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1. Introduction

Definition 1.1 (Uniformization). Let o(X, Y), ¥ (X, Y) be formulas and € a class of structures. We say that ¥ uniformizes (or
is a uniformizer for) ¢ over C iff for all M € C:

L MEYXIEVYX.Y),

2. M EVXVY(Y(X,Y) - ¢(X,Y)), and

3. M EVX(AYeX,Y) > Yy (X, V).

Here X, Y are tuples of distinct variables and “3=1y .. .” stands for “there exists at most one . ..”. The class € is said to have
the uniformization property iff every formula ¢ has a uniformizer v over C.
If @ = {M} consists of a single structure, we speak of uniformization in .M rather than over C.

In [5], Lifsches and Shelah characterize all trees having the uniformization property with respect to formulas of the second-
order monadic logic of order (MLO). This logic extends first-order logic by allowing quantification over subsets of the domain.
The binary relation symbol ‘<’ is its only non-logical constant. In this paper, we assume that ‘<’ is interpreted as a linear
order of the domain. Thus, our structures are chains (or chains expanded by finitely many subsets of the domain). Note that
we also assume that the free-variables in a formula are of second order, i.e. they range over subsets of the domain.!

Lifsches and Shelah show in particular that an ordinal « has the uniformization property iff @ < w®. So, already in
(w®, <) there are formulas lacking a uniformizer. This naturally leads to the following algorithmic problem:

* Corresponding author.
E-mail addresses: rabinoa@post.tau.ac.il (A. Rabinovich), shomrata@post.tau.ac.il (A. Shomrat).
1 If the variables ¥ in ¢ of the previous definition were individual variables, ranging over elements of the domain, then the problem of constructing a
uniformizer for ¢ would become trivial in an ordinal c.. Indeed, for any tuple P of subsets of «, one could choose the lexicographically minimal tuple Q of
elements of « such that («, <) = ¢(P, Q).

0168-0072/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2009.12.004
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Definition 1.2 (Uniformization problem). The uniformization problem over a class C is:

Input  aformula (p()_(, Y):
Task determine whether ¢ has a uniformizer over G, and if so, construct one for it.

Since « < ® has the uniformization property, for such « the uniformization problem consists only in computing a
uniformizer for each formula. While Lifsches and Shelah took no interest in decidability and computability issues, from
their proof one can extract an algorithm as follows:

Proposition 1.3 (Uniformization Below w®). There is an algorithm that, given k € w and ¢ (X, Y), computes a ¥ (X, Y) that
uniformizes ¢ in every ordinal smaller than w.

In the Appendix, we present a detailed proof of this proposition.

When we turn to (w®, <), things get trickier. So far, we have been unable to solve the uniformization problem in (w®, <).
We succeeded, however, in solving some partial cases.

First, note that, strictly speaking, the input to the uniformization problem is not only a formula, but a formula plus a
partition of its free-variables into domain variables X and image variables Y. Selection is the special case of uniformization
where there are no domain variables:

Definition 1.4 (Selection). Let ¢(Y), ¥ (Y) be formulas and € a class of structures. We say that v selects (or, is a selector for)
¢ over C iff for every M € C:

1. either both formulas are not satisfied in M, or
2. ¢ defines in M a unique tuple P and this P also satisfies ¢ in M.

We say that € has the selection property iff every formula ¢ has a selector i over C. B
The selection problem over C is the restriction of the uniformization problem to formulas ¢(Y) given without domain
variables.

Selection is treated in [9]. There we show, among other things:
Proposition 1.5. For each @ > w®, there are formulas lacking a selector in («, <).
On the other hand,

Proposition 1.6 (Solvability of Selection in @ < w,). There exists an algorithm that, given & € [w®, w1] and a formula ¢(Y),
decides whether ¢ has a selector in («, <), and if so, constructs one for it.>

The present paper continues the line of work began in [9] by tackling a problem which could be said to lie “in between”
selection and the full uniformization problem.

The task of constructing a uniformizer is intuitively harder than that of constructing a selector in that a uniformizer must
respond to a given tuple substituted for the domain variables X with an appropriate tuple to be substituted for the image
variables Y; it must (uniformly) answer a variety of challenges. In selection the X simply do not appear in the formula. Put
more abstractly, their variability has been reduced to zero. A natural move therefore, when the X do appear in the formula,
is to place various restrictions on the subsets of the domain substituted for them. One restriction which comes to mind is
to consider formulas ¢(x, Y) where the X are individual variables, i.e. range over elements of the domain. Once we show the
solvability of the uniformization problem for such formulas, our next step may be to allow X to range only over finite subsets
of the domain, or perhaps over sets of order-type w, etc. These examples are generalized by the following definition.

Definition 1.7 (3-Uniformizer). For ordinals § and «, let P<%(a) :={P C «a | otp(P) < 8}.4
Let 9(X, Y), ¥ (X, Y) be formulas. We say that v is a §-uniformizer for ¢ in (o, <) iff clauses (1)-(3) of Definition 1.1
hold in («, <) when the X variables are restricted to range over members of P <% (c).

The main result of this paper is:

Proposition 1.8 (Solvability of Bounded Uniformization). There is an algorithm that, given ordinals o € [w®, w1] and § < w®
and a formula ¢(X, Y), decides whether ¢ has a §-uniformizer in («, <), and if so, constructs one.

2 In the few cases where we use letters other than X and Y, we shall state explicitly which variables are to be taken as domain variables and which as
image variables.

3 Section 2.3 will clarify what we mean by the algorithm being given an ordinal as input. For now, the reader can read the proposition as stating merely
that for each @ € [w®, wq], there is an algorithm which solves the selection problem in («, <). A similar comment applies to Proposition 1.8.

4 As usual, otp(P) denotes the order-type of P.
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Roughly speaking, our proof proceeds by reducing this problem to uniformization over the class of ordinals smaller than §
and to selection in (w®, <) (orin (w1, <) when o = w;). Proposition 1.3 tells us the former is solvable, while Proposition 1.6
handles the latter.

This paper expands on [9] in yet another direction. There we were mainly interested in whether a formula ¢ has a selector
in (x, <) for a particular « < w1. Here we ask whether it has a selector over a given class € of countable ordinals.

First, we prove the solvability of the selection problem over definable classes of countable ordinals. That is, given a
sentence 7 and a formula ¢(Y), we decide whether ¢ has a selector over the class of countable ordinals satisfying 7. When
one exists, we construct it. Our proof reduces this problem to the bounded uniformization problem solved in Proposition 1.8.

Next, by Proposition 1.5, any class € of ordinals which has an « > w® as a member lacks the selection property. On the
other hand, by Proposition 1.3, any € bounded below w® has it. It is therefore natural to ask whether there are unbounded
C C w® which have the selection property. We provide a simple necessary and sufficient condition for a class € C w® to
have this property, which implies the existence of unbounded €’s having it.

In [9] we show that the formula stating “Y is an unbounded w-sequence” has no selector in (w®, <). On the other hand,
given any formula ¢(Y), there is a ¥ (X, Y) such that if any unbounded w-sequence S C o is substituted for X, then
¥ (S, Y) selects ¢ in (w®, <). Thus, with an unbounded w-sequence S as parameter, we can select every formula in (0®, <).
This does not entail, however, that (w®, <, S) has the selection property, because the formulas ¢ for which i as above were
constructed do not themselves refer to S. In fact, it is easy to find unbounded w-sequences S C w® such that (w®, <, S)
lacks the selection property. This lead us to ask:

Question 1.9 ([9]). Is there a finite tuple P of subsets of w® such that (w®, <, P) has the selection property?

Using the existence of unbounded subclasses of w® having the selection property, we are able here to provide an affirmative
answer to this question. In fact, we shall show:

Proposition 1.10. There are P C w® such that:

(a) (w®, <, P) has the selection property,
(b) the monadic theory of (w®, <, P) is decidable, and
(¢) given a formula ¢, we can compute a selector for ¢ in (w®, <, P).>

The paper is organized as follows. In Section 2, we fix our notations and terminology. We also recall the basics of the
‘composition method,” the main technical tool used in our proofs. Section 3 introduces an abstract framework for studying
the selection problem over classes of chains (expanded by finitely many monadic predicates). Using this framework, we
present a condition both necessary and sufficient for a formula ¢ to have a selector over a class € of chains, when C satisfies
certain assumptions (see Lemmas 3.16 and 3.23). Section 4 shows that these assumptions apply in the case of bounded
uniformization, which allows us to prove Proposition 1.8. In Section 5, we handle the selection problem over definable
classes of countable ordinals, as explained above. Finally, Section 6 treats selection over classes ¢ C w®, which are not
necessarily definable and proves Proposition 1.10. As mentioned, the Appendix provides a proof of Proposition 1.3.

Note finally that, for the convenience of the reader, our treatment of selection over classes of countable ordinals was
kept almost entirely independent from our proof of the solvability of bounded uniformization. There is only one point in
Sections 5 and 6 where familiarity with either Section 3 or 4 is truly required, namely, in proving Proposition 1.10. There we
make use of the Inheritance Lemma (3.12). To understand this lemma (proved in Section 3.2), the reader must familiarize
himself/herself with the notations and definitions of Section 3.1. The technically more complicated conditions developed in
Sections 3.3 and 3.4 are unnecessary. In any case, the reader who is willing to accept this one application of Lemma 3.12 on
faith, can read the last two sections of this paper directly after Section 2.

2. Preliminaries and background

2.1. Notation and terminology

We use n, k, I, m, p, q for natural numbers, «, 8, v, §, ¢, u for ordinals. Our ordinals are von Neumann ordinals: an
ordinal is identical with the set of all ordinals below it. In particular,0 = @, 1 = {0} = {@},2 = {0, 1},etc.w = {0, 1, 2, ...}
is the set of natural numbers. w1 is the first uncountable ordinal. We write o + S, o8, aP for the sum, multiplication and
exponentiation, respectively, of ordinals « and 8.

For sets A and B, we denote by BA the set of all functions from B into A.

We use the expressions “chain” and “linear order” interchangeably. We use standard notation for sub-intervals of a chain:
if (A, <)isachainand b < a arein A, we write (b,a) :={c € A| b < ¢ < a}, [b, a) := (b, a) U {b}, etc.

We use the symbol ‘=’ for isomorphism.

5 Here @ is allowed to refer to P.
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2.2. The Monadic Logic of Order (MLO)

2.2.1. Syntax

The vocabulary of MLO consists of monadic second-order variables X; (i € w) and binary relation symbols ‘<’ and ‘C’.
Atomic formulas take the form X; < X; or X; C X;. All other formulas are built up from these by means of the usual Boolean
connectives and second-order quantifiers 3X;, VX;. The quantifier depth of a formula ¢ is denoted by qd(¢).

We use upper-case letters X, Y, ... to denote variables; with an overline, X, Y, etc. to denote finite tuples of variables
(always assumed distinct).

2.2.2. Semantics

A structure is a tuple M := (A, <™, P™) where: A is a non-empty set, <
(P, ..., P™,) is a finite tuple of subsets of A.

If Ig(P*) = I, we call M an [-structure. If <* linearly orders A, we call .M an [-chain. When the specific  is unimportant,
we simply say that .M is a labeled chain.

Suppose M is an I-structure and ¢ a formula with free-variables among Xp, . . ., X;_1. We define the relation M = ¢
(read: M satisfies @) as follows: M = X; C X; iff P;M - P]‘M and M = X; < X; iff there are b <™ ain A with P* = {b},
Pj‘M = {a}. The Boolean connectives are handled as usual and quantifiers range over subsets of A.°

Let M be an I-structure. The monadic theory of M, MTh(M), is the set of all formulas with free-variables among
Xo, ..., Xj_1 satisfied by M. _ _ _

Henceforth, we omit the superscript “*’ in ‘<*’ and ‘P*’. We often write (A, <) = ¢(P), meaning (A, <, P) = ¢. Note
also the following notations endemic to this paper:

M is a binary relation on A, and P* :=

Notation 2.1. Let M := (A, <, P) be a structure, Q a finite tuple of subsets of A. The expansion of M by Q is M™Q := (A, <,
P, Q), where we write ‘P, Q' meaning the tuple obtained by concatenating P and Q.

Definition 2.2. Let [;, [, € w, M an I;-structure, <p()_(, Y) a formula with lg()_() =l and lg(f/) =1,

1. The relation defined by ¢ in M is ~
D(p, M) :={Q € 22 (dom(M)) | M™Q = ¢}

2. Of every Q € D(¢, M), we say that it satisfies ¢ in M. B
3. When D (¢, M) is a singleton {Q }, we say that ¢ defines Q in M and that Q is definable in M.

2.2.3. First-order variables

We occasionally wish to have a variable range only over elements of the domain (equivalently, singleton subsets thereof).
Since it is easy to write a formula Sing(X) stating “X is a singleton set”, this can be achieved without formally adding first-
order variables to our vocabulary. To distinguish them, we denote by lower-case letters x, y, etc., those variables ranging only
over elements of the domain. For instance, “Let ¢(x, Y) be a formula ...” implies that ¢ has the form “Sing(X) A ¢’ (X, Y)”
for some formula ¢’.

2.2.4. Restriction )
Notation 2.3. Let M := (A, <, P) be a structure and @ # D C A. The restriction of M to D is the structure M;p := (D, <,
PMAD) where PAD := (PN D, ..., P_; N D).

Lemma 2.4 (Restriction). Let ¢(Y) be a formula, U a variable not appearing in ¢. We can compute a formula q)[U(}_’, U) such
that for every 1g(Y)-structure M and every non-empty subset D of its domain,

MDY, U) iff Mp k= eY).

That is, ¢,y holds in M with U interpreted as D iff ¢ holds in the restriction of M to D.
When this is the case, we say that ¢ holds in M restricted to D.

We are mostly interested in the case where M is a labeled chain and D is an interval [b, a) for some b < a in M.

2.3. The monadic theory of countable ordinals

Biichi (for instance [2]) has shown that there is a finite amount of data concerning any ordinal <w; which determines its
monadic theory:

6 Our definition is equivalent to the standard definition of MLO which allows both first-order and second-order variables over the signature ‘<’.
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Theorem 2.5. Letx € [1, w]. Write « = w®B + ¢ where ¢ < w® (this can be done in a unique way). Then the monadic theory
of (o, <) is determined by:

1. whether « is countable or o = wy,
2. whether o < w®, and

3. ¢.

We can associate with every @ < w1 a finite code which holds the data required in the previous theorem. This is clear with
respect to (1) and (2). As for (3), if ¢ # 0, write

¢ = an_i - 4y_j, wheren,q; € wfori <nanda, # 0

i<n
(this, too, can be done in a unique way), and let the sequence (a,, . . ., dg) encode ¢. The following is then implicit in [2]:

Theorem 2.6 (Monadic Decidability Theorem). There is an algorithm that, given a sentence ¢ and the code of an @ € [1, w1],
determines whether («, <) = ¢.

Comment. In this paper, whenever we say that an algorithm is “given an ordinal ...” or “returns an ordinal ...”, we mean
the code of the ordinal. This holds in particular for Propositions 1.6 and 1.8 (which fulfils the promise made in footnote 3).

Finally, note that the monadic theory of a structure M “knows” which formulas uniformize which others in a structure M.

Definition 2.7 (Uniformization Axiom). For formulas <p()_( . Y), w()_( ,Y), the (¥, p)-uniformization axiom, denoted uni-ax
(¥, @), is the conjunction of the sentences appearing in the definition of uniformization (Definition 1.1).
When discussing the special case of selection, we write sel-ax(v, ¢) instead of uni-ax(yr, ¢).

Clearly, ¥ uniformizes ¢ in M iff M = uni-ax(yr, @).

2.4. Elements of the composition method

Our proofs make use of the technique known as the composition method.” To fix notations and to aid the reader not
familiar with this technique, we briefly review those definitions and results that we require. A more detailed presentation
can be found in [11] or [4], for instance.

2.4.1. Hintikka formulas and n-types
Notation 2.8. Let n,| € w. Denote by Form,; the set of formulas of quantifier depth <n and with free-variables among
Xos oo X1

Definition 2.9. Let n,] € w and M, N be [-structures. We say that M and N are n-equivalent, denoted M =" W, iff for
every ¢ € Formp, M = @ iff N = @.

Clearly, =" is an equivalence relation. For any n € w and [ > 0, the set Form, is infinite. However, it contains only
finitely many semantically distinct formulas. So, there are finitely many ="-classes of [-structures. In fact, we can compute
“representatives” for these classes:

Lemma 2.10 (Hintikka Lemma). For n, | € w, we can compute a finite H, ; € §otm, ; such that:

(a) For every I-structure M, there is a unique © € H,; such that M |= t.
(b) If t € Hyyand ¢ € Formy,, then either T |= ¢ or t |= —¢. Furthermore, there is an algorithm that, given such t and ¢,
decides which of these two possibilities holds.

Any member of H, | we call an (n, I)-Hintikka formula.

Definition 2.11 (n-Type). Forn, | € w and M an I-structure, we denote by type" (M) the unique member of Hy, | satisfied by
M and call it the n-type of M.

Thus, type” (M) determines (effectively) which formulas of quantifier depth < n are satisfied by M.

7 Originating in [3], and adapted and ingeniously applied to the case of MLO in [10].
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2.4.2. The ordered sum of labeled chains
We occasionally make use of the following notation.

Notation 2.12. Let | € w and {P* | « € I} a family of I-tuples of sets. For each € I, let P% := (Pg,...,PY;). Then the
“union of {P* | & € I} is:

Ufﬂ :=<UP°‘,...,UP{"1>.

ael ael ael

From a family of labeled chains which is itself indexed by a linear order, there is a natural way of obtaining a new labeled
chain:

Definition 2.13. Let | € , 4 := (I, <') alinear order, and & := (M, | « € I) a sequence of [-chains. Write M, :=
(Ag, <%, P¥) and assume A, N Ag = @ whenever o # g are in I. The ordered sum of & w.r.t. { is the I-chain

21:6 = (UAD[, <he Ul_’“) :

ael ael
where:
ifa,fel,ac Ay beAgthenb <"® aiff f <aorf=caandb <* a.

If the domains of the .M, are not disjoint, replace them with isomorphic [-chains that have disjoint domains, and proceed
as before.

The next proposition says that taking ordered sums preserves n-equivalence.

Proposition 2.14. Let n, | € w. Assume:

1. (I, <) is a linear order,
2. (M2 | @ €1)and (M} | o € I) are sequences of I-chains, and
3. foreverya € I, M2 =" M.

Then Y, MO =", o M.

2.4.3. The composition theorem
Notation 2.15. Let I and H be sets. An H-partition of I is a sequence B := (B, | t € H) of disjoint sets such that

U'L'EH gBT =1

Proposition 2.14 justifies the following definition.

Definition 2.16. Let (I, <) be a chain, n, [ € w and B an H, j-partition of I. For every « € I denote by 1, the unique T € Hy
such that o € B;. Fix ¢ € Formy.

We say that B induces ¢ w.r.t. (I, <) iff whenever (M, | « € I) is a sequence of I-chains such that type"(My) = T, for
each o € I, we have

type” (Z Ma) = 0.

ael

The next fundamental result of Shelah’s ([10]) says that we may define in (I, <) the class of ¢-inducing partitions.

Theorem 2.17 (Composition Theorem). Letn,| € w and ¢ € Form, ;. We can compute a formula v, nq (V) where V := (V; |
T € Hy,) such that if (I, <) is a chain and B an H,, ;-partition of I, then:

(I, <) E Pyma(B) iff B induces ¢ w.r.t. (I, <).
Finally, as a special case of inducement, Proposition 2.14 allows us also to define the sum of Hintikka formulas.

Definition 2.18. Letn, | € wand 19, 71 € Hy . The sum of 7o and 74, denoted 7+ 14, is an element of H, ; such that whenever
Mo, My are I-structures with type" (M;) = t; fori € 2, we have type™ (Mg + M) = 19 + T1.

Since the monadic theory of (2, <) is decidable, the Composition Theorem yields:

Lemma 2.19. An, |l € w.A7ty, 71 € Hy.Tp + T4 iS recursive.
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3. Conditions for selectability over classes of labeled chains

Definition 3.1. Let (A, <) be alinear order. Call S C A a segment of (A, <) if (b, a) C S whenever b < aareinS.

Here we present the notion of a split class: a class € of labeled chains is split by a formula 6 if 6 defines in every M € C
a partition of M into subsegments. We use this notion to prove the Inheritance Lemma (3.12), which provides a sufficient
condition for € to have the selection property. This lemma is, however, too weak to be used in proving Proposition 1.8, and
we therefore generalize it into the Sufficiency-of-Safety Lemma, where a sufficient condition for a specific formula ¢ to have
a selector over C is given. Finally, in Section 3.4 we show that - under the appropriate assumptions on € - this last sufficient
condition is also necessary for ¢ to have a selector.

3.1. Basic framework

3.1.1. Two stages of selection over split classes B B
Definition 3.2 (Splitting). Let l; € w, M an l;-chain with domain A, and 6(X, x, y) a formula with Ig(X) < [; and x and y
first-order variables.®

1. We call 9 a splitting of M iff 0 defines in M an equivalence relation on the elements of A whose classes are segments
of M.

2. If 6 splits M, denote by fvg“ the equivalence relation defined by 6 in .M, denote by Is the set of ~j‘ -classes, and let
o = (Ipy0, <) denote I 9 ordered by representatives. Call £ o the indexing order of M W.r.t. 6.

3. Let € be a class of labeled chains. We call 9 a splitting of € iff 6 splits every M € C.

Throughout this section, fix I; € w, a class € of [;-chains and a splitting 6 of C. Note that M = Zsawe M;s for every
M € C.Fix a formula ¢(X, Y) with Ig(X) = ;. To decide whether ¢ has a selector over C, one must decide whether it is
possible to definably pick in every M € C a unique tuple Q such that M™Q = ¢. Write

n:=aqd(p), bL:=Ilg¥), l:=I1+1.

By Proposition 2.14, the n-types of the summands (QM“Q)[S (for S € I, ¢) determine whether M™Q = ¢. Accordingly, we

may try and break the task of selecting Q into two stages roughly as follows:
Partition the indexing order: choose an H,, j-partition B* := (%?‘ | T € Hp) of I/ which induces ¢ w.r.t. £ g (recall
Definition 2.16) and further satisfies:

(Coh)  foreveryS € I, Mis = IY s,
where 75 is the unique T € Hy; such thatS € B;.
Local selection: foreach S € 1,4, selecta Qs € 22 (S) such that type"((gM[s)“Qg) = 15.ThenQ := USELM/G Qs ought to do

the trick. Thus, intuitively, B instructs one which n-type to realize in each summand Ms so that, globally, one satisfies ¢.

Note that had we not required that B satisfy (Coh), there would be cases where we could not choose Qs in compliance
with it; for instance, suppose [y = I, = 1, M = (A, <, P), and 75(X, Y) implies “Y is a non-empty subset of X", but P N S
happens to be empty.

3.1.2. Type partitions of the indexing order
By the Composition Theorem, whether a partition B* of I s6 induces ¢ is fully determined by the monadic theory

of (44 /9)“%”‘. No reference to M itself is necessary. With regard to condition (Coh), things stand differently. There is,
generally, no reason to assume that the monadic theory of {9 “knows” whether a given t € H, is satisfiable in M;s

(where S € I,(/6). This may clearly involve the particular M. Note, however, that Y15 € Sortmy, 1, SO (Coh) is equivalent
to the requirement that

(Coh’) foreachS € Iy, type”+’2(=M[s) E 3V .
This motivates the two following definitions.

Definition 3.3 (Coherence). Let I be a set, n, l;, 1, € w, ¥ an Hp, 1, -partition of I, and % an Hy 1, +1,-partition of I. We say
that ¥ and 9B are coherent iff for every S € I, 0 € Hyyy, 1, and T € Hp 415,

ifS € T, NB,, theno (X) E IYT(X, Y).

Definition 3.4 (k-Type Partition). Let k, m € w, M an m-chain and @ a splitting of M. For each t € Hy ,, write (M /0) :=
{Selyml type"(gM[s) = 1}. The k-type partition of M w.r.t. 0 is TyPart(M/0) := (T, | T € Him)-

8 See the discussion in Section 2.2.3.
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Thus, (Coh) is the requirement that TyPart™™2 (/) and B* be coherent. Note that in J s~ TyPart"*2 (M /6), this is
expressible by a formula:

Lemma 3.5 (Coherence Lemma). Forn, |, l, € w, we can compute a formula Yeon(U, V), with U indexed by Hy41,,1, and % by
Hp 1,41, which in every chain (I, <) states:

“U and V are coherent partitions of the domain.”

Proof. Compute Cohyy, 1, :={(0, T) € Huyip 1y, X Hujy41, | 0 = 3Y 1} using (b) of the Hintikka Lemma. Then the following
does the job:

Fcon(U, V) := Vx( \/ (x € U, NV;)) A“U and V are partitions”. O

((T,T)ECOth] Iy
Finally, the next observation follows immediately from the definitions of coherence and inducement:

Lemma 3.6. Letn, I, , € w, M an l;-chain, 0 a splitting of M, and Q an l,-tuple of subsets of dom(M). Then:

(a) TyPart""2 (M /0) and TyPart"(M~Q/6) are coherent.
(b) If ¢ € Formp 44, and Q € D(¢, M), then TyPart" (M ™Q/0) induces ¢ W.r.t. 4 .

3.1.3. Interpreting { y /¢ in M

By what was just stated, the first stage of the selection scheme suggested above amounts to selecting in £ /4~ TyPart™"
(:M/0) a partition B* such that 46~ TyPart"2 (M /0) B satisfies both B, 1,4 (V) and dcon (U, V). But, we of course are
looking for a selector for ¢ that would work in M. To this end, we now show that M interprets £ /6~ TyPart™2 (M /0).

Definition 3.7. Let A be a set and ~ an equivalence relation on A. We say that a subset T C A respects ~ iff T is the union of
~-classes. A finite tuple (T, | T € H) of subsets of A is said to respect ~ iff T, does for all ¢ € H.

Notation 3.8. Let A be a set and ~ an equivalence relationon A.If T C A, let (T~ ~) denote the set of ~-classes of members
of T,and if T := (T, | T € H) is a finite tuple of subsets of A, let (T / ~) := ((T, / ~) | T € H).

Lemma 3.9 (Interpretation Lemma). Let 0(X, x,y) be a formula. Set I; := 1g(X). Given formulas x (X, W) and & (W, V), we
can compute a formula 19;9" (X, V) with the following property:

If M is an l;-chain split by 6, x (X, W) defines in M a tuple T, and B € '¢¥) # (dom(M)), then:
M™B =9 iff Brespects ~)* and .49~ (T /~})"(B,/~}") = v.

Applying the lemma with T = |J TyPart""'2 (M /0) interprets £, 6" TyPart™™2 (M /6) in M, as desired.

”

Proof. First, it is easy to write a tesp (W) which says “W respects ~*". Indeed, this is equivalent to W being a union of
~2_classes. To ensure ¢ 4 is satisfied only by T which respect ~¢, we assume it has the form @, A Niigaiv) Dresp(Wi). The
definition of ¢, itself proceeds by induction on ¢. We leave to the reader the proof that ¢ 4 has the desired property.

(Sing(W)), says “W is a Ng“-class". (W < W), says “both W and W' are ~§“‘—classes and there exist w € W and
w' € W suchthatw < w™. If9 =W C W or ¢ = Emp(W), let 9, := 9. Finally, (& A 9'), := 0 A9, (70), 1= —(V)
and (329), 1= FZ (Dresp(Z) A D). O

Remark 3.10. Suppose W = U,V and 9;(X, U) defines in M a tuple T respecting ~;*. Then the lemma tells us that

30 (97 (X, U) A (X, U, V)) defines in M the class of tuples B which respect ~¢ and such that £,4/s ™ (T/ ~)~(B/ ~}")
=9 .

3.2. Inheritability of the selection property

Notation 3.11. Let € be a class of labeled chains and 0 a splitting of €. Define:
Inde s~ TyPart := {49~ TyPart“(M/0) | M € C A k € w},
Smd@/g = {Mfs | M eCAS € I,M/g}.

The following lemma is a natural generalization of Proposition 6.1 in [5].

Lemma 3.12 (Inheritance Lemma). Let C be a class of chains and 0 a splitting of C.
IfInde s~ TyPart and Smde ¢ have the selection property, then so does C.
If further, selectors are computable over Inde 9~ TyPart and Smde s, then the same holds over C.
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Proof. Assume C is a class of [1-chains for some [; € w. Let (p()_(, Y) with Ig(X) = I;. Assuming solvability of selection over
Inde /" TyPart and over Smde 9, we present an algorithm for the construction of a selector v for ¢ over €, together with
a proof for the correctness of the construction. The proof will make it clear that even without the solvability assumption,
existence of a selector follows.® Write n := qd(¢), L, := lg(Y), [ := L+ L.

(1) Compute ty mda(V) as in the Composmon Theorem and ¥con (U, V) as in the Coherence Lemma (computed from n, Iy, I,).

Recall that U is indexed by Hy41, 1, and 1% by Hp . Let 191(U V) = Pyind N Pcoh-
(2) Since Inde/s ~ TyPart has the selection property and since selectors are computable over it, we may compute a selector

93¢ (U, V) for 9, over this class.
(3) Write a formula x (X, U) which defines U TyPart"2:1 (M /6) in every M € €. This formula says:

“for every o € Hyyy, ), and fvg“—class W, W C U, iff o (X) holds restricted to W”.

(4) Compute (0561)/9" (X, V) as in the Interpretation Lemma (U here is W there).

Fix M € € in which ¢ is satisfied. By Lemma 3.6, 9 (TyPart™*2 (M/0), V) is satisfied in 4y /6. Indeed, for any Q €
D(p, M), TyPart" (M ™Q /0) satisfies it. Since z?se' selects ¥ in /6™ TyPart™"2 (M /6), there exists a unique B* such that
1 M /9 |= 03¢ (TyPart" 2 (M /6), BM). By construction of 9, this B* is coherent with TyPart"*'2 (. /0) and induces ¢. Write

U%‘M By the Interpretation Lemma, 95 X,V) = (ﬁsel) X(X, V) defines B* in M. This concludes the stage of
partltlomng the index order in the two-stage scheme of selection descrlbed in Section 3.1.1.
(5) For each © € H;;, compute a selector ¥, for T over Smde/s. This can be done because Smde 4 has the selection property

and selectors are computable over this class.
(6) Let ¥'(X, Y) say:

“For every V which satisfies Ugu, €very fvg‘—class W, and every T € Hy,
¥, (X, Y) holds restricted to W iff W C V,.”

Finally, let ¥ := ¥’ A 3Y¢. Let us show that ¢ selects @ over C.
Fix M € C.If ¢ is not satisfied in .M, then because 3Y ¢ is a conjunct of ¥, neither is yr. Assume then that ¢ is satisfied.
By construction of ¥z, ¥ actually reads:

“For every ~ —class Wandt € Hy, ¥, (X, Y) holds restricted to W iff W C BM ?

Fix S € I/ and let ts € Hysuch that S C BfS‘. Note that this is equivalentto S € %fs‘ where B is as above. Since B is
coherent with TyPart"™'2 (.M /), s is satisfied in Ms. Since W, selects ts in Ms, there is a unique Qs € 22(S) satisfying

W, in M;s. We have type" (M s~ Qs) = Ts, of course. Let Q := USE, /HQS Then Q satisfies ¥ in M. Also, type" (M ™Q) E ¢,
since B induces ¢. Finally, let Q' e Dy, M)and S € I,9. Then Q' NS satisfies W, in Ms. But, Wi, defines Qs in Mg, i.e.,
Q'NS = Qs and Q' = Q is the unique tuple which satisfies i in M. Done. O

If Inde/s has the uniformization property, then Inde /s~ TyPart has the selection property. Hence, we obtain the following
corollary:

Corollary 3.13. Let C be a class of chains and 6 a splitting of C. Assume:

1. Indeg has the uniformization property and
2. Smde s has the selection property.

Then C has the selection property.
If further, both the uniformization problem over Inde /¢ and the selection problem over Smde/s are solvable, then so is the
selection problem over C.

Comment. In [6], the selection and uniformization properties for classes of structures constructed by the Feferman-
Vaught generalized product (introduced in [3]) were investigated. It was shown that if classes K; and K, have the selection
(respectively, uniformization) property, then the generalized product of these classes has the selection (respectively,
uniformization) property. A splitting of a chain provides a representation of the chain as an ordered sum of chains.
The ordered sum of chains is an instance of the generalized sum construct [10,8]. There is a natural generalization of
Corollary 3.13 to the tree sum of trees — another instance of the generalized sum construct. It is interesting to investigate
what instances of the generalized sum inherit the uniformization and selection properties.

As mentioned in the introduction, Sections 3.3, 3.4 and 4 are all geared towards the proof of Proposition 1.8. The reader
more interested in our treatment of selection over classes of countable ordinals, may proceed directly to Section 5 without
loss of continuity.

9 Wherever we write “we can compute a formula” replace “there exists a formula”, etc.
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3.3. Sufficient condition for selectability when Smde ¢ lacks the selection property

We now generalize the Inheritance Lemma by relaxing the assumption that Smde /s has the selection property. We shall
have a finite family © of subclasses of Smde¢ /. Given M € C, we shall attempt to select the partition BM of [, /6 SO that
whenever S € 8 for some type 7, .M s belongs to a subclass 8 € D over which t has a selector, say %% If this can be done
in each relevant M, then at stage (5) of the construction above, we could use lI/f instead of a selector over Smde/s (Which
may not exist). The next two definitions formalize (and slightly refine) this idea.

Definition 3.14 (Multi-partition). Let € be a class of labeled chains and 6 (X, x, y) a splitting of C.

1. A multi-partition (m.p. for short) § for € /6 is given by fixing, for each M € €, a partition ¥ := (Sﬁ‘ | d € D) of the set
Ly /g of wg‘ -classes where D is some fixed finite set.

2. Forde D, let8; :={M;s| MecCAS € Sé“}. Also, ® := {44 | d € D}. We call members of © summand subclasses and
D the subclass family of §.1°

3. Aformula 65(X, Z) with Z indexed by D is said to define § iff in every M € €, it defines O@M = (U | d eD)."

4. We write Inde /s~ TyPart™ § := {JlM/gATyPart"(eM/H)“S'M | M € CAkE w]

Agreement. d <> 4, is a natural 1-1 correspondence between D and ®. In what follows, we shall therefore assume D = .
Note that, under this agreement, if § € D and an ~‘-class S belongs to §}', then M s € 5.

Definition 3.15 (Safety). Letl; € w, C a class of I;-chains, and 6 a splitting of € and § an m.p. for € /6 with subclass family
D.Lletn, I, € wand ¢ € Formy, |, 41,. We say that § is safe for ¢ iff for every M € € in which ¢ is satisfied, there exists an
Hy.1, 11, -partition B* of 1,4 which induces g, is coherent with TyPart"*'2 (.;/6), and satisfies, for every T € Hy,41, and
S e B,

(Safe) if8 € DissuchthatS € 35‘4 then 7 is selectable over 4.

We want to show that if Inde s TyPart™ § has the selection property and a safe-for-¢ and definable m.p. § for C/0 exists,
then ¢ is selectable over C. Note that if Smde/s has the selection property and ©® = {Smde/}, then § is safe for every ¢
(because (Safe) holds vacuously). Thus, this result generalizes the Inheritance Lemma. The next lemma proves it but also
adds conditions under which a selector for ¢ is computable.

Lemma 3.16 (Sufficiency-of-Safety Lemma). Let C be a class of labeled chains, ¢ a formula. Suppose there are:

a splitting 0% of G,
a formula 9%” which defines an m.p. §¥ for € /6% with subclass family ©¢ such that Inde/e¢ ~ TyPart™ 3 has the selection
property.

Then there is a formula i with the following property:
if 3% is safe for ¢, then v selects ¢ over C.
Assume further that we can compute 6% and Og from ¢, and solve the following problems:

(Ind-sol) Selection over Inde /g0 — TyPart™ 3%.
(8-sol) Assume ¢ € Formy, . Given T € Hyjand 8§ € ©¥, decide whether t has a selector over 8, and - if so - construct one for
it.1?
Then, ¥ can be computed from ¢.

Proof. The proof is an easy generalization of the one given for the Inheritance Lemma and we only indicate the necessary
changes to be made. Assume € is a class of [;-chains for some |y € w. Let ¢(X, Y) be given with Ig(X) = [;. Set n := qd(¢),
I :=1g(Y),and | := l; + I,. Proceed as follows.

(0) Compute 6¢(X, x, y) and 6% (X, Z) (withZ := (Zs | 8 € D¥)).

(1) Let ¥, ma(V) and 9con (U, V) as in (1) of the proof of the Inheritance Lemma. By assumption ($-sol), we can compute for
every § € D¢,

Sely | := {r € Hy | 7 is selectable over §}.

10 since it will always be clear which m.p. ¥ is under discussion, we omit mention of ¥ in our notation for ®, though the latter clearly depends on the
former.

1T Note that for every d € D, | J § is the set of elements of dom (M) whose ~-class is in 3.

12 Note that for any particular ¢, the problem is trivially solvable, since H, is finite. We mean, of course, that there is a uniform in ¢ algorithm solving
this problem for every ¢. It is important to stress that we do not assume here that the full selection problem over 4 is solvable.
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Define formulas:

OsaeZ, V) := N |Vxezs| \V xeV, ]| and

$€DP 3
€D Tesely )

291(’-_], Zv ‘_/) ‘= Uymd A Pcoh A Usgfe-

The conjunct Ysye in ¥ is meant to ensure we select a partition B of I, /60 Which satisfies condition (Safe).

(2) Compute a selector 191561([_1, Z, V) for ¥ over Inde /90~ TyPart™ 3*.

(3) Compute a formula x (X, U, Z) which defines in every M € € the concatenation of |_J TyPart™2 (A(/6%) and | J3*.

(4) Compute a formula (z‘}]sel)/T,é (X, V) as in the Interpretation Lemma, letting W there be the concatenation of U and Z.
Let M € C where ¢ is satisfied. Assume §¥ is safe for . Then there exists a partition B of I, /4¢ as in Definition 3.15.

Then 9 (TyPart™™2 (M /6¢), §¥, B°7) holds in J 4 e¢. In particular, & (TyPart"2 (M /6%), §¥, V) is satisfied in £ g¢. By

choice of x and y“fe', and by the Interpretation Lemma, (191561)795 (X, V) defines in .M the “union of a unique partition B of

14¢/6¢ Which is coherent with TyPart" 2 (M /6?), induces ¢, and satisfies (Safe).

(5)Forevery 8 € ©¥ and t € Sel? , compute a selector ¥,* for T over 3.

(6) Then the required v (X, Y) is the conjunction of 3Y¢ and:

“For the unique Z which satisfies 67 (ie. LJ3*) and the unique V which satisfies 5 g0 X, V) (ie. LJBshY, for every
~b ~classW, 1 € Hy and 8 € D¥:
w2 (X, Y) holds restricted to W iff (W € V; and W C Z5).” O

3.4. Universal structures and the necessity of safety

The main result of this subsection is the Necessity-of-Safety Lemma (3.23) which introduces an assumption concerning
m.p’.s § for €/0 under which the fact that § is safe for ¢ (recall Definition 3.15) is not only sufficient but also necessary for the
existence of a selector for ¢ over €. This condition is tailored to our needs, so it is doubtful whether the lemma enjoys great
generality. Our purpose in stating it explicitly is to isolate the essential (and simple) idea driving our proof of Proposition 1.8
below.

3.4.1. The segment lemma

As a first stage in developing our necessary condition, we would like to relate the existence of a selector for ¢ over €
to the selectability of the types actually appearing in TyPart" (M ~Q /6) where M € C and Q € D(g, M). To this end, we
prove:

Lemma 3.17 (Segment Lemma). Let M be a labeled chain and  a formula which defines a tuple Q in M. Let S be a segment of
M. Then type®™) (M™Q)s) defines QNS in M.

Proof. Set n := qd(1) and let Q' satisfy type"((gM“Q)[g) in Ms. We must show that Q' =QnNs.
Write S~ := {b € dom(M) | Va € S.b < a} and St := dom(M) \ (S~ US). Both are segments of M. Assume S~ and S*
are non-empty. Then

type™ (M~Q) = type" (M~ Q);s-) + type (M~ Q);s) + type" (M~ Q);s+).
By assumption, type”((eM“Q)ys) = type"(,M[sAQ’), S0
(M™Q) 5= + Mis™Q + (M™Q) s+ = ¥

But this structure equals M~ (QNS~ U Q' U QNS™). Since v defines Q in .M, it follows (QNS~ U Q' U QNSt) = Q, so
Q' =Qns.
Finally, if S~ = @ ignore the leftmost summand above and if ST = @, ignore the rightmost summand. O

3.4.2. Universal structures and fat classes

Suppose that v is a selector for ¢ over G, M € €, and Q the unique element of ¥ € D (Y, M). Then the Segment Lemma
says that for every S € I, type" (M ™Q);s) is selectable in M,s. But how does that help us to choose a partition FMof I /6
to satisfy (Safe) of Definition 3.15? How are we to relate selectability in the particular summand M s to selectability over a
class 8 € Smde/¢? The next definition is a first step in answering this question.

Definition 3.18 (Selection Universal Structures). Let kq, k; € w, 4 a class of structures and M a structure. We say that M is
(kq|ky)-selection universal in 4§ iff for every formula @ (Y) with qd(3Y®) < k;, if there exists a p with qd(p) < k, which
selects @ in M, then @ is selectable over §.
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Lemma 3.22 presents what is for us the paradigmatic example of a class where selection universal structures can be found.
To prove it, we need a lemma and a proposition, which are important in themselves.

Lemma 3.19 (p-Lemma). There is a recursive p : @ — w such that for each n € w, any two non-0 countable multiples of w"™
are n-equivalent.

Proof. This is a special case of Theorem 3.5(B) in [10]. O

The following is Corollary 4.9 of [9].

Proposition 3.20. There is an algorithm that, given a ¢ (Y) selectable in (w®, <), constructs ay which selects ¢ in @P(@d3Ye)+1 B
for every B € w1 \ 1, where p is as in the p-Lemma.

Definition 3.21 (Fat Class). Let 8 be a class of countable ordinals and p € w.
We call § fat iff for every N € w, there is a non-0 multiple of " in 4.
If further, every o € 4§ is a multiple of w?, we call $ p-fat.

In stating and proving the next lemma, we confuse an ordinal « with the structure (&, <). We shall continue to do so
occasionally.

Lemma 3.22. Let k; € wand § C wq a (p(k1) + 1)-fat class. Then for every k, € w, there are « € § such that (a, <) is
(k1|ky)-selection universal in .

Proof. Let N := max{qd(sel-ax(p(Y), ®(Y))) | gd(AY®) < k; Aqd(p) < k.}and p := p(N) + 1, with p as in the p-Lemma.
We assume p > p(kq) 4 1. Since 4 is fat, we can pick an a* € § which is a non-0 multiple of @”. We claim that o* is (k1 |ky)-
selection universal in 4. Indeed, let @ (Y) such that qd(3Y®) < k; and assume p with qd(p) < k, selects @ in (a*, <).
Then (a*, <) = sel-ax(p, @). By choice of N, qd(sel-ax(p, @)) < N. Since «* is a multiple of w?, the p-Lemma tells us that
(a*, <) is N-equivalent to (w®, <). Thus, (w®, <) &= sel-ax(p, @), which means that p selects @ in (w®, <). In particular,
@ is selectable in (w®, <). Since every o € 4 is a multiple of w?*V*1 (recall p > p(k;) + 1), Proposition 3.20 tells us that @
has a selector over 4, as was to be shown. O

3.4.3. The Necessity-of-Safety Lemma

Lemma 3.23 (Necessity-of-Safety Lemma). Let n, l;, I, € w, C aclass of l,-chains, 6 a splitting of C and § an m.p. for C /6 with
subclass family ©. Assume that for every k € w and M € C there is a sequence &' := (Mg | S € Is9) of l;-chains such that
Zm/e G’ € Cand forevery S € Lys:

MG =" Mg, and
if$e®andS € Sf, then M is (n + Iy + I, |k)-selection universal in .

Let ¢ € Formy 1, 41,- If  has a selector over C, then § is safe for ¢.

Proof. Let v select ¢ over C. Fix M € C where g is satisfied. Write | := [; + I,. We shall find an H,, ;-partition Bt of Ly o
as in Definition 3.15.

Letk := qd(v).Pickasequence &’ := (Mg | S € I/¢) asinthe assumption with reference to this k. Let M’ := ZM/H &'
Then M’ € €. Since each of the summands in M is (n + I;)-equivalent to the corresponding summand in M, it follows that
M =" M. Since ¢ is satisfied in M, we have M = FY ¢, and therefore, M' |= IY ¢, because qd(IY¢) = n + L. Since ¥
is a selector for ¢ in M, there is a (unique) Q" € D(y, M'). Foreach S € I, 9, let S’ := dom(M). We assume the S’ are
disjoint for distinct S. For each T € Hy, let B :={S € I )6 | (M ™Q');s k= 7). Set B := (B | v € Hy). We claim B
satisfies the requirements of Definition 3.15.

Fixt € Hpjand S € %if. Let § € D suchthat$ € Sﬁ‘. We first show that 7 is selectable over 4. By definition of %if,
7 = type"((M'~Q'),s). Write p := type*((M'~Q'),s). Since ¥ selects ¢ in M’, the Segment Lemma (3.17) tells us that p
selects T in ,M’[S/ = Mg (recall qd() = k). But, by choice of &', Ms is (n + I|k)-selection universal in 4, so T is selectable
over 4. Next, Q' N S’ is witness that M} = 3Y7. But, again, M; =""2 M;s, hence also M5 = IY7. Thus, B* is coherent
with TyPart™"2 (. /6). Finally, M’ ~Q’ = ¢, so B\ induces ¢. This concludes our proof. O

Comment. Since M’ € @, 6 is also a splitting of M’. Note, however, that in the proof above there is no need to assume
that the domains of the M coincide with N;“ -classes. In fact, we do not even require the assumption that Mg € Smde /g
(though this is the case in our application of the lemma).
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4. The uniformization problem with bounded domain variables

Here we prove the solvability of bounded uniformization (Proposition 1.8). To apply the Sufficiency/Necessity-of-Safety
Lemmas - which deal with selection - to our problem, which is one of uniformization, we note that by changing the class
of structures, we may view uniformization as a case of selection. Define:

Notation 4.1. For [; € w and ordinals é and «, let Exp,f‘S (o) := {(a, <, P) | P € "£=<%(x)} be the class of all expansions of
(ax, <) by I1-tuples of sets of order-type < §.

Then the following observation is obvious.

Lemmad4.2. Letl; € w, (p()_(, Y), 1//()_(, Y) formulas with 1g(X) = I, and 8 and « ordinals. Then Y is a §-uniformizer for ¢ in
(o, <) iff Y selects ¢ over Exp,f‘S ().

Thus, what we must show is:

There is a (uniform in «, § and [;) algorithm which solves the selection problem over Exp,f‘s(oz) forall ¢ € [w?, w1],
d <w®andl; € w.

As usual, some preparation is needed.

Notation 4.3. For[; € w,lete¢, := (@, ..., @) be the [;-tuple of the empty sets. If & is a class of structures, write § "¢, :=
———

I times

{MTe, | M e 8.

We leave the proof of the following lemma to the reader.

Lemma 4.4. Let l; € w and 3§ a class of O-structures. For ® (X, Y) with 1g(X) = I, write @*(Y) := 3IX(® A /\l.<,1 X;i = 2)).
Then @ is selectable over 8¢, iff @™ is selectable over 8, and given a selector for @* over §, we can compute a selector for @
over 87 ¢,.

Definition 4.5 (Part and Tail). Let u, o be ordinals with x4 > 0. Write @ = uf + ¢ with ¢ < u (this can be done in a unique
way). We call u8 the w-part of o and ¢ its p-tail.
Finally, the following lemma is an easy exercise in formalization.

Lemma 4.6 (Definability Below w®). Foranya < w®, we can compute sentences 69 and 9!

(@) (B, <) E 4 iff p = a.
(b) (B, <) E b4 iff B < .

such that for every ordinal 8 > 0:

4.1. Proof of Proposition 1.8

Fixa € [w“, wi]and § < w®.1f § = 0, then Expf’1 (a) = @ and there is nothing to show. On the other hand, Expf1 (@) =
{(a, <, ,)}. Thus, Lemma 4.4 reduces the case § = 1 to the selection problemin (&, <), which s solvable by Proposition 1.6.
We may therefore assume that § > 1.

The overall structure of the proof is as follows. Given ¢, we write a splitting 6% of Expfl‘S (o) and define an m.p. §¥ for

Expf]‘s () /6%. Both are computable from ¢. We show that the assumptions of the Sufficiency-of-Safety Lemma are satisfied
w.r.t. these 6% and §¥. The lemma therefore allows us to compute a v such that if 3 is safe for ¢, then v selects ¢ over
Expf]‘S (). Next, we show that the assumptions of the Necessity-of-Safety Lemma hold. It follows that if ¢ has any selector

over Expf]‘S (), then §¥ is safe for ¢, hence, by what was just stated, the above 1/ is a selector for ¢ over Expfl‘S (a). Combined,
this means that ¢ has a selector iff 1 is a selector. This condition turns out to be easy to decide, thus completing the proof.
Let ¢(X, Y) be given. Set n := qd(p), l; := Ig(X), L, :=1g(Y),l := |; + ,. Note that if [; = 0, then Expg‘s(a) = {(a, <)}
and our problem is selection in (¢, <). We henceforth assume [; > 0.
Compute p := p(n + I) + 1 where p is as in the p-Lemma (3.19). Let ' denote the w®-part of «. Write a splitting

0 = 0%(X, x,y) of Expﬁ‘s(a) as follows. Forevery P € "?<}(@)and y < B < a, ~§“'<”3) B iff:

either y, B > o/, or B
y, B < o' and, if S is the set of ordinals strictly between the wP-part of y and the wP-part of 8, then S N P; = & for all
i< l].

This can indeed be done. Indeed, forany 8 < «, 8 > o iff otp([8, @)) < @ — &’.But @ — &’ < w® (by definition of an
w®-part). By definability below w® (4.6), this condition is expressible by a formula. Further, the w”-part of g is definable as
the least 8’ < B such thatotp([8’, B]) < wP, which again by definability below w® is expressible. Note that 6 is computable
from ¢.

The reader will now easily verify that for every M € Explj6 (), we have:
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1. 4 46 is isomorphic to an ordinal < Sw, 3
2. ifa’ # a, then [o, &) € Ly 9,

and forevery S € Iy \ {[/, @)}:

3. thereare y < 8 < o' suchthatS = [wPy, ®PB) (in particular, otp(S) is a non-0 multiple of @), and
4. if Mis # (S, <, €,), then otp(S) = wP.

Next, there is a formula 6; = Qg which defines an m.p. § = §¥ for Expfl‘S («)/0 as follows. Given M € Expfl‘S (o), the m.p.

partitions I, into subsets i, &0, §2¢ . and 3;’:‘]: Ifo' = a,§, = @; otherwise § = {[o/, @)}. §% and §2 , divide
among them the Ng‘ -classes which have countable order-type and whose members are <a’: Sz‘fp consists of all such ~!-
classes whose order-type is wP and gpr of those whose order-type is strictly greater than w? (by (3), these are the only two
options). If & is countable, this already exhausts all N;“-classes and Sﬁ,‘] is left empty. If « = w4, there is a unique ~34 -class
whose order-type is w; (because if M = (w1, <, P) then Ui<,1 P; is bounded in wq). This class is the unique member of 5:)41

Denote by 8, 8.r, 8~0p, and 4, the corresponding summand subclasses. Then:

Sl = @ if o’ = «; otherwise, 8t = Expy’ ([, &),

Up to isomorphism, 48p is Explj‘s (0P).

44, = @, if a is countable; otherwise, its unique member (up to isomorphism) is (w1, <, €,).

Let 2 := {wPB | B € [2,a']}. We claim that 4. ,» equals 27 ¢, up to isomorphism. Indeed, that every member of
$-.» is isomorphic to a member of £27¢;, follows directly from (3) and (4). Conversely, let 8 € [2, «’]. Then Mg := («, <,

{oPBYNa’, €,-1) € Expfl‘S () (recall that we assume [; > 0and § > 1). Furthermore, [0, w”f) isa N(,Mﬁ -class which belongs
to Sfa’fp and Mg restricted to this class is (0P8, <, €,).

The subclass family of § is ® = {8, 8wp, 8>wps S, ).

It is easy to see that 03 is computable from ¢ (as was 6). We show that all other assumptions of the Sufficiency-of-Safety
Lemma hold.

First, by Proposition 1.3, {(8, <) | B € (Jw) \ 1} has the uniformization property and uniformizers are computable over
this class. By (1), this means that IndExpf]‘;(a) 5o TyPart™ g has the selection property and selectors are computable over it.

By the same proposition, (w?, <) and ([¢/, @), <) (if @’ # «) have the uniformization property and uniformizers
are computable in them. Thus, the same holds for selection w.r.t. Expfl‘S (wP) which is, up to isomorphism, $,» and w.r.t.

Exp,f‘S ([, a')) = Bair- Also, 8, is either empty or {(w1, <, €;,)}. The selection problem over it is therefore solvable (in the
latter case, by Proposition 1.6). It remains to be seen that (§-Sol) holds for §- ,».

Lett € Hp and t* asin Lemma 4.4. By the lemma, 7 is selectable over 4. .» iff 7* is selectable over £2. But, t* is selectable
over £2 iff it selectable in (w®, <).Indeed, = is immediate since, as just shown, w® € §2.The < direction is Proposition 3.20
and uses the fact that every member of £2 is a multiple of w”. By Proposition 1.6, we may decide whether t* is selectable in
(w®, <). When this is the case, we use Proposition 3.20 again to compute a selector for t* over §2, which we then translate
into a selector for t over 4. ,». This shows that (§-sol) holds for $- ,».

We may therefore compute a formula i as in Sufficiency-of-Safety Lemma, namely, such that if §¥ is safe for ¢, then v
selects ¢ over Exp;™’ (a).

Next, we prove that § satisfies the assumptions of the Necessity-of-Safety Lemma.

Fixk € wand M € Expfl‘S (o) where ¢ is satisfied. Define &' := (Mg | S € Iy/9) as follows. Let q := p(max{n, k} + 2I).

Fix S € I g. Write as := otp(S). If S ¢ spr, take Mg := Ms; if S € F.op, let Mg be isomorphic to (wlas, <, €,). We
assume that the Mg have been chosen so that for distinct S € I,,/¢, the domains of the Mg are disjoint. We claim:

oM = ZM/H CHN= Expf]‘s (o) up to isomorphism. To show this, denote by « the order-type of M. Then, on the one
hand, for every S € I, a5 > as, so otp(M') > «. On the other hand, because &’ is a multiple of »®, if as < o/, then
also; < o', and ifas = o/, then g = w? - &’ = . Finally, «s = &’ can only hold for the top S in 4,9 \ {[e’, &)} (if
one exists). All in all, this implies that ZSEIM/g\{[a,a’) a; = o' Ifa’ = «, this means otp(M') = «a. Oth_erwise, we must
also note the segment .M,/ o) has not been changed, so again otp(M’) = «. Thus, there exists a (unique) P’ € h 2 («) such
that M’ = («, <, P’). Fix i < I;. Since in our construction of .M’, only segments whose intersection with P; is empty were
changed, it is easy to show otp(P;) = otp(P)). (Briefly, foreachS e Sfp,there exists a (unique) isomorphismgs : M;s — M.
Ifweletf : M — (a, <, P") be the unique isomorphism, then (f o Usajjp gs)lp; is an isomorphism (P;, <) — (P{, <)).In
particular, P € £<%(a),so M' = (a, <, P') € Expﬁ‘g(a).

Fix S € I,/6. We claim further:

o Mc ="th M;s. Indeed, if S ¢ S‘pr, there is nothing to show. Assume S € wap. Then Mg = (0%as, <, €,), so for every
o € Hyyiy 1y, Mg = o iff (w%as, <) = o*. Since both a5 and w9« are countable multiples of @, we have (wlas, <) = o*
iff (as, <) = o™ iff (as, <, €,) = 0.But, (as, <, €,) = M;s and our claim follows.

13 A better bound can easily be obtained.
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elf § € ®Dand S € §}f, then M; is (n + I|k)-selection-universal in /3 This is trivially true when S € g%, U §2%, since
each of 8., and $,» has the selection property. When S € Sw], Mis = (w1, <, €,) is the unique member of §,, up to
isomorphism, hence selection universal in it. Assume M;s € $.,».Let @ € Form,; and let p € Formy; select @ in M.
Then M = uni-ax(p, @), which means («g, <) = uni-ax(p*, @*). But, qd(uni-ax(p*, ®*)) < max{n, k} + 21. Since oy is
a multiple of w9, it follows (w®, <) = uni-ax(p*, @*). By Proposition 3.20, @* has a selector over £2. By Lemma 4.4, this
means @ has a selector over £27¢;, which is 4. ,» up to isomorphism. We see then that &’ is a sequence as required in the
Necessity-of-Sufficiency Lemma.

Finally, by definability below w®, #£<%(«) is definable in («, <): P € « belongs to this class iff Odef holds in («, <)
restricted to P. Let uni-ax=°(y, @) denote the conjunction of the sentences appearing in the definition of uniformization,
but where the domain variables X are restricted to range over £ <%(«). Then v is a §-uniformizer for ¢ in («, <) iff
(a, <) E uni-ax=*(y, ). Since the monadic theory of («, <) is decidable, we can decide whether this is the case, i.e.
whether ¢ has a §-uniformizer in (¢, <). Hurray! 0O

5. The selection problem over definable classes of countable ordinals

Given a sentence  and a formula (p()_(), we would like to know whether ¢ has a selector over the class {(¢, <) | @ €
w1\ 1A (¢, <) = 7} of countable ordinals satisfying 7. In this section, we show that this can be decided and a selector
- if one exists - can be computed. Thus, we may decide whether ¢ has a selector over the class of all countable ordinals,
of countable limit ordinals, etc. In fact, we prove something slightly more general. We show that given a formula 7 (x) and
8 < wi, we can decide whether ¢ has a selector over {(«, <) | @« € § \ 1 A (8, <) = 7 («)}. This is indeed more general.
For example, w® is not a definable ordinal, but {®®“} is definable in (w® + ¢, <) forany ¢ < w®.

We begin with a standard fact about n-types.

Lemma 5.1. Letn, r € w, M a structure. Then type™ (M) determines type" (M (@, ..., T )).
——

T times

Lemma 5.2. Let C be a class of structures and <p()_(, Y), Yo X,Y),..., wm_1()_(, Y) formulas. Suppose that for each M € G,
there exists i < m such that v; uniformizes ¢ in M. Then ¢ has a uniformizer  over C. In fact, Y can be computed from

(28 w07 ey wm—l-
Proof. Let y := A;_,, ((uni-ax(, ) A \;_; — uni-ax(y;, ¢)) — ¥i). O

Proposition 5.3. There is an algorithm that solves the selection problem over the class {(«, <) | @ € §\ 1 A (6, <) = 7 (a)}
for any formula 7 (x) and § < w;.

Proof. Let 77 (x) and § be given. Denote by € the class appearing in the proposition. Fix a formula ¢ (Y). Note that if § < w®,
then Proposition 1.3 solves our problem. We may assume then § > »®. In fact, we begin by assuming § € {®, w1}.
Setl:=1Ig(Y) and let
O'(xY) =X A /\(yi C [0, x)) A “@(Y) holds restricted to [0, x)".

i<l
We claim ¢ has a selector over € iff ¢’ has a uniformizer in (8, <).

If Y (Y) selects ¢(Y) over G, let ' (x, Y) be identical to ¢’, except that where ¢ appears in the latter, v appears in the
former. Then v’ uniformizes ¢’ in (8, <). Conversely, assume some v¥’(x, Y) uniformizes ¢’ in (8, <). Let ¢’ := {a € C |
¢, <) E EIY(p (o,Y)).Fixa € C'. Since ¥’ is a uniformizer, D(y'(«, Y), 6) has a unique member. Denote it by P,. Let
k= qd(y"), t. := typeX(«, <, @, P,), and t* := typeX(8, <, {0}, ¢)) where ¢, := (@, ..., @).Since § € {0, w1},

[ times
(87 <7 {a}v I_)Dt) E (av <s Q’ ISD() + (87 <7 {O}’ El)'

Since also (8, <, {a}, Py) = ¥/, we have T, + 1" =y . Now,lety :=\/ o typeX(«, <, Py). We claim ' selects @ over C.
First, since v’ is a uniformizer for ¢, (8, <) |= ¢'(a, P,) for each @ € €’. Hence, by definition of ¢/, (&, <) = ¢(Py), i.e.

type(a, <,Py) = ¢ (we assume k > qd(¢)). We see then that v is the disjunction of formulas which imply ¢. Therefore,

V¥ E ¢.Ifa € €/, then P, clearly satisfies ¢ in (&, <). But, if ¢ € €, then any P satisfying ¢ in («, <) is witness that in fact

o € €. Thus, clause (3) of the definition of uniformization (1.1) holds. Finally, let some P satisfy v in («, <). Then there is

,B € €' such that type*(a, <, P) = typeX(B, <, Ps). By Lemma 5.1, this means type*(«, <, @, P) = type¥(8, <, @, Pg) =
Thus

type*(8, <, {a}, P) = typeX(a, <, @, P) + type(, <, {0}, &) = 75 + T* = ¥

Since ¥’ is a uniformizer, we must have P = P,,.
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We have thus reduced the selection problem over € to the special case of the bounded uniformization problem in (§, <)
where domain variables range over elements (equivalently, singleton subsets) of the domain. By Proposition 1.8, solvability
of the former follows. _

Now, to handle § other than w® and w1, note that the monadic theory of (6, <) determines whether a formula v (Y)
selects ¢ over €. Indeed, this is the case iff uni-ax(yr, ¢) holds restricted to [0, «) whenever @ € C. By Theorem 2.5, we
may therefore assume § = w® + ¢ for some ¢ € »® \ 1. By the Segment Lemma (3.17), € N w® is definable in (v®, <).
Thus, by the case § = w®, the selection problem over ¢ N w® is solvable. By Proposition 1.6, so is the selection problem
over C N {(w®, <)}. To show the solvability of the selection problem over € N (w®, §), proceed as follows. Set n := qd(¢).
Let Selg’j be the set of (n, [)-Hintikka formulas that are both satisfiable and selectable in (w®, <). By Proposition 1.6, we can

compute Selg’j. Let Tygy := {t' € Hpy | A7 € Selfff .T + 1’ |= ¢}. By the Addition and Hintikka Lemmas, T is computable.
LetC :={ax e CN(w?8) | (o, <) &= EI}_(ga}. We claim ¢ has a selector over € N (w®, §) iff

(Sel) for every o € €, \/ Tyq is satisfied in (¢ — 0, <).

Furthermore, when this is the case, we show how to construct a selector for ¢.

Suppose first ¥ selects ¢ over € N (w”, ). Fix @ € €’ and let P be the unique member of D(Y, «). If we let
7 = type"((@, <, P)j0.o»y) and v’ := type"((«, <, P)|(wv.a)), then T + v’ = ¢ and 7’ is satisfied in (¢ — w®, <). By
the Segment Lemma, P N w® is definable in (w®, <). But, P N »® satisfies 7 in (w®, <), s0 T € Sel;’j. Assume conversely

that (Sel) holds. Define a selector ¥ for ¢ over € N (w®, §) as follows. For each 7 € Selﬁ’j, compute a ¥, which selects it in
(w®, <). For each T € Ty, compute a ¥, which selects it over the class of all ordinals < ¢ (by Proposition 1.3, this can be
done). Note that @® is definable in every @ € € N (w®, §) as the least B < « such that « — 8 < ¢. Fix an ordering < on

561;”,610 X Tyair- Let ¥/ (Y) say:

“For the <-minimal (z, 7') € Selff,” X Tqi such that 3Y ¢’ holds:
Y, holds restricted to [0, ®*) and 'I/t’, holds restricted to [w?, «).”

Set ¢ := 3Y¢ A . The reader will show that 1 is a selector for ¢ over C.

Notice also that condition (Sel) is expressible by a sentence in the monadic theory of (§, <) and hence, decidable. Thus,
the selection problem over C N (w®, §) is solvable.

By Lemma 5.2, solvability of the selection problem over € N w®, C N {(w®, <)} and € N (w®, §) implies solvability of this
problem over €. Our proof is therefore complete. O

6. The selection property for subclasses of »*

We begin this section by presenting a simple combinatorial criterion for a class ¢ C @® to have the selection property.
We then deduce the existence of finite expansions of (w®, <) having this property.

6.1. Criterion for a subclass of w® to have the selection property

The next lemma and proposition are, respectively, Corollaries 6.1 and 3.9 of [9].
Lemma6.1. Letn, | € wand ¢ € Fovm,; which is satisfied in (w®, <). Then we can compute T, Tyf € Hp such that:

(a) T is satisfiable and selectable in (w®, <),

(b) Ty is satisfiable in (w®, <), and

(€) Tsel + Tsuf E .

Proposition 6.2. The formula saying “Y is an unbounded w-sequence” has no selector in (w®, <).

Recall that for ordinals u > 0 and «, the p-part of « is the maximal multiple of x smaller than or equal to « (Definition 4.5).

Proposition 6.3. A class ¢ C w® has the selection property iff

(Sel)  Vp € wAN(p) € wV¥a € C(the wP-part of a is not a multiple of " ®).
Ifin addition, N (p) is computable from p, then selectors are computable over C.

Proof. For each ordinal o and k € w, we denote by «; the w*-part of .

Suppose first condition (Sel) holds. Fix n, | € w and ¢ € Formy . Letp := p(n + 1) + 1. Pick N := N(p) as in (Sel). Then
N > p." By Proposition 1.3, € N @" := {o € € | @ < w"} has the selection property and selectors are computable over it.
Therefore, by Lemma 5.2, it suffices that we show € \ o" := {a € € | @ > "} has the selection property. Hence, we may
assume that for every o € G, o > w". We may further assume that ¢ is satisfied in every « € €. We claim that for every
a € G, there are 7, T’ € Hy such that:

14 Except perhaps when € C wP. But Proposition 1.3 takes care of this trivial case.
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1. 7 is satisfiable and selectable in (w®, <),
2. 7’ is satisfiable in (@ — ay, <),

3t+1t Ee

Indeed, fix @ € €. Pick some P € D(¢p, «) and let 7, 1= type"((o, <, IB)HO,%)). Since «p is a multiple of P, it is (n + I)-
equivalent to w®, so 1, is satisfied in @®. Pick 7, To as in Lemma 6.1, setting ¢ := 7t,. Let T = 74 Next, write
Tl = type"((a, <, P)) [ep.0) and let T = Tgf + Tl (f @ = «p, drop ). Note that o, — ay is also a non-0 multi-

ple of w” (by choice of N, we cannot have ay = «,). Therefore, 7y is satisfied in «, — ay, so that ¢’ is indeed satisfied in
o —ay.Also, T + T’ = Te + T + Trail = Tp + Trail = @, as desired.

Lett € Hp,.If T is selectable in (w®, <), Proposition 3.20 lets us compute a selector ¥, for t over the class of all countable
multiples of «P. In particular, ¥ selects 7 in ay for every a € €. Using Proposition 1.3, we can also compute a selector ¥,
for T over the class of ordinals below w". Fix an ordering < of H,; x Hy (a finite set). A selector for ¢ over € is the w(?)
which says:

“For the <-least pair 7, t’ € H,; which satisfies (1)-(3),
¥, holds restricted to [0, ay), while ¥ holds restricted to [ay, ).”

A quick review of the proof would convince the reader of the computability of ¢ from ¢ and N, which justifies the “If in
addition ...” clause.

Now, assume (Sel) fails. Then we can pick p € o such that {«, | « € C} is fat. Let ¢(Y) say (in every & € C): “Y
is an unbounded w-sequence in «;,". Fix any formula v (Y). Then there is « € € which is a multiple of o™ where N :=
p(qd(uni-ax(yr, ¢))). If ¥ selected ¢ in «, then by the p-Lemma (3.19), it would also select ¢ in (w®, <). But, by Proposi-
tion 6.2, this cannot be the case. Thus, v is not a selector for ¢ over €. 0O

Example. Both of the following classes have the selection property and selectors are computable over them (in both let
N(p) :=p+ 1foreveryp € w):

(1) The unbounded w-sequence {1,w + 1,0’ + 0w+ 1, 0> + ? + 0+ 1,...}.

(2) The € C w® defined as follows. Let @ < @® and writea = Y, @"'a,_; withn, @; € w and a, # 0. Thena € €
iff for every i < n, a; # 0. Note that € has order-type w®.

i<n

6.2. Finite expansion of (w®, <) having the selection property

From the last proposition, we now deduce Proposition 1.10. To do so, note first that Proposition 2.14 allows us also to
define multiplication of an Hintikka formula by any linear order.

Definition 6.4. Letn, | € w, t; € Hy, and { a linear order. The {-multiple of 7,1, denoted 7; ® J{, is an element of H, ; such
that whenever M is an [-structure with type™(M) = 14,

type"(M ® 1) =11 ® 4.
And the Composition Theorem yields the following lemma from [10]:
Lemma 6.5. For every linear order {, An, | € w.Aty € Hp .71 ® 4 is recursive in MTh({).
The following clearly implies Proposition 1.10.
Corollary 6.6. LetP* :={l,0+ 1,0’ + 0+ 1,0> + @* + w + 1, .. .}. Then:

(a) (0, <, P*) has the selection property;
(b) for any formula ¢ (X, Y),a selector for ¢ in (w®, <, P*) is computable; and
(c) the monadic theory of (w®, <, P*) is decidable.

Proof. We prove (a) in somewhat greater generality. Pick any unbounded P C w® such that G = {[a,a') | ¢ <
o’ are successive elements of P U {0}} has the selection property and otp(P) < w® (both assumptions hold for P*; the first
by Proposition 6.3). We claim that Mp := (w®, <, P) has the selection property. Let 8 be a splitting of Mp whose segments
are the members of Cp. Then {4, ¢ is isomorphic to an ordinal < w®. In particular, it has the uniformization property. Also,
members of Smd /s have the form (8, <, {0}) where 8 € Cp. Since Cp has the selection property and {0} is definable in
(B, <), Smdy ;)¢ has the selection property. By Corollary 3.13 (to the Inheritance Lemma), so does Mp.

(b) Proposition 1.3 tells us that in (a) selectors are computable over Indy s~ TyPart. On the other hand, when P = P*,
we can take N(p) := p + 1 (for every p € w) in Proposition 6.3. In particular, N(p) is computable from p, which means that
selectors are computable over Smd . /- By the Inheritance Lemma again, this also holds in Mpx.

(c) Fixn € w. We show how to compute type" (Mp«). Use the p-Lemma to compute p € w such that any two non-0
countable multiples of w? are (n + 1)-equivalent. Let «g be the least member of P* greater than w?. Then type" (Mpx) =

15 Recall that this presentation is unique.
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type" (Mp+([0,a)) + tYPE" (Mp+(ay o). The left summand here is computable because P* N oy is finite and hence, by
Lemma 4.6, definable in (g, <), and because MTh(ap, <) is decidable. To handle type" (Mp+ (o, o)), fix @ € P* \ g and let
o’ be its successor in P*. Then, by definition of P*,

M [0’y = Mb*ifa,@)y) T Mpriiapan = (@) —a, <, {0) + (£, <, 2),

where (@), is the wP-part of &’ and ¢ := 0"~ + @?™2 + - - + w + 1. Since (¢'), — « is a multiple of w?, ((&),, <) ="*!
(P, <). From this it easily follows that ((&'), — o, <, {0}) =" («P, <, {0}). Thus, type" (Mp+ 4y ) = (type”(a)p, <,
{0}) + type" (¢, <, @)) ® w. By Theorem 2.6, both n-types inside the brackets here are computable, hence so is their sum.
Since MTh(w, <) is decidable, Lemma 6.5 computes for us type" (Mp+ (4, o)), Proving (c). O

Appendix. Uniformization below »®

Here we apply the Inheritance Lemma to prove Proposition 1.3.

The following proposition was stated in [5] and attributed to [1]. However, [ 1] deals with the Church synthesis problem,
and not with the uniformization problem (for a clarification of the difference between the two, see e.g. [9]). A detailed proof
was eventually supplied in [7]. It uses Ramsey theory (and the composition method) to reduce uniformization in (w, <) to
uniformization over finite ordinals.

Proposition A.1. (w, <) has the uniformization property and the uniformization problem in (w, <) is computable.
Next, we need a lemma from the ‘folklore’.
Lemma A.2. {(n, <) | n € w\ 1} has the uniformization property and the uniformization problem over this class is computable.

Proof. Use the fact that the lexicographical ordering of tuples (of a given length I, ) of subsets of n is definable and a well-
order. O

The following is Proposition 1.3.

Proposition A.3. Fork € w \ 1, {(«, <) | € (0, w*]} has the uniformization property and uniformization is computable over
this class.

Proof. We proceed by induction on k € o \ 1. Let k = 1. Since both the class of finite ordinals and {(w, <)} have
the uniformization property and uniformizers are computable over both (by A.1 and A.2), Lemma 5.2 yields the same for
{(, <) | € (0, w]}.

Let k € w \ 1 and assume our claim holds for this k. To prove the lemma, we fix an I; € ® and show that C¢ :=

Expf“’m ({(a, <) | @ € (0, w**1]}) has the selection property and selection is computable over this class.

Write a formula 6 (x, y) which says: “There are no multiples of w* strictly between x and y”.'® Then 6 is a splitting of €
and for M € € with domain «,

Ly = {[«* - i, min{fo* - i+ 1), a}) |i€cw Aok i< al.

In particular, £ is isomorphic to an ordinal <  (in fact, to a finite ordinal unless ¢ = o*t1). By the case k = 1,
Inde/s~ TyPart has the selection property and selectors are computable over it. Also, the domain of every segment has
order-type < X (in fact, all have order-type w* save perhaps for the ‘top’ segment, if one exists). In other words,

smdess S Expi ({(B, <) | B € (0. ).

By the inductive assumption, the latter has the selection property and selection is computable over it. The Inheritance Lemma
now yields the same for G, to our heart’s delight. O
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