
Lower Complexity Bounds in Justification Logic

Samuel R. Bussa,1, Roman Kuznets∗,b,2

aDepartment of Mathematics, University of California, San Diego
La Jolla, CA 92093-0112, USA

bInstitut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland

Abstract

Justification Logic studies epistemic and provability phenomena by introducing justi-
fications/proofs into the language in the form of justification terms. Pure justification
logics serve as counterparts of traditional modal epistemic logics, and hybrid logics
combine epistemic modalities with justification terms. Thecomputational complex-
ity of pure justification logics is typically lower than thatof the corresponding modal
logics. Moreover, the so-called reflected fragments, whichstill contain complete infor-
mation about the respective justification logics, are knownto be in NP for a wide range
of justification logics, pure and hybrid alike. This paper shows that, under reasonable
additional restrictions, these reflected fragments are NP-complete, thereby proving a
matching lower bound. The proof method is then extended to provide a uniform proof
that the corresponding full pure justification logics areΠp

2-hard, reproving and gener-
alizing an earlier result by Milnikel.

1. Introduction

Justification Logic is an emerging field that studies provability, knowledge, and
belief via explicit proofs or justifications that are part ofthe language. A justification
logic is essentially a refined analogue of a modal epistemic logic. Whereas the latter
uses�F to indicate thatF is known to be true, a justification logic usest : F instead,
wheret is a term that describes a ‘justification’ or proof ofF. This construction enables
justification logics to reason about both formulas and proofs at the same time, avoiding
the need to treat provability at the metalevel.

Because Justification Logic can reason directly about explicit proofs, it provides
more concrete and constructive analogues of modal epistemic logics. For example, the
modal distribution axiom�(F → G)→ (�F → �G) is replaced in Justification Logic
by the axioms : (F → G) → (t : F → (s · t) : G). The latter replaces the distribu-
tion axiom with a computationally explicit construction. Justification logics are very

∗Corresponding author
Email addresses:sbuss@ucsd.edu (Samuel R. Buss),kuznets@iam.unibe.ch (Roman Kuznets)

1Partially supported by NSF grant DMS–0700533.
2Supported by Swiss National Science Foundation grant 200021–117699. The initial stages of the re-

search were partially supported by a CUNY Graduate Center Research Grant for Doctoral Students.

Preprint submitted to Elsevier April 22, 2009

promising for structural proof theory and have already proved to be fruitful in finding
new approaches to common knowledge ([3]), the Logical Omniscience Problem ([6]),
and self-referentiality of proofs ([19]). For further discussion on the various applica-
tions of Justification Logic, see [5].

The goal of the present paper3 is to provide a uniform method of proving lower
bounds for the Derivability Problems in various justification logics and their reflected
fragments by reduction from problems similar to the Vertex Cover Problem. We begin
by reviewing some definitions of justification logics.

The historically first justification logic, the Logic of Proofs LP, was introduced
by Sergei Artemov [1] to provide a provability semantics forthe modal logicS4 (see
also [2]). The language ofLP

F ::= p | ⊥ | (F → F) | t :F ,

t ::= x | c | (t · t) | (t + t) | ! t

contains an additional operatort : F, read ‘termt serves as a justification/proof of
formulaF.’ Here p stands for a sentence letter,x for a justification variable, andc for
a justification constant. Formulas of the formt :F are calledjustification assertions.

Statementst : F can be seen as refinements of modal statements�F because the
latter say thatF is known, whereas the former additionally provide a rationale for
such knowledge. This relationship is demonstrated throughthe recursively defined
operation offorgetful projectionthat maps justification formulas to modal formulas:
(t : F)◦ = �(F◦), and commutes with Boolean connectives: (F → G)◦ = F◦ → G◦,
wherep◦ = p and⊥◦ = ⊥.

Axioms and rules ofLP:

A1. A complete axiomatization of classical propositional logic by finitely many axiom
schemes; rule modus ponens;

A2. Application Axiom s: (F → G)→ (t :F → (s · t) :G);

A3. Monotonicity Axiom s:F → (s+ t) :F, t :F → (s+ t) :F;

A4. Factivity Axiom t :F → F;

A5. Positive Introspection Axiom t:F → ! t : t :F;

R4. Axiom Internalization Rule
c:A

,

whereA is an axiom ofLP andc is a justification constant.

LP is the exact counterpart ofS4 (note the similarity of their axioms): namely, let
X◦ = {F◦ | F ∈ X} for a setX of justification formulas and letLP be identified with the
set of its theorems, then

Theorem 1(Realization Theorem, [1, 2]). LP◦ = S4.

3An earlier version of this paper appeared in the proceedingsof LFCS 2009 ([10]).

2

Table 1: Axioms for Justification Logics

Justification Present
axiom scheme in logics

A4. t :F → F JT, LP
A5. t :F → ! t : t :F J4, JD4, LP
A7. t :⊥ → ⊥ JD, JD4

Other epistemic modal logics have their own justification counterparts in the same
sense. Counterparts of the modal logicsK, D, T, K4, and D4 were developed by
Vladimir Brezhnev in [9]. These justification logics, namedJ, JD, JT, J4, andJD4
respectively, are all subsystems ofLP and share the A1–A3 portion of its axiom sys-
tem. The remaining two axiom schemes are included dependenton whether or not
their forgetful projections are axioms of the respective modal logic. In addition,JD and
JD4 require a new axiom scheme:4

A7. Consistency t :⊥ → ⊥,

whose forgetful projection is the modal Seriality Axiom. Complete details can be found
in Table 1.

Finally, the rule R4 forJ4 andJD4 is written the same way as forLP, but of course
it now applies to the axioms ofJ4, respectivelyJD4. The logics without the Positive
Introspection Axiom A5 still require some restricted form of positive introspection for
constants which is embedded into the Axiom InternalizationRule:

R4! . Axiom Internalization Rule
! ! · · ·!
︸︷︷︸

n

c: . . . : ! ! c: ! c:c:A
,

whereA is an axiom of the logic,c is a justification constant,
andn ≥ 0 is an integer.

This form of the Axiom Internalization Rule is used forJ, JD, andJT.

Theorem 2(Realization Theorem, [9]).

J◦ = K, JD◦ = D, JT◦ = T,

J4◦ = K4, JD4◦ = D4.

All these justification logics arepure in the sense that only terms are present in the
language, but not modalities. In [3], Artemov studiedhybrid justification logicsTnLP,
S4nLP, andS5nLP. These combine terms with modalities for several agents (a single-
agent variantS41LP was originally developed by Artemov jointly with Elena Nogina,
see [7]).

Axioms and rules ofTnLP, S4nLP, and S5nLP:
Let ML ∈ {T,S4,S5}.

4The apparent break in the numeration of axioms is due to the Negative Introspection Axiom A6 that
remains outside the scope of this paper. The numbering of rules follows [4].

3

1. Axioms and rules of the multimodal logicMLn.

2. Axioms and rules of the justification logicLP.

3. Connection axiom. For eachi = 1, . . . , n, t :F → �iF.

The Axiom Internalization Rule R4 in 2. is extended to apply to all axioms ofMLnLP.
For some applications (e.g., to avoid Logical Omniscience [6] or to study self-

referentiality [19]) the use of constants needs to be restricted; this is achieved using
constant specifications. A constant specificationCS for a justification logicJL is a set
of instances of the rule R4 for this logic:

CS ⊆ {c:A | A is an axiom ofJL, c is a justification constant} .

Given a constant specificationCS for JL, the logicJLCS is the result of replacing the
Axiom Internalization Rule inJL (R4 or R4!) by its relativized version, respectively
by:

R4CS.
c:A ∈ CS

c:A
;

R4!
CS

.
c:A ∈ CS

! ! · · · !
︸ ︷︷ ︸

n

c: . . . : ! ! c: ! c:c:A
,

wheren ≥ 0 is an integer.

The Realization Theorem holds for a pure justification logicJL with a constant
specificationCS, i.e., (JLCS)◦ = ML = JL◦, iff CS is axiomatically appropriate:

Definition 3. A constant specificationCS for a logicJL is called:

• axiomatically appropriate5 if every axiom ofJL is justified by at least one constant;

• schematic6 if each constant justifies several (maybe 0) axiom schemes and only
them;

• schematically injective7 if it is schematic and each constant justifies no more than
one axiom scheme.

The following is the fundamental property of justification logics, closely related to
the Realization Theorem:

Lemma 4 (Constructive Necessitation. [1, 3, 4]). LetCS be an axiomatically appro-
priate constant specification for a justification logicJL. For any theorem F ofJLCS,
there exists a+-free ground8 justification term s such thatJLCS ⊢ s:F.

5The term is due to Melvin Fitting.
6The term is due to Robert Milnikel although the idea goes backto Alexey Mkrtychev.
7The term is due to Milnikel.
8A justification term is calledgroundif it contains no occurrences of justification variables.

4

Whereas it is well known that the Derivability Problems for the modal logicsK, D,
T, K4, D4, andS4 are PSPACE-complete ([20]), it was shown that

Theorem 5 ([15, 18]). Let JL ∈ {J, JD, JT, J4, LP} andCS be an axiomatically ap-
propriate constant specification9 for JL. Then the Derivability Problem forJLCS is
in Πp

2.

In particular,LP itself is inΠp
2. (The complexity ofJD4CS remains open, see [18].)

Robert Milnikel proved some matching lower bounds, namely:

Theorem 6([21]).

1. LPCS is Πp
2-hard providedCS is axiomatically appropriate and schematically

injective;

2. J4CS isΠp
2-hard providedCS is axiomatically appropriate and schematic.

The so-calledreflected fragmentrLP of the Logic of Proofs was studied by Nikolai
Krupski in [14].

Definition 7. For any justification logicJLCS with a constant specificationCS, the
reflected fragmentof the logic consists of all provable justification assertions:

rJLCS = {t :F | JLCS ⊢ t :F} .

We will write rJLCS ⊢ t : F to meant : F ∈ rJLCS. At the end of this section, we will
present an axiomatization for several reflected fragments via ∗-calculi, which would
make the use of⊢more natural.

A reflected fragment bears complete information about the underlying logic as the
following theorem shows:

Theorem 8 ([14, 17]). Let JL ∈ {J, JD, JT, J4, JD4, LP,TnLP,S4nLP,S5nLP} and
CS be an axiomatically appropriate constant specification forJL. Then

JLCS ⊢ F ⇐⇒ (∃t)rJLCS ⊢ t :F .

(The requirement of axiomatic appropriateness is necessary only for the=⇒-direction.)

The=⇒-direction constitutes the Constructive Necessitation Property (Lemma 4).
The⇐=-direction easily follows from the Factivity Axiom A4 for all logics butJ, JD,
J4, andJD4 that do not have Factivity. For these four logics, the statement can be
proved semantically using F-models (see [12] for their description) or syntactically by
transforming a derivation oft : F in the respective∗-calculus into a derivation ofF in
the underlying justification logic (the details of this transformation can be found in [17,
proof of Lemma 3.4.10]).

Theorem 9 ([14, 17]). Let JL ∈ {J, JD, JT, J4, JD4, LP,TnLP,S4nLP,S5nLP} and
CS be a schematic constant specification forJL. The Derivability Problem forrJLCS,
the reflected fragment ofJLCS, is in NP.

9In all complexity results, we always assumeCS to be polynomial-time decidable.

5

Table 2:∗-Calculi

Calculus Axioms and rules Used for
∗CS ∗CS

! , ∗A2, ∗A3 rJCS, rJDCS, rJTCS
∗!CS ∗CS, ∗A2, ∗A3, ∗A5 rJ4CS, rJD4CS, rLPCS,

rTnLPCS, rS4nLPCS, rS5nLPCS

To prove Theorem 9 forrLPCS, N. Krupski developed an axiomatization forrLPCS
that we will call the∗!CS-calculus.

Axioms and rules of the∗!CS-calculus:

∗CS. Axioms: for anyc:A ∈ CS, c:A;

∗A2. Application Rule
s: (F → G) t :F

s · t :G
;

∗A3. Sum Rule
s:F

s+ t :F
,

t :F
s+ t :F

;

∗A5. Positive Introspection Rule
t :F

! t : t :F
.

In [17], this calculus was shown to also axiomatize the logics rJ4CS, rJD4CS, rTnLPCS,
rS4nLPCS, andrS5nLPCS. In particular, the three logicsLPCS, J4CS, andJD4CS all use
the∗!CS-calculus to axiomatize their reflected fragments. The reflected fragmentsrJCS,
rJDCS, andrJTCS of the three theories which do not have positive introspection are all
axiomatized by the∗CS-calculuswhich is obtained by omitting the rule∗A5 from the
∗!CS-calculus while simultaneously extending the set of axiomsto include:

∗CS
!. Axioms: for anyc:A ∈ CS and any integern ≥ 0, ! ! · · · !

︸ ︷︷ ︸

n

c: . . . : ! ! c: ! c:c:A.

Note that axioms∗CS are instances of∗CS! with n = 0. Therefore,∗CS can be used
both in the∗CS- and the∗!CS-calculi.

We collectively call the∗CS- and the∗!CS-calculi the∗-calculi, which are summa-
rized in Table 2. As can be seen from the preceding discussionand the summarizing
table, there are only two calculi that axiomatize the reflected fragments of various pure
and hybrid justification logics. More precisely, the rules of the ∗-calculus for a given
justification logicJLCS depend solely on whetherJL enjoys full positive introspection
while the axioms of this∗-calculus are read fromCS and thus indirectly depend on the
axioms ofJL.

In Theorem 36 below, we will show that the same rules can be used in the setting
where there are non-logical axioms in addition to the∗CS or ∗CS! axioms.

The first main result of the present paper, Theorem 32, is a lower bound on the com-
plexity of reflected fragments that matches the upper bound of Theorem 9; namely, we
show that the Derivability Problems for many reflected fragments are NP-complete.
The proof is by a many-one polynomial-time reduction from a known NP-complete

6

problem, the Vertex Cover Problem. As in Milnikel’s lower bound forLPCS, we have
to impose an additional restriction thatCS be axiomatically appropriate and schemat-
ically injective. The reduction method is then extended to establish a lower bound
on the complexity of full pure justification logics that alsomatches the upper bound
of Theorem 5; this gives a reproof of theΠp

2-hardness results of [21] and extends the
results to additional justification logics.

The paper is structured as follows. Section 2 defines a codingof graphs by propo-
sitional formulas and shows how the existence of a vertex cover can be described in
terms of these formulas. Section 3 develops justification terms that encode several
standard methods of propositional reasoning. Although theformulas that describe the
existence of a vertex cover depend on the cover itself ratherthan only on its size, Sect. 4
shows how to eliminate this dependency by using the terms from Sect. 3 to encode par-
ticular derivations of the formulas from Sect. 2. Section 5 finishes the proof of the
polynomial-time reduction. This reduction is used in Sect.6 to establish a criterion for
NP-hardness of reflected fragments and to apply it to a wide range of them. Section 7
lays the groundwork for proving lower bounds for full pure justification logics, which
is done in Sect. 8 by generalizing the Vertex Cover Problem toaΠp

2-complete version.
Finally, Sect. 9 explores the restrictions on the constant specification necessary for the
proved lower bounds.

2. Graph Coding and Preliminaries

A graphG = 〈V,E〉 has a finite setV of vertices and a finite setE of undirected
edges. We assume w.l.o.g. thatV = {1, . . . ,N} for someN and represent an edgee
between verticesk andl as the sete= {k, l} with its endpoints denoted byv1(e) < v2(e).
A vertex cover forG is a setC of vertices such that each edgee ∈ E has at least one
endpoint inC. The Vertex Cover (VC) Problem is the problem of determiningwhether
a given graphG has a vertex cover of a size≤ L for a given integerL ≥ 0. The Vertex
Cover Problem is one of the classic NP-complete problems.

We define below formulasFV, FC, andFG that will help build a many-one reduction
from VC to the reflected fragments of justification logics. These formulas will include
large conjunctions. To avoid the dependence of derivationson a vertex cover, we will
use balanced conjunctions (see [8]):

Definition 10. Each formula is abalanced conjunction of depth0. If A andB are both
balanced conjunctions of depthk, thenA∧ B is abalanced conjunction of depth k+ 1.

Clearly, a balanced conjunction of depthk is also a balanced conjunction of depthl
for any 0≤ l ≤ k. Thus, we are mainly interested in how deeply a given formulais
conjunctively balanced. Unless stated otherwise, for any conjunctionC1 ∧ · · · ∧ C2k

of 2k formulas, we assume that the omitted parentheses are such that the resulting
balanced conjunction has the maximal possible depth, i.e.,depth≥ k.

We also need to refer toCi ’s that form a conjunctionC1 ∧ · · · ∧ C2k . The follow-
ing inductive definition ofdepth k conjuncts, or simply k-conjuncts, generalizes the
definition ofconjunctsin an ordinary conjunction:

7

Definition 11. Each formula is a 0-conjunctof itself. If C ∧ D is a k-conjunct of a
formulaF, thenC andD are both (k+ 1)-conjunctsof F.

For instance, the conjuncts of an ordinary conjunction are its 1-conjuncts; allCi ’s in
C1∧ · · · ∧C2k are itsk-conjuncts. More generally, any balanced conjunction of depthk
has exactly 2k occurrences ofk-conjuncts (with possibly several occurrences of the
same formula).

To make a full use of balanced conjunctions, it is convenientto restrict attention to
instances of the Vertex Cover Problem for graphs in which both the number of vertices
and the number of edges are powers of 2. These are calledbinary exponential graphs.
It is also helpful to only consider vertex covers whose size is a power of 2; these we call
binary exponential vertex covers. Fortunately, the version of the Vertex Cover Problem
restricted to binary exponential graphs and their binary exponential vertex covers is
also NP-complete:

Theorem 12. The Binary Vertex Cover (BVC) Problem of determining whether a given
binary exponential graph G has a vertex cover of size≤ 2l for a given integer l≥ 0 is
NP-complete.

Proof. Since each instance of BVC is also an instance of the standardVC problem,
and since VC is NP-complete, it suffices to construct a polynomial-time many-one
reduction from VC to BVC. Suppose we are given an instance of VC; namely, we are
given a graphG0 and an integerL and wish to determine ifG0 has a vertex cover of
size≤ L. We give a polynomial-time procedure that constructs a binary exponential
graphG and a valuel so thatG0 has a vertex cover of size≤ L iff G has a vertex
cover of size≤ 2l . The graphG is constructed in three stages; each stage causes only a
constant factor increase in the size of the graph.

Stage 1. Increasing the size of vertex covers.Choose an integer 0≤ L′ < L such that
L + L′ = 2l − 1 for some integerl ≥ 0. A graphG′ = 〈V′,E′〉 is obtained fromG0

by adding 2L′ new vertices broken intoL′ disjoint pairs with the vertices in each pair
joined by a new edge (L′ new edges overall). The graphG0 has a vertex cover of
size≤ L iff the graphG′ has a vertex cover of size≤ 2l − 1.

Stage 2. Increasing the number of edges.Choose an integer 0< M′′ ≤ |E′| such that
|E′| + M′′ = 2m for some integerm≥ 0. A graphG′′ = 〈V′′,E′′〉 is obtained by adding
M′′ + 1 new vertices toG′ with one of these vertices joined to allM′′ others (M′′ new
edges overall). The graphG′ has a vertex cover of size≤ 2l − 1 iff the graphG′′ has a
vertex cover of size≤ 2l .

Stage 3. Increasing the number of vertices.Choose an integer 0≤ N′′′ < |V′′| such
that |V′′| + N′′′ = 2k for some integerk ≥ 0. A graphG = G′′′ is obtained by adding
N′′′ isolated vertices toG′′. The graphG′′ has a vertex cover of size≤ 2l iff the
graphG′′′ has a vertex cover of size≤ 2l .

It is clear from the construction thatG is a binary exponential graph such that
G0 has a vertex cover of size≤ L iff G has a vertex cover of size≤ 2l .

Definition 13. Let G = 〈V,E〉 be a binary exponential graph withE = {e1, . . . , e2m}.
We define the following formulas:

8

a. For each edgeei = {i1, i2} ∈ E, wherei1 < i2, Fe = pi1 ∨ pi2 = pv1(e) ∨ pv2(e).

b. Let C = {i1, i2, . . . , i2l } ⊆ V be a possible binary exponential vertex cover forG,
wherei1 < i2 < · · · < i2l . DefineFC = pi1 ∧ · · · ∧ pi2l .

c. FG = Fe1 ∧ · · · ∧ Fe2m .

The proof of the following properties is an easy exercise (⊢ denotes derivability in
classical propositional logic):

Lemma 14. For any binary exponential graph G= 〈V,E〉 and any binary exponential
set C⊆ V,
1. ⊢ FV → FG ;
2. ⊢ FV → FC ;
3. ⊢ FC → FG iff C is a vertex cover for G.

Our goal is to reduce BVC to derivability in a given reflected fragment. To this
end, we consider a particular derivation ofFV → FG that proceeds by first proving
FV → FC, then attempting to proveFC → FG, succeeding in the attempt iffC is a
vertex cover, and finally applying hypothetical syllogism (HS) to inferFV → FG. We
further encode this derivation as a justification termt so thatrJLCS ⊢ t : (FV → FG) iff
C is a vertex cover. In BVC we need to determine whether there exists a vertex cover of
(at most) a given size rather than whether a given set of vertices is a vertex cover. Thus,
t : (FV → FG) should not depend onC but may (and should) depend on the size ofC.
SinceC has already been “syllogized away” from the formulaFV → FG, it remains
to make sure that the termt only depends on the size ofC. Although any derivations
of FV → FC and ofFC → FG necessarily explicitly depend onC, the terms encoding
them, and thereforet, can be made independent ofC. This is the main reason why we
use balanced conjunctions: this way allk-conjuncts are interchangeable.

Instead of giving a proof for one particular type of reflectedfragments and explain-
ing how to adjust it to other cases as in [10], we will now formulate conditions under
which a reflected fragmentfits our construction. These conditions have the following
form: for certain individual axiom schemes or their sets there must exist a term that
justifies exactly the axioms from this scheme or this set of schemes respectively.

Definition 15. A reflected fragmentrJLCS is calledfitting if it has ground terms with
the following properties:

rJLCS ⊢ c1 : F ⇐⇒ F ≡ (X→ (Y→ X)),
rJLCS ⊢ c2 : F ⇐⇒ F ≡ ((X→ (Y→ Z))→ ((X→ Y) → (X→ Z))),

rJLCS ⊢ c∧1,∧2 : F ⇐⇒ F ≡ (X1 ∧ X2→ Xi), wherei = 1 or i = 2,
rJLCS ⊢ c∧ : F ⇐⇒ F ≡ (X→ (Y→ X ∧ Y)),
rJLCS ⊢ c∨1,∨2 : F ⇐⇒ F ≡ (Xi → X1 ∨ X2), wherei = 1 or i = 2,

(1)

whereX, Y, Z, X1, andX2 are arbitrary formulas.

Most natural schematically injective constant specifications for justification logics yield
fitting reflected fragments. Note that termsc1, c2, andc∧ should justify exactly one
commonly used propositional axiom scheme each. In fact, if these axiom schemes are

9

part of A1 for a particular justification logicJL and if CS is schematically injective,
these terms may have an especially simple form: they can be constants justifying their
respective axiom schemes. The two termsc∧1,∧2 andc∨1,∨2 should justify two com-
monly used axiom schemes each. In general, they can be modeled by the sums of
terms corresponding to those axiom schemes. That is to say,c∧1,∧2 can be defined to
bec∧1+ c∧2, wherec∧i justifies exactly the schemeX1∧X2→ Xi . Similarly,c∨1,∨2 can
generally be set equal toc∨1 + c∨2 for appropriate termsc∨1 andc∨2.

We shall prove the NP-hardness of fitting reflected fragmentsby giving a reduction
from BVC to derivability in the reflected fragment. Therefore, our complexity lower
bounds hold for any fitting reflected logic, and they do not depend on the particular
propositional axiomatization chosen, or the particular form of the five terms from (1).
In fact, as will be shown, it is not even important that the operation+ be present.

3. Justification Terms Encoding Propositional Reasoning

Throughout the section, we assume that a reflected fragmentrJLCS is fitting. All ∗-
derivations in this and the next two sections can be performed in either of the∗-calculi.
In each case, the choice of the∗-calculus is made based on the underlying reflected
fragment according to Table 2.

The size of terms is defined in a standard way:|c| = |x| = 1 for any constantc and
any variablex, |(t · s)| = |(t + s)| = |t| + |s| + 1, | ! t| = |t| + 1.

Note that all the terms from (1) have sizeO(1) because there are only five of them.

Lemma 16(Encoding the Hypothetical Syllogism Rule). The operation

syl(t, s) =
(

c2 · (c1 · s)
)

· t

with |syl(t, s)| = |t| + |s| +O(1) encodes the Hypothetical Syllogism Rule, i.e.,

rJLCS ⊢ syl(t, s) :H ⇐⇒
H = A→ C such that for some B
rJLCS ⊢ t : (A→ B) and rJLCS ⊢ s: (B→ C).

Proof. (⇐=). Here are the key elements of a derivation oft : (A → B), s: (B → C) ⊢
syl(t, s) : (A → C) (parts of the derivation following from the “fit” of the reflected
fragment are omitted):

c1 : ((B→ C)→ (A→ (B→ C))) (fit)
s : (B→ C) (Hyp)

c1 · s : (A→ (B→ C)) (∗A2)
c2 : ((A→ (B→ C))→ ((A→ B)→ (A→ C))) (fit)

c2 · (c1 · s) : ((A→ B)→ (A→ C)) (∗A2)
t : (A→ B) (Hyp)

(c2 · (c1 · s)) · t : (A→ C) (∗A2)

(=⇒). Consider an arbitrary derivation of syl(t, s) : H in the ∗-calculus. It can easily
be seen that any such derivation must have the same key elements as the one used for
the⇐=-direction above: the only difference can be in the choice of formulas for the
termsc1, c2, s, andt. Since the reflected fragment is fitting, we know which formulas

10

can be proved byc1 andc2. Thus, we can shape this as a unification problem: find
formulasX1, Y1, X2, Y2, Z2, Xs, andXt such thatrJLCS ⊢ s: Xs, rJLCS ⊢ t : Xt, and the
following is a∗-calculus derivation ofs: Xs, t : Xt ⊢ syl(t, s) : H modulo derivability of
statements from (1):

1. c1 : (X1→ (Y1→ X1)) (fit)
2. s: Xs (Hyp)
3. c1 · s: (Y1→ X1) (∗A2)
4. c2 : ((X2→ (Y2→ Z2))→ ((X2→ Y2)→ (X2→ Z2))) (fit)
5. c2 · (c1 · s) : ((X2→ Y2)→ (X2→ Z2)) (∗A2)
6. t : Xt (Hyp)
7. (c2 · (c1 · s)) · t : H (∗A2)

To make the applications of the rule∗A2 work in lines 3, 5, and 7, the unification
variables have to satisfy the following equations:

X1 = Xs from 3. (2)

X2→ (Y2→ Z2) = Y1→ X1 from 5. (3)

X2→ Y2 = Xt from 7. (4)

X2→ Z2 = H from 7. (5)

By (2) and (3),Xs = X1 = Y2 → Z2. This equation combined with (4) and (5) shows
thatH is indeed an implication that follows by HS fromXt andXs justified byt ands
respectively.

Lemma 17 (Strippingk conjunctions). For any integer k≥ 0 there exists a term tk of
size O(k) that encodes the operation of stripping k conjunctions, i.e.,

rJLCS ⊢ tk :D ⇐⇒ D = H → C, where C is a k-conjunct of H.

Proof. We prove by induction onk that the conditions are satisfied for

t0 = (c2 · c1) · c1 ,

tk+1 = syl(c∧1,∧2, tk) .

Since|tk+1| = |tk| + |c∧1,∧2| +O(1) = |tk| +O(1), it is clear that|tk| = |t0| + kO(1) = O(k).
Base case, k= 0. (⇐=). If C is a 0-conjunct ofH, thenH = C, and it is easy

to see thatt0 corresponds to the standard derivation of the tautologyC → C from
propositional axioms (cf. combinatorskk).
(=⇒). Any ∗-derivation oft0 :D must have the following key elements:

1. c2 : ((X2→ (Y2→ Z2))→ ((X2→ Y2)→ (X2→ Z2))) (fit)
2. c1 : (X1→ (Y1→ X1)) (fit)
3. c2 · c1 : ((X2→ Y2)→ (X2→ Z2)) (∗A2)
4. c1 : (X3→ (Y3→ X3)) (fit)
5. (c2 · c1) · c1 : D (∗A2)

11

For∗A2 from line 5 to be valid, it is necessary thatD = X2→ Z2. It follows from∗A2
in line 3 thatX2 → (Y2 → Z2) = X1 → (Y1 → X1), in which caseX2 = X1 = Z2.
Therefore,D = X2 → X2, which is an implication from a formula to its 0-conjunct.

Induction step. (⇐=). Let H be a formula with a (k+ 1)-conjunctC. ThenH must
be of the formH1 ∧ H2 with C being ak-conjunct ofHi for somei = 1, 2. By the
induction hypothesis,rJLCS ⊢ tk : (Hi → C) for this i. For bothi = 1 and i = 2
rJLCS ⊢ (c∧1,∧2) : (H → Hi). Then, by Lemma 16,rJLCS ⊢ tk+1 : (H → C).
(=⇒). By the induction hypothesis,tk justifies only implications from a formula to
one of itsk-conjuncts. SincerJLCS is fitting, c∧1,∧2 justifies only implications from
a formula to one of its 1-conjuncts. By Lemma 16,tk+1 justifies only hypothetical
syllogisms obtained from the latter and the former, but ak-conjunct of a 1-conjunct of
a formula is its (k+ 1)-conjunct.

Lemma 18. For any term s and any integer l≥ 0 there exists a termconj(s, l) of
size O

(

|s|2l
)

with the following property:

rJLCS ⊢ conj(s, l) :D ⇐⇒
D = B→ C1 ∧ · · · ∧C2l such that
rJLCS ⊢ s: (B→ Ci) for all i = 1, . . . , 2l.

Proof. We prove by induction onl that the conditions are satisfied for

conj(s, 0) = syl(s, t0) ,

conj(s, l + 1) =
(

c2 · syl
(

conj(s, l), c∧
))

· conj(s, l) .

It is not hard to see that|conj(s, l)| = 2l(|s| + K + L) − L, whereK andL are constants
such that|conj(s, 0)| = |s| + K and|conj(s, l + 1)| = 2|conj(s, l)| + L.

Base case, l= 0. (⇐=). For any formulaC, rJLCS ⊢ t0 : (C → C) by Lemma 17.
Then, by Lemma 16,rJLCS ⊢ s: (B→ C) impliesrJLCS ⊢ syl(s, t0) : (B→ C).
(=⇒). By Lemma 16, syl(s, t0) justifies only implicationsB→ C for which there exists
a formulaA such thatrJLCS ⊢ s: (B→ A) andrJLCS ⊢ t0 : (A→ C). By Lemma 17, the
latter impliesA = C. Therefore,rJLCS ⊢ s: (B→ C).10

Induction step. (⇐=). Let H = C1 ∧ · · · ∧C2l+1 with rJLCS ⊢ s: (B→ Ci) for all its
(l + 1)-conjunctsCi . ThenH = H1 ∧ H2, whereC1,C2, . . . ,C2l arel-conjuncts ofH1

andC2l+1,C2l+2, . . . ,C2l+1 arel-conjuncts ofH2. By the induction hypothesis,

rJLCS ⊢ conj(s, l) : (B→ H1) , (6)

rJLCS ⊢ conj(s, l) : (B→ H2) . (7)

In addition,rJLCS ⊢ c∧ : (H1→ (H2→ H1 ∧ H2)); in other words,

rJLCS ⊢ c∧ : (H1→ (H2→ H)) . (8)

From (8) and (6) by Lemma 16, fors′ = syl(conj(s, l), c∧) we have

rJLCS ⊢ s′ : (B→ (H2→ H)) .

10Note that, in general, conj(s, 0) = sdoes not satisfy the=⇒-direction.

12

Then, from (7) andrJLCS ⊢ c2 : ((B→ (H2→ H))→ ((B→ H2)→ (B→ H))):

rJLCS ⊢ c2 · s
′ : ((B→ H2)→ (B→ H)) and, finally,

rJLCS ⊢ (c2 · s
′) · conj(s, l) : (B→ H) .

It remains to note that conj(s, l + 1) = (c2 · s′) · conj(s, l).
(=⇒). By Lemma 16, the rule

t : (A→ B) s: (B→ C)
syl(t, s) : (A→ C)

(Syl)

is admissible in both∗-calculi. So any∗-derivation of conj(s, l + 1) : D must contain
the following key elements (we have already incorporated the induction hypothesis
about conj(s, l) as well as Lemma 16):

1. conj(s, l) : (B→ C1 ∧C2 ∧ · · · ∧C2l) (IH)
2. c∧ : (X∧ → (Y∧ → X∧ ∧ Y∧)) (fit)
3. s′ : (B→ (Y∧ → X∧ ∧ Y∧)) (Syl)
4. c2 : ((X2→ (Y2→ Z2))→ ((X2→ Y2)→ (X2→ Z2))) (fit)
5. c2 · s′ : ((X2→ Y2)→ (X2→ Z2)) (∗A2)
6. conj(s, l) : (B′ → C2l+1 ∧C2l+2 ∧ · · · ∧C2l+1) (IH)
7. (c2 · s′) · conj(s, l) : D (∗A2)

whererJLCS ⊢ s: (B→ Ci) andrJLCS ⊢ s: (B′ → C2l+i) for i = 1, . . . , 2l. Let us collect
all unification equations necessary for this to be a valid fragment of a∗-derivation:

C1 ∧C2 ∧ · · · ∧C2l = X∧ from 3. (9)

B→ (Y∧ → X∧ ∧ Y∧) = X2→ (Y2→ Z2) from 5. (10)

B′ → C2l+1 ∧C2l+2 ∧ · · · ∧C2l+1 = X2→ Y2 from 7. (11)

X2→ Z2 = D from 7. (12)

By (10) and (11),B = X2 = B′. Thus,rJLCS ⊢ s: (B→ Ci) for i = 1, . . . , 2l+1. Also

Y∧ = Y2 = C2l+1 ∧C2l+2 ∧ · · · ∧C2l+1 ,

again by (10) and (11). So, by (9) and (10),

Z2 = X∧ ∧ Y∧ = (C1 ∧C2 ∧ · · · ∧C2l) ∧ (C2l+1 ∧C2l+2 ∧ · · · ∧C2l+1) .

By (12),D is indeed an implication fromB to this balanced conjunction for all of whose
(l + 1)-conjuncts the terms justifies their entailment fromB.

Lemma 19. For the termdisj = c∨1,∨2 of size O(1),

rJLCS ⊢ disj :D ⇐⇒ D = B→ H, where B is a disjunct of H.

Proof. Easily follows from the fact that the reflected fragment is fitting.

13

4. Reduction from Vertex Cover, Part I

We now use the justification terms from the previous section to build a polynomi-
al-time many-one reduction from BVC to a fitting reflected fragmentrJLCS.

Lemma 20. Let a term of size O
(

k2l
)

be defined by

tk→l = conj(tk, l) .

For any binary exponential graph G= 〈V,E〉with |V| = 2k and any set C⊆ V of size2l ,

rJLCS ⊢ tk→l : (FV → FC) .

Proof. |conj(tk, l)| = O
(

|tk|2l
)

= O
(

k2l
)

.
All l-conjunctspi of FC, where i ∈ C, must bek-conjuncts ofFV. Thus, for

any of them by Lemma 17,rJLCS ⊢ tk : (FV → pi). Now, by Lemma 18, we have
rJLCS ⊢ conj(tk, l) : (FV → FC).

Lemma 21. Let a term of size O(l) be defined by

tl→edge= syl(tl , disj) .

For any binary exponential graph G= 〈V,E〉, any set C⊆ V of size2l , and any
edge e∈ E,

rJLCS ⊢ tl→edge: (FC → Fe) ⇐⇒ e is covered by C.

Proof. |syl(tl , disj)| = |tl | + |disj| +O(1) = O(l) +O(1) = O(l).
(⇐=). If i ∈ e ∩ C is the vertex inC that coverse, then pi is a disjunct ofFe, so
rJLCS ⊢ disj : (pi → Fe) by Lemma 19. Butpi is also anl-conjunct ofFC, so, by
Lemma 17,rJLCS ⊢ tl : (FC → pi). Finally, rJLCS ⊢ syl(tl , disj) : (FC → Fe) by
Lemma 16.
(=⇒). If C does not covere, it is easy to see thatFC → Fe is not valid propositionally.
All justification logics are conservative over classical propositional logic, therefore
JLCS 0 FC → Fe. By Theorem 8,rJLCS 0 s: (FC → Fe) for any terms.

Lemma 22. Let a term of size O(l2m) be defined by

sl→m = conj(tl→edge,m) .

For any binary exponential graph G= 〈V,E〉 with |E| = 2m and any set C⊆ V of
size2l ,

rJLCS ⊢ sl→m : (FC → FG) ⇐⇒ C is a vertex cover for G.

Proof. |conj(tl→edge,m)| = O
(

|tl→edge|2m
)

= O (l2m).
(⇐=). If C is a vertex cover, thenrJLCS ⊢ tl→edge : (FC → Fe) for all e ∈ E, by
Lemma 21. Allm-conjuncts ofFG areFe’s with e ∈ E. Hence, by Lemma 18, we have
rJLCS ⊢ conj(tl→edge,m) : (FC → FG).
(=⇒). If C is not a vertex cover, by Lemma 14.3, formulaFC → FG is not valid
propositionally. The same argument as in the previous lemmashows that for any terms
rJLCS 0 s: (FC → FG).

14

Theorem 23. Let a term of size O
(

k2l
)

+O (l2m) be defined by

tk→l→m = syl(tk→l , sl→m) .

For any binary exponential graph G= 〈V,E〉 with |V| = 2k and |E| = 2m and any
integer0 ≤ l ≤ k,

G has a vertex cover of size≤ 2l =⇒ rJLCS ⊢ tk→l→m: (FV → FG) .

Proof. |syl(tk→l , sl→m)| = |tk→l | + |sl→m| +O(1) = O
(

k2l
)

+O (l2m).

By Lemma 20,rJLCS ⊢ tk→l : (FV → FC) for any setC ⊆ V of size 2l . If G has a
vertex cover of size≤ 2l , it can be enlarged to a vertex cover of size 2l . Let C be such
a vertex cover of size 2l . Then, by Lemma 22,rJLCS ⊢ sl→m : (FC → FG). Thus, by
Lemma 16,rJLCS ⊢ syl(tk→l , sl→m) : (FV → FG).

Note that the termtk→l→m depends only on size 2l of a vertex cover and on how
many vertices and edgesG has.

5. Reduction from Vertex Cover, Part II

To finish the polynomial-time reduction from BVC to any fitting reflected frag-
mentrJLCS it now remains to prove the other direction:

rJLCS ⊢ tk→l→m : (FV → FG) =⇒ G has a vertex cover of size≤ 2l.

Lemma 24(Converse to Lemma 20).

rJLCS ⊢ tk→l :H =⇒

H = B→ D,
where D is a balanced conjunction of depth≥ l
whose all l-conjuncts are k-conjuncts of B.

Proof. By definition,tk→l = conj(tk, l), so by Lemma 18, it justifies only implications
B → C1 ∧ · · · ∧ C2l with rJLCS ⊢ tk : (B → Ci) for i = 1, . . . , 2l. By Lemma 17, the
termtk justifies only implications from a formula to itsk-conjuncts.

Lemma 25(Converse to Lemma 21).

rJLCS ⊢ tl→edge:H =⇒
H = B→ D1 ∨ D2,
where either D1 or D2 is an l-conjunct of B.

Proof. By definition, tl→edge = syl(tl , disj). By Lemma 16,H can only be an impli-
cationB → D such thatrJLCS ⊢ tl : (B → C) andrJLCS ⊢ disj : (C → D) for some
formulaC. By Lemma 19, the latter statement implies thatD = D1 ∨ D2 with C = Di

for somei = 1, 2. By Lemma 17,Di is anl-conjunct ofB.

Lemma 26(Converse to Lemma 22).

rJLCS ⊢ sl→m :H =⇒

H = B→ (C1 ∨ D1) ∧ · · · ∧ (C2m ∨ D2m),
where either Ci or Di is an l-conjunct of B
for each i= 1, . . . , 2m.

15

Proof. By definition,sl→m = conj(tl→edge,m). By Lemma 18,H must be an implication
from some formulaB to a balanced conjunction of depth≥ m such that, for all itsm-
conjunctsF, rJLCS ⊢ tl→edge: (B→ F). By Lemma 25, each of thesem-conjuncts must
be a disjunction with one of its disjuncts being anl-conjunct ofB.

Theorem 27(Converse to Theorem 23).

rJLCS ⊢ tk→l→m:H =⇒

H = B→ (C1 ∨ D1) ∧ · · · ∧ (C2m ∨ D2m)
and there is a size≤ 2l set X of k-conjuncts of B
with either Ci ∈ X or Di ∈ X for each i= 1, . . . , 2m.

Proof. By definition, tk→l→m = syl(tk→l , sl→m). By Lemma 16,H = B → F with
(a) rJLCS ⊢ tk→l : (B→ Q), (b) rJLCS ⊢ sl→m : (Q→ F) for some formulaQ. From (a),
by Lemma 24,Q must be a conjunctionQ1 ∧ · · · ∧ Q2l such that all itsl-conjunctsQi

are alsok-conjuncts ofB. So the setX = {Qi | i = 1, . . . , 2l} has size≤ 2l (because
of possible repetitions) and consists ofk-conjuncts ofB. It now follows from (b), by
Lemma 26, thatF = (C1 ∨ D1) ∧ · · · ∧ (C2m ∨ D2m) with eitherCi or Di being an
l-conjunct ofQ for eachi = 1, . . . , 2m, i.e., with eitherCi ∈ X or Di ∈ X for each
i = 1, . . . , 2m.

Theorem 28. For any binary exponential graph G= 〈V,E〉 with |V| = 2k and|E| = 2m

and any integer0 ≤ l ≤ k,

rJLCS ⊢ tk→l→m : (FV → FG) ⇐⇒ G has a vertex cover of size≤ 2l .

Proof. The⇐=-direction was proved in Theorem 23. We now prove the=⇒-direction.
FV → FG already has the form prescribed by Theorem 27. The onlyk-conjuncts
of FV are the sentence lettersp1, . . . , p2k. Therefore, there must exist a setX of ≤ 2l

of these sentence letters such that for eachm-conjunctFe of FG at least one of the
disjuncts ofFe, i.e., eitherpv1(e) or pv2(e), is in X. This literally means thatG has a set
of ≤ 2l vertices that covers all the edges ofG.

6. Lower Bounds for Reflected Fragments

Theorem 29. For any fitting reflected fragmentrJLCS, derivability inrJLCS is NP-hard.

Proof. It is easy to see that bothFV and FG have size polynomial in the size ofG.
As for the termtk→l→m, it was shown in Theorem 23 that|tk→l→m| = O

(

k2l
)

+O (l2m),
which is polynomial in the size ofG providedl ≤ k (BVC for l > k is trivial). Thus,
Theorem 28 shows thatrJLCS is NP-hard.

It is time now to reap the fruits of the preceding theorem by showing that a wide
range of constant specifications produce fitting reflected fragments.

In the following proof, we need to perform operations on schemes of formulas
rather than on individual formulas. Thus, it is convenient to represent axiom schemes
using the Substitution Rule:

X
Xσ

,

16

whereσ is any substitution of formulas for sentence letters (see, for instance, formu-
lation of classical propositional logic in [11, Sect. 1.3]). In justification logics, we
additionally have to allow substitutionsσ to replace justification variables with justifi-
cation terms.

The Substitution Rule allows to make axiomatizations finitebecause each axiom
scheme can be replaced by a single axiomA such that each of infinitely many instances
of the axiom scheme is a substitution instance ofA. Note that in general we cannot use
this representation to defineJLCS becauseCS need not be schematic. It is easy to see
that

Lemma 30(Substitution Property, [2, 3, 4]). The Substitution Rule is admissible for a
justification logicJLCS, and hence forrJLCS, iff CS is schematic.

Strictly speaking, we presented axioms schemes (e.g., forLP) using variables over
formulas and variables over terms, e.g.,t :F → F is understood in the sense that it is an
axiom for any termt and any formulaF. Each axiom scheme written in this way can be
easily converted to an axiom in the corresponding system with the Substitution Rule by
replacing distinct variables over formulas by distinct sentence letters and distinct vari-
ables over terms by distinct justification variables, e.g.,the schemet : F → F becomes
a formulax : p → p. The latter will be called amost general instance(mgi) of the
former (note that an mgi is not unique: the choice of sentenceletters and justification
variables plays no role).

By analogy with axiom schemes, ascheme of formulaswith an mgiF is the set

{Fσ | σ is a substitution} .

Lemma 31. Let JL ∈ {J, JD, JT, J4, JD4, LP,TnLP,S4nLP,S5nLP}. Any schemati-
cally injective and axiomatically appropriate constant specificationCS for JL yields a
fitting reflected fragmentrJLCS.

Proof. All formulas that fit the five patterns from (1) can be broken into seven schemes
of propositional tautologies with mgi’s

p→ (q→ p) , (13)

(p→ (q→ r))→ ((p→ q)→ (p→ r)) , (14)

p1 ∧ p2→ p1 , (15)

p1 ∧ p2→ p2 , (16)

p→ (q→ p∧ q) , (17)

p1→ p1 ∨ p2 , (18)

p2→ p1 ∨ p2 , (19)

where p, q, r, p1, and p2 are distinct sentence letters (strictly speaking, we should
have used a distinct set of sentence letters for each mgi). Let A stand for any of these
seven mgi’s. For eachJL, its axiomatization contains A1, i.e., a full axiomatization
of classical propositional logic. Therefore, the propositional tautologyA is a theorem
of JLCS. SinceCS is axiomatically appropriate, by Lemma 4, there exists a term s,

17

which contains neither+ nor any justification variables, such thatJLCS ⊢ s : A, and
hencerJLCS ⊢ s : A. By the Substitution Property (Lemma 30),rJLCS ⊢ Aσ for any
substitutionσ. In other words, the terms satisfies (1) in the⇐=-direction for the
respective axiom scheme.

For the=⇒-direction, it is sufficient to note that for any+-free ground termt the
set

CS(t) = {F | rJLCS ⊢ t :F}

is either empty or a scheme whose mgi we will denote byAt. This statement can be
proved by induction on the size oft. For constants, it is guaranteed by the schematic
injectivity of CS. Justification variables do not occur in ground terms. IfCS(t′) is
empty, so isCS(! t′). Otherwise, for logics with∗!CS as their∗-calculus,

CS(! t′) = {t′ :F | F ∈ CS(t′)} =IH

{t′ : (At′σ) | σ is a substitution} = {(t′ :At′)σ | σ is a substitution} . (20)

The last equality follows from the fact thatt′ does not contain variables. Thus, in this
caseA! t′ = t′ : At′ . In the logics with∗CS as their∗-calculus, the same argument works
for t′ = ! · · · !

︸︷︷︸

n

c, n ≥ 0, whereas for all other terms,CS(! t′) = ∅ independent ofCS(t′).

Finally,

CS(t1 · t2) = {G | (∃F)(F → G ∈ CS(t1) andF ∈ CS(t2))} =IH

{G | (∃F)(∃σ1)(∃σ2)(F → G = At1σ1 andF = At2σ2)} . (21)

It follows from Theorem 8 thatAt1 cannot be a single sentence letter. Clearly, if the
main connective ofAt1 is not an implication, thenCS(t1 · t2) = ∅. It remains to consider
the caseAt1 = B→ C. If B cannot be unified withAt2, thenCS(t1 · t2) = ∅. Otherwise,
there must exist a most common unifier (mgu)τ = mgu(B,At2). Any formulaF in (21)
must be a substitution instance of bothB andAt2. Hence there must exist a substitu-
tion σ such thatF = Bτσ = At2τσ. Accordingly, any formulaG ∈ CS(t1 · t2) must
have the formCτσ. It follows thatCS(t1 · t2) = {Cτσ | σ is a substitution}. Thus,
in this case,At1·t2 = Cτ = C mgu(B,At2). Clearly, the operation+, which enables us
to combine several different schemes, would have broken this pattern, but it does not
occur int.

Thus, our terms must justify some scheme, of which the formulaA is an instance,
i.e., A = Asσ for some substitutionσ. It can be checked that, ifBσ = A andB is a
tautology, thenB = A. Hence,As = A by Theorem 8.

Therefore, the ground terms justifies exactly the scheme with mgiA. This discus-
sion shows that there exist termsc1, c2, andc∧ that justify exactly the schemes with
mgi’s (13), (14), and (17) respectively, as well as termsc∧1, c∧2, c∨1, andc∨2 for the
schemes with mgi’s (15), (16), (18), and (19) respectively.It remains to note that the
termc∨1+ c∨2 satisfies all the requirements ofc∨1,∨2 and the termc∧1+ c∧2 fits the role
of c∧1,∧2.

Theorem 32. LetCS be a schematically injective and axiomatically appropriate con-
stant specification forJL ∈ {J, JD, JT, J4, JD4, LP,TnLP,S4nLP,S5nLP}. Then deriv-
ability in rJLCS is NP-complete.

18

Proof. It was proved in [14, 17] thatrJLCS is in NP. By Lemma 31,rJLCS is fitting.
Thus, by Theorem 28,rJLCS is NP-hard.

7. Reflected Justification Logics with Hypotheses

The goal of this section is to extend the∗-calculi to situations whererJL is aug-
mented with additional axioms. This will be important for the proof of Theorem 43
in the next section that shows theΠp

2-hardness of the Derivability Problems for pure
justification logics.

Some proofs in this section will be semantic. Accordingly, we introduce the sim-
plest semantics for pure justification logics, that of symbolic models, also called Mkr-
tychev models or simplyM-models. This semantics was first introduced forLP by
Alexey Mkrtychev in [22] and extended to other pure justification logics in [15].

Definition 33. Let CS be a constant specification for a pure justification logicJL ∈
{J, JD, JT, J4, JD4, LP}. An M-model forJLCS is a pairM = 〈V,A〉, whereV is a
propositional valuationandA is anadmissible evidence functionfor JLCS. Informally,
an admissible evidence function specifies for each termt and formulaF whethert is
considered admissible evidence forF. If A(t, F) = True, we say thatA satisfies t: F.
Being satisfied byA is one of the criteria necessary fort :F to hold in an M-model.

Formally, a functionA : Tm×Fm→ {True,False} is called anadmissible evidence
function for a justification logicJLCS iff it is closed under deduction in the∗-calculus
for the reflected fragmentrJLCS (see Table 2). That is to say, if an admissible evidence
functionA satisfies a setX of justification assertions andX ⊢∗ s : G in the respective
∗-calculus, thenA must also satisfys:G. In addition, ifJL ∈ {JD, JD4}, an admissible
evidence function forJLCS must satisfy the following condition:A(t,⊥) = Falsefor
all termst. We will useA(t, F) as an abbreviation forA(t, F) = Trueand also¬A(t, F)
as an abbreviation forA(t, F) = False.11

Finally, thetruth relationM � H is defined as follows:

M � P iff V(P) = True;
Boolean connectives behave classically;

M � t :F iff






M � F andA(t, F) if JL ∈ {JT, LP},

A(t, F) if JL ∈ {J, JD, J4, JD4}.

Let CS be a constant specification for a pure justification logicJL andΓ be any set
of formulas. We writeJLCS{Γ} to denote the closure ofJLCS ∪ Γ under modus ponens.
It is easy to verify that the deduction theorem holds forJLCS, and hence we have that

JLCS{Γ} ⊢ A iff there exists a finite setΓ0 ⊆ Γ such thatJLCS ⊢
∧

Γ0 → A .

Definition 34. Suppose that every formula inΓ has the formt : A, i.e.,Γ consists only
of justification assertions. We define the following calculi:

∗CS+Γ = ∗CS + Γ and ∗!CS+Γ = ∗!CS + Γ . (22)

11N. Krupski and Mkrtychev used the notationF ∈ ∗(t) instead ofA(t, F) andF < ∗(t) instead of¬A(t, F).

19

That is to say, in each case the set of axioms is extended by alljustification assertions
from Γ while the rules remain the same and can be freely applied to the new axioms.
When the type of a∗-calculus and a particularCS are clear from the context or when
they can be arbitrary, we will use the term∗Γ-calculus.

It is natural to ask whether a given∗Γ-calculus can prove every formula in the re-
flected fragment ofJLCS{Γ} for the respectiveJLCS. Unfortunately, there are cases
where this does not hold. As an example from Kuznets [17], consider the situation
for LPCS whereΓ = {c : p, c : ¬p}. Then, via the Factivity Axiom,LPCS{Γ} is incon-
sistent, whereas there are certainly justification assertions that cannot be proved in the
∗!CS+Γ-calculus. Thus, we need additional restrictions onΓ. For this, we introduce the
following

Definition 35. A set of justification assertionsΓ is calledfactiveprovided that, when-
evert : A ∈ Γ, either (a)A is of the forms : B andA ∈ Γ or (b) A is a purely propo-
sitional12 formula. The set of purely propositional formulasA such thatt : A ∈ Γ for
some termt is called thepropositional contentof Γ, and is denotedProp(Γ). We call a
factive setΓ consistentprovidedProp(Γ) is (propositionally) consistent.

The next theorem generalizes N. Krupski’s Theorem 5.1 from [14].

Theorem 36. LetΓ be a consistent factive set of justification assertions andCS be a
constant specification for a pure justification logicJL ∈ {J, JD, JT, J4, JD4, LP}. Then,
for any formula of the form t:F, we have

JLCS{Γ} ⊢ t :F ⇐⇒ ⊢∗Γ t :F

for the respective∗Γ-calculus.

Proof. The proof is similar to the proof of Theorem 5.1 from [14], which in turn uses
constructions of Mkrtychev [22]. The⇐=-direction follows from the fact that any∗Γ-
derivation can be easily converted into a derivation inJLCS{Γ}. Indeed, all axioms of
the∗Γ-calculus are either instances of axiom internalization inJLCS or members ofΓ
and hence axioms ofJLCS{Γ}. Each rule in∗Γ-calculus translates into the corresponding
axiom ofJL followed by one or two applications of modus ponens.

We prove the=⇒-direction by showing its contrapositive. Suppose∗Γ 0 t : F. Let
the functionAΓ : Tm× Fm→ {True,False} be defined by

AΓ(s,G) ⇐⇒ ∗Γ ⊢ s:G .

For JL ∈ {J, JD, JT}, whereby∗Γ = ∗CS+Γ, it is clear thatAΓ is an admissible evi-
dence function forJTCS; similarly, for JL ∈ {J4, JD4, LP}, when∗Γ = ∗!CS+Γ, we have
thatAΓ is an admissible evidence function forLPCS. Note that any constant specifi-
cation forJ or JD can also serve as a constant specification forJT because all axioms
of J andJD are also axioms ofJT. Similarly, if a constant specification can be used

12A purely propositionalformula is one that does not contain any justification terms.

20

for J4 or JD4, it can also be used forLP. In either case, by definitionAΓ satisfies all
justification assertions fromΓ but does not satisfyt :F by our assumption.

SinceΓ is consistent, there exists a propositional valuationV that satisfiesProp(Γ).
Consider the M-modelM = 〈V,AΓ〉 for JTCS or for LPCS respectively. Note that
M 2 t : F since¬AΓ(t, F). In addition, for eitherJTCS or LPCS we can prove that
M � Γ. Indeed, it is easy to show by induction onk thatM � sk : . . . : s1 : G for each
sk : . . . : s1 : G ∈ Γ, whereG is a purely propositional formula. The base case,k = 1,
follows fromG ∈ Prop(Γ).

The existence of aJTCS-model (anLPCS-model) where all formulas fromΓ hold
while t : F is false shows thatJTCS{Γ} 0 t : F (respectivelyLPCS{Γ} 0 t : F). But
everyJCS- or JDCS-derivation is also aJTCS-derivation (for the sameCS); similarly,
anyJ4CS- or JD4CS-derivation is also anLPCS-derivation. HenceJLCS{Γ} 0 t :F. This
completes the proof of Theorem 36.

By analogy withrJLCS we will denote the reflected fragment ofJLCS{Γ}

rJLCS{Γ} = {t :F | JLCS{Γ} ⊢ t :F} .

As we proved,rJLCS{Γ} is axiomatized by its respective∗Γ-calculus. Note that the
only difference between a∗-calculus and its corresponding∗Γ-calculus is the addition
of axiomsΓ. Therefore, a reflected fragmentrJLCS{Γ} is axiomatized by the same
∗-calculus asrJLCS as far as rules are concerned. Consequently, there are stillonly
two sets of rules chosen based on whether full positive introspection holds inJL. The
differences between these∗-calculi, as in the case ofrJLCS, is in their axioms.

As a consequence of the above construction, other results that N. Krupski [14]
established forLPCS also hold forJLCS{Γ}. First, by the minimality of the admissible
evidence functionAΓ, the disjunction property for formulas of the forms:F∨t :G holds
for JLCS{Γ} (cf. Corollary 2 of [14]). Similarly, ifCS is schematic (and polynomially
decidable) andΓ is finite, then the Derivability Problem for a∗Γ-calculus is in NP for
either of the calculi, i.e.,rJLCS{Γ} is in NP. This is proved by a construction similar
to the one used in the proof of Theorem 5.2 in [14], the main difference being that
derivations inrJLCS{Γ} correspond torJLCS-derivations from hypothesesΓ, whereas
N. Krupski considered only derivations without hypotheses.

For us, the importance of Theorem 36 lies in the fact that the results of Sects. 3–5
translate torJLCS{Γ} for a proper subclass of consistent factive setsΓ.

Lemma 37. Let CS be a constant specification for a pure justification logicJL ∈
{J, JD, JT, J4, JD4, LP} such that the reflected fragmentrJLCS is fitting. LetΓ be a
consistent factive set of justification assertions such that the only terms that occur inΓ
are justification variables. Then Lemmas 16–19, 21, 22, 25, and 26 all still hold if
rJLCS is uniformly replaced byrJLCS{Γ} in the statements of the lemmas.

Proof. Since any derivation inrJLCS is also a derivation inrJLCS{Γ}, the proofs of the
⇐=-directions in all these lemmas do not require any changes. The=⇒-directions also
hold because the only terms that gain additional provably justified formulas inrJLCS{Γ}
are those that contain justification variables fromΓ, but no variables have been used for
construction of the terms in the proofs of all these lemmas.

21

8. A Lower Bound for Full Justification Logics

Sections 4 and 5 established a reduction from the Vertex Cover Problem to the
Derivability Problem in a given reflected fragment thereby proving NP-hardness of the
latter. In the present section, we extend the proof method and obtain stronger lower
bounds for full (non-reflected) pure justification logicsJLCS.13 We first prove that a
quantified version of the Vertex Cover Problem isΠp

2-hard by reducing co-QSAT2 to
it. Then we reduce this Quantified Vertex Cover Problem to theDerivability Problem
in a given justification logic.

Definition 38. By co-QSAT2 we mean the following problem. Letϕ be any 3CNF for-
mula, i.e., a propositional formula in conjunctive normal form with exactly three lit-
erals in each clause. Given such aϕ with its sentence letters partitioned into two sets
~p = {p1, . . . , p|~p |} and~q = {q1, . . . , q|~q |}, determine whether

ψ = (∀p1) · · · (∀p|~p |)(∃q1) · · · (∃q|~q |)ϕ (23)

is true.

The following theorem is standard. Several of its slightly different variants can be
found, for instance, in [23, 24, 25].

Theorem 39. co-QSAT2 isΠp
2-complete.

Let ψ = (∀~p)(∃~q)(C1 ∧ · · · ∧ Cr) be a formula of type (23), where eachCi is a
3-clause:Ci = Li,1 ∨ Li,2 ∨ Li,3, i = 1, . . . r. Each literalLi,z must bep j , ¬p j , q j, or¬q j

for somej.
Givenψ we construct a graphGψ = 〈Vψ,Eψ〉 with vertices labeled by literals (the

construction is identical with the reduction of 3SAT to VC asgiven in [13]). The graph
is defined as follows:

• For each clauseCi , i = 1, . . . , r, in ψ we have a triangle of pairwise joined ver-
ticesci,1, ci,2, andci,3 in Gψ. Each vertexci,z is labeled by the corresponding lit-
eralLi,z. These are calledclause verticesandclause edges.

• For each sentence letterq j , there are two verticesv j,0 andv j,1 joined by an edge. The
vertexv j,0 is labeled withq j andv j,1 is labeled with¬q j . These are calledliteral
verticesandliteral edges.

• For each sentence letterp j , there are two verticesu j,0 andu j,1 joined by an edge.
The vertexu j,0 is labeled withp j andu j,1 is labeled with¬p j . These are also called
literal verticesandliteral edges.

• A clause vertex and a literal vertex are joined by aconnecting edgeiff they are
labeled by the same literal.

13Applying this method to hybrid logics does not make sense since they are mostly at least PSPACE-hard
by virtue of being conservative over the corresponding modal logic. As for S51LP, the only hybrid logic that
may not be PSPACE-hard, its conservativity overLP would easily yield the lower bound that can be obtained
by our method.

22

There are 3r + 2N vertices inGψ, whereN = |~p | + |~q |; namely, 3r clause vertices and
2N literal vertices. Similarly, there are 6r + N edges inGψ; namely, 3r clause edges,
N literal edges, and 3r connecting edges.

As is argued in [13],Gψ has a vertex cover of size≤ 2r + N iff ϕ is satisfiable.
First, any vertex cover ofGψ must have at least 2r + N vertices since a vertex cover
must contain at least one vertex for each literal edge and at least two vertices from each
clause triangle. Second, since any vertex coverC of size 2r + N must contain exactly
one literal vertex per literal edge in the graph, it is possible to define a propositional
valuationτC by lettingτC(L) = True for exactly those literals that label literal vertices
from the vertex cover. It is not hard to see that this valuation τC satisfiesϕ. Conversely,
if τ is any valuation that satisfiesϕ, then there exists a vertex coverC of size 2r + N
such thatτ = τC.

Definition 40. Let π denote a (partial) valuation with domain~p. A vertex coverC
of Gψ is called itsπ-coverif C contains all literal vertices labeled by literals from the
set

{p j | π(p j) = True} ∪ {¬p j | π(p j) = False} .

The above discussion yields the following proposition.

Proposition 41. A sentenceψ as in (23) is true iff for every valuationπ with domain~p,
the graph Gψ has aπ-cover of size2r + N.

In order to work with balanced conjunctions, we modifyGψ to transform the ques-
tions about the existence ofπ-covers into Binary Vertex Cover Problems. For this, we
construct a graphG′ψ that has the following properties: (a)G′ψ has 2k + 2|~p | vertices,
(b) G′ψ has 2m edges, (c) the sought-forπ-covers have size 2l , and (d) the size ofG′ψ
is linear in the size ofψ. In effect,G′ψ is a binary exponential graph, except that the
verticesu j,0 andu j,1, labeledp j and¬p j respectively, are not counted. The construc-
tion of G′ψ from Gψ mimics that from the proof of Theorem 12: to ensure (c), add extra
pairs of vertices joined by edges; to ensure (b), add a “star”-shape as in Stage 2 of the
proof of Theorem 12; then, to ensure (a), add extra isolated vertices. By construction,
Proposition 41 now implies the following property ofG′ψ:

Proposition 42. A sentenceψ as in (23) is true iff for every valuationπ with domain~p,
the graph G′ψ has aπ-cover of size2l .

We are now ready to prove theΠp
2-hardness of the Derivability Problem forJLCS.

Theorem 43. Let CS be a constant specification for a pure justification logicJL ∈
{J, JD, JT, J4, JD4, LP} such that the reflected fragmentrJLCS is fitting. Then the Deriv-
ability Problem forJLCS isΠp

2-hard.

Proof. We prove the theorem by reduction from co-QSAT2. Given a formulaψ as
in (23), we construct the graphG′ψ as described above and apply to this graph the
encoding from Definition 13. We define a setΓψ of formulas by

Γψ = {x: p j ∨ x: p j | j = 1, . . . , |~p |} ,

23

wherep j is a sentence letter that corresponds to the literal vertexu j,0 andp j is a sen-
tence letter that corresponds to the literal vertexu j,1. Intuitively, the sentence letterp j

in the encoding corresponds to the literalp j in the formulaψ while the sentence let-
ter pj corresponds to the literal¬p j , which explains the chosen notation. We hope that
the resulting small collision of notation:p j is the sentence letter that encodes the literal
vertex that corresponds to the literalp j , will facilitate understanding rather than hinder
it.

Let γψ be the conjunction of the formulas inΓψ. (Unlike the other conjunctions
we work with,γψ need not be balanced.) LetV′ψ be the set of all vertices ofG′ψ, and
let V′′ψ = V′ψ \ {u j,0, u j,1 | j = 1, . . . , |~p |}. Note that|V′′ψ | = 2k is a power of two. We
defineKψ to be

Kψ = γψ → t′k→l→m: (FV′′ψ → FG′ψ) ,

where a termt′k→l→m plays a role similar totk→l→m and is defined below. To prove
Theorem 43 it will suffice to show thatJLCS ⊢ Kψ iff ψ is true.

By the deduction theorem,JLCS ⊢ Kψ iff

JLCS{Γψ} ⊢ t′k→l→m: (FV′′ψ → FG′ψ) . (24)

For any valuationπ with domain~p, define

Vπ = {p j | π(p j) = True} ∪ {p j | π(p j) = False}

and letΓψ,π be the set of formulas{x : L | L ∈ Vπ}. Note that for any valuationπ with
domain~p the setΓψ,π is a finite consistent factive set of justification assertions and the
only term that occurs in it is the justification variablex. Hence, by Lemma 37, for any
valuationπ with domain~p, Lemmas 16–19, 21, 22, 25, and 26 hold forJLCS{Γψ,π}.
Consider the assertions

JLCS{Γψ,π} ⊢ t′k→l→m : (FV′′ψ → FG′ψ) . (25)

Clearly, (24) holds iff (25) holds for allπ. Thus, by Theorem 36 and Proposition 42, in
order to prove Theorem 43, it will suffice to prove the following

Lemma 44. For all valuationsπ with domain~p,

rJLCS{Γψ,π} ⊢ t′k→l→m : (FV′′ψ → FG′ψ) ⇐⇒ G′ψ has aπ-cover of size 2l ,

where by the derivability inrJLCS{Γψ,π} we understand the derivability in the corre-
sponding∗Γψ,π-calculus.

Proof. The proof of this lemma is very much like the proof of Theorem 28, but we still
need to define the termt′k→l→m. First, lett′k→l be the term conj(tk + c1 ·x, l). By almost
exactly the same reasoning as in Lemma 20, for any setC of size 2l with C ⊆ V′′ψ ∪ Vπ

rJLCS{Γψ,π} ⊢ t′k→l : (FV′′ψ → FC) . (26)

Indeed, by Lemma 17,rJLCS ⊢ tk : (FV′′ψ → L) for any sentence letterL that corresponds
to a vertex fromV′′ψ . It is easy to see thatrJLCS{Γψ,π} ⊢ c1·x: (FV′′ψ → L) for anyL ∈ Vπ

becauserJLCS ⊢ c1 : (L→ (FV′′ψ → L)). Thus, (26) follows by Lemma 18.

24

The converse is proved in a way similar to Lemma 24. In particular, by Lemma 18,
rJLCS{Γψ,π} ⊢ t′k→l : H holds precisely for formulasH of the form B → D, where
D is a balanced conjunction of depth≥ l such that for everyl-conjunctCi of D we have
rJLCS{Γψ,π} ⊢ (tk+c1·x) : (B→ Ci). By Lemma 17, the termtk only justifies implications
from a formula to itsk-conjunct. Clearly,c1 · x only justifies implicationsY → L
with L ∈ Vπ. Therefore,

all l-conjuncts ofD that are not inVπ must bek-conjuncts ofB. (27)

Note that|t′k→l | = O
(

k2l
)

as was|tk→l |.
Now definet′k→l→m to be the term syl(t′k→l , sl→m). By exactly the same argument as

in Theorem 23, using the same Lemmas 16 and 22, with (26) replacing the claim of
Lemma 20, we have

G′ψ has aπ-cover of size≤ 2l ≤ |V′ψ| =⇒ rJLCS{Γψ,π} ⊢ t′k→l→m : (FV′′ψ → FG′ψ) .

Conversely, Theorem 27 holds forrJLCS{Γψ,π} in place ofrJLCS, except that now
the setX can contain sentence lettersL ∈ Vπ in addition tok-conjuncts ofB. Indeed,
Lemmas 16 and 26 hold forrJLCS{Γψ,π}. The claim of Lemma 24 is here replaced
by (27), which allows elements ofVπ in X along withk-conjuncts ofB.

Lemma 44 now follows by exactly the same argument as in the proof of Theo-
rem 32.

This completes the proof of Theorem 43.

Theorem 45. LetCS be a schematically injective and axiomatically appropriate con-
stant specification for a pure justification logicJL ∈ {J, JD, JT, J4, JD4, LP}. Then the
Derivability Problem forJLCS isΠp

2-hard.

Proof. By Lemma 31,rJLCS is fitting. Thus, by Theorem 43,JLCS isΠp
2-hard.

Theorem 46. LetCS be a schematically injective and axiomatically appropriate con-
stant specification for a pure justification logicJL ∈ {J, JD, JT, J4, LP}. Then the
Derivability Problem forJLCS isΠp

2-complete.

Proof. It was proved in [15, 18] thatJLCS is inΠp
2. On the other hand, theΠp

2-hardness
follows from Theorem 45.

The lower bound from Theorem 45 was first proved forLPCS by Milnikel in [21]. A
slightly stronger result can be found there forJ4CS: it isΠp

2-hard for any schematic and
axiomatically appropriateCS. The results for the other four logics are new. By anal-
ogy with Milnikel’s result forJ4CS, we conjecture that the requirement of schematic
injectivity in Theorem 45 forJCS can be relaxed to that of schematicness.

25

9. The Role ofCS

Our method for proving lower bounds for both justification logics and their re-
flected fragments as well as Milnikel’s original proof of thelower bound forLPCS
from [21] requireCS to be axiomatically appropriate and schematically injective. A
natural question arises: whether these two conditions onCS are essential for proving
the lower bounds? In particular, isLP itselfΠp

2-hard? Although we cannot answer the
latter question, in this section we will try to explore the dependency of the lower bound
on a constant specification.

It is clear that neither schematic injectivity nor axiomatic appropriateness are nec-
essary for the lower bounds to hold. In particular,

Lemma 47. Let JL ∈ {J, JD, JT, J4, JD4, LP,TnLP,S4nLP,S5nLP}. There exists a
constant specificationCS for JL that is neither schematically injective nor axiomati-
cally appropriate such thatrJLCS is NP-hard. IfJL ∈ {J, JD, JT, J4, JD4, LP}, then, in
addition,JLCS isΠp

2-hard.

Proof. Let termsc1, c2, c∧1,∧2, c∧, andc∨1,∨2 from (1) be constants. Let all tautologies
from the right sides of the five equivalencies in (1) be axiomsfrom A1. Finally, let
a constant specificationCS be such that all five equivalencies from (1) hold while no
other constant justifies any axioms at all. Then the reflectedfragmentrJLCS is clearly
fitting. Thus, by Theorem 29,rJLCS is NP-hard. In addition, ifJL is a pure justifica-
tion logic, by Theorem 43,JLCS is Πp

2-hard. At the same time, thisCS is surely not
axiomatically appropriate. It is not schematically injective either since constantsc∧1,∧2

andc∨1,∨2 justify two axiom schemes each.
The constructed constant specification is schematic, but even the schematicness

condition is easy to violate provided the constantsc1, c2, c∧1,∧2, c∧, andc∨1,∨2 remain
schematic. It should noted that schematicness is often needed to prove the matching
upper bound.

The constant specification from the proof of the previous lemma also demonstrates
another curious fact: the+-operation does not play a big role in the lower bound on the
complexity of the logic.

Lemma 48. Let JL ∈ {J, JD, JT, J4, JD4, LP,TnLP,S4nLP,S5nLP}. There exists a
constant specificationCS such that the+-free reflected fragment ofJLCS is NP-hard.

Proof. Although + was used to construct termsc∧1,∧2 and c∨1,∨2 for schematically
injective constant specifications, it is not required for the constant specificationCS
from the proof of Lemma 47. Nowhere else in our reduction was+ used. Therefore,
even if axiom A3 and rule∗A3 are omitted from the axiomatizations ofJL and of
its reflected fragment respectively and the operation+ is dropped from the language
completely (see [12] for precise definitions) the resulting+-free reflected fragment is
still fitting and, hence, NP-hard.

However, the ability of one term to justify several axiom schemes does seem to
be necessary for the proven lower bounds. This ability can beensured already on the
level of constants, without the use of+. However, if the lack of+ is coupled with

26

the schematic injectivity of a constant specification, thenall terms effectively become
schematically injective and the reflected fragment is polynomially decidable, which
can be shown by analyzing N. Krupski’s algorithm from [14].

The preceding discussion shows that the lower bounds are, insome sense, local.
Namely, they can be ensured by finitely many constants using only a small portion
of propositional reasoning. In fact, the proof of the existence of undecidableLPCS
from [16] has a similar flavor: only a few constants are sufficient to make the logic un-
decidable. For instance, it is possible thatJLCS can be shown to beΠp

2-hard using one
part of the constant specificationCS and to be undecidable using another part. There-
fore, the requirements of schematicness and/or schematic injectivity can be relaxed to
apply only to a small subset of justification constants.

Since axiomatic appropriateness is also a local property, it becomes clear that it is
independent of whether the reflected fragment is fitting. In particular, Lemma 47 can
be easily reformulated for an axiomatically appropriate but not schematically injective
constant specification. The only change in the proof would bean addition of a sixth
constant that proves all the axioms.

However little of internalization is used in the proof of ourlower bounds, it cannot
be dispensed of completely:

Lemma 49. Let JL ∈ {J, JD, JT, J4, JD4, LP,TnLP,S4nLP,S5nLP}. There exists a
schematically injective but not axiomatically appropriate constant specificationCS
for JL such thatrJLCS is in P. If JL ∈ {J, JD, JT, J4, LP}, then, in addition,JLCS is
in co-NP.

Proof. It has been known thatLP0 with the empty constant specificationCS = ∅ is in
co-NP. Its reflected fragment is trivially in P since it is empty. Extending these results
to other justification logics is straightforward.

The preceding lemma can also be proved using a non-empty schematically injective
constant specification, but the proof is much more involved.

Acknowledgments.

We are grateful to Sergei Artemov for playing the role of a catalyst for this research
project.

References

[1] Sergei N. Artemov. Operational modal logic. Technical Report MSI 95–29, Cor-
nell University, December 1995.

[2] Sergei N. Artemov. Explicit provability and constructive semantics.Bulletin of
Symbolic Logic, 7(1):1–36, March 2001.

[3] Sergei [N.] Artemov. Justified common knowledge.Theoretical Computer Sci-
ence, 357(1–3):4–22, July 2006.

[4] Sergei [N.] Artemov. The logic of justification.The Review of Symbolic Logic,
1(4):477–513, December 2008.

27

[5] Sergei [N.] Artemov. Why do we need Justification Logic? Technical Report
TR–2008014, CUNY Ph.D. Program in Computer Science, September 2008.

[6] Sergei [N.] Artemov and Roman Kuznets. Logical omniscience via proof com-
plexity. In Zoltán Ésik, editor,Computer Science Logic, 20th International
Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary,
September 25–29, 2006, Proceedings, volume 4207 ofLecture Notes in Computer
Science, pages 135–149. Springer, 2006.

[7] Sergei [N.] Artemov and Elena Nogina. Introducing justification into epistemic
logic. Journal of Logic and Computation, 15(6):1059–1073, December 2005.

[8] Maria Luisa Bonet and Samuel R. Buss. The deduction rule and linear and near-
linear proof simulations.Journal of Symbolic Logic, 58(2):688–709, June 1993.

[9] Vladimir N. Brezhnev. On explicit counterparts of modallogics. Technical Report
CFIS 2000–05, Cornell University, 2000.

[10] Samuel R. Buss and Roman Kuznets. The NP-completeness of reflected frag-
ments of justification logics. In Sergei [N.] Artemov and Anil Nerode, editors,
Logical Foundations of Computer Science, International Symposium, LFCS 2009,
Deerfield Beach, FL, USA, January 3–6, 2009, Proceedings, volume 5407 ofLec-
ture Notes in Computer Science, pages 122–136. Springer, 2009.

[11] Alexander Chagrov and Michael Zakharyaschev.Modal Logic, volume 35 of
Oxford Logic Guides. Oxford University Press, 1997.

[12] Melvin Fitting. The logic of proofs, semantically.Annals of Pure and Applied
Logic, 132(1):1–25, February 2005.

[13] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[14] Nikolai V. Krupski. On the complexity of the reflected logic of proofs.Theoretical
Computer Science, 357(1–3):136–142, July 2006.

[15] Roman Kuznets. On the complexity of explicit modal logics. In Peter G. Clote
and Helmut Schwichtenberg, editors,Computer Science Logic, 14th International
Workshop, CSL 2000, Annual Conference of the EACSL, Fischbachau, Germany,
August 21–26, 2000, Proceedings, volume 1862 ofLecture Notes in Computer
Science, pages 371–383. Springer, 2000.

[16] Roman Kuznets. On decidability of the logic of proofs with arbitrary constant
specifications. In2004 Annual Meeting of the Association for Symbolic Logic,
Carnegie Mellon University, Pittsburgh, PA, May 19–23, 2004, volume 11(1) of
Bulletin of Symbolic Logic, page 111. Association for Symbolic Logic, March
2005. Abstract.

[17] Roman Kuznets.Complexity Issues in Justification Logic. PhD thesis, CUNY
Graduate Center, May 2008.

28

[18] Roman Kuznets. Complexity through tableaux in justification logic. In2008
European Summer Meeting of the Association for Symbolic Logic, Logic Collo-
quium ’08, Bern, Switzerland, July 3–July 8, 2008, volume 15(1) ofBulletin of
Symbolic Logic, page 121. Association for Symbolic Logic, March 2009. Ab-
stract.

[19] Roman Kuznets. Self-referential justifications in epistemic logic.Theory of Com-
puting Systems, Online First, April 2009.

[20] Richard E. Ladner. The computational complexity of provability in systems of
modal propositional logic.SIAM Journal on Computing, 6(3):467–480, Septem-
ber 1977.

[21] Robert [S.] Milnikel. Derivability in certain subsystems of the Logic of Proofs is
Π

p
2-complete.Annals of Pure and Applied Logic, 145(3):223–239, March 2007.

[22] Alexey Mkrtychev. Models for the logic of proofs. In Sergei Adian and Anil
Nerode, editors,Logical Foundations of Computer Science, 4th International
Symposium, LFCS’97, Yaroslavl, Russia, July 6–12, 1997, Proceedings, volume
1234 ofLecture Notes in Computer Science, pages 266–275. Springer, 1997.

[23] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.

[24] Steven Rudich and Avi Wigderson, editors.Computational Complexity Theory,
volume 10 ofIAS/Park City Mathematics Series. AMS/PCMI, 2004.

[25] Larry J. Stockmeyer. The polynomial-time hierarchy.Theoretical Computer Sci-
ence, 3(1):1–22, October 1976.

29

