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ABSTRACT. Let Q% be the semigroup of all mappings of a countably infinite set
Q. If U and V are subsemigroups of Qf?, then we write U ~ V if there exists a
finite subset F' of Qf? such that the subsemigroup generated by U and F equals
that generated by V and F. The relative rank of U in Q is the least cardinality
of a subset A of Qf such that the union of U and A generates Q. In this paper
we study the notions of relative rank and the equivalence ~ for semigroups of
endomorphisms of binary relations on 2.

The semigroups of endomorphisms of preorders, bipartite graphs, and toler-
ances on 2 are shown to lie in two equivalence classes under ~. Moreover such
semigroups have relative rank 0, 1, 2, or d in Qf? where 0 is the minimum cardinal-
ity of a dominating family for N N we give examples of preorders, bipartite graphs,
and tolerances on €2 where the relative ranks of their endomorphism semigroups
inQ%are0,1,2, and 2.

We show that the endomorphism semigroups of graphs, in general, fall into at
least four classes under ~ and that there exist graphs where the relative rank of
the endomorphism semigroup is 280.

1. INTRODUCTION

1.1. Background and Preliminaries. Bergman and Shelah [2] introduced the fol-
lowing preorder (i.e. reflexive and transitive binary relation) on the subsets of the
symmetric group Sym(2) on a countably infinite set Q2. If G and H are subsets of
Sym(£2), then G < H if there exists a finite subset F' of Sym(2) such that G is con-
tained in the subgroup generated by HUF. Galvin [6] proved that every countable
set of permutations on €2 is contained in a 2-generated subgroup of Sym((2). Hence
if there exists a countable subset F' such that G is contained in the subgroup gen-
erated by H U F, then G < H. The preorder < gives rise to an equivalence relation
~ on the subsets of Sym({2) defined by G ~ H whenever G < H and H < G. In
[2] it was shown that the subgroups of Sym((?) that are closed in the topology of
pointwise convergence fall into four classes with respect to ~. Furthermore, the
partial order on these four equivalence classes induced by < is a total order.

The situation for the semigroup QO of all mappings from (2 to Q (the semigroup
theoretic analogue of Sym((2)) is somewhat different. Of course, it is straightfor-
ward to give a definition of < for Q%% if U,V are subsets of Qf, then U < V if
there exists a finite subset F' of Q? such that U is contained in the subsemigroup
generated by V' U F. Throughout the remainder of the paper we will denote the
subsemigroup generated by a subset U of Q! by ( U ). Analogous to the theorem
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of Galvin mentioned above, a classical theorem of Sierpiniski [12] states that every
countable set of mappings on (2 is contained in a 2-generated subsemigroup of
Q. Hence if U,V C Q9 such that U C (V, F') for some countable F' C Q¢ , then
UxV.

Mesyan [11] proved an analogue of Bergman and Shelah’s theorem for a re-
stricted collection of closed (again in the topology of pointwise convergence) sub-
semigroups of Q2. Namely for subsemigroups U with the following properties
(throughout this article we will write functions on the right of their arguments
and compose them from left to right):

o if ¥ C Qisfinite,thenU ~{ feU : of =cforalloc € £ };and
o the set of functions in U that are injective on a cofinite subset of {2 are dense
inU.
Letting Q = {1, a0,...} and N = {1,2,...}, Mesyan showed that such sub-
semigroups must be equivalent under ~ to one of the following semigroups:

(i) the trivial semigroup {1a};
(ii) S1,a={f€Q?: af €{ar,a}forallacQ};
(iii) So={f€Q? : {aan-1f, a2nf} C {a2n_1,00,} foralln € N};
(iv) S« ={feQ® : ayf €{or,02,...,an} foralln e N };
(v) the full transformation semigroup Q.
It was also shown thatif § = { f € Q9 : |Qf| < ¥, }, then

{1g} <§ < S1.0 < So < S< < N

where < denotes < but not ~. Mesyan also proved that < contains an infinite
chain and at least two incomparable elements. However, there is no complete
characterisation of the closed subsemigroups of Qf with respect to <. It is not
even known how many equivalence classes there are on subsets of Q! under ~.

In this paper rather than considering all closed subsemigroups of Q2 we will
consider subsemigroups arising as the endomorphism semigroups of preorders,
graphs and tolerances (reflexive and symmetric binary relations). In the main the-
orems of this paper, we will prove that if S is the endomorphism semigroup of
a preorder, bipartite graph, or tolerance on (2, then either S ~ Q% or S ~ S<.
Whether S ~ Q% or S ~ S< depends on certain simple structural properties of the
underlying relation; further details can be found in Section 1.3.

The notion of ~ among subsets of Q! is related to that of relative rank. The
relative rank of a subset U of Q! is defined to be the least cardinality of a set A such
that (U, A) = Q% and is denoted by rank(Q2® : U). Relative ranks of subsets of )’
have been previously studied, for example, see [4], [5], or [9].

Using Sierpinski’s Theorem [12] it is straightforward to prove that rank(Q : U)
is 0, 1,2 or uncountable for any U C Q. Moreover, it follows immediately from
the definitions that rank(Q : U) = 0,1,2 if and only if U ~ Q. On the other
hand, if U,V < Q% with U < V and rank(Q® : U) > X, then rank(Q? : U) >
rank(Q : V).

Assuming the Continuum Hypothesis holds the relative rank of any U in Q%
is 0, 1,2, or 2%, However, if the Continuum Hypothesis is not assumed, then it is
natural to ask what values rank(Q% : U) can have when it is uncountable.
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We will prove that if U and V are semigroups of endomorphisms of a pre-
order, bipartite graph, or tolerance, where rank (2 : U),rank(Q : V) > X, then
rank(Q : U) = rank(Q% : V). We require the following well-known notion to
define the cardinal equalling any such relative ranks.

If Q) is well-ordered by <, then a function f € Q is said to dominate g € Q if
af > agforall @ € Q. The study of the notion of dominance and related ideas gave
rise to the following cardinal number, introduced by van Douwen. A dominating
family for Q is a subset F of Q2 such that for all f € QO there exists g € F where g
dominates f. Of course, whether a subset is a dominating family for Q2 depends
on the well-ordering of (), but the least cardinality of a dominating family does
not depend on the well-ordering. Thus we can define (without ambiguity) the
cardinal ? to be the least cardinality of a dominating family for Q. The following
relations are not hard to obtain: X; < 0 < 2%0. If the Continuum Hypothesis holds,
then 0 = 2%, However, without the Continuum Hypothesis, it is consistent with
the usual axioms of set theory (ZFC) thatd = Ry < 2% =Ry or Ry <09 = 2% =Ry,
see [1].

1.2. Definitions and notation. As usual a binary relation R on a set ) is just a
subset of {2 x Q. Let {2 and A be sets, and R and S be binary relations on 2 and A,
respectively. Then a homomorphism from (€, R) to (A, S) is a function f : @ — A
such that (af,5f) € S for all (o,8) € R. A homomorphism is an isomorphism
if it is bijective and its inverse is also a homomorphism. An endomorphism is a
homomorphism from (€2, R) to (2, R). An automorphism is an isomorphism from
(Q, R) to (©, R). We denote the semigroup of endomorphisms on (2, R) under
composition of mappings by End(€2, R). Let R C Q x Q and let A C 2. We define
the subrelation of R induced by A tobe RN A x A.

A walk from a € Q to € Qin (2, R) is a sequence of elements of (2

a:’707’yl7’725"'77n:6

such that (v;,7;41) € R or (vi41,7:) € R for all i. We will say that such a walk
has length n. Two points are connected if there exists a walk from one to the other.
Being connected is an equivalence relation on € and the equivalence classes are
called the components of (2, R). We will say that (2, R) is connected if it only has
one component. If R is a binary relation on €, then a path in (2, R) is a walk in
which all points are distinct.

The degree of an element a €  is the size of theset { € Q@ : (a,8) €
Ror (8,a) € R}. We say that (2, R) is locally finite if all the elements of Q2 have
finite degree.

A preorder is a reflexive and transitive binary relation. A partial order is a pre-
order that is also anti-symmetric. A set with a partial order is called a partially
ordered set or poset. A graph G = (2, E) is a set () together with a binary relation £
that is symmetric and irreflexive. If G is a graph, then for the sake of consistency
with the literature, we will call the elements of Q) the vertices of G, the elements
of E the edges of G, and a subrelation induced by a set will be referred to as the
subgraph induced by that set. Two vertices a, 8 € 2 are adjacent if (o, 5) € E. A
graph G is bipartite if its vertices can be partitioned into two sets where adjacent
vertices lie in distinct sets. A binary relation is called a tolerance if it is reflexive
and symmetric.
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In what follows we will always, unless stated otherwise, assume that (2 is the
countably infinite set {a, aq, ...} and we will always assume that N = {1,2,...}.

1.3. Overview. Let R be a preorder, bipartite graph, or tolerance. Then the main
theorems of this paper can be summarized as follows:
e if R has finitely many components and is locally finite, then End(€2, R) ~
S< and rank(Q% : End(, R)) = 0;
e if Rhas infinitely many components or is not locally finite, then End(Q2, R) ~
Q% and rank(Q% : End(Q, R)) € {0,1,2};

see Theorems 2.3,3.1,4.4,4.5, and 5.1.

The picture is more complicated for arbitrary non-bipartite graphs. In particu-
lar, there exist examples of graphs G where:

¢ ( has infinitely many components, End(G) ~ {1q} or End(G) ~ S5, and
rank(Q% : End(G)) = 2%0;
e G has infinitely many components, End(G) ~ S<, and rank(Q : End(G)) =

0;

e G is connected and locally finite, End(G) ~ {1}, and rank(Q% : End(G)) =
2o,

e G is connected and not locally finite, End(G) ~ S<, and rank(Q : End(G)) =
0;

see Examples 6.1, 6.2, and 6.3.
The following weaker version of the theorems regarding bipartite graphs hold
for an arbitrary graph G:

e if G has finitely many components and is locally finite, then End(G) < S<;
o if all the components of G are finite, then one of the following holds:
End(G) =~ {1a}, S1.o < End(G) < S<, or End(G) ~ Q%;

see Theorems 2.4 and 4.3.

2. UNCOUNTABLE RANKS AND BINARY RELATIONS

The following theorem connects the notions of relative rank, domination, and
the preorder <. We require the following notion for a subset F' of Q. We say that
F' is an almost disjoint family if for all f,g € F there are only finitely many o € Q
such that aof = ag. It is reasonably straightforward to show that there exists an
almost disjoint family F in 02 with |F| = 2Ro: see, for example, [10, Theorem 1.3].

Theorem 2.1. Let U be a subset of 2. If U ~ S<, then rank(Q® : U) = 0.
On the other hand, if U < Sa, then rank(Q® : U) = 2%0,

Proof. For a proof of the fact that rank(Q : S<) = 0 see [5, Lemma 3.5].

We will show that rank(Q% : S;) = 2%. Let A be a subset of 2 such that
(S5, A) = QO Seeking a contradiction assume that |A| < 2%0. Let (a1, az, . . ., @)
be an m-tuple of elements of A. Then define

Blay,a,...;am) = 1 5001510282 . .. mSm * 50,51,...,5m € S2 }.
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The semigroup Q2 can be given as the union of the sets B(ay,as,...,a,,) Over all finite
tuples of elements of A.

Let F C Q be a family of almost disjoint functions of size 2. If B(4, 4,.....q,,)
F were finite for all (ay, as, . .., a;,), then |F| < min{R, |A|}. But |F| = 2% and so
there exists a tuple (b, b2, ..., b,) of elements from A such that B, 4, ..,y N F'is
infinite.

Define

C, = {Oth : he B(bl,bg,...,bn) }

Then |C,| < 2"*! for all @ € Q by the definition of Ss. Let N = 2"*! and

f1, f2, ..., fn41 be distinct elements of B, 4,,....5,) N F. Then, since F is a fam-
ily of almost disjoint functions, there exists 5 € 2 such that 5f1,5f2,...,8fn+1
are distinct. But |C3| < N, a contradiction. O

It is straightforward to classify those binary relations whose endomorphism
semigroups equal Q. The proof follows immediately from the definitions and is
omitted.

Lemma 2.2. Let 2 be an infinite set and let R be a binary relation on Q. Then the relative
rank of End(Q, R) in Q% is 0 ifand only if Ris one of §, QxQ, or Ag = {(a, @) : a € Q}.

In light of Lemma 2.2 we will assume throughout that R is a non-empty proper
subset of 2 x Qnotequalto Ag ={ (,a) : € Q}.

Theorem 2.3. Let R be a reflexive binary relation on ) such that (2, R) has infinitely
many components. Then rank(Q% : End(2, R)) < 1and so End(€2, R) ~ Q.

Proof. Recall that Q = {aq, ag,...}. Let the components of (2, R) be Ly, Lo, ... and
lety; € L; be fixed for all i. Define g € QO by a;g = ;.

Let f € QO be arbitrary. Let f € 0? map all points in L; to a; f fori = 1,2, .. ..
Since R is reflexive, ]?6 End(Q, R). Then for all o; € 2 we have aigf: %-f: a; f.
Thus f € (End(f2, R), g ). Since f was chosen arbitrarily we conclude that QO =
(End(2, R), g ) and hence rank(Q : End(2, R)) < 1. O

Theorem 2.4. Let R be a binary relation on 2 such that (Q, R) has finitely many compo-
nents and is locally finite. Then End(Q, R) < S< and hence rank(Q? : End(Q, R)) > 0.

We require the following result to prove Theorem 2.4. Letd: @ x @ — Rbea
metric on . A function f € Q is Lipschitz if there exists a constant C' € N such
that d(af, 8f) < Cd(a, B) for all o, 8 € Q. We may also say that f is Lipschitz with
constant C. Denote the semigroup of all Lipschitz functions on 2 by £q.

Proposition 2.5. [5, Theorem 3.1] Let 2 be a countably infinite set and let d be a metric
on ) that is unbounded on every infinite subset of Q. Then £q < S< and rank(Q% :
EQ) > 0.

Proof of Theorem 2.4. Let Ly, Lo,..., L, be the components of R. To show that
End(Q, R) < S< we define a metric on © and prove that End(Q, R) C £q.

Letdy, : L; x L, — NU{0} be defined so that d;, («, ) is the minimal length of
a walk from « to 3. It is straightforward to verify that d;, is a metric on L; for all
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i. We will now extend the metrics dj,, to a metric d on the entire set Q. Lety; € L;
be fixed. Then define d by

dr, (a, 6) ifa,B€L;

d —
(v, B) {dLi(a,fyi) +dr;(v;,6)+1 ifae L;and B € Lj wherei # j.

It can easily be seen that d is indeed a metric on {2 and that it is unbounded above
on every infinite subset.

We will now show that all functions in End(€2, R) are Lipschitz with respect to
d. Let f € End(f, R) be arbitrary and let M = max{ d(vi,v,;f) : 1 <4,j <n}
If o and 3 are in the same component L;, then af, 5f € L; for some j and since
f € End(£, R) we have that

dlaf,Bf) =dr,(af,Bf) < dr, (o, B) = d(a, B).
Next, if o € L;, 8 € L withi # j,and of € Ly, 5f € L;, then

dlaf,Bf) < d(af,vif) +d(vif,ve) + d(ve, v) + d(vis v f) + d(v, £, Bf)
<dp,(af,vif)+M+1+M+dr, (v f,Bf)
<dp () +M+1+M+dp, (v, B)
=d(a,B) +2M
<d(a,B) + 2Md(a, B) = (2M + 1)d(a, B).

Thus f is Lipschitz with constant 2A/ + 1. Therefore it follows from Theorem 2.5
that End(€2, R) < S<. O

3. PREORDERS

In this section we completely classify the endomorphisms of preorders C on {2
with respect to <. Since preorders are reflexive, the case where (€2, C) has infinitely
many components follows directly from Theorem 2.3. That is, if C is a preorder
on © such that (2, C) has infinitely many components, then End ({2, C) ~ Q and
rank(Q? : End(Q,C)) < 1.

The case where C is a partial order was considered in [9]. It was shown that the
endomorphisms of a poset (€2, C) have finite relative rank in Q¢ precisely when
(Q,C) is locally finite or (2, C) has infinitely many components. Here we will
show that this classification extends to preorders and show that the only infinite
value that can arise for rank( : End(Q,C)) is 0.

Theorem 3.1. Let C be a preorder on Q such that (Q, C) has finitely many components.

() If (2, C) is locally finite, then End(Q, C) ~ S< and rank(Q% : End(Q,C)) = 0.
(ii) If (2, C) is not locally finite, then End(Q, C) ~ Q and rank(Q? : End(Q,C))
<2

It is natural to ask if the bound given in Theorem 3.1(ii) is the best possible. The
answer is yes: two examples of connected posets with rank(Q : End(Q,C)) = 1
and 2, respectively, were given in [9].

To prove Theorem 3.1 we require the following four lemmas.



GENERATING SEMIGROUPS USING ENDOMORPHISMS 7

Lemma 3.2. Let R be a binary relation on Q, let g € End(Q, R) be any endomorphism
with infinite image, let R’ be the subrelation of R induced by im(g), and let S be any rela-
tion on Q such that (im(g), R') is isomorphic to (2, S). Then End(2, R) = End(9, S).

Proof. Let ¥ : (im(g), ') — (2, 5) be an isomorphism. Then g¥ € Qf is a
surjective homomorphism from (2, R) to (€2, S).

Let g € Q% be any function such that ag € a(g¥)"! = {3 € Q : Bg¥ = a } for
all « € Q. Then gg¥ = 1g where 1 denotes the identity map on Q. Likewise, if
T* € O is an extension of ¥, then U—10* = 1,.

Let f € End((, S) be arbitrary. Then gV f¥~! € End({2, R). Thus

f=gg0fy¥ 10" € (End(Q, R),g,¥" ).
Since f was arbitrary, End(2,.5) C ( End(Q, R), g, U* ). d

Lemma 3.3. Let Q = {ay, s, ...} and let

@) R={(aiit1),(qiy1,0:) : i €N}

(i) S ={(a2i-1,02), (2i1,02;) : 1€ N}
Then (2, R) is a graph with End(Q, R) = S<, and (2, S) is a poset with End(%, S) =
S<.

Proof. 1t suffices to show that End(2, R) N End(f2,S) = S< . Let g € Q% be de-
fined by a,g = ap(n—1)41 foralln € Nand let h € O be any function such that
(agn—1)h = o, for every n € N.

Let f € S< be arbitrary. We will define a function fe End(£2, R) N End(€2, S) in
two steps so that f can be written as a product of f.g,and h. The first step is to let
fbe defined on the elements of the form a;,(,,—1)41 by

~

(an(n—1)+1)f = Q21
whenever o, f = ay.

The second step is to define f on all the elements «,,, with indices in the range
nn—1)+2ton(n+1). fa,f =arand a1 f =, thenk <nandl <n+1
since f € S<. It follows that the length of the path on (2, R) from asi_1 to ag—1
is an even number not greater than 2n. Hence there exists a walk

60 = a?k—l?ﬁla s 7ﬁ2n = Q211

of length 2n. The definition of fis completed by setting
(O‘n(n—l)-&-l—&-i).]?: Bi

foralli € {1,2,...,2n — 1}. By construction, fisan endomorphism of (€2, R).
We will now show that f is also an element of End(€2, S). By construction,

{a1,a3,as, .. }]?Q {a1,a3,as,...} and {asg, ay, ag, . . }fg {ag, ay, ag, ...}
Let , 8 € Q with (o, 8) € S. Then o = ;1 and 8 = aw; Or ag;_o for some i € N.
Since « and § are adjacent in (2, R) their images af and ﬁf are also adjacent in
(Q, R). Thus either (af,8f) € S or (Bf,af) € S. In fact, (af,Bf) € S since
afA: agi_lfe {a1,as,as,...}. So, fe End(£2, R) N End(Q, S), as required.
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To conclude the proof, let a; € € be arbitrary and let o; = «; f. Then

aigfh = (%‘(i—l)ﬂ)fh = (agj_1)h = a; = a; f.
Thus S< C (End(Q2, R) NEnd(€, S), g, h) and so End(£2, R) NEnd(Q, S) = S<. O

Lemma 3.4 (Konig’s Lemma). Let G be an infinite connected locally finite graph. Then
there exists an infinite path in G, that is, a sequence of distinct vertices 1, 2, ... such
that 5; and B, are adjacent for all i.

For a proof see [3, Lemma 19.2.1].

The following lemma is an analogue of Koénig’s Lemma for arbitrary binary re-
lations. It is also slightly stronger, in so far as when it is applied to graphs the
subgraph induced by (1, 82, ... from Lemma 3.4 is isomorphic to the graph de-
fined in Lemma 3.3(i).

Lemma 3.5. Let Q be countably infinite and let R C Q x Q be such that (Q, R) is
connected and locally finite. Then there exists a sequence 1, vz, . . . of distinct elements of
Q2 such that, for i # j, viRy; or v R, if and only if i and j are consecutive integers.

Proof. Let E be the symmetric closure of R \ Ag. Then G = (Q, E) is a graph.
Hence by Lemma 3.4 there exist a infinite path 3, f2, ... in G. But j; is adjacent to
Bit1 in G if and only if (5;, Bi11) or (Bit1,B:) € R.

Let v; = 1. Assume that v;_; has been defined for some 7 > 1. Then define

n; =max{n €N : (y,_1,0n) or (Bn,vi-1) € R}

and set y; = ,,. The number n; exists since (€2, R) is locally finite. The sequence
71,72, - - - obtained in this way has the required property. O

Proof of Theorem 3.1. (i). As (£2,C) is locally finite, it follows immediately from
Theorem 2.4 that End(2,C) < S<.

To prove that End(Q2,C) = S<, we show that there exists g € End(Q2, C) such
that the preorder induced by the image of g is isomorphic to that given in Lemma
3.3(ii). This allows us to apply Lemma 3.2 to conclude the proof.

Since (2, C) has finitely many components there is at least one infinite com-
ponent. By Lemma 3.5 that component contains a sequence of distinct elements
71,72, - .- such thatv; C v; or v; C ~; if and only if ¢ and j are consecutive integers.

Let v, be arbitrary. If v, T v,41, then v,41 3 Y542 as otherwise v, T vp420
by transitivity of T, a contradiction. Likewise, if v,, J 7,41, then 7,41 T Ypga.
Assume without loss of generality that 74 T ~2. We conclude that the subposet
induced by {71, 72, ...} is isomorphic to that defined in Lemma 3.3(ii).

Next, we specify g € End(§, C) with image equal to {v;,72, ...} by defining it
on the components of (2,C). Let K be any component of (€2, C). Then since C is
transitive and (€, C) is locally finite, it follows that there exists §; € K such that
for all 8 € K with 8 C 8; we have that 8 O 3;,. Note that, in some sense, 3; is a
minimal element of K.

Let Ly ={8 € K : 8 C 5 }and define Ly, L3, ... recursively as follows:

Lgi = {B € K : thereexists § € Lgi_l Wlthﬁ | 1) } \ (Ll J---u in_l)
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and
L2i+1 = {B € K : thereexists § € Lo; Wlthﬁ C (5} \ (Ll U---u LQZ)

Of course, since (£, C) is locally finite, L, is finite for all i € N. As K is connected,
every element in K lies in some L;. Also, if K is infinite, then L; is non-empty for
all 4.

So, if g : K — Q is defined so that agx = ~; for all & € L;, then by construc-
tion g is a homomorphism from (K, C) to the preorder induced by {v1,72,...}.
Letg: Q — {71,72,...} be the union of the functions gx over all the components
K of (2,C). Then g € End(€2, C) and, as (£2, C) has at least one infinite component,
g is surjective.

If R is the preorder induced by 71,72, ..., then, by Lemma 3.2, End(Q,C) =
End(Q2, R). Moreover, by Lemma 3.3, it follows that End(f2, R) = S< and the proof
of this case is concluded.

(ii). Recall that in this case we assume that (€2, C) is not locally finite. If o, 8 € Q
such that « C f and § C «, then we will write « = . If all the equivalence
classes of = are finite, then there are infinitely many such classes and they can
be given as E1, Es,.... Let 3, € E, be fixed for every n € N and let g € Q be
defined by ag = 3, for all @ € E,, and for all n. It is straightforward to verify that
g € End(Q,C). Furthermore the preorder induced by the image of ¢ is a partial
order which is not locally finite. In [9] it was shown that the set of endomorphisms
of a non-locally finite poset is always equivalent under ~ to Q2. Thus by Lemma
3.2 we have that End(Q,C) ~ Qf and so, as mentioned in the introduction, it
follows by Sierpiniski [12] that rank(Q : End(Q,C)) < 2.

Next, we assume that there exists an infinite equivalence class E of =. Let k :
Q) — E be any bijection and let k* € Q% be any extension of k~1. Let f € Q% be

arbitrary and define f € Q% by
~ ak™'fk ifacE
af = .
o ifaeQ\E.

Then f € End(Q,C) since f fixes Q \ E pointwise and maps elements of E to
elements of E. Furthermore, if o € €, then

akfk* = ak(k™ fk)k* = of.

Thus 02 = (End(®,C), k, k* ) and so End(®, C) ~ 02 In fact, k € End(2,C) and
50 0% = {End(Q,C), k* ) and rank(Q? : End(2,0)) = 1. .

4. GRAPHS

In this section we consider semigroups of endomorphisms of graphs. These
semigroups fall into more equivalence classes under ~ than endomorphisms of
preorders and we do not achieve a full classification in this case.

Lemma 4.1. If G contains a subgraph isomorphic to the complete graph Kq on S, then
rank(Q : End(Q)) = 1.
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Proof. Let H denote the subgraph of G isomorphic to Kq, let H1, Hs, ... be infinite
sets partitioning the vertices of H, and let ¢ € Q% be a function that maps all
elements of H; to o; fori = 1,2,.... Note that g ¢ End(G).

Pick an arbitrary f € Q. Let  be an injection such that af € H 7 whenever
a;f = a; . Sinceim(f) C H all image points are adjacent and so f € End(G). Now
aifg=a; = a;f forall a; € Q. Hence Q% = ( End(G), g ). O

Let G be a graph and define K (G) to be the set of components. If L, M € K(G),
then we will write L < M whenever there exists a homomorphism from L to M.
Denote by L< theset { M € K(G) : L < M }.

Theorem 4.2. Let G be a graph such that for infinitely many components L of G the set
L< is infinite. Then rank(Q : End(G)) < 2.

Proof. Let Ly, Lo, . .. be the components of G with LS infinite for all i € N.

First, let

{AG1y, A2y, -y CLE
such that {A(i,1)7 A(i72)’ .. } N {A(j,l)v A(j}g), .. } = fori # j.

Let Q = {a1,az2,...}, let g € Q be any function with a;g € L;, let h € Q%
be any function such that ah = o for all @ € A(; ;), and let f € Q be arbitrary.
Since A ) € LS for all 4, k, there exists a homomorphism from L; to AGigy- A
function that is a homomorphism on all the components of G is an endomorphism
of G. So there exists f € End(G) such that Lif C A ) whenever oy, = a; f. Let

~

a; € Q be arbitrary and let o, = o; f. Then a9 € L; and so (aiig) f € A ). Hence
a;gfh = a, = a;f. So f = gfhand Q% = (End(G), g, h ). O

In Theorem 2.3, we prove that endomorphisms of reflexive relations with infin-
itely many components have relative rank at most 1 in Qf*. However for graphs the
analogous statement is not true. Examples of graphs G and H satisfying the hy-
pothesis of Theorem 4.2 where rank (2 : End(G)) = 1 and rank(Q : End(H)) = 2
can be found in Example 6.4 and Proposition 7.8, respectively.

We use a result from Mesyan [11] to show that the converse of Theorem 4.2
holds in the case that all the components of G are finite.

Theorem 4.3. Let G be a countably infinite graph such that every component of G is
finite. Then the following are equivalent:
(i) L< is finite for all but finitely many components L of G;
(ii) rank(Q? : End(G)) > 2;
(iii) rank(Q%: End(G)) > ;
(iv) Sl,a < EDd(G) < SS or End(G) ~ {19},

Proof. By Theorem 2.1 it follows that (iv) implies (iii). Also (iii) implies (ii) imme-
diately. Theorem 4.2 tells us that (ii) implies (i).

It remains to show that (i) implies (iv). Under this assumption, the set { af :
f € End(G) } is finite for all but finitely many a € 2, since an endomorphism
must map components into components. Let p be the preorder on (2 defined by
(o, B) € pif B = af for some f € End(G) and let E(p) = { f € Q% : (a,af) €
pforalla € Q}. Then {3 € Q : (¢, B) € p}is finite for all but finitely many a € Q.
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It was shown in [11, Section 7] that E(p) < S< for such a preorder p. It follows
E

from the definition of E(p) that End(G) C E(p) and thus End(G) < S<.

It remains to prove that either End(G) > S; , or End(G) ~ {1¢}. There are two
possibilities. Suppose that, for all but finitely many components L, the only homo-
morphism from L into G is the identity map. It follows that End(G) is countable
since all the components of G are finite. Thus End(G) ~ {15} as the equivalence
class of {15}, consists of all countable subsets of Q.

On the other hand, suppose there exist infinitely many components Ly, Lo, . ..
of G and non-identity homomorphisms g; : L; — G for all i € N. We will define
an infinite subset {d1, 02, ...} of the union of Ly, Lo, ... such that

(a) if §; and ¢; are in the same component, then ¢ = j;
(b) if §; € L, then §,g; & {01,02,...} foralli € N.

Since g; is not the identity on L;, for all i € N there exists y; € L; such that ~;g; # ;.
There are two cases to consider. If there exists j € N such that

A={v vgi=7"}t
is infinite, then A satisfies conditions (a) and (b) above.

Otherwise, we define {01, 0o, ...} recursively as follows. Let §; = ;. Assume
that 61, 02,...,0,-1 € {71, 72, ...} have already been defined and set

Bn={7 : vigi € {01,02,...,6n-1} }

Since by assumption {~; : v;g; = d; } is finite forall j € {1,...,n—1}, B, is finite.
Hence we may choose §,, to be any element of

{")/1,")/2, . } \ (Bn @] {51,(52, .. ~7§n—1})'

It follows, by construction, that {d1, d2, . ..} satisfies (a) and (b).

Let h : Q — {1, 09,...} be the map defined by a;h = §; and let k € Q% be
defined by

«; if o = §; for some i
ak = ]
(651 1f04¢{(51,52,...}.
Let f € 51,4 be arbitrary. Then define f € 0% as follows. Let o €  and let L;

be the component of G containing . If §; € L; for some i € N and «; f = a4, then
we define

a]?: agj.
Otherwise define o.f = a. Since [ is a homomorphism on each component, fe
End(G).
Let o; € €2 be arbitrary. Then either o;f = o; oré > 1 and «;f = ;. In the
former case, if §; € L;, then
aihfk = 0ifk = 8;g;k = a1 = o f

as 519] ¢ {51, 62, .. }
In the latter case,

Thus S o C ( End(G), h, k ) and the proof is complete. O
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In Example 6.3 we give an instance of a graph G with infinitely many com-
ponents, all of which are finite, and where End(G) ~ S<. In Example 6.2 we
show that there exists a graph with infinitely many components and where 57 , <
End(G) = S2 < S<. It is not known if there exists a graph G such that S; , ~
End(G).

If G is a graph with finitely many components and G is locally finite, then it fol-
lows immediately from Theorem 2.4 that End(G) < S< and rank(Q® : End(G)) >
0. The converse of this statement does not hold and Example 6.1 is a counterexam-
ple. This contrasts with the analogous situation for preorders described in Theo-
rem 3.1. In Lemma 3.3 and Example 6.2 we give examples of graphs G and H with
finitely many components and where End(G) =~ S< and End(H) =~ {1o} < S<.

Note that in the proofs of Theorems 4.2 and 4.3 neither symmetry nor irreflex-
ivity is used and that these theorems generalise to arbitrary binary relations with
infinitely many components. We chose not to phrase these results in the most
general way since the only other kinds of relations considered in this paper are
preorders and tolerances for which the much stronger Theorem 2.3 holds.

We have not succeeded in proving any general theorem relating to graphs with
finitely many components that are not locally finite. However, we will show that
there exist such graphs where the relative rank of their endomorphisms in O is
any of 1,2,9, or 2%. Moreover, if we restrict our attention to the class of bipartite
graphs, then we again obtain a complete classification.

Theorem 4.4. Let G be a graph with infinitely many bipartite components. Then rank(QS* :
End(G)) = 1 and so End(G) ~ Q.

Proof. There are two cases to consider.

Case 1: there exist infinitely many singleton components {1}, {B2},... in G. Let
g € Q% be defined by a;g = f3; forall i € N. If f € Q2 is arbitrary, then define f
by Bif = aif foralliand af = a for all o # 3; for any ¢. Then fe End(G) and

~

a;gf = Bif = a;f. Hence ( End(G), g ) = Q.

Case 2: there exist infinitely many bipartite components L1, Lo, .. . in G with at least
two vertices. Let v, € L, be fixed for all n € N and let

I:{ZEN : aingforalleN}.

Then, by definition, 7,, # o, for all m € N and for alln € I. Also N\ I is infinite
as clearly there are infinitely vertices c; in L1 U Ly U- - -. It follows that there exists
an injective g € Q such that ;g = «; forall i € I and where (Q\ {7; :i € I})g C
{7: : i € N\ I'}. Hence ¢ is an injection and im(g®) C {v; : i € N\ I'}.

Let L; and L; be arbitrary and let o € L; and 8 € L;. Since L; and L; are
bipartite and contain at least two vertices, there exists a homomorphism ¢, g :
L; — Lj such that a¢, g = 5.

Let f € Q% be arbitrary. We require two endomorphisms f1 and f; of G that
together with g will generate f.

We define f; on an arbitrary component L as follows. Either there exist i € I,
j €N, and o € Qsuch that af = o;, L = Lj, and ag? = v;, or not. If 4, j, and «
exist, then define

~

BfL = By, i
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for all g € L. Otherwise, we define Bﬁ = fforall B € L. In particular, if o f = «;

for some i ¢ I, then f; fixes ag?. Since f; is a homomorphism on every component
of G, it is an element of End(G).

We define f, on an arbitrary component L of G as follows. As above, either
there existi € N\ I, j € N, and a € Q such that of = «;, L = L;, and ag® = Vi
or not. If 4, j, and « exist, then, since i ¢ I, there exists k € N such that o; € L. It
follows that ¢, ., is well-defined and so we define

Bf2 = B, o

for all 5 € L. Otherwise, we define BJ?Q = QB forall § € L. In particular, if i € I,
then, from the definition of I, a; ¢ L; for all j € N and so f; fixes «;. Again since
f2 is a homomorphism on all the components of G, it follows that fo € End(G).

We will now show that gQﬁ gfg = f. Let o € Q2 be arbitrary. Then af = o for
some i € N. If i € I and ag? = ; for some j, then

ag’frafo = 1119f2 = 7j0s, 0.0F2 = vigf = aifo = 0 = af.
If i ¢ I and ag® = v, for some &, then
(0492)?19]?2 = 0193}\2 = %Jg = Ve Pryp,on = 0 = af.
Thus Q! = ( End(G), ¢ ) and rank(Q% : End(G)) = 1. O
Theorem 4.5. Let G be a bipartite graph with finitely many components. Then either:

(i) G is locally finite, End(G) ~ S<, and rank(Q® : End(G)) = ; or
(ii) G is not locally finite, End(G) ~ Q%, and rank(Q% : End(Q)) < 2.

Before we prove Theorem 4.5 we require the following lemma.

Lemma 4.6. Let G be the graph with edges (o, o) for all i > 1 (see Figure 1 for a
diagram). Then rank(Q% : End(G)) = 1.

aq

Q2 Qa3 Oy Qs &7

FIGURE 1. The graph from Lemma 4.6

Proof. Note thatif f : Q@ — Q such that oy f = o3 and o f # o forall ¢ > 1, then
f € End(G). Let g, h € End(G) be defined by

;g = ah =
i iy t>1 ! ;1 1> 2.

Lett € Q%bea transposition with a1t = as and vice versa. Then «; gt = ;41 and
O[H_lth =y foralli € N.
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Let f be an arbitrary element of Q2. Define the function fby alf = a7 and
ait1f = agy1 whenever o;f = ai. Then f € End(G) by our earlier remark.
Furthermore, for an arbitrary vertex a; €  with «; f = o, we have that

Oéigtfth = Ozi+1fth = Oék+1th = Q = aif

and so ( End(G),t) = Q. O

Proof of Theorem 4.5. Let G be a bipartite graph with finitely many components
Li,Ly,...,Ly.

(i). If G is locally finite, then by Theorem 2.4 we have that End(G) < S<. We
will show that End(G) = S<. By Lemma 3.5, there exists a sequence 71,72, . .. of
vertices that induce a subgraph H of G isomorphic to the graph defined in Lemma
3.3(i).

Let d; € L; be fixed. Form = 0,1,2,... define

L™ = {ac L; : the shortest path from a to §; has length m }.

Let g € Q% map every pointin LT* U LT U ... U L™ to v,,. Since G is locally finite
and at least one L; is infinite, it follows that g is surjective. If (o, 8) € E, then,
since G is bipartite, « € L7 and § € L’Jﬁ*l or € LT and o € L;.”“ for some j
and m. Hence (ag,89) = (Ym,¥m+1) € E or (ag,B9) = (Ym+1,7¥m) € £ . Thus
g € End(G). So, by Lemma 3.2 and Lemma 3.3 it follows that End(G) > S<.

(ii). Since G is bipartite we may partition €2 into sets R and B such that the
edges of G only join vertices in R to vertices in B. Since G is not locally finite it
has a vertex of infinite degree. Without loss of generality we assume that o; € R
and that o; has infinite degree.

Let g be any function such that ag = a4 forall « € R and

Bgc{peQ:(a1,8) e E}C B

with |Bg| = ®y. Then g is an endomorphism of G and the image of g induces
a graph isomorphic to that defined in Lemma 4.6. So, by Lemmas 3.2 and 4.6 it
follows that End(G) ~ Q. O

Lemma 4.6 provides an example of a graph G satisfying the hypothesis of The-
orem 4.5(ii) and where rank(Q® : End(G)) = 1. In Section 6 we give an example of
such a bipartite graph H with rank(Q : End(H)) = 2.

5. TOLERANCES

Let f be a homomorphism of a graph G with vertices Q2 and edges E. Then f
cannot map adjacent vertices to the same vertex, since (o, «) ¢ E for all a € Q.
It might be argued that the definition of a homomorphism of a graph could be
modified to allow af = B for (e, 5) € E. This would be equivalent to considering
the endomorphisms of (2, E U Ag) where Ag = { (o, ) : a € Q}, that s, the
endomorphisms of a tolerance on (2.
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We completely classify the semigroups of endomorphisms of tolerances R on
) according to <. If (2, R) has infinitely many components, then it follows from
Theorem 2.3 that rank (9 : End(Q, R)) = 1.

Theorem 5.1. Let R be a tolerance on ) such that (2, R) has finitely many components.
Then either:

(i) (2, R) is locally finite, End (€2, R) ~ S<, and rank(Q? : End(Q, R)) = ?; or
(ii) (Q, R) is not locally finite, End (2, R) ~ Q%, and rank(Q® : End(Q2, R)) < 2

Proof. Recall that R is a symmetric and reflexive relation, and let L1, Lo, ..., L,, be
the components of (2, R).

(i). By Theorem 24, it follows that End(Q2, R) < S<. We must prove that
End(Q, R) = S<. Then, by Lemma 3.5, there exists I' = {v1,72,...} such that,
fori # j, (vi,7v;) € Rif and only if {4, j} = {k,k + 1} for some k € N.

Let L be the sets and g € 2 be the function defined in the proof of Theorem
4.5(). If (o, 8) € R, then either o, 5 € LT ora e LT and 8 € L;’”l for some j
and m. In the first case, (ag, 89) = (Ym,¥m) € R and in the second case (ayg, 8g) =
(Ym> Ym+1) € R. Hence g € End(2, R).

Let R’ be the subrelation of R induced by I'. Then by Lemma 3.2 we have
that End(Q2, R) = End(Q, S) where (©2,5) is isomorphic to (I, R'). Now, (2,5 \
Ag) is a graph isomorphic to that defined in Lemma 3.3(i). Thus, by Lemma 3.3,
End(Q, S\ Aq) = S<. As End(Q2, S) 2 End(Q2, S\ Aq), it follows that End(Q, R) =
End(Q, S) = EIld(Q, S \ AQ) = SS‘

(ii). There exists an element of 2 with infinite degree. Assume without loss of
generality that o has infinite degree, thatis, A = {5 € Q : (a1, ) € R} is infinite.
It is a straightforward consequence of Ramsey’s Theorem [3, Theorem 10.6.1], ap-
plied to (€2, R\ Agq), that the subrelation induced by A contains an infinite subset
Bsuchthat (Bx B)NR= B x Bor Ag.

Note that (Q, R \ Aq) is a graph and End(Q, R \ Aq) C
B)N R = B x B, then, by Lemma 4.1, rank(Q® : End(Q, R
rank(Q% : End(Q, R)) = 1.

If (B x B)N R = Ap, then define g € Q% by ag = a for all « € B and define
ag = aq for all @« € Q\ B. Since R is reflexive and («1,8) € Rforall 8 € B, it
follows that ¢ € End(2, R). Therefore by an argument analogous to that in the
previous paragraph, by Lemmas 3.2 and 4.6, rank (2 : End (€2, R)) < 2. O

End(Q, R). If (B x
\ Agq)) = 1 and so

If G = (Q, E) is the graph in Lemma 4.6, then (2, E' U Ag) is a tolerance where
rank(Q? : End(2, E U Ag)) = 1. In Section 8 we construct a tolerance with
rank(Q : End(, R)) = 2.

It is natural to ask whether Theorems 3.1 and 5.1 generalise to endomorphisms
of reflexive binary relations without the respective assumptions of transitivity and
symmetry. The answer is no. In Example 6.5 we construct an example of a reflexive
binary relation R such that (2, R) is not locally finite but where End(£2, R) % Q.
In Example 6.6, we give an example of a reflexive binary relation R such that (2, R)
is locally finite but where End(2, R) # S<.
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6. EXAMPLES I

The following example shows that, in general, the converse of Theorem 2.4 is
not true.

Example 6.1. Let G denote the graph with edges (a1, ;) and (o, a;41) for all
i € N (for a diagram see Figure 2). Then G is not locally finite. However, we will
show that End(G) < S< and thus rank(Q : End(G)) > 0.

aq

(65 Qs Qy (6751 Qg
FIGURE 2. The graph from Example 6.1

Let ' = {f € End(G) : a1f = o1 } and U = End(G) \ F. If H is the
graph obtained from G by deleting all the edges incident to ¢, then F' C End(H).
But End(H) ~ S< by Theorem 4.5 and so F' < S<. In Section 1.1 we defined
F={fe€0Q% : |Qf| <Ny} and we noted that Mesyan [11] proved that § < S<.
Since U < §, this implies that U < S<. It follows that End(G) = U U F' < S<.

In fact, an argument analogous to that used in the proof of Lemma 3.3 shows
that End(G) ~ S< and so rank(Q% : End(G)) = 0.

Example 6.2. A graph G is called rigid if End(G) = {1q}. It follows from [8,
Theorem 3] that there exists a locally finite countably infinite rigid graph H with
infinitely many components.

We will construct a graph G from the components of H such that End(G) ~ Ss.
Let L1, Lo, ... be distinct components of H. Then define G to have components
My, Ms,...and Ny, Ny, ... such that M; # N; and M;, N;, and L; are isomorphic
for all 4, j € N. The only homomorphisms between components of G are the iso-
morphisms h; : M; — N;. Thus for all @ € Q theset { af : f € End(G) } has
two elements: « and «oh; if « € M; for some ¢ or v and ahi_l if « € N; for some i.
If ) is enumerated in such a way that {a;_1, a2} = { @s;f : f € End(G) } for all
i € N, then clearly End(G) < S5 and, in particular, End(G) < Ss.

To show that End(G) = SQ = {f S QQ : {Oégi_lf, Olgif} Q {agi_l, agi} foralli e
N}, letmy € My, my € Ma, ... befixed, let g : Q@ — {m;, m;h; : i € N} be defined
by as;—19 = m; and az;g = m;h; € N;, and let h be any mapping extending g~!
to an element of Q. If f € S, is arbitrary, then there exists f € End(G) such
that mlf = (agi_lf)g € {ml,mlhl} and mzhlf = (aglf)g S {ml,mzhl} Hence
agi_lgfh = mth = a;_1fgh = as;_1 f and, likewise, agigfh = aw; f. Therefore
End(G) = Ss, as required.

Let Aut(G) denote the group of automorphisms from a graph G to G. A cycle

of length n is a graph G with vertices 1, 02, .. ., 8, and with edges (01, 5,,) and
(Bi, Bir1) for1 <i<n—1.

Example 6.3. Let G be a graph with components Oy, O3, Os, ... where O3;41 is an
odd cycle of length 2i 4 1 for all s € N.
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We will show that End(G) ~ Aut(G) ~ S< and so rank(Q? : End(G)) =
rank(Q? : Aut(G)) = 0. It is well-known (and not difficult to verify) that the
image of any element in Oy;;1 under an endomorphism of G lies in Oy with
j < i; for a proof see [7, Corollary 1.4]. In other words, |O55,,| < iforalli € N. It
follows, by Theorem 4.3, that End(G) < S<.

Letw(i,1),w(i,2),...,w(i,2i+ 1) be the vertices of Oo; 1. Then define g, h €
by ;g = w(i,1) and (w(i, j))h = o forall 4, j € N.

Let f € S< be arbitrary and let ¢ : N — N be the map such that «; f = o, for all
i € N. Note that it <14 < 2i+1 for all s and so the vertex w(i, it) exists for all .. Now,
forall i € N there exists an automorphism of Oy;1, mapping w(i, 1) to w(i,it). Let
f € Q2 be the union of these automorphisms. By definition, f € Aut(@) and

aigfh = (w(i, 1)) fh = (@i, it))h = @i = @i f.
Thus S< C ( Aut(G), g, h ) and our claim follows.

Example 6.4. An n-clique of a graph G is a subgraph of G isomorphic to the com-
plete graph K,, with n vertices. Let G be a graph with only finite components and
let G have arbitrarily large n-cliques. We will show that rank(Q% : End(G)) = 1.

Let L1, Lo, . .. be the components of G. Then there exist infinitely many disjoint
sets £9, £1, Lo, ... of components such that for all £ € NU {0}, the set £, contains
a component with an n-clique for all n € N.

Let M, Ms, ... be distinct elements of £, where M; contains a clique of size at
least |L;| for all i. Then define g to be any injective endomorphism so that L;g is
contained in M; for all i. Let h € Qf be any function which, for j > 1, maps every
vertex lying in a component belonging to £; to a;; and which maps the vertex ;g
(belonging to one of the components in £y) into one of the components in £;.

Let f € Q% be arbitrary. Then let f be any endomorphism of G such that: if
aj = oy f, then Lfequals the set of vertices of an |L|-clique in some component in
£L;forall L € £ and af = aforall o belonging to a component in £9. Note that
since Q = {a1,as,...}, i and j in the preceding definition are strictly greater than
0.

If a; € Qis arbitrary, then «a;gh lies in a component in £;, i > 0. Thus («; gh)f
lies in a component in £; where a; = «;f and j > 0. So (aighf)h =a; = a;f.
Hence f = ghfhand Q% = ( End(G), h ).

The purpose of the next two examples is to show that Theorems 3.1 and 5.1 do
not generalise to arbitrary reflexive binary relations.

Example 6.5. We construct a relation R on 2 such that (2, R) is connected, not
locally finite, and End(Q2, R) < S<. Let G = (, E) be a connected, locally finite
graph,let B = { (fo,7) : 7€ Q }forafixed fy € ,andlet R = EU BU Agq. The
relation R was constructed so that it is reflexive and (2, R) is not locally finite.

Let o, 8 € Q such that «, § are adjacent in G and let f € End(2, R). Then
(af,Bf) € Rand (Bf,af) € R. Hence af = Sf or af and Sf are adjacent in G.
We conclude that End(Q2, R) € End(Q, E U Ag) = S< by Theorem 5.1(i) and so
End(), R) < S<.
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B Bs

FIGURE 3. The binary relation from Example 6.6. The relations
(o, @) for all @ € Q are not shown.

Example 6.6. Let Q = {a1,az,...} U{B1, B2, ...} and define the following relation
Ron Q. Let (a, ) € Rforall o €  and let

(a, 1), (C2iq2, 2i—1), (@2i—1, Bi), (Bi, it2) € R

for all i € N. A diagram of (€2, R) can be found in Figure 3. The relation R is
reflexive and (€2, R) is connected and locally finite. We will prove that End(Q, R) <
F =< SS‘

Let f € End(Q, R), let A; = {a9i—1, a2, 2441, 2442}, and let B; = {ag;—1, a2i 42, Bi }

for all ¢ € N. We start by proving that for all € N one of the following holds: A; f
is a singleton, A;f = A;, or A;f = B; for some j € N. We will also show that if
Aj,f = Aj, then

(1) Bif =B and (agi—1f, a2 f, i1 fr o f) = (-1, ), g1, 2j42).

Since f is a homomorphism, A;f = {y1,...,7x} where 1 < k < 4 and for all
1 < j <k —1we have that (y&,71), (75,7+1) € R . The only subsets of 2 that
satisfy this condition are singletons, A4;, or B; for some j € N. Thus A; f is either a
singleton, A;f = A;, or A; f = B; for some j € N.

In the case that, A; f = A;, since f is an endomorphism, we have that

(a2iqof, i1 f), (a2i—1 f, Bif), (Bif, c2ir2f) € R.

The only 7,9 € A; with (v,6) € R such that there exists A € Q with (6, A), (A, 7) €
R are Q251 and Q2542. It follows that ﬁlf = ﬁj and (Oégiflf, Oégif, Q2441 f, 042i+2f) =
(a2j—1, Q2j5, 2541, 042,7‘+2)-

We will now prove that there are only countably many elements of End((2, R)
with infinite image. Note that the only element of §2 not in any B; is aa. There are
3 cases to consider.

Case 1: A;f = A; for some j € N. In this case, from (1), 51 f = §; and
(Oélf, Oégf, Oégf, Oé4f) = (0&2]'_1, 945, 2541, Oégj+2). Since Ozgf and 044f are diSﬁl’lCt,
Asf is not a singleton. Also if asf € B; and asf € By, theni # k and so
Aof # B, foralli € N. Hence Asf = Ay for some k € N. It follows from (1)
that azf = as(j41)—1 and au f = ay(j41). Thus Az f = A; 41 and so again, from (1),
asf = agjr1y41, @6 f = aa(jr1)42 and Bof = B4

Repeating this process it follows that a; f = ayj_1)4; and Bif = B(j_1)4 for
all i € N. In particular, there are only countably many endomorphisms f with
A1 f = Aj forsome j € N.



GENERATING SEMIGROUPS USING ENDOMORPHISMS 19

Case 2: A, f C Bj for some j € N. In this case,

asf,ouf € Bj = {agj_1, 22542, 05}

Since (asf, aaf) # (aor—1,a2;) for all k € N, it follows by (1) that Ay f # Ay for
all £ € N. Thus either Ay f = B; or A, f is a single element of B; and in either case
Asf C B;.

Repeating this argument, we conclude that wf € B; for all w € Q and f has
finite image.

Case 3: A;f = {az2}. In particular, azf = asf and so |Azf| < 4. Thus by (1)
Ao f # Ay for all k € N. Furthermore, as ¢ By, for all £ € N and so Ay f # By for
all k € N. Thus Az f = {a2}. Repeating this argument it follows that im(f) = {a2}.

Since there are only countably many endomorphisms of (2, R) with infinite
image we conclude that End(Q2, R) < § < S<. Note that, on the other hand, it is
possible to show that | End(€, R)| = 2% and so End ({2, R) = {1q}.

7. EXAMPLES II — GRAPHS WITH RANK 2

In this section we construct two examples of graphs G, one connected and one
with infinitely many components, such that rank(Q® : End(G)) = 2.

Lemma 7.1. Let U be a subsemigroup of Q% such that f € U is injective if and only if f
is surjective. Then rank(Q? : U) > 2.

Proof. Let g € Q be arbitrary. Seeking a contradiction assume that (U, g ) = Q.
Let h € Q be injective but not surjective and let k € QF be surjective but not
injective. Then there exist hi, ho, ..., ~m, k1, ke, ...k, € U U {g} such that h =
hlhg s hm, and k = k1k2 s kn
Let

M =min{ % : hihy---h, is not surjective }
and

N =max{ ¢ : k;kit1 - ky is not injective }.
Then hy, is injective, as h is injective, and so iy = g. On the other hand, ky is
surjective, as k is surjective, and so k = g. But then g is injective and not injective,
a contradiction. O

An example of a connected but not locally finite poset (€2, C) where the only
injective or surjective endomorphism is the identity is given in [9, Section 6]. It
follows from Theorem 3.1 and Lemma 7.1 that rank(Q : End(Q,C)) = 2. We will
use this poset to define a bipartite graph with the same property. The poset (2, C)
is described as follows.

Let A = {a; : i € N} bea countably infinite set. Let £ denote the set of all
finite subsets E of A such that |E| > 2 and where a,, € E implies that |E| < n + 1.
Thus any set in £ containing a; has cardinality 2, any set in £ containing ay has
cardinality 2 or 3, any set in £ containing ag has cardinality 2, 3 or 4, etc. We
enumerate the elements of £ as Ay, As, ... Now, we assign in a one-to-one way a
new element bg, notin A, toevery Ein €. Let B = {bg : E € £ }. Also, let
C ={cp,c1,c2,...} be any set disjoint from AU B.
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Co C2 C4 Ce Cg €10

C1 C3 Cs Cr Co C11

FIGURE 4. The poset C restricted to C

ba,

i

C24 C2i42

C2i41

FIGURE 5. A portion of the poset (2, C).

We define the partial order C on the elements of @ = AU B UC by: a C
be foralla € E; c2i+1 & ¢ for all 7 > 0,z C co forall z € {01,03705}; Ccoi—1 L co5,
Coit1 C cg; forall i > 2; and cgi41 C ba, for all ¢ > 0. See Figures 4 and 5 for two
diagrams of portions of (£2,C).

Theorem 7.2. Let C be the partial order defined above and let f € End(€Q, C) be injective
or surjective. Then f is the identity mapping on Q.

For a proof see [9, Theorem 6.7].
We construct a graph G = (2, E) from the poset (2, C) by letting

(o, B), (B, ) € E whenever « # S and a C §.

LetP=AU{cg4+1 : 1€ NU{0} }and Q = BU{co; : i € NU{0} }. Note that if
a,f € Qwitha # fand o C 3, then a € P and 8 € ). Note that every edge in G
connects a vertex in P to one in () and so G is bipartite.

Lemma 7.3. Let f € End(G). If there exists o« € P such that af € P, then f €
End(Q, ©). Likewise, if there exists o € @ such that af € Q, then f € End(Q,C).

Proof. We will prove the lemma in the case where o, af € P. The proof of the
other case is identical. Let 5 € P. Since G is connected there exists a path from
a to 8. Furthermore, this path has even length since o, 8 € P and G is bipartite.
Thus there is a walk of even length from af to Sf. It follows that §f € P since
af € P. Onthe other hand, if 8 € @, then any path from « to 3 has odd length and
so there is a walk of odd length from af € P to 8f. Thus 8f € Q. It follows that
PfCPand Qf C Q. Now leta, 5 € Qwitha # fand a C 3. Then (af,5f) € E
and af € P,8f € Q. Thus af C Bf and hence f € End(Q2,C). a



GENERATING SEMIGROUPS USING ENDOMORPHISMS 21

Using Lemma 7.3 we prove that the graph obtained from (€2, C) has no non-
identity injective or surjective endomorphisms. To do so, we will make use of the
following notion.

If R is a binary relation on 2, « € Q and n € N, then let

B(a,n) ={p € : there exists a path of length at most n from « to 3 }.
The proof of the following lemma is straightforward and omitted.

Lemma 7.4. Let R C Q x Qand let o € Q. If B(o,n) = Q for some n € N and
f € End(Q, R) is surjective, then B(af,n) = L.

Theorem 7.5. Let G be the graph defined above and let f € End(Q2, G) be injective or
surjective. Then f is the identity mapping on (0.

Proof. Let g € End(G) be injective. Note that all vertices of A C P have infinite
degree but ¢ is the only vertex of () with infinite degree. Since injective endomor-
phisms map vertices of infinite degree to vertices of infinite degree, it follows that
ag € @ for at most one a € A. In particular, there exists a € A such thataf € P
and so, by Lemma 7.3, g € End(€2, C) . By Theorem 7.2 this implies that g is the
identity on 2.

Let h € End(G) be surjective. We will show that coh = ¢y. From the definition
of G we have that B(cg, 1) = {co} U{c2i41 : i € NU{0} } and thus B(cg,2) = BUC
and B(cp, 3) = 2. We will prove that B(«, 3) # Q for all o # .

Ifa; € A, thenB(ai,?))ﬂ{czkH ke NU{O}} = {02j+1 L a; € AJ} 7é {C2k+l :
ke NU{0}}.Ifbg € B, then B(bg,3)NB={bpeB : ENF#0}#B.1fi>0,
then B(czi+1,3)NA={a; € A: a; € A; } # A Finally,if i > 1, then B(cy;,3) N A
is finite.

Thus ¢ is the unique vertex « of G such that B(a, 3) = Q. It follows by Lemma
7.4 that coh = ¢g. Thus h € End(£2, C) by Lemma 7.3 and hence h is the identity on
2 by Theorem 7.2. O

Corollary 7.6. Let G be the graph obtained from (2, C). Then rank(Q® : End(G)) = 2.

Proof. Since G is bipartite and not locally finite, by Theorem 4.5(ii), rank(Q% :
End(G)) < 2. On the other hand, G has no non-identity injective or surjective
endomorphisms by Theorem 7.5. Thus rank(Q® : End(G)) > 2by Lemma 7.1. O

The following example shows that there are graphs G with infinitely many com-
ponents and rank(Q¢ : End(G)) = 2. We require the following notion. A graph
is a core if every endomorphism is an automorphism. If G is a graph where every
component is a core and no two components are isomorphic, then the preorder <«
defined in Section 4 is a partial order on the set of components of G.

Theorem 7.7. [7, Theorem 3.3] Let P be a countable poset. Then there exists a graph
G where every component is a finite core and the set of components of G under < is
isomorphic to P.

Example 7.8. Let G be a graph with finite components the distinct cores Ly, Lo, . ..
and M, Ma, ... such that there exists a homomorphism from L; — M for all
i, j and there are no further homomorphisms between components. Such a graph
exists by Theorem 7.7.
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Now rank(2? : End(G)) < 2 by Theorem 4.3. Furthermore, every injective
endomorphism of G must fix each component setwise. It follows that every injec-
tive endomorphism is surjective. Likewise all surjective endomorphisms are also
injective. So, using Lemma 7.1, we conclude that rank(Q% : End(G)) = 2.

8. EXAMPLES III — A TOLERANCE WITH RANK 2

Let Q = AU B where A and B are the sets defined in Section 7 and let C be the
partial order defined in Section 7 restricted to AU B.

Lemma 8.1. Let T be the partial order defined above and let f € End(S2, C) be surjective.
Then f is the identity mapping on (.

For a proof see [9, Lemma 6.5].

We define a tolerance R based on C by letting («, ), (8, «) € R whenever o = 3
ora Ll f.

The following lemma is routine and the proof omitted.

Lemma 8.2. If f € End(2, R) such that Af C A, then f € End(Q2,C).
Next, we prove that ({2, R) has no non-identity surjective endomorphisms.

Lemma 8.3. Let R be the tolerance defined above and let f € End(€, R) be surjective.
Then f is the identity mapping on Q.

Proof. Let a; € A. For any a; € A there exists bg € B such that a;,a; € E. Hence
B(a;,2) 2 A and so B(a;,3) = 2. On the other hand, if by € B is arbitrary, then
B(bg,3)N B = B(bg,2)NB ={br € B : ENF # 0} # B by construction.
Thus B(bg, 3) # Q. Let f € End(Q, R) be surjective. It follows by Lemma 7.4 that
Af C A. Hence f € End(Q2,C) by Lemma 8.2 and thus f is the identity on Q2 by
Lemma 8.1. O

Although (2, R) has no non-identity surjective endomorphisms, it does have
injective endomorphisms that are not surjective. So, in order to apply Lemma
7.1, we will define a new tolerance R* on a set ¥ based on (2, R) such that f €
End(X, R*) is injective if and only if f is surjective.

Let { ¢(,5) : i,5 € N} be a set of new points with no elements in A and B, let
Bbe as above, let af = {c(i,1),¢(i,2),...,c(i,i+2)}, let C =aj Uaj U--- and let
¥ = BUC. Then define R* to be the symmetric and reflexive closure of the set
containing:

(i) (c(,4),c(i,5+1)) forallj € {1,...,i+ 1} and (c(4,7 + 2), (4, 1)) for all ¢;
(ii) (bg,c) forall ¢ € af and for all i such that a; € E.

Note that a] is a cycle of length i + 2 for all 4.

Theorem 8.4. Let (3, R*) be the tolerance defined above. Then f € End(X, R*) is
injective if and only if f is surjective.

Proof. Let c(i,j) € C and bg € B. Then, by a similar argument to the one in the
proof of Lemma 8.3, B(c(¢,5),3) = ¥ and B(bg,3) # X. Let f € End(X, R*) be
surjective. It follows, by Lemma 7.4, that cf € C for all ¢ € C. Furthermore, since
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[ is a homomorphism, for any i € N we have that a] f C aj for some j € N. We
may thus define f € O (recall that 2 = AU B) by

a; ifa:aiandaffga;
af =qa; ifa€ Bandaf€aj
af ifae Bandaf € B.

Then fis surjective since f is surjective. Moreover, if a; € E, then (a;,bg) € R
and so (c(i, j),bg) € R* for all j. Hence (c(i,7)f,brf) € R* forall j. If aj f C a;
and bpf € C, then bpf € a} and so (azf, bEf) = (aj,a;) € R. Otherwise, bp f =
br € B for some F' € £ and so a; € F. Hence (aif, bEf) = (a;,br) € R. Therefore
f € End(, R) and it follows that f is the identity by Lemma 8.3. Therefore bf = b
for all b € B and the components a are fixed setwise by f. Since every a is finite
and f is surjective, it follows that f € Aut(X, R*).

Let f € End(X, R*) be injective. Since every element in C has infinite degree
and every element in B has finite degree, it follows that Cf C C. Hence for
all i € N we have that o] f C aj for some j € N. But since f is injective and
laf f| = |a}] = i + 2 it follows that j > i. On the other hand, there does not exist
an injective homomorphism from the cycle a; to any cycle a; where j > . Hence
i=jandso f € Aut(X, R*). O

Corollary 8.5. Let (3, R*) be the tolerance defined above. Then rank(X* : End(%, R¥)) =
2.

Proof. By Theorem 5.1, rank(X* : End(¥, R*)) < 2. By Theorem 8.4 and Lemma
7.1, rank(X* : End(%, R¥)) > 2. O
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