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Abstract

Let R be an o-minimal field with a proper convex subring V . We
axiomatize the class of all structures (R,V ) such that kind, the corre-
sponding residue field with structure induced from R via the residue
map, is o-minimal. More precisely, in [8] it was shown that certain
first order conditions on (R,V ) are sufficient for the o-minimality of
kind. Here we prove that these conditions are also necessary.

1 Introduction

Throughout this paper we let R be an o-minimal field, that is, an o-minimal
expansion of a real closed field, and V a proper convex subring (hence a
valuation ring). Let st : V → k be the corresponding residue (standard
part) map with kernel m and residue field k = V/m. For X ⊆ Rn we set
stX := st(X ∩ V n). By kind we denote the residue field expanded by all sets
stX ⊆ k

n with definable X ⊆ Rn, for some n. “Definable” means “definable
(with parameters) in R”, unless indicated otherwise.

Here are some notational conventions we use: By N = {0, 1, . . . } we denote
the set of natural numbers, and the letters i, j, k, l,m, n denote natural num-
bers. For a ∈ Rn and i = 1, . . . , n, we let ai be the i-th coordinate of a,

∗Part of this work was done while the author was a Fields Ontario postdoctoral fellow,
during the thematic program on o-minimality and real analytic geometry at the Fields
Institute, Toronto, spring 2009.
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unless stated otherwise. We let I := [−1, 1] ⊆ R, and for a definable set
X ⊆ R1+n and r ∈ R, we set

X(r) := {x ∈ Rn : (r, x) ∈ X}.

By d(x, y) we denote the euclidean distance between x and y. For definable
Y ⊆ Rn and x ∈ Rn,

d(x, Y ) := inf{d(x, y) : y ∈ Y }.

If X, Y ⊆ Rn are definable, then X ∼= Y means that there is a definable
homeomorphism X → Y . For a definable C1-map φ : X → Rn, with X an
open subset of Rm, and a ∈ X , we denote by Dφ(a) the Jacobian matrix of φ
at a. If X ⊆ Rn, then we denote by cl(X) the closure of X in Rn, by Xo the
interior of X in Rn, and we let ∂X := cl(X) \X , and bd(X) := cl(X) \Xo.
For 0 < k < n, pnk denotes the projection map

Rn → Rk : (x1, . . . , xn) 7→ (x1, . . . , xk).

For a definable map φ : X → Rn, X ⊆ Rm, and i = 1, . . . , m, we denote by
φi the i-th coordinate function of φ. If a, b ∈ Rn, then [a, b] denotes the set
{(t−1)a+tb : t ∈ [0, 1]}, and (a, b) denotes the set {(1−t)a+tb : t ∈ (0, 1)}.
We recall now some definitions and the main result from [8]:

(R, V ) |= Σ(n) means that for every definable X ⊆ I1+n there is ǫ0 ∈ m
>0

such that stX(ǫ0) = stX(ǫ) for all ǫ ∈ m
>ǫ0 .

(R, V ) |= Σ means that (R, V ) |= Σ(n) for every n.

Theorem 1.1 ([8]) If (R, V ) |= Σ, then kind is o-minimal, and the subsets
of kn definable in kind are exactly the finite unions of sets stX \ st Y , where
X, Y ⊆ Rn are definable.

The question, whether, on the other hand, o-minimality of kind implies
(R, V ) |= Σ, was left unanswered. Here, we give a positive answer to it,
yielding the remarkable fact, that the o-minimality of kind is equivalent to
(R, V ) satisfying a first-order axiom scheme. More concretely, we obtain:

Theorem 1.2 The following conditions on (R, V ) are equivalent:

1. kind is o-minimal
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2. Σ(1)

3. Σ.

The implication 3 ⇒ 1 is Theorem 1.1, and 1 ⇒ 2 can be found in [5]. So
it is left to show Σ(1) ⇒ Σ. Note that by cell decomposition, and using the
definable homeomorphism

τ : R2 → (−1, 1)2 : (x1, x2) 7→ (
x1

√

1 + x21
,

x2
√

1 + x22
),

Σ(1) is equivalent to: for every definable f : R → R there is ǫ0 ∈ m
>0 such

that st f(ǫ0) = st f(ǫ) for all ǫ ∈ m
>ǫ0 .

Towards proving Σ(1) ⇒ Σ we use a reduction to definable families of
one-dimensional subsets of I2 from [5] (where it is stated for the case when
kind is o-minimal, but the proof does not use this assumption):

Lemma 1.3 ([5]) Let n ≥ 1, and suppose that for all definable X ⊆ I1+n

with dimX(r) ≤ 1 for all r ∈ I there is ǫ0 ∈ m
>0 such that stX(ǫ0) = stX(ǫ)

for all ǫ ∈ m
>ǫ0. Then (R, V ) |= Σ(n).

The above lemma will enable us to work mainly in the plane, but at the
cost of having to handle level curves of definable functions. The main result
on level curves is Lemma 2.4, which is proved in the first section. Its proof
uses the (two-variable version of the) Invariance of Domain Theorem for o-
minimal fields by Woerheide (see [10]):

Theorem 1.4 ([10]) Every injective definable, continuous map f : X →
Rn, where X ⊆ Rn, is open.

We remark that it is well-known that kind is always weakly o-minimal (this
follows from a result by Baisalov and Poizat in [1]). An example to the effect
that kind is not always o-minimal is given in [8]. Results of van den Dries
and Lewenberg (see [4]) show that kind is o-minimal if V is T -convex, where
T is the theory of R. Hrushovski, Peterzil and Pillay observe in [6] that kind

is o-minimal when R is sufficiently saturated and V is the convex hull of Q
in R.

Here is a related open question: Assume that (R, V ) |= Σ(1). Are the sets
stX , with X ⊆ Rn definable in (R, V ), definable in kind? (A positive answer
was given in [8] for the special case when R is ω-saturated and V is the
convex hull of Q in R.)

3



2 Level curves of definable functions

Definition 2.1 Let f : X → R be definable with X ⊆ Rn. We say that ǫ0 is
good for f if ǫ0 ∈ m

>0 and st f−1(ǫ0) = st f−1(ǫ) for all ǫ ∈ m
>ǫ0.

Lemma 2.2 Suppose (R, V ) |= Σ(1), and let f : X → R be definable, with
X ⊆ Rn of dimension one. Then there is ǫ0 good for f .

Proof: The case when there is no δ ∈ m
>0 and q > m such that [δ, q] ⊆

im(f) is trivial. So suppose δ ∈ m
>0 and q > m are such that [δ, q] ⊆

im(f). Then f−1([δ, q]) has finitely many definably connected components
X1, . . . , Xk. After possibly shrinking [δ, q] subject to the conditions δ ∈ m

>0

and q > m, we may assume that for every i, either f |Xi
is injective or constant.

If f |Xi
is constant and f(x) ∈ m

>0, where x ∈ Xi, then set ǫi := f(x).
If f |Xi

is constant and f(x) 6∈ m
>0, for x ∈ Xi, then set ǫi = 0. If f |Xi

is injective, then f |Xi
has an inverse, f−1. Apply Σ(1) to each coordi-

nate function (f−1)j of f−1 to obtain a positive infinitesimal ǫij such that
st f−1(ǫ) = st f−1(ǫij) for every ǫ ∈ m

>ǫij . Then put ǫi := maxj∈{1,...,n} ǫij .
Now set

ǫ0 := max
i=1,...,k

{ǫi}.

It is easy to see that ǫ0 is good for f . �

The following lemma is obvious.

Lemma 2.3 Let f : X → R, where X ⊆ Rn, be definable, and let X1, . . . , Xk

be a partition of X into definable sets. If ǫ1, . . . , ǫk are good for f |X1
, . . . , f |Xk

,
then max{ǫ1, . . . , ǫk} is good for f .

The proof of the next lemma is a little lengthy, but the idea is fairly
straight-forward, so here’s a rough outline: In order to find ǫ0 good for
G : X → R≥0 as in the statement of Lemma 2.4, we first show that, es-
sentially, the level curves of G are all uniformly definably homeomorphic to
I. Then we find a definable curve γ passing through the points of X where
|∇G| is minimal (o-minimality enables us to reduce to the case when G is
sufficiently nice). We use Σ(1) to find ǫ0 good for G|im(γ), and for G|bd(X).
Then we proceed to show that this ǫ0 is also good for G. We assume towards
a contradiction that it is not, hence some a ∈ G−1(ǫ), where ǫ ∈ m

>ǫ0, is at
noninfinitesimal distance from G−1(ǫ0). We would be done if this assump-
tion would enable us to find a definable curve in X , of length > m, such
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that at every point of the curve, the tangent vector to this curve points in
the direction of ∇G, and such that the image of G restricted to the curve
is [ǫ0, ǫ]. This would put us into the paradoxical situation that the steepest
path down a hill is much longer than a path which is less steep. To find a
curve as described above is not necessarily possible, but we define a curve α
(long, steep path down the hill) with the above properties, except that, at
every point x of α, the tangent vector to α is only reasonably close to ∇G(x).

Lemma 2.4 Suppose (R, V ) |= Σ(1), and let X ⊆ V 2 be a closed definable
set of dimension two, and let G : X → R≥0 be definable and continuous.
Then there is ǫ0 good for G.

Proof: The points (0, 1), ( 1√
2
, 1√

2
), (1, 0), ( 1√

2
,− 1√

2
), (0,−1), (− 1√

2
,− 1√

2
),

(−1, 0), and (− 1√
2
, 1√

2
) determine a partition of S1 ⊆ R2 into definable

S1, . . . , S16, such that Si
∼= (0, 1) for i = 1, . . . , 8, and Si is a singleton

for i = 9, . . . , 16.
By cell decomposition and Lemmas 2.2 and 2.3, we may assume that X

is the closure of a cell of dimension two such that G is C1 on Xo, and either
|∇G| = 0 on Xo, or |∇G| > 0 on Xo and there is i ∈ {1, . . . , 8} satisfying

− ∇G(x)
|∇G(x)| ∈ Si for all x ∈ Xo. If |∇G| = 0 on Xo, then G is constant on X ,

so we only need to consider the second option.
The case when G(X) does not contain an interval [δ, q], with δ ∈ m

>0 and
q > m is trivial. So let δ ∈ m

>0 and q > m be such that [δ, q] ⊆ G(X). Using
the Trivialization Theorem (1.7, p.147 in [2]), and after possibly shrinking
[δ, q], subject to δ ∈ m

>0 and q > m, and replacing X by G−1[δ, q], we obtain
a definable homeomorphism

h : X → [δ, q]×G−1(δ)

such that the diagram

X
h
> [δ, q]×G−1(δ)

[δ, q]
<

>

commutes, where X → [δ, q] is given by G and [δ, q]×G−1(δ) → [δ, q] is the
projection map on the first factor. So all G−1(t), for t ∈ [δ, q], are uniformly
definably homeomorphic, and we may assume that dimG−1(δ) = 1.
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By Lemma 2.3, we can reduce to the case when X is definably connected.

Claim 1. G−1(δ) is definably connected.
The set X is closed and definably homeomorphic to G−1(δ)× I. Assume

towards a contradiction that G−1(δ) = Y1∪̇Y2, where Y1, Y2 are definable,
nonempty and closed in G−1(δ). Then Y1, Y2 are also closed in X , and

X ∼= (Y1∪̇Y2)× I ∼= (Y1 × I)∪̇(Y2 × I),

a contradiction with X being definably connected.

For x = (x1, x2) ∈ V 2 and r > 0 we let

Br(x) := [x1 − r, x1 + r]× [x2 − r, x2 + r].

Claim 2. Let Y ⊆ V 2 be definable, definably connected, and closed. If for
every y ∈ Y , there is r > 0 such that Br(y) ∩ Y ∼= I, then either Y ∼= S1 or
Y ∼= I.

Let S be a stratification of Y . Then Y is a finite union of 0-dimensional
cells p1, . . . , pk ∈ S, and 1-dimensional cells q1, . . . , ql ∈ S, where k ≥ 2 and
l ≥ 1. Every qi is definably homeomorphic to an open interval, and with
every qi, Y contains its endpoints among p1, . . . , pk. On the other hand,
every pj is the endpoint of one or at most two of the qi’s. Now use the fact
that Y is definably connected.

Claim 3. G−1(δ) ∼= S1 or G−1(δ) ∼= I.
It suffices to prove G−1(t) ∼= S1 or G−1(t) ∼= I for t ∈ (δ, q). So let t ∈

(δ, q), and assume towards a contradiction that G−1(t) 6∼= S1 and G−1(t) 6∼= I.
By Claims 1 and 2, we can find a ∈ G−1(t) and r0 > 0 with G−1(t)∩Br(a) 6∼= I
for all r ∈ (0, r0). Hence, for all r ∈ (0, r0), G

−1(t) ∩ Br(a) is definably
homeomorphic to the union of k ≥ 3 closed line segments l1, . . . , lk such that
each li has a as an endpoint, and

⋂k
i=1 li = {a} (we identify a here with its

homeomorphic image). So let r ∈ (0, r0), and let

φ : (
k
⋃

i=1

li)× I → X ∩Br(a)

be a definable homeomorphism. We can map (−1, 1)2 into φ((l1 ∪ l2) ×
I) via a definable, continuous, injective map θ : (−1, 1)2 → X such that
θ(0, 0) = a. Then im(θ) is not open in X . Now Xo ∼= (−1, 1)2 via a definable
homeomorphism ψ, so ψ ◦ θ : (−1, 1)2 → R2 yields a definable, injective,
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continuous map which does not map (−1, 1)2 onto an open subset of R2, a
contradiction with Theorem 1.4.

We assume from now on that G−1(t) ∼= I for all t ∈ [δ, q]. The case when
G−1(t) ∼= S1 is similar, but simpler, and left to the reader.

Construction of ǫ0 good for G: Let {φt : t ∈ [δ, q]} be a definable family of
homeomorphisms φt : [0, 1] → G−1(t). For t ∈ (δ, q) we set

|∇G(φt(0))| := lim
s→0

|∇G(φt(s))|, and |∇G(φt(1))| := lim
s→1

|∇G(φt(s))|,

where

∇G(φt(s)) = (
∂G

∂x1
(φt(s)),

∂G

∂x2
(φt(s))),

for s ∈ (0, 1). The above limits exist in R∪ {−∞,∞} by o-minimality. Now
set

xt := min{|∇G(x)| : x ∈ G−1(t)},
Ht := {x ∈ G−1(t) : |∇G(x)| = xt},

where t ∈ (δ, q), and let H :=
⋃

t∈(δ,q)Ht.
By definable choice, and after replacing δ by a bigger δ ∈ m

>0, and replac-
ing q by a possibly smaller q > m, we can find a definable map γ : [δ, q] → H
with G(γ(t)) = t for every t ∈ [δ, q]. Next, find ǫ′ ∈ m

>0 good for G|im(γ),
and ǫ′′ ∈ m

>0 good for G|bdX , and set

ǫ0 := max{ǫ′, ǫ′′}.

The rest of the proof consists of showing that ǫ0 is indeed good for G.
First, assume towards a contradiction that ǫ ∈ m

>ǫ0 and a ∈ G−1(ǫ) are
such that d(a,G−1(ǫ0)) > m. By continuity of G, we may as well assume
that a 6∈ bdX . We now proceed to define what we called in the remark just
before Lemma 2.4 “a long, steep path down the hill”.

Construction of α: It is clear that ∇G is defined and continuous on Xo =
(G−1([δ, q]))o. Let i be such that − ∇G(x)

|∇G(x)| ∈ Si on X
o, and set w := − ∇G(a)

|∇G(a)| .

Since a 6∈ bdX , for all sufficiently small t > 0, a + tw ∈ (G−1([ǫ0, ǫ]))
o. Let

t0 be the first t > 0 such that a+ t0w ∈ bdG−1([ǫ0, ǫ]). We set b := a + t0w,
and define α : [0, 1] → X by

α(t) = (1− t)a + tb.
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From now on let α be as in “Construction of α”.

Claim 4. G(α) is strictly decreasing.
Assume towards a contradiction that we can find t1 ∈ (0, 1) so that

(G◦α)′(t1) ≥ 0. By the definition of α, G(α(0)) > G(α(t)) for all sufficiently
small t > 0. Then, by the Mean Value Theorem, (G ◦ α)′(t2) = 0 for some
t2 ∈ (0, t1]. But

(G ◦ α)′(t2) = ∇G(α(t2)) ·Dα(t2),
hence ∇G(α(t2)) and Dα(t2) are orthogonal, a contradiction with the defi-
nition of α.

Claim 5. d(a, b) > m.
To see this, first observe that either b ∈ G−1(ǫ0), or b ∈ bdX . If b ∈

G−1(ǫ0), then the claim is just the assumption that d(a,G−1(ǫ0)) > m. If
b ∈ bdX , then use d(a, b)+d(b, G−1(ǫ0)) > m and d(b, G−1(ǫ0)) ∈ m

>0 (since
ǫ0 is good for G|bdX).
Construction of β: Note that |∇G(x)| > 0 for all x ∈ im(α|[0,1)), since
im(α|[0,1)) ⊆ Xo. If |∇G(b)| = 0, then replace b by an element in im(α)
which is infinitely close to the original b. Now define

m0 := min{|∇G(x)| : x ∈ im(α)} > 0.

For t ∈ [ǫ0, ǫ] let

Kt := {x ∈ G−1(t) ∩Xo : |∇G(x)| − xt < m0 and d(x, γ(t)) < ǫ0},

note that every Kt is nonempty, and put K :=
⋃

t∈[ǫ0,ǫ]Kt. By curve selection,
we can find a definable map β : [ǫ0, ǫ] → K with G(β(t)) = t.

Let ǫ1, ǫ2 ∈ [ǫ0, ǫ] be such that

G(b) ≤ ǫ1 < ǫ2 ≤ ǫ,

d(c, d) > m, for c, d ∈ im(α) with G(c) = ǫ1, G(d) = ǫ2, and β|(ǫ1,ǫ2) is
C1. By Lemma 10.8, p.204 in [3]1 we may further assume that s is an
orthogonal linear transformation of R2 such that s(im(β|(ǫ1,ǫ2))) = Γφ, where

φ : p21s(im(β|(ǫ1,ǫ2))) → R is C1, and | ∂φ
∂x1

| < 1 on p21s(Γφ).

1Lemma 10.8 in [3] is an adaptation of Kurdyka and Raby’s subanalytic Proposition
1.4 in [7]. In [3] it is stated for an elementary extension of an o-minimal expansion of the
real field, but the proof goes through for any o-minimal field.
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Let x ∈ (c, d) and t = G(x). Then, by the definition of α,

|∇G(x)|√
2

≤ |∇G(x) · w| ≤ |∇G(x)|. (1)

By the definition of β,

|∇G(β(t))| −m0 ≤ xt ≤ |∇G(x)|,

so
|∇G(β(t))| ≤ |∇G(x)|+m0,

and thus
|∇G(β(t))| ≤ 2|∇G(x)|,

and, using inequality (1), we obtain

|∇G(β(t)) · τ | ≤ 2
√
2|∇G(x) · w|, (2)

where τ is the unit tangent vector to im(β) at β(t).

We now use α and β to define two one-variable functions, hα and hβ respec-
tively, which behave in a non-permissible way.

Let hβ : p
2
1Γφ→ (ǫ1, ǫ2) be the function

hβ(x) = G(s−1(x, φ(x))).

By the definition of β, ǫ0 is good for G|im(β), hence any two points in im(β)
are infinitely close to each other. It follows that |p21Γφ| ∈ m

>0. For x ∈ p21Γφ
we have

|h′β(x)| = |∇G(s−1(x, φ(x))) ·Ds−1(x, φ(x)) ·D(idR, φ)(x)|.

Since Ds−1(x, φ(x)) · D(idR, φ)(x) is just cτ , where c ∈ [1,
√
2), and τ is

the unit tangent vector to im(β) at s−1(x, φ(x)), it follows that for every
x ∈ p21Γφ there is c ∈ [1,

√
2) such that

|h′β(x)| = c|∇G(s−1(x, φ(x))) · τ |. (3)

Next, note that either the projection p1 : R
2 → R : (x1, x2) 7→ x1 or the

projection p2 : R
2 → R : (x1, x2) 7→ x2 maps (c, d) onto an open interval of

9



finite, noninfinitesimal length. Say |p1(c, d)| > m (the other case is similar),
and assume for simplicity c1 < d1. Define hα : p1(c, d) → (ǫ1, ǫ2) by

hα(x) = G((p1|(c,d))−1(x)).

Then for all x ∈ p1(c, d),

|h′α(x)| = |∇G((p1|(c,d))−1(x)) ·
(

1
d2−c2
d1−c1

)

|,

hence
|h′α(x)| = λ|∇G((p1|(c,d))−1(x)) · w|, (4)

for some λ ∈ V >m.
Let x ∈ (c, d) and y ∈ im(β) be such that G(x) = G(y). Then inequality

(2) and equations (3) and (4) yield that for some λ ∈ V >0, |h′β(y)| ≤ λ|h′α(x)|.
Then, by Claim 4, the inverses of hα and hβ yield two definable, contin-

uous, strictly monotone functions (ǫ1, ǫ2) → R, with the image of h−1
α an in-

terval of length > m, the image of h−1
β an interval of infinitesimal length, and

such that for every t ∈ (ǫ1, ǫ2) there is λ ∈ V >0 with λ|(h−1
β (t))′| ≥ |(h−1

α (t))′|,
a contradiction.

We have shown stG−1(ǫ) ⊆ stG−1(ǫ0). It is left to see that stG−1(ǫ0) ⊆
stG−1(ǫ). Assume towards a contradiction that we can find x ∈ G−1(ǫ0) such
that d(x,G−1(ǫ)) > m. Then we construct a definable map [0, 1] → X whose
image at 0 is x, the image at 1 lies in bdG−1([ǫ0, ǫ]), and the restriction of
G to the image of this curve is strictly increasing, just as we constructed α,
except that we set w := ∇G(x)

|∇G(x)| , and we obtain a contradiction similarly as
in the proof of the other inclusion.

�

3 Σ(1) ⇒ Σ

Definition 3.1 A small path is a definable, continuous map γ : [0, r] → X,
with definable X ⊆ Rn and r ∈ R>0, such that st γ(0) = st γ(t) for all
t ∈ [0, r].

Lemma 3.2 Let C = (f, g) ⊆ V 2 be a cell of dimension two, and let a ∈ ∂C.
Then there is a′ ∈ C and a small path γ : [0, r] → cl(C) such that γ(0) = a,
γ(r) = a′, and γ(0, 1] ⊆ C.
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Proof: By curve selection, we can find a definable and continuous map
γ : [0, r] → X , for some r > 0, such that γ(0) = a, and d(a, γ(t)) = t for
every t ∈ [0, r]. We may assume that r ∈ m

>0, and we set a′ = γ(r). Then
a′ and γ have the required properties. �

Lemma 3.3 Let C = (f, g) ⊆ V 2 be a cell of dimension two, and assume
that f , g are C1 and f ′, g′ have constant sign on p21C.

a) If a, b ∈ C are such that st a = st b, then there is a small path γ : [0, 1] → C
with γ(0) = a and γ(1) = b.

b) If a, b ∈ cl(C) are such that st a = st b, then there is a small path γ : [0, 1] →
cl(C) with γ(0) = a, γ(1) = b, and such that γ(0, 1) ⊆ C.

Proof: First, let a, b ∈ C with st a = st b. If a1 = b1, then we define
γ(t) = (1 − t)a + tb, for t ∈ [0, 1]. So assume that a1 6= b1, say a1 < b1 and
define γ : [a1, b1] → I2 by γ(t) = (t, b2−a2

b1−a1
(t− a1) + a2). Let

a1 < t1 < · · · < tk < b1

be such that
γ(t1, t2), γ(t3, t4), . . . , γ(tk−1, tk)

have empty intersection with C, and

γ(a1, t1), γ(t2, t3), . . . , γ(tk, b1)

are subsets of C. Note that then k is even, and let i ∈ {1, . . . , k
2
}. Then either

γ(t2i−1), γ(t2i) ∈ cl(Γf), or γ(t2i−1), γ(t2i) ∈ cl(Γg). Assume γ(t2i−1), γ(t2i) ∈
cl(Γf) (the other case is similar). Note that st a2 = st f(t2i−1) = st f(t) for
every t ∈ [t2i−1, t2i], since f

′ has constant sign on p21C. Find δ ∈ m
>0 such

that
δ < min{t2i−1 − t2i−2, t2i+1 − t2i},

and

γ2(t2i−1 − δ)− f(t2i−1 − δ) ∈ m
>0, γ2(t2i + δ)− f(t2i + δ) ∈ m

>0.

Then g(x)− f(x) > 0 on [t2i−1 − δ, t2i + δ]. Take ǫ ∈ m
>0 such that

ǫ < min{g(x)− f(x) : x ∈ [t2i−1 − δ, t2i + δ]}.
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Define αi : [t2i−1 − δ, t2i + δ] → C by

αi(t) = (t, f(t) + ǫ) for t ∈ (t2i−1 −
δ

2
, t2i +

δ

2
),

αi(t) = (t, (1− 2

δ
(t− t2i−1 + δ))γ2(t2i−1 − δ) +

2

δ
(t− t2i−1 + δ)(f(t2i−1 −

δ

2
) + ǫ))

when t ∈ [t2i−1 − δ, t2i−1 −
δ

2
],

αi(t) = (t, (1− 2

δ
(t− t2i −

δ

2
))(f(t2i +

δ

2
) + ǫ) +

2

δ
(t− t2i −

δ

2
)γ2(t2i + δ))

whenever t ∈ [t2i +
δ

2
, t2i + δ].

(So αi|[t2i−1−δ,t2i−1− δ
2
] is a parametrization of the line segment

[γ2(t2i−1 − δ), f(t2i−1 −
δ

2
) + ǫ],

and αi|[t2i+ δ
2
,t2i+δ] is a parametrization of [f(t2i +

δ
2
) + ǫ, γ2(t2i + δ)].) For

every i ∈ {1, . . . , k
2
} replace γ|[t2i−δ,t2i+δ] by αi. The resulting map is, after a

linear change of variables, as required.
To prove the second part of the lemma, use Lemma 3.2 to find a′, b′ ∈ C

and small paths γ1 : [0, r] → cl(C), γ2 : [0, r] → cl(C) such that γ1(0) = a,
γ1(r) = a′, γ2(0) = b, γ2(r) = b′, and γ1(0, r] ⊆ C, γ2(0, r] ⊆ C. Then
use the first part of the lemma to find a small path γ3 : [0, 1] → C with
γ3(0) = a′, γ3(1) = b′, and im(γ) ⊆ C. After a linear changes of variables,
γ1 : [0,

1
3
] → cl(C), γ3 : [

1
3
, 2
3
] → C, and γ2 : [

2
3
, 1] → cl(C). Then define

γ : [0, 1] → cl(C) by γ(t) = γ1(t) if t ∈ [0, 1
3
], γ(t) = γ3(t) if t ∈ (1

3
, 2
3
), and

γ(t) = γ2(t) if t ∈ [2
3
, 1]. Clearly, γ satisfies the requirements. �

Lemma 3.4 Let (f, g) ⊆ V 2 be a cell of dimension two such that f , g are
C1 and f ′, g′ have constant sign on p21(f, g). Let h : (f, g) → R be definable
and C1 and such that | ∂h

∂x1

|, | ∂h
∂x2

| < 1. Then st h(a) = st h(b) whenever
a, b ∈ (f, g) are such that st a = st b. If moreover h extends continuously
to clh : cl(f, g) → R, then st clh(a) = st clh(b) whenever a, b ∈ cl(f, g) with
st a = st b.

Proof: Let a, b ∈ (f, g) be such that st(a) = st(b). Then, by Lemma 3.3,
we can find a small path γ : [0, 1] → (f, g) with γ(0) = a and γ(1) = b.
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By Lemma 10.8 in [3], we can partition im(γ) into definable X1, . . . , Xk+1,
where dimXk+1 = 0, and we can find orthogonal linear transformations
s1, . . . , sk of R2, such that for i = 1, . . . , k, siXi is the graph of a definable
C1-function φi : p

2
1siXi → V on an open p21siX ⊆ V with |φ′

i| < 1 on p21siXi.
We may assume that each Γφi is a cell, and we let clφi be the continuous
extension of φi to cl(p21siXi) → R.

Define Hi : cl(p
2
1siXi) → R by

Hi(x) = h(s−1
i (x, clφi(x))).

Assume towards a contradiction that st h(a) 6= st h(b). For i = 1, . . . , k,
let xi, yi ∈ R be such that (xi, yi) = p21siXi. Then for some i, stHi(xi) 6=
stHi(yi). However, |xi − yi| ∈ m

>0 (as si is an isometry), and

|H ′
i(t)| = |∇h(s−1

i (t, φi(t))) ·Ds−1
i (t, φi(t)) ·D(idR, φi)(t)| ∈ V >0,

for t ∈ (xi, yi), a contradiction with the mean value theorem.
Assume now that h extends continuously to clh : cl(f, g) → R and let

a, b ∈ cl(f, g) be such that st a = st b. By continuity of clh and the proof of
Lemma 3.2 we can find a′, b′ ∈ (f, g) infinitely close to a and to b respectively,
and small paths α : [0, r] → cl(f, g), β : [0, r] → cl(f, g), where r > 0, so that
α(0) = a, α(r) = a′, β(0) = b, β(r) = b′, α(0, r], β(0, r] ⊆ (f, g), and

|clh(a)− h(α(t))|, |clh(b)− h(β(t))| ∈ m
>0

for all t ∈ (0, r]. Now use the first part of the lemma to find a small path
γ : [0, 1] → (f, g) with γ(0) = a′ and γ(1) = b′. It is now obvious how to
construct the desired map from α, β, and γ. �

Lemma 3.5 Let C = (f, g) ⊆ V 2 be a cell of dimension two such that f ,
g are C1 and f ′, g′ have constant sign on p21C. Let further h : C → R be
definable and C1, with | ∂h

∂x1

|, | ∂h
∂x2

| < 1, and Γh ⊆ V 3. Then h extends
continuously to a definable function clh : cl(C) → R.

Proof: We first show that cl(Γh) is the graph of a function. By Lemma
3.4, st Γh is the graph of a function, and st Γh = st cl(Γh). So if there are
x, y ∈ cl(Γh) with p32x = p32y and x3 6= y3, then |x3 − y3| ∈ m

>0. Set
δ := |x3 − y3|, let m′ be the maximal ideal

{x ∈ R : |x| < δq for all q ∈ Q>0},
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and let V ′ be the corresponding valuation ring with residue map st′ : V ′ → k
′.

Then V ⊆ V ′. Since Lemma 3.4 holds for any choice of V , st′ Γh = st′ cl(Γh)
is again the graph of a function, a contradiction with δ 6∈ m

′.
By Lemma 1.7, p.95 in [2], cl(C) = p32cl(Γh). We let clh be the function

cl(C) → R whose graph is the set cl(Γh). To see that clh is continuous,
assume towards a contradiction that a ∈ cl(C) and ǫ > 0 are such that for
every δ > 0, we can find xδ ∈ clC with d(xδ, a) < δ and |clh(a)−clh(xδ)| > ǫ.
Then curve selection yields a definable and continuous γ : (0, r] → cl(C),
r > 0, with limt→0 γ(t) = a, d(γ(t), a) = t, and |clh(γ(t)) − clh(a)| > ǫ.
Then, since cl(Γh) is bounded, limt→0 clh(γ(t)) exists in R, and since cl(Γh)
is closed, limt→0 clh(γ(t)) ∈ Γclh, a contradicition with clh being a function.
�

Theorem 3.6 Σ(1) ⇒ Σ.

Proof: Assume that (R, V ) |= Σ(1), and let X ⊆ I1+n be definable. By
Lemmas 1.3 and 2.2, towards proving Σ(n), we may assume that X is of
dimension two, and pn+1

1 X = (0, 1).
By Lemma 10.8 from [3], we can find a partition of X into definable sets

X1, . . . , Xk+1, where dimXk+1 < 2, and orthogonal linear transformations
s1, . . . , sk of Rn+1, such that each siXi is the graph of a definable C1-map
φi : p

n+1
2 siXi → Rn−1 on an open pn+1

2 siXi ⊆ R2 and |∂φij

∂xl
| < 1 on pn+1

2 siXi

for l = 1, 2 and j = 1, . . . , n− 1.
Let i ∈ {1, . . . , k}, and set, for the sake of simplicity, X := Xi, s := si,

and φ := φi. By cell decomposition, we may assume that sX is a cell such
that pn+1

2 sX = (g, h), where g, h : p21(g, h) → R are definable and C1, and g′,
h′ have constant sign on p21(g, h).

By Lemma 3.5 each coordinate function φj of φ extends continuously to

clφj : cl(p
n+1
2 sX) → R.

We set
clφ := (clφ1, . . . , clφn−1),

and one easily checks, using cl(Γφj) = Γ(clφj) and the continuity of clφj for
all j, that

cl(X) = s−1(cl(sX)) = s−1(Γclφ).

Let F : cl(X) → [0, 1] be the coordinate projection (x1, . . . , xn+1) 7→ (x1),
and define G : cl(pn+1

2 sX) → R≥0 by

G(x) := F (s−1(x, clφ(x))).
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Since G is continuous, Lemma 2.4 yields ǫ0 good for G. We claim that ǫ0 is
also good for F .

To see that stF−1(ǫ) ⊆ stF−1(ǫ0), let x ∈ F−1(ǫ), for some ǫ ∈ m
>ǫ0 .

Our aim is to show that d(x, F−1(ǫ0)) ∈ m
>0. We have pn+1

2 s(x) ∈ G−1(ǫ),
hence d(pn+1

2 s(x), G−1(ǫ0)) = δ for some δ ∈ m
>0. Take y ∈ G−1(ǫ0) such

that d(pn+1
2 s(x), y) = δ. Then, by the assumption on g′ and h′, and since

|∂φj

∂x1

|, |∂φj

∂x2

| < 1 for j = 1, . . . , n − 1, Lemma 3.4 applied to each coordinate

function of φ yields d(sx, (y, clφ(y))) ∈ m
>0. Now F (s−1(y, clφ(y)) = ǫ0, and,

since s is an isometry,

d(x, s−1(y, clφ(y))) ∈ m
>0.

Similarly, one shows that stF−1(ǫ0) ⊆ stF−1(ǫ).
By Lemma 2.2, we can find ǫk+1 good for Xk+1 → (0, 1) : x 7→ x1, and by

the above, we can find ǫi good for Xi → (0, 1) : x 7→ x1 for each i = 1, . . . , k.
Then ǫ0 := maxi=1,...,k+1{ǫi} is such that stX(ǫ0) = stX(ǫ) for all ǫ ∈ m

>ǫ0 .

�

Theorem 1.2 from the introduction now follows.

Acknowledgments An earlier version of the proof of Lemma 2.4 uses
a consequence of Shiota’s Hauptvermutung for o-minimal fields (see [9]),
instead of the Invariance of Domain Theorem. The present version is shorter,
but nevertheless inspired by Shiota’s striking result.

I thank Lou van den Dries for his interest in and comments on this paper.
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