjoys great
generality. Our purpose in stating it explicitly is to isolate the essential (and simple) idea driving our proof of Proposition 1.8
below.

3.4.1. The segment lemma
As a first stage in developing our necessary condition, we would like to relate the existence of a selector for ϕ over C

to the selectability of the types actually appearing in TyPartn(M_Q̄/θ) whereM ∈ C and Q̄ ∈ D(ϕ,M). To this end, we
prove:

Lemma 3.17 (Segment Lemma). LetM be a labeled chain and ψ a formula which defines a tuple Q̄ inM. Let S be a segment of
M. Then typeqd(ψ)((M_Q̄ )�S) defines Q̄ ∩̌S inM�S .

Proof. Set n := qd(ψ) and let Q̄ ′ satisfy typen((M_Q̄ )�S) inM�S . We must show that Q̄ ′ = Q̄ ∩̌S.
Write S− := {b ∈ dom(M) | ∀a ∈ S.b < a} and S+ := dom(M) \ (S− ∪ S). Both are segments ofM. Assume S− and S+

are non-empty. Then

typen(M_Q̄ ) = typen((M_Q̄ )�S−)+ typen((M_Q̄ )�S)+ typen((M_Q̄ )�S+).

By assumption, typen((M_Q̄ )�S) = typen(M�S
_Q̄ ′), so

(M_Q̄ )�S− +M�S
_Q̄ ′ + (M_Q̄ )�S+ |= ψ .

But this structure equalsM_(Q̄ ∩̌S− ∪ Q̄ ′ ∪ Q̄ ∩̌S+). Since ψ defines Q̄ inM, it follows (Q̄ ∩̌S− ∪ Q̄ ′ ∪ Q̄ ∩̌S+) = Q̄ , so
Q̄ ′ = Q̄ ∩̌S.
Finally, if S− = ∅ ignore the leftmost summand above and if S+ = ∅, ignore the rightmost summand. �

3.4.2. Universal structures and fat classes
Suppose thatψ is a selector for ϕ overC,M ∈ C, and Q̄ the unique element ofψ ∈ D(ψ,M). Then the Segment Lemma

says that for every S ∈ IM/θ , typen((M_Q̄ )�S) is selectable inM�S . But how does that help us to choose a partition F̄M of IM/θ

to satisfy (Safe) of Definition 3.15? How are we to relate selectability in the particular summandM�S to selectability over a
class S ⊆ SmdC/θ? The next definition is a first step in answering this question.

Definition 3.18 (Selection Universal Structures). Let k1, k2 ∈ ω, S a class of structures andM a structure. We say thatM is
(k1|k2)-selection universal in S iff for every formula Φ(Ȳ ) with qd(∃ȲΦ) ≤ k1, if there exists a ρ with qd(ρ) ≤ k2 which
selectsΦ inM, thenΦ is selectable over S.
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Lemma 3.22 presents what is for us the paradigmatic example of a class where selection universal structures can be found.
To prove it, we need a lemma and a proposition, which are important in themselves.

Lemma 3.19 (p-Lemma). There is a recursive p : ω→ ω such that for each n ∈ ω, any two non-0 countable multiples of ωp(n)

are n-equivalent.

Proof. This is a special case of Theorem 3.5(B) in [10]. �

The following is Corollary 4.9 of [9].

Proposition 3.20. There is an algorithm that, given aϕ(Ȳ ) selectable in (ωω, <), constructs aψ which selectsϕ inωp(qd(∃Ȳϕ))+1β
for every β ∈ ω1 \ 1, where p is as in the p-Lemma.

Definition 3.21 (Fat Class). Let S be a class of countable ordinals and p ∈ ω.
We call S fat iff for every N ∈ ω, there is a non-0 multiple of ωN in S.
If further, every α ∈ S is a multiple of ωp, we call S p-fat.

In stating and proving the next lemma, we confuse an ordinal α with the structure (α,<). We shall continue to do so
occasionally.

Lemma 3.22. Let k1 ∈ ω and S ⊆ ω1 a (p(k1) + 1)-fat class. Then for every k2 ∈ ω, there are α ∈ S such that (α,<) is
(k1|k2)-selection universal in S.

Proof. Let N := max{qd(sel-ax(ρ(Ȳ ),Φ(Ȳ ))) | qd(∃ȲΦ) ≤ k1∧qd(ρ) ≤ k2} and p := p(N)+1, with p as in the p-Lemma.
We assume p ≥ p(k1)+ 1. Since S is fat, we can pick an α∗ ∈ S which is a non-0 multiple of ωp. We claim that α∗ is (k1|k2)-
selection universal in S. Indeed, let Φ(Ȳ ) such that qd(∃ȲΦ) ≤ k1 and assume ρ with qd(ρ) ≤ k2 selects Φ in (α∗, <).
Then (α∗, <) |= sel-ax(ρ,Φ). By choice of N , qd(sel-ax(ρ,Φ)) ≤ N . Since α∗ is a multiple of ωp, the p-Lemma tells us that
(α∗, <) is N-equivalent to (ωω, <). Thus, (ωω, <) |= sel-ax(ρ,Φ), which means that ρ selects Φ in (ωω, <). In particular,
Φ is selectable in (ωω, <). Since every α ∈ S is a multiple of ωp(k1)+1 (recall p ≥ p(k1)+ 1), Proposition 3.20 tells us thatΦ
has a selector over S, as was to be shown. �

3.4.3. The Necessity-of-Safety Lemma
Lemma 3.23 (Necessity-of-Safety Lemma). Let n, l1, l2 ∈ ω, C a class of l1-chains, θ a splitting of C and F an m.p. for C/θ with
subclass family D. Assume that for every k ∈ ω andM ∈ C there is a sequence S′ := 〈M′S | S ∈ IM/θ 〉 of l1-chains such that∑

IM/θ
S′ ∈ C and for every S ∈ IM/θ :

M′S ≡
n+l2 M�S , and

if S ∈ D and S ∈ FM
S , thenM′S is (n+ l1 + l2|k)-selection universal in S.

Let ϕ ∈ Formn,l1+l2 . If ϕ has a selector over C, then F is safe for ϕ.

Proof. Let ψ select ϕ over C. FixM ∈ C where ϕ is satisfied. Write l := l1 + l2. We shall find an Hn,l-partition B̄sf of IM/θ

as in Definition 3.15.
Let k := qd(ψ). Pick a sequenceS′ := 〈M′S | S ∈ IM/θ 〉 as in the assumptionwith reference to this k. LetM′ :=

∑
IM/θ

S′.
ThenM′ ∈ C. Since each of the summands inM is (n+ l2)-equivalent to the corresponding summand inM′, it follows that
M ≡n+l2 M′. Since ϕ is satisfied inM, we haveM |= ∃Ȳϕ, and therefore,M′ |= ∃Ȳϕ, because qd(∃Ȳϕ) = n+ l2. Since ψ
is a selector for ϕ inM′, there is a (unique) Q̄ ′ ∈ D(ψ,M′). For each S ∈ IM/θ , let S ′ := dom(M′S). We assume the S

′ are
disjoint for distinct S. For each τ ∈ Hn,l, letBsfτ := {S ∈ IM/θ | (M

′_Q̄ ′)�S′ |= τ }. Set B̄sf := 〈Bsfτ | τ ∈ Hn,l〉. We claim B̄sf

satisfies the requirements of Definition 3.15.
Fix τ ∈ Hn,l and S ∈ Bsfτ . Let S ∈ D such that S ∈ FM

S . We first show that τ is selectable over S. By definition of Bsfτ ,
τ = typen((M′_Q̄ ′)�S′). Write ρ := typek((M′

_Q̄ ′)�S′). Since ψ selects ϕ inM′, the Segment Lemma (3.17) tells us that ρ
selects τ inM′

�S′ = M′S (recall qd(ψ) = k). But, by choice of S
′,M′S is (n + l|k)-selection universal in S, so τ is selectable

over S. Next, Q̄ ′ ∩ S ′ is witness thatM′S |= ∃Ȳτ . But, again,M
′

S ≡
n+l2 M�S , hence alsoM�S |= ∃Ȳτ . Thus, B̄sf is coherent

with TyPartn+l2(M/θ). Finally,M′_Q̄ ′ |= ϕ, so B̄sf induces ϕ. This concludes our proof. �

Comment. SinceM′ ∈ C, θ is also a splitting ofM′. Note, however, that in the proof above there is no need to assume
that the domains of theM′S coincide with ∼

M′

θ -classes. In fact, we do not even require the assumption thatM
′

S ∈ SmdC/θ

(though this is the case in our application of the lemma).
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4. The uniformization problem with bounded domain variables

Here we prove the solvability of bounded uniformization (Proposition 1.8). To apply the Sufficiency/Necessity-of-Safety
Lemmas – which deal with selection – to our problem, which is one of uniformization, we note that by changing the class
of structures, we may view uniformization as a case of selection. Define:

Notation 4.1. For l1 ∈ ω and ordinals δ and α, let Exp<δl1 (α) := {(α,<, P̄) | P̄ ∈
l1P<δ(α)} be the class of all expansions of

(α,<) by l1-tuples of sets of order-type< δ.

Then the following observation is obvious.

Lemma 4.2. Let l1 ∈ ω, ϕ(X̄, Ȳ ), ψ(X̄, Ȳ ) formulas with lg(X̄) = l1, and δ and α ordinals. Then ψ is a δ-uniformizer for ϕ in
(α,<) iff ψ selects ϕ over Exp<δl1 (α).

Thus, what we must show is:

There is a (uniform in α, δ and l1) algorithm which solves the selection problem over Exp<δl1 (α) for all α ∈ [ω
ω, ω1],

δ < ωω and l1 ∈ ω.

As usual, some preparation is needed.

Notation 4.3. For l1 ∈ ω, let εl1 := 〈∅, . . . ,∅︸ ︷︷ ︸
l1 times

〉 be the l1-tuple of the empty sets. If S is a class of structures, write S_εl1 :=

{M_εl1 |M ∈ S}.

We leave the proof of the following lemma to the reader.

Lemma 4.4. Let l1 ∈ ω and S a class of 0-structures. For Φ(X̄, Ȳ ) with lg(X̄) = l1, write Φ∗(Ȳ ) := ∃X̄(Φ ∧
∧
i<l1
(Xi = ∅)).

Then Φ is selectable over S_εl1 iff Φ
∗ is selectable over S, and given a selector for Φ∗ over S, we can compute a selector for Φ

over S_εl1 .

Definition 4.5 (Part and Tail). Letµ, α be ordinals withµ > 0.Write α = µβ+ζ with ζ < µ (this can be done in a unique
way). We call µβ the µ-part of α and ζ its µ-tail.

Finally, the following lemma is an easy exercise in formalization.

Lemma 4.6 (Definability Below ωω). For anyα < ωω , we can compute sentences θdefα and θ
def
<α such that for every ordinalβ > 0:

(a) (β,<) |= θαdef iff β = α.
(b) (β,<) |= θ<αdef iff β < α.

4.1. Proof of Proposition 1.8

Fix α ∈ [ωω, ω1] and δ < ωω . If δ = 0, then Exp0l1(α) = ∅ and there is nothing to show. On the other hand, Exp
1
l1(α) =

{(α,<, εl1)}. Thus, Lemma4.4 reduces the case δ = 1 to the selection problem in (α,<), which is solvable by Proposition 1.6.
We may therefore assume that δ > 1.
The overall structure of the proof is as follows. Given ϕ, we write a splitting θϕ of Exp<δl1 (α) and define an m.p. F

ϕ for
Exp<δl1 (α)/θ

ϕ . Both are computable from ϕ. We show that the assumptions of the Sufficiency-of-Safety Lemma are satisfied
w.r.t. these θϕ and Fϕ . The lemma therefore allows us to compute a ψ such that if Fϕ is safe for ϕ, then ψ selects ϕ over
Exp<δl1 (α). Next, we show that the assumptions of the Necessity-of-Safety Lemma hold. It follows that if ϕ has any selector
over Exp<δl1 (α), then Fϕ is safe for ϕ, hence, bywhatwas just stated, the aboveψ is a selector for ϕ over Exp<δl1 (α). Combined,
this means that ϕ has a selector iff ψ is a selector. This condition turns out to be easy to decide, thus completing the proof.
Let ϕ(X̄, Ȳ ) be given. Set n := qd(ϕ), l1 := lg(X̄), l2 := lg(Ȳ ), l := l1 + l2. Note that if l1 = 0, then Exp<δ0 (α) = {(α,<)}

and our problem is selection in (α,<). We henceforth assume l1 > 0.
Compute p := p(n + l) + 1 where p is as in the p-Lemma (3.19). Let α′ denote the ωω-part of α. Write a splitting

θ = θϕ(X̄, x, y) of Exp<δl1 (α) as follows. For every P̄ ∈
l1P<δ(α) and γ < β < α, γ ∼(α,<,P̄)θ β iff:

either γ , β ≥ α′, or
γ , β < α′ and, if S is the set of ordinals strictly between the ωp-part of γ and the ωp-part of β , then S ∩ P̄i = ∅ for all
i < l1.

This can indeed be done. Indeed, for any β < α, β ≥ α′ iff otp([β, α)) ≤ α − α′. But α − α′ < ωω (by definition of an
ωω-part). By definability below ωω (4.6), this condition is expressible by a formula. Further, the ωp-part of β is definable as
the least β ′ ≤ β such that otp([β ′, β]) < ωp, which again by definability belowωω is expressible. Note that θ is computable
from ϕ.
The reader will now easily verify that for everyM ∈ Exp<δl1 (α), we have:
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1. IM/θ is isomorphic to an ordinal< δω,13
2. if α′ 6= α, then [α′, α) ∈ IM/θ ,

and for every S ∈ IM/θ \ {[α
′, α)}:

3. there are γ < β ≤ α′ such that S = [ωpγ , ωpβ) (in particular, otp(S) is a non-0 multiple of ωp), and
4. ifM�S 6= (S, <, εl1), then otp(S) = ω

p.

Next, there is a formula θF = θ
ϕ
F which defines anm.p. F = Fϕ for Exp<δl1 (α)/θ as follows. GivenM ∈ Exp<δl1 (α), the m.p.

partitions IM/θ into subsets FM
tail, F

M
ωp , F

M
>ωp , and FM

ω1
: If α′ = α, FM

tail := ∅; otherwise FM
tail := {[α

′, α)}. FM
ωp and FM

>ωp divide
among them the ∼M

θ -classes which have countable order-type and whose members are <α
′: FM

ωp consists of all such ∼
M
θ -

classes whose order-type isωp and FM
>ωp of those whose order-type is strictly greater thanω

p (by (3), these are the only two
options). If α is countable, this already exhausts all∼M

θ -classes and FM
ω1
is left empty. If α = ω1, there is a unique∼M

θ -class
whose order-type is ω1 (because ifM = (ω1, <, P̄) then

⋃
i<l1
Pi is bounded in ω1). This class is the unique member of FM

ω1
.

Denote by Stail, Sωp , S>ωp , and Sω1 the corresponding summand subclasses. Then:
Stail = ∅ if α′ = α; otherwise, Stail = Exp<δl1 ([α, α

′)),
Up to isomorphism, Sωp is Exp<δl1 (ω

p).
Sω1 = ∅, if α is countable; otherwise, its unique member (up to isomorphism) is (ω1, <, εl1).
Let Ω := {ωpβ | β ∈ [2, α′]}. We claim that S>ωp equals Ω_εl1 , up to isomorphism. Indeed, that every member of

S>ωp is isomorphic to a member ofΩ_εl1 follows directly from (3) and (4). Conversely, let β ∈ [2, α
′
]. ThenMβ := (α,<,

{ωpβ}∩α′, εl1−1) ∈ Exp
<δ
l1 (α) (recall that we assume l1 > 0 and δ > 1). Furthermore, [0, ω

pβ) is a∼
Mβ
θ -classwhich belongs

to F
Mβ

>ωp andMβ restricted to this class is (ωpβ,<, εl1).
The subclass family of F isD = {Stail, Sωp , S>ωp , Sω1}.
It is easy to see that θF is computable from ϕ (as was θ ). We show that all other assumptions of the Sufficiency-of-Safety

Lemma hold.
First, by Proposition 1.3, {(β,<) | β ∈ (δω) \ 1} has the uniformization property and uniformizers are computable over

this class. By (1), this means that IndExp<δl1 (α)/θ
_ TyPart_ F has the selection property and selectors are computable over it.

By the same proposition, (ωp, <) and ([α′, α),<) (if α′ 6= α) have the uniformization property and uniformizers
are computable in them. Thus, the same holds for selection w.r.t. Exp<δl1 (ω

p) which is, up to isomorphism, Sωp and w.r.t.
Exp<δl1 ([α, α

′)) = Stail. Also, Sω1 is either empty or {(ω1, <, εl1)}. The selection problem over it is therefore solvable (in the
latter case, by Proposition 1.6). It remains to be seen that (S-Sol) holds for S>ωp .
Let τ ∈ Hn,l and τ ∗ as in Lemma 4.4. By the lemma, τ is selectable over S>ωp iff τ ∗ is selectable overΩ . But, τ ∗ is selectable

overΩ iff it selectable in (ωω, <). Indeed,⇒ is immediate since, as just shown,ωω ∈ Ω . The⇐ direction is Proposition 3.20
and uses the fact that every member ofΩ is a multiple of ωp. By Proposition 1.6, we may decide whether τ ∗ is selectable in
(ωω, <). When this is the case, we use Proposition 3.20 again to compute a selector for τ ∗ overΩ , which we then translate
into a selector for τ over S>ωp . This shows that (S-sol) holds for S>ωp .
We may therefore compute a formula ψ as in Sufficiency-of-Safety Lemma, namely, such that if Fϕ is safe for ϕ, then ψ

selects ϕ over Exp<δl1 (α).
Next, we prove that F satisfies the assumptions of the Necessity-of-Safety Lemma.
Fix k ∈ ω andM ∈ Exp<δl1 (α) where ϕ is satisfied. Define S′ := 〈M′S | S ∈ IM/θ 〉 as follows. Let q := p(max{n, k} + 2l).

Fix S ∈ IM/θ . Write αS := otp(S). If S /∈ FM
>ωp , takeM′S := M�S ; if S ∈ F>ωp , letM′S be isomorphic to (ω

qαS, <, εl1). We
assume that theM′S have been chosen so that for distinct S ∈ IM/θ , the domains of theM′S are disjoint. We claim:
•M′ :=

∑
IM/θ

S′ ∈ Exp<δl1 (α) up to isomorphism. To show this, denote by α
′

S the order-type ofM
′

S . Then, on the one
hand, for every S ∈ IM/θ , α′S ≥ αS , so otp(M′) ≥ α. On the other hand, because α′ is a multiple of ωω , if αS < α′, then
also α′S < α′, and if αS = α′, then α′S = ωq · α′ = α′. Finally, αS = α′ can only hold for the top S in IM/θ \ {[α

′, α)} (if
one exists). All in all, this implies that

∑
S∈IM/θ \{[α,α

′) α
′

S = α′. If α′ = α, this means otp(M′) = α. Otherwise, we must

also note the segmentM�[α′,α) has not been changed, so again otp(M′) = α. Thus, there exists a (unique) P̄ ′ ∈ l1P (α) such
thatM′ ∼= (α,<, P̄ ′). Fix i < l1. Since in our construction ofM′, only segments whose intersection with Pi is empty were
changed, it is easy to showotp(Pi) = otp(P ′i ). (Briefly, for each S ∈ FM

ωp , there exists a (unique) isomorphism gS :M�S →M′S .
If we let f : M′ → (α,<, P̄ ′) be the unique isomorphism, then (f ◦

⋃
S∈FM

ωp
gS)|Pi is an isomorphism (Pi, <)→ (P ′i , <)). In

particular, P ′i ∈ P<δ(α), soM′ ∼= (α,<, P̄ ′) ∈ Exp<δl1 (α).
Fix S ∈ IM/θ . We claim further:
•M′S ≡

n+l2 M�S . Indeed, if S /∈ FM
>ωp , there is nothing to show. Assume S ∈ FM

>ωp . ThenM′S
∼= (ωqαS, <, εl1), so for every

σ ∈ Hn+l2,l1 ,M
′

S |= σ iff (ω
qαS, <) |= σ

∗. Since both αS and ωqαS are countable multiples of ωp, we have (ωqαS, <) |= σ ∗
iff (αS, <) |= σ ∗ iff (αS, <, εl1) |= σ . But, (αS, <, εl1) ∼=M�S and our claim follows.

13 A better bound can easily be obtained.
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• If S ∈ D and S ∈ FM
S , thenM′S is (n + l|k)-selection-universal in S. This is trivially true when S ∈ FM

tail ∪ FM
ωp , since

each of Stail and Sωp has the selection property. When S ∈ FM
ω1
, M�S ∼= (ω1, <, εl1) is the unique member of Sω1 up to

isomorphism, hence selection universal in it. AssumeM�S ∈ S>ωp . Let Φ ∈ Formn,l and let ρ ∈ Formk,l select Φ inM′S .
ThenM′S |= uni-ax(ρ,Φ), which means (α

′

S, <) |= uni-ax(ρ
∗,Φ∗). But, qd(uni-ax(ρ∗,Φ∗)) ≤ max{n, k} + 2l. Since α′S is

a multiple of ωq, it follows (ωω, <) |= uni-ax(ρ∗,Φ∗). By Proposition 3.20, Φ∗ has a selector over Ω . By Lemma 4.4, this
means Φ has a selector overΩ_εl1 which is S>ωp up to isomorphism. We see then thatS′ is a sequence as required in the
Necessity-of-Sufficiency Lemma.
Finally, by definability below ωω , P<δ(α) is definable in (α,<): P ⊆ α belongs to this class iff θ<δdef holds in (α,<)

restricted to P . Let uni-ax<δ(ψ, ϕ) denote the conjunction of the sentences appearing in the definition of uniformization,
but where the domain variables X̄ are restricted to range over P<δ(α). Then ψ is a δ-uniformizer for ϕ in (α,<) iff
(α,<) |= uni-ax<δ(ψ, ϕ). Since the monadic theory of (α,<) is decidable, we can decide whether this is the case, i.e.
whether ϕ has a δ-uniformizer in (α,<). Hurray! �

5. The selection problem over definable classes of countable ordinals

Given a sentence π and a formula ϕ(Ȳ ), we would like to know whether ϕ has a selector over the class {(α,<) | α ∈
ω1 \ 1 ∧ (α,<) |= π} of countable ordinals satisfying π . In this section, we show that this can be decided and a selector
– if one exists – can be computed. Thus, we may decide whether ϕ has a selector over the class of all countable ordinals,
of countable limit ordinals, etc. In fact, we prove something slightly more general. We show that given a formula π(x) and
δ ≤ ω1, we can decide whether ϕ has a selector over {(α,<) | α ∈ δ \ 1 ∧ (δ,<) |= π(α)}. This is indeed more general.
For example, ωω is not a definable ordinal, but {ωω} is definable in (ωω + ζ ,<) for any ζ < ωω .
We begin with a standard fact about n-types.

Lemma 5.1. Let n, r ∈ ω,M a structure. Then typen(M) determines typen(M_
〈∅, . . . ,∅︸ ︷︷ ︸

r times

〉).

Lemma 5.2. Let C be a class of structures and ϕ(X̄, Ȳ ), ψ0(X̄, Ȳ ), . . . , ψm−1(X̄, Ȳ ) formulas. Suppose that for each M ∈ C,
there exists i < m such that ψi uniformizes ϕ in M. Then ϕ has a uniformizer ψ over C. In fact, ψ can be computed from
ϕ,ψ0, . . . , ψm−1.

Proof. Let ψ :=
∧
i<m

(
(uni-ax(ψi, ϕ) ∧

∧
j<i ¬ uni-ax(ψj, ϕ))→ ψi

)
. �

Proposition 5.3. There is an algorithm that solves the selection problem over the class {(α,<) | α ∈ δ \ 1 ∧ (δ,<) |= π(α)}
for any formula π(x) and δ ≤ ω1.

Proof. Let π(x) and δ be given. Denote by C the class appearing in the proposition. Fix a formula ϕ(Ȳ ). Note that if δ < ωω ,
then Proposition 1.3 solves our problem. We may assume then δ ≥ ωω . In fact, we begin by assuming δ ∈ {ωω, ω1}.
Set l := lg(Ȳ ) and let

ϕ′(x, Ȳ ) := π(x) ∧
∧
i<l

(Yi ⊆ [0, x)) ∧ ‘‘ϕ(Ȳ ) holds restricted to [0, x)’’.

We claim ϕ has a selector over C iff ϕ′ has a uniformizer in (δ,<).
If ψ(Ȳ ) selects ϕ(Ȳ ) over C, let ψ ′(x, Ȳ ) be identical to ϕ′, except that where ϕ appears in the latter, ψ appears in the

former. Then ψ ′ uniformizes ϕ′ in (δ,<). Conversely, assume some ψ ′(x, Ȳ ) uniformizes ϕ′ in (δ,<). Let C ′ := {α ∈ C |
(δ,<) |= ∃Ȳϕ′(α, Ȳ )}. Fix α ∈ C ′. Since ψ ′ is a uniformizer, D(ψ ′(α, Ȳ ), δ) has a unique member. Denote it by P̄α . Let
k := qd(ψ ′), τ ′α := type

k(α,<,∅, P̄α), and τ ∗ := typek(δ,<, {0}, εl)where εl := 〈∅, . . . ,∅︸ ︷︷ ︸
l times

〉. Since δ ∈ {ωω, ω1},

(δ,<, {α}, P̄α) ∼= (α,<,∅, P̄α)+ (δ,<, {0}, εl).

Since also (δ,<, {α}, P̄α) |= ψ ′, we have τ ′α+ τ
∗
|= ψ ′. Now, letψ :=

∨
α∈C′ type

k(α,<, P̄α). We claimψ selects ϕ over C.
First, sinceψ ′ is a uniformizer for ϕ′, (δ,<) |= ϕ′(α, P̄α) for each α ∈ C ′. Hence, by definition of ϕ′, (α,<) |= ϕ(P̄α), i.e.

typek(α,<, P̄α) |= ϕ (we assume k ≥ qd(ϕ)). We see then that ψ is the disjunction of formulas which imply ϕ. Therefore,
ψ |= ϕ. If α ∈ C ′, then P̄α clearly satisfiesψ in (α,<). But, if α ∈ C, then any P̄ satisfying ϕ in (α,<) is witness that in fact
α ∈ C ′. Thus, clause (3) of the definition of uniformization (1.1) holds. Finally, let some P̄ satisfy ψ in (α,<). Then there is
β ∈ C ′ such that typek(α,<, P̄) = typek(β,<, P̄β). By Lemma 5.1, this means typek(α,<,∅, P̄) = typek(β,<,∅, P̄β) =
τ ′β . Thus,

typek(δ,<, {α}, P̄) = typek(α,<,∅, P̄)+ typek(δ,<, {0}, εl) = τ ′β + τ
∗
|= ψ ′.

Since ψ ′ is a uniformizer, we must have P̄ = P̄α .
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We have thus reduced the selection problem over C to the special case of the bounded uniformization problem in (δ,<)
where domain variables range over elements (equivalently, singleton subsets) of the domain. By Proposition 1.8, solvability
of the former follows.
Now, to handle δ other than ωω and ω1, note that the monadic theory of (δ,<) determines whether a formula ψ(Ȳ )

selects ϕ over C. Indeed, this is the case iff uni-ax(ψ, ϕ) holds restricted to [0, α) whenever α ∈ C. By Theorem 2.5, we
may therefore assume δ = ωω + ζ for some ζ ∈ ωω \ 1. By the Segment Lemma (3.17), C ∩ ωω is definable in (ωω, <).
Thus, by the case δ = ωω , the selection problem over C ∩ ωω is solvable. By Proposition 1.6, so is the selection problem
over C ∩ {(ωω, <)}. To show the solvability of the selection problem over C ∩ (ωω, δ), proceed as follows. Set n := qd(ϕ).
Let Selω

ω

n,l be the set of (n, l)-Hintikka formulas that are both satisfiable and selectable in (ω
ω, <). By Proposition 1.6, we can

compute Selω
ω

n,l . Let Ttail := {τ
′
∈ Hn,l | ∃τ ∈ Selω

ω

n,l .τ + τ
′
|= ϕ}. By the Addition and Hintikka Lemmas, Ttail is computable.

Let C ′ := {α ∈ C ∩ (ωω, δ) | (α,<) |= ∃Ȳϕ}. We claim ϕ has a selector over C ∩ (ωω, δ) iff

(Sel) for every α ∈ C ′,
∨
Ttail is satisfied in (α − ωω, <).

Furthermore, when this is the case, we show how to construct a selector for ϕ.
Suppose first ψ selects ϕ over C ∩ (ωω, δ). Fix α ∈ C ′ and let P̄ be the unique member of D(ψ, α). If we let

τ := typen((α,<, P̄)�[0,ωω)) and τ ′ := typen((α,<, P̄)�[ωω,α)), then τ + τ ′ |= ϕ and τ ′ is satisfied in (α − ωω, <). By
the Segment Lemma, P̄ ∩ ωω is definable in (ωω, <). But, P̄ ∩ ωω satisfies τ in (ωω, <), so τ ∈ Selω

ω

n,l . Assume conversely
that (Sel) holds. Define a selector ψ for ϕ over C ∩ (ωω, δ) as follows. For each τ ∈ Selω

ω

n,l , compute a Ψτ which selects it in
(ωω, <). For each τ ∈ Ttail, compute a Ψ ′τ which selects it over the class of all ordinals< ζ (by Proposition 1.3, this can be
done). Note that ωω is definable in every α ∈ C ∩ (ωω, δ) as the least β < α such that α − β ≤ ζ . Fix an ordering ≺ on
Selω

ω

n,l ×Ttail. Let ψ
′(Ȳ ) say:

‘‘For the≺-minimal (τ , τ ′) ∈ Selω
ω

n,l ×Ttail such that ∃Ȳτ
′ holds:

Ψτ holds restricted to [0, ωω) and Ψ ′τ ′ holds restricted to [ω
ω, α).’’

Set ψ := ∃Ȳϕ ∧ ψ ′. The reader will show that ψ is a selector for ϕ over C.
Notice also that condition (Sel) is expressible by a sentence in the monadic theory of (δ,<) and hence, decidable. Thus,

the selection problem over C ∩ (ωω, δ) is solvable.
By Lemma 5.2, solvability of the selection problem over C ∩ωω , C ∩{(ωω, <)} and C ∩ (ωω, δ) implies solvability of this

problem over C. Our proof is therefore complete. �

6. The selection property for subclasses of ωω

We begin this section by presenting a simple combinatorial criterion for a class C ⊆ ωω to have the selection property.
We then deduce the existence of finite expansions of (ωω, <) having this property.

6.1. Criterion for a subclass of ωω to have the selection property

The next lemma and proposition are, respectively, Corollaries 6.1 and 3.9 of [9].

Lemma 6.1. Let n, l ∈ ω and φ ∈ Formn,l which is satisfied in (ωω, <). Then we can compute τsel, τsuf ∈ Hn,l such that:
(a) τsel is satisfiable and selectable in (ωω, <),
(b) τsuf is satisfiable in (ωω, <), and
(c) τsel + τsuf |= φ.

Proposition 6.2. The formula saying ‘‘Y is an unbounded ω-sequence’’ has no selector in (ωω, <).
Recall that for ordinalsµ > 0 and α, theµ-part of α is the maximal multiple ofµ smaller than or equal to α (Definition 4.5).

Proposition 6.3. A class C ⊆ ωω has the selection property iff

(Sel) ∀p ∈ ω∃N(p) ∈ ω∀α ∈ C
(
the ωp-part of α is not a multiple of ωN(p)

)
.

If in addition, N(p) is computable from p, then selectors are computable over C.

Proof. For each ordinal α and k ∈ ω, we denote by αk the ωk-part of α.
Suppose first condition (Sel) holds. Fix n, l ∈ ω and ϕ ∈ Formn,l. Let p := p(n + l) + 1. Pick N := N(p) as in (Sel). Then

N ≥ p.14 By Proposition 1.3, C ∩ ωN := {α ∈ C | α < ωN} has the selection property and selectors are computable over it.
Therefore, by Lemma 5.2, it suffices that we show C \ ωN := {α ∈ C | α ≥ ωN} has the selection property. Hence, we may
assume that for every α ∈ C, α ≥ ωN . We may further assume that ϕ is satisfied in every α ∈ C. We claim that for every
α ∈ C, there are τ , τ ′ ∈ Hn,l such that:

14 Except perhaps when C ⊆ ωp . But Proposition 1.3 takes care of this trivial case.
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1. τ is satisfiable and selectable in (ωω, <),
2. τ ′ is satisfiable in (α − αN , <),
3. τ + τ ′ |= ϕ.

Indeed, fix α ∈ C. Pick some P̄ ∈ D(ϕ, α) and let τp := typen((α,<, P̄)�[0,αp)). Since αp is a multiple of ω
p, it is (n + l)-

equivalent to ωω , so τp is satisfied in ωω . Pick τsel, τsuf as in Lemma 6.1, setting φ := τp. Let τ := τsel. Next, write
τtail := typen((α,<, P̄))�[αp,α) and let τ

′
:= τsuf + τtail (if α = αp, drop τtail). Note that αp − αN is also a non-0 multi-

ple of ωp (by choice of N , we cannot have αN = αp). Therefore, τsuf is satisfied in αp − αN , so that τ ′ is indeed satisfied in
α − αN . Also, τ + τ ′ = τsel + τsuf + τtail = τp + τtail |= ϕ, as desired.
Let τ ∈ Hn,l. If τ is selectable in (ωω, <), Proposition 3.20 lets us compute a selectorΨτ for τ over the class of all countable

multiples of ωp. In particular, Ψτ selects τ in αN for every α ∈ C. Using Proposition 1.3, we can also compute a selector Ψ ′τ
for τ over the class of ordinals below ωN . Fix an ordering ≺ of Hn,l × Hn,l (a finite set). A selector for ϕ over C is the ψ(Ȳ )
which says:

‘‘For the≺-least pair τ , τ ′ ∈ Hn,l which satisfies (1)–(3),
Ψτ holds restricted to [0, αN), while Ψ ′τ holds restricted to [αN , α).’’

A quick review of the proof would convince the reader of the computability of ψ from ϕ and N , which justifies the ‘‘If in
addition . . . ’’ clause.
Now, assume (Sel) fails. Then we can pick p ∈ ω such that {αp | α ∈ C} is fat. Let ϕ(Y ) say (in every α ∈ C): ‘‘Y

is an unbounded ω-sequence in αp’’. Fix any formula ψ(Y ). Then there is α ∈ C which is a multiple of ωN where N :=
p(qd(uni-ax(ψ, ϕ))). If ψ selected ϕ in α, then by the p-Lemma (3.19), it would also select ϕ in (ωω, <). But, by Proposi-
tion 6.2, this cannot be the case. Thus, ψ is not a selector for ϕ over C. �

Example. Both of the following classes have the selection property and selectors are computable over them (in both let
N(p) := p+ 1 for every p ∈ ω):
(1) The unbounded ω-sequence {1, ω + 1, ω2 + ω + 1, ω3 + ω2 + ω + 1, . . .}.
(2) The C ⊆ ωω defined as follows. Let α < ωω and write α =

∑
i≤n ω

n−ian−i with n, ai ∈ ω and an 6= 0.15 Then α ∈ C
iff for every i ≤ n, ai 6= 0. Note that C has order-type ωω .

6.2. Finite expansion of (ωω, <) having the selection property

From the last proposition, we now deduce Proposition 1.10. To do so, note first that Proposition 2.14 allows us also to
definemultiplication of an Hintikka formula by any linear order.

Definition 6.4. Let n, l ∈ ω, τ1 ∈ Hn,l, and I a linear order. The I-multiple of τ1, denoted τ1 ⊗ I, is an element of Hn,l such
that wheneverM is an l-structure with typen(M) = τ1,

typen(M ⊗ I) = τ1 ⊗ I.

And the Composition Theorem yields the following lemma from [10]:

Lemma 6.5. For every linear order I, λn, l ∈ ω.λτ1 ∈ Hn,l.τ1 ⊗ I is recursive inMTh(I).

The following clearly implies Proposition 1.10.

Corollary 6.6. Let P? := {1, ω + 1, ω2 + ω + 1, ω3 + ω2 + ω + 1, . . .}. Then:

(a) (ωω, <, P?) has the selection property;
(b) for any formula ϕ(X, Ȳ ),a selector for ϕ in (ωω, <, P?) is computable; and
(c) the monadic theory of (ωω, <, P?) is decidable.

Proof. We prove (a) in somewhat greater generality. Pick any unbounded P ⊆ ωω such that CP := {[α, α
′) | α <

α′ are successive elements of P ∪ {0}} has the selection property and otp(P) < ωω (both assumptions hold for P?; the first
by Proposition 6.3). We claim thatMP := (ω

ω, <, P) has the selection property. Let θ be a splitting ofMP whose segments
are the members of CP . Then IMP /θ is isomorphic to an ordinal< ωω . In particular, it has the uniformization property. Also,
members of Smd{MP }/θ have the form (β,<, {0})where β ∈ CP . Since CP has the selection property and {0} is definable in
(β,<), Smd{MP }/θ has the selection property. By Corollary 3.13 (to the Inheritance Lemma), so doesMP .
(b) Proposition 1.3 tells us that in (a) selectors are computable over Ind{MP }/θ

_ TyPart. On the other hand, when P = P?,
we can take N(p) := p+ 1 (for every p ∈ ω) in Proposition 6.3. In particular, N(p) is computable from p, which means that
selectors are computable over Smd{MP? }/θ . By the Inheritance Lemma again, this also holds inMP? .
(c) Fix n ∈ ω. We show how to compute typen(MP?). Use the p-Lemma to compute p ∈ ω such that any two non-0

countable multiples of ωp are (n + 1)-equivalent. Let α0 be the least member of P? greater than ωp. Then typen(MP?) =

15 Recall that this presentation is unique.
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typen(MP? �[0,α0)) + type
n(MP? �[α0,ωω)). The left summand here is computable because P

?
∩ α0 is finite and hence, by

Lemma 4.6, definable in (α0, <), and because MTh(α0, <) is decidable. To handle typen(MP? �[α0,ωω)), fix α ∈ P
?
\α0 and let

α′ be its successor in P?. Then, by definition of P?,
MP? �[α,α′) =MP? �[α,(α′)p) +MP? �[(α′)p,α′)

∼= ((α
′)p − α,<, {0})+ (ζ ,<,∅),

where (α′)p is the ωp-part of α′ and ζ := ωp−1 + ωp−2 + · · · + ω + 1. Since (α′)p − α is a multiple of ωp, ((α′)p, <) ≡n+1

(ωp, <). From this it easily follows that ((α′)p − α,<, {0}) ≡n (ωp, <, {0}). Thus, typen(MP? �[α0,ωω)) =
(
typen(ωp, <,

{0}) + typen(ζ ,<,∅)
)
⊗ ω. By Theorem 2.6, both n-types inside the brackets here are computable, hence so is their sum.

Since MTh(ω,<) is decidable, Lemma 6.5 computes for us typen(MP? �[α0,ωω)), proving (c). �

Appendix. Uniformization below ωω

Here we apply the Inheritance Lemma to prove Proposition 1.3.
The following proposition was stated in [5] and attributed to [1]. However, [1] deals with the Church synthesis problem,

and not with the uniformization problem (for a clarification of the difference between the two, see e.g. [9]). A detailed proof
was eventually supplied in [7]. It uses Ramsey theory (and the composition method) to reduce uniformization in (ω,<) to
uniformization over finite ordinals.
Proposition A.1. (ω,<) has the uniformization property and the uniformization problem in (ω,<) is computable.
Next, we need a lemma from the ‘folklore’.
Lemma A.2. {(n, <) | n ∈ ω \ 1} has the uniformization property and the uniformization problem over this class is computable.
Proof. Use the fact that the lexicographical ordering of tuples (of a given length l2) of subsets of n is definable and a well-
order. �

The following is Proposition 1.3.
Proposition A.3. For k ∈ ω \ 1, {(α,<) | α ∈ (0, ωk]} has the uniformization property and uniformization is computable over
this class.
Proof. We proceed by induction on k ∈ ω \ 1. Let k = 1. Since both the class of finite ordinals and {(ω,<)} have
the uniformization property and uniformizers are computable over both (by A.1 and A.2), Lemma 5.2 yields the same for
{(α,<) | α ∈ (0, ω]}.
Let k ∈ ω \ 1 and assume our claim holds for this k. To prove the lemma, we fix an l1 ∈ ω and show that C :=

Exp≤ω
k+1

l1
({(α,<) | α ∈ (0, ωk+1]}) has the selection property and selection is computable over this class.

Write a formula θ(x, y) which says: ‘‘There are no multiples of ωk strictly between x and y’’.16 Then θ is a splitting of C
and forM ∈ C with domain α,

IM/θ = {[ω
k
· i,min{ωk · (i+ 1), α}) | i ∈ ω ∧ ωk · i < α}.

In particular, IM/θ is isomorphic to an ordinal ≤ ω (in fact, to a finite ordinal unless α = ωk+1). By the case k = 1,
IndC/θ

_ TyPart has the selection property and selectors are computable over it. Also, the domain of every segment has
order-type≤ ωk (in fact, all have order-type ωk save perhaps for the ‘top’ segment, if one exists). In other words,

SmdC/θ ⊆ Exp
≤ωk

l1
({(β,<) | β ∈ (0, ωk]}).

By the inductive assumption, the latter has the selection property and selection is computable over it. The Inheritance Lemma
now yields the same for C, to our heart’s delight. �
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