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Abstract

Justification Logic studies epistemic and provability ptvaena by introducing justi-
ficationgproofs into the language in the form of justification termsirdPjustification
logics serve as counterparts of traditional modal epistdogics, and hybrid logics
combine epistemic modalities with justification terms. Tdwnputational complex-
ity of pure justification logics is typically lower than thaf the corresponding modal
logics. Moreover, the so-called reflected fragments, whidhcontain complete infor-
mation about the respective justification logics, are kntmoe in NP for a wide range
of justification logics, pure and hybrid alike. This papeows that, under reasonable
additional restrictions, these reflected fragments arecbifplete, thereby proving a
matching lower bound. The proof method is then extendeddwige a uniform proof
that the corresponding full pure justification logics &% hard, reproving and gener-
alizing an earlier result by Milnikel.

1. Introduction

Justification Logic is an emerging field that studies prolMgbiknowledge, and
belief via explicit proofs or justifications that are parttbé language. A justification
logic is essentially a refined analogue of a modal episteagic! Whereas the latter
usesJF to indicate thaF is known to be true, a justification logic uses- instead,
wheret is a term that describes a ‘justification’ or prooffef This construction enables
justification logics to reason about both formulas and ppabthe same time, avoiding
the need to treat provability at the metalevel.

Because Justification Logic can reason directly about exglroofs, it provides
more concrete and constructive analogues of modal epistegics. For example, the
modal distribution axionlJ(F — G) — (OF — OG) is replaced in Justification Logic
by the axioms: (F —» G) — (t: F — (s-t):G). The latter replaces the distribu-
tion axiom with a computationally explicit constructiorusiification logics are very
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promising for structural proof theory and have already pbio be fruitful in finding
new approaches to common knowledge ([3]), the Logical Oaieiee Problem ([6]),
and self-referentiality of proofs ([19]). For further dission on the various applica-
tions of Justification Logic, see [5].

The goal of the present pagés to provide a uniform method of proving lower
bounds for the Derivability Problems in various justificattiiogics and their reflected
fragments by reduction from problems similar to the Vertew€r Problem. We begin
by reviewing some definitions of justification logics.

The historically first justification logic, the Logic of PrfsoLP, was introduced
by Sergei Artemov [1] to provide a provability semantics fioe modal logicS4 (see
also [2]). The language afP

F:
t::

plLI(F->F)It:F,
Xlel@-t)|@t+t)|!t

contains an additional operatbr F, read ‘termt serves as a justificatigoroof of
formulaF. Here p stands for a sentence lettarfor a justification variable, andfor
a justification constant. Formulas of the fotnk are calledustification assertions
Statements : F can be seen as refinements of modal stateniértbecause the
latter say that~ is known, whereas the former additionally provide a ratierfar
such knowledge. This relationship is demonstrated thrabghrecursively defined
operation offorgetful projectionthat maps justification formulas to modal formulas:
(t: F)° = O(F°), and commutes with Boolean connectiveB: & G)° = F° — G°,
wherep® = pand.L°® = L.

Axioms and rules ofLP:

Al. Acomplete axiomatization of classical propositiomalit by finitely many axiom
schemes; rule modus ponens;

A2. Application Axiom s(F > G) - (t:F - (s-1):6);
A3. Monotonicity Axiom sk — (s+1):F, t:F - (s+1):F;
A4. Factivity Axiom t:F - F;
A5. Positive Introspection Axiom FE-o it F;

R4. Axiom Internalization Rule A
whereA is an axiom olLP andc is a justification constant.
LP is the exact counterpart &4 (note the similarity of their axioms): namely, let
X° = {F° | F € X} for a setX of justification formulas and lgtP be identified with the
set of its theorems, then

Theorem 1(Realization Theorem, [1, 2])LP° = S4.

3An earlier version of this paper appeared in the proceedifig&CS 2009 ([10]).



Table 1: Axioms for Justification Logics

Justification Present
axiom scheme in logics
A4, t.F->F JT,LP
A5. t:F - It:t:F J4,JD4, LP
A7. t:1L -1 JD,JD4

Other epistemic modal logics have their own justificationmerparts in the same
sense. Counterparts of the modal logicsD, T, K4, andD4 were developed by
Vladimir Brezhnev in [9]. These justification logics, nam&diD, JT, J4, andJD4
respectively, are all subsystemsld? and share the A1-A3 portion of its axiom sys-
tem. The remaining two axiom schemes are included depemfenthether or not
their forgetful projections are axioms of the respectivelaidogic. In addition,JD and
JD4 require a new axiom schente:

A7. Consistency t:L— 1,

whose forgetful projection is the modal Seriality Axiom.@plete details can be found
in Table 1.

Finally, the rule R4 fod4 andJD4 is written the same way as faP, but of course
it now applies to the axioms i, respectivelydD4. The logics without the Positive
Introspection Axiom A5 still require some restricted forfrpositive introspection for
constants which is embedded into the Axiom InternalizaRaite:

R4'. Axiom Internalization Rule

whereA is an axiom of the logicg is a justification constant,
andn > 0 is an integer.

This form of the Axiom Internalization Rule is used fg§rJD, andJT.
Theorem 2(Realization Theorem, [9])
J° =K, JD° =D, JT° =T,
J4° = K4, JD4° = D4.

All these justification logics arpurein the sense that only terms are present in the
language, but not modalities. In [3], Artemov studlgdrid justification logicsT,LP,
S4,LP, andS5,LP. These combine terms with modalities for several agents (ges
agent varian84,LP was originally developed by Artemov jointly with Elena Naogi
see [7]).

Axioms and rules of T,,LP, S4,LP, and S5,,LP:
Let ML € {T, S4, S5).

4The apparent break in the numeration of axioms is due to tiyaiNe Introspection Axiom A6 that
remains outside the scope of this paper. The numbering @ follows [4].



1. Axioms and rules of the multimodal logidL,,.
2. Axioms and rules of the justification logid.

3. Connection axiomForeach =1,...,n, t:F — O;F.

The Axiom Internalization Rule R4 in 2. is extended to apphall axioms ofML,LP.

For some applications (e.g., to avoid Logical Omniscier@eof to study self-
referentiality [19]) the use of constants needs to be isttj this is achieved using
constant specificationg\ constant specificatio@S for a justification logiclL is a set
of instances of the rule R4 for this logic:

CS c {c:A| Ais an axiom oflL, cis a justification constapt.

Given a constant specificati@nS for JL, the logicJL¢s is the result of replacing the
Axiom Internalization Rule inlL (R4 or R4) by its relativized version, respectively
by:

c:AeCS

R . —

4es c:A
! c:AeCS

R4:s- I...lc:...:llcilcic: A’

wheren > 0 is an integer.

The Realization Theorem holds for a pure justification loglicwith a constant
specificatiorCS, i.e., JL¢s)° = ML = JL°, iff CS is axiomatically appropriate

Definition 3. A constant specificatio@S for a logicJL is called:
o axiomatically appropriateif every axiom ofJL is justified by at least one constant;

e schematit if each constant justifies several (maybe 0) axiom schemésoaly
them;

e schematically injectiveif it is schematic and each constant justifies no more than
one axiom scheme.

The following is the fundamental property of justificatiamylcs, closely related to
the Realization Theorem:

Lemma 4 (Constructive Necessitation. [1, 3, 4]letCS be an axiomatically appro-
priate constant specification for a justification loglt. For any theorem F ofL¢g,
there exists a--free ground justification term s such thalcs + S: F.

5The term is due to Melvin Fitting.

6The term is due to Robert Milnikel although the idea goes liadkexey Mkrtychev.

"The term is due to Milnikel.

8A justification term is calledyroundif it contains no occurrences of justification variables.



Whereas it is well known that the Derivability Problems fioe tmodal logic«, D,
T, K4, D4, andS4 are PSPACE-complete ([20]), it was shown that

Theorem 5 ([15, 18]). LetJL € {J,JD,JT, J4,LP} andCS be an axiomatically ap-
propriate constant specificatidrfor JL. Then the Derivability Problem fadLcs is
in I15.

2

In particularLP itself is inTT5. (The complexity ofiD4¢s remains open, see [18].)
Robert Milnikel proved some matching lower bounds, namely:

Theorem 6([21]).

1. LPcs is Hg-hard providedCsS is axiomatically appropriate and schematically
injective;

2. J4csis Hg-hard providedCsS is axiomatically appropriate and schematic.

The so-calledeflected fragmentLP of the Logic of Proofs was studied by Nikolai
Krupski in [14].

Definition 7. For any justification logiclLcs with a constant specificatiofiS, the
reflected fragmendf the logic consists of all provable justification asserip

les = {t:F | JLes F t:F} .

We will write rdLgs + t: F to meant: F € rJLcs. At the end of this section, we will
present an axiomatization for several reflected fragmeiats-galculi, which would
make the use of more natural.

A reflected fragment bears complete information about tieetlging logic as the
following theorem shows:

Theorem 8 ([14, 17]). LetJL € {J,JD,JT,J4,JD4,LP, T,LP, S4,LP, S5,LP} and
CS be an axiomatically appropriate constant specificationfor Then

Jles+F = @AYrdLles Ft:iF .

(The requirement of axiomatic appropriateness is necgssally for the=-direction.)

The =-direction constitutes the Constructive NecessitatiavpBrty (Lemma 4).
The «=-direction easily follows from the Factivity Axiom A4 forldbgics butJ, JD,
J4, andJD4 that do not have Factivity. For these four logics, the statgintan be
proved semantically using F-models (see [12] for their dpton) or syntactically by
transforming a derivation df: F in the respective-calculus into a derivation df in
the underlying justification logic (the details of this teiormation can be found in [17,
proof of Lemma 3.4.10]).

Theorem 9 ([14, 17]). LetJL e {J,JD,JT,J4,JD4,LP, T,LP, S4,LP, S5,LP} and
CS be a schematic constant specification Jar The Derivability Problem forJLcs,
the reflected fragment df ¢, is in NP.

%In all complexity results, we always assud8 to be polynomial-time decidable.



Table 2:x-Calculi

Calculus Axioms and rules Used for
*CS «CS', *A2, *A3 rJcs, 1IDcs, NTes

*!CS *CS, *AZ, *A3, *Ab I'J4cs, FJD4cs, ercs,
IThLP¢cs, rS4,LP¢s, rS5,LP¢cs

To prove Theorem 9 faiLP¢s, N. Krupski developed an axiomatization fP¢s
that we will call thex!-s-calculus

Axioms and rules of thex!-s-calculus

xCS. Axioms for anyc:A e CS, C:A
L s:(F - Q) t:F
A2. Application Rule ;
* PP s-t:G

x*A3. Sum Rule S:F , tF ;
s+t:F s+t:F

o . t:F
+Ab. Positive Introspection Rule TLE

In [17], this calculus was shown to also axiomatize the lsegld.s, rJD4¢s, rThLPcs,
rS4,LPcs, andrS5,LP¢g. In particular, the three logidsPcs, J4cs, andID4¢s all use
the ! s-calculus to axiomatize their reflected fragments. The cedlbfragmentslcs,
rJDcs, andrdT¢s of the three theories which do not have positive introspectire all
axiomatized by thecs-calculuswhich is obtained by omitting the ruleA5 from the
xl og-calculus while simultaneously extending the set of axitoriaclude:

*CS'. Axioms foranyc:Ae CSandanyintegen>0, !l---lc:...:llc:lcic:A
N——

Note that axioms CS are instances ofCS' with n = 0. ThereforezCS can be used
both in thexcs- and thex! ;s-calculi.

We collectively call the:cs- and thex!s-calculi thesx-calculi, which are summa-
rized in Table 2. As can be seen from the preceding discussidrthe summarizing
table, there are only two calculi that axiomatize the reflddtagments of various pure
and hybrid justification logics. More precisely, the ruldéghee «-calculus for a given
justification logicJLcs depend solely on whethdt enjoys full positive introspection
while the axioms of thig-calculus are read froidS and thus indirectly depend on the
axioms ofJL.

In Theorem 36 below, we will show that the same rules can bd imsthe setting
where there are non-logical axioms in addition to /@S or «CS' axioms.

The first main result of the present paper, Theorem 32, is alboaund on the com-
plexity of reflected fragments that matches the upper bo@ifitheorem 9; namely, we
show that the Derivability Problems for many reflected fragihs are NP-complete.
The proof is by a many-one polynomial-time reduction fromrekn NP-complete



problem, the Vertex Cover Problem. As in Milnikel's lowerlwal forLP.s, we have

to impose an additional restriction th@S be axiomatically appropriate and schemat-
ically injective. The reduction method is then extended staklish a lower bound
on the complexity of full pure justification logics that alsmatches the upper bound
of Theorem 5; this gives a reproof of tiiE-hardness results of [21] and extends the
results to additional justification logics.

The paper is structured as follows. Section 2 defines a cafiggaphs by propo-
sitional formulas and shows how the existence of a vertexicoan be described in
terms of these formulas. Section 3 develops justificatiomsethat encode several
standard methods of propositional reasoning. AlthougHdhmaulas that describe the
existence of a vertex cover depend on the cover itself rétiaeronly on its size, Sect. 4
shows how to eliminate this dependency by using the ternms 8ect. 3 to encode par-
ticular derivations of the formulas from Sect. 2. Sectionriisfies the proof of the
polynomial-time reduction. This reduction is used in S6db establish a criterion for
NP-hardness of reflected fragments and to apply it to a widgeaf them. Section 7
lays the groundwork for proving lower bounds for full purstitication logics, which
is done in Sect. 8 by generalizing the Vertex Cover Problemﬂ@-complete version.
Finally, Sect. 9 explores the restrictions on the constaatification necessary for the
proved lower bounds.

2. Graph Coding and Preliminaries

A graphG = (V, E) has a finite seV of vertices and a finite sét of undirected
edges. We assume w.l.o.g. that= {1,..., N} for someN and represent an edge
between verticek andl as the se¢ = {k, I} with its endpoints denoted bx(€) < v»(€).
A vertex cover forG is a setC of vertices such that each edge& E has at least one
endpointinC. The Vertex Cover (VC) Problem is the problem of determiniriggther
a given grapltG has a vertex cover of a sizeL for a given integet. > 0. The Vertex
Cover Problem is one of the classic NP-complete problems.

We define below formulaBy, Fc, andFg that will help build a many-one reduction
from VC to the reflected fragments of justification logics.e8k formulas will include
large conjunctions. To avoid the dependence of derivationg vertex cover, we will
use balanced conjunctions (see [8]):

Definition 10. Each formula is dalanced conjunction of depth If A andB are both
balanced conjunctions of depththenA A B is abalanced conjunction of depthika.

Clearly, a balanced conjunction of depths also a balanced conjunction of depth
forany 0< | < k. Thus, we are mainly interested in how deeply a given fornmila
conjunctively balanced. Unless stated otherwise, for amjunctionC; A --- A Cx
of 2¢ formulas, we assume that the omitted parentheses are satckththresulting
balanced conjunction has the maximal possible depthdiepth> k.

We also need to refer 16;'s that form a conjunctio©; A --- A Cx. The follow-
ing inductive definition ofdepth k conjunctsor simply k-conjuncts generalizes the
definition ofconjunctsn an ordinary conjunction:



Definition 11. Each formula is a @onjunctof itself. If C A D is ak-conjunct of a
formulaF, thenC andD are both k + 1)-conjunctsof F.

For instance, the conjuncts of an ordinary conjunction &rd-conjuncts; alC;’s in

Ci1 A--- ACx are itsk-conjuncts. More generally, any balanced conjunction gtldk
has exactly ® occurrences ok-conjuncts (with possibly several occurrences of the
same formula).

To make a full use of balanced conjunctions, it is convertiengéstrict attention to
instances of the Vertex Cover Problem for graphs in which ltoé number of vertices
and the number of edges are powers of 2. These are daflady exponential graphs
Itis also helpful to only consider vertex covers whose sszepower of 2; these we call
binary exponential vertex coverBortunately, the version of the Vertex Cover Problem
restricted to binary exponential graphs and their binaryoeential vertex covers is
also NP-complete:

Theorem 12. The Binary Vertex Cover (BVC) Problem of determining whedlggven
binary exponential graph G has a vertex cover of siz# for a given integer & 0 is
NP-complete.

Proof. Since each instance of BVC is also an instance of the standargroblem,

and since VC is NP-complete, it ices to construct a polynomial-time many-one
reduction from VC to BVC. Suppose we are given an instance@fnamely, we are
given a graplGg and an integet and wish to determine iy has a vertex cover of
size< L. We give a polynomial-time procedure that constructs argieaponential
graphG and a valud so thatGy has a vertex cover of size L iff G has a vertex
cover of size< 2'. The grapltG is constructed in three stages; each stage causes only a
constant factor increase in the size of the graph.

Stage 1. Increasing the size of vertex cov€&boose an integer @ L’ < L such that
L+ L =2 — 1 for some integet > 0. A graphG’ = (V’, E’) is obtained fronGy
by adding 2’ new vertices broken intb’ disjoint pairs with the vertices in each pair
joined by a new edgelL( new edges overall). The grafhy has a vertex cover of
size< L iff the graphG’ has a vertex cover of size2' — 1.

Stage 2. Increasing the number of edg€fioose an integer @ M” < |E’| such that
|[E’| + M” = 2™ for some integem > 0. A graphG” = (V”, E”) is obtained by adding
M” + 1 new vertices t@’ with one of these vertices joined to M” others M” new
edges overall). The grag®’ has a vertex cover of size 2' — 1 iff the graphG” has a
vertex cover of size 2.

Stage 3. Increasing the number of vertic€hoose an integer & N < |V”| such
that|V”| + N = 2 for some integek > 0. A graphG = G’” is obtained by adding
N” isolated vertices t@”. The graphG” has a vertex cover of size 2 iff the
graphG’” has a vertex cover of size 2.

It is clear from the construction th& is a binary exponential graph such that
Go has a vertex cover of size L iff G has a vertex cover of size2'. O

Definition 13. Let G = (V, E) be a binary exponential graph with = {e, ..., em}.
We define the following formulas:



a. Foreach edgg = {i1,i2) € E, whereiy <iz, Fe = Pi; V Pi, = Pue) V Pw(e)-

b. LetC = {iy,ip,...,i2} € V be a possible binary exponential vertex cover&r
wherei; <iz <--- <iy. DefineFc = pi, A--- A pi, -

C. Fo=Fe A+ A Fep.

The proof of the following properties is an easy exercisddnotes derivability in
classical propositional logic):

Lemma 14. For any binary exponential graph & (V, E) and any binary exponential
setCcV,

1.+ Fy —» Fg ;

2. F FV — Fc i

3.+ Fc - Fg iff C is a vertex cover for G.

Our goal is to reduce BVC to derivability in a given reflectedgment. To this
end, we consider a particular derivationfe§ — Fg that proceeds by first proving
Fv — Fc, then attempting to provEc — Fg, succeeding in the attempt i is a
vertex cover, and finally applying hypothetical syllogisHS) to inferFy — Fg. We
further encode this derivation as a justification teérso thatrdLcs + t: (Fy — Fg) iff
Cis avertex cover. In BVC we need to determine whether theistea vertex cover of
(at most) a given size rather than whether a given set ofcesris a vertex cover. Thus,
t: (Fv — Fg) should not depend o@ but may (and should) depend on the siz&€of
SinceC has already been “syllogized away” from the formbla — Fg, it remains
to make sure that the tertronly depends on the size 6f Although any derivations
of Fy — F¢ and of F¢ — Fg necessarily explicitly depend d@, the terms encoding
them, and thereforg can be made independent®f This is the main reason why we
use balanced conjunctions: this waylaltonjuncts are interchangeable.

Instead of giving a proof for one particular type of reflectiedyments and explain-
ing how to adjust it to other cases as in [10], we will now fotata conditions under
which a reflected fragmeffits our construction. These conditions have the following
form: for certain individual axiom schemes or their sets¢hmust exist a term that
justifies exactly the axioms from this scheme or this set bégstes respectively.

Definition 15. A reflected fragmentlLcs is calledfitting if it has ground terms with
the following properties:

lest € 'F
lesk C2 'F
I’JLCS F Carn2- F
rles+ ¢o o F
I'JLCS F Cviv2: F

F=(X- (Y- X)),
F=(X=>(Y—>2)->((X->Y) > X->2)),
F=(Xi1AXo— X)), wherei=1ori=2, 1)
F=(X—- (Y > XAY)),

F=(X — X1V X), wherei=1ori=2,

110170

whereX, Y, Z, X1, andX; are arbitrary formulas.

Most natural schematically injective constant specifaraifor justification logics yield
fitting reflected fragments. Note that terms c,, andc, should justify exactly one
commonly used propositional axiom scheme each. In fadig¢ axiom schemes are



part of Al for a particular justification logidL and if CS is schematically injective,
these terms may have an especially simple form: they cantstanas justifying their
respective axiom schemes. The two terpg,, andcyi vz should justify two com-
monly used axiom schemes each. In general, they can be ndoolglthe sums of
terms corresponding to those axiom schemes. That is tasgy; can be defined to
bec,1 + a2, Wherec, justifies exactly the schem@ A Xz — X;. Similarly, ¢y1,v2 can
generally be set equal g, + ¢y, for appropriate terms,; andc, .

We shall prove the NP-hardness of fitting reflected fragmiayntsiving a reduction
from BVC to derivability in the reflected fragment. Therefopur complexity lower
bounds hold for any fitting reflected logic, and they do notetepon the particular
propositional axiomatization chosen, or the particulanfof the five terms from (1).
In fact, as will be shown, it is not even important that theragien+ be present.

3. Justification Terms Encoding Propositional Reasoning

Throughout the section, we assume that a reflected fragdientis fitting. All -
derivations in this and the next two sections can be perfdimeither of the«-calculi.
In each case, the choice of thecalculus is made based on the underlying reflected
fragment according to Table 2.

The size of terms is defined in a standard wal= |x| = 1 for any constant and
any variablex, |(t- 9)| = |(t+ )| =t/ + |9+ 1,|!1t] = |t + 1.

Note that all the terms from (1) have si@¢1) because there are only five of them.

Lemma 16 (Encoding the Hypothetical Syllogism Rul€Jhe operation
syltt.s) = (c2- (c1- 9) - t
with |syl(t, 5)| = [t| + |g + O(1) encodes the Hypothetical Syllogism Rule, i.e.,

H = A — C such that for some B

FlosFsylb9):H = rlcs F t:(A— B) and  rllgs* s:(B— Q).

Proof. («<). Here are the key elements of a derivatiort ofA — B),s: (B — C) +
syl(t, s) : (A — C) (parts of the derivation following from the “fit" of the refleed
fragment are omitted):

¢t . (B->C)-»A—-(B—-0Q) (fit)
s : (B->0 (Hyp)
ca-s ¢ (A->(B—-0Q) (*A2)
¢ : (A->(B—-C)—>((A—>B)-> (A—>C))) (fit)
c-(ci-s) : (A—-B)—>(A->0Q) (xA2)
t . (A—>B) (Hyp)
(C2 . (C]_ . S)) -t (A — C) (*AZ)

(=). Consider an arbitrary derivation of syl§) : H in the =-calculus. It can easily
be seen that any such derivation must have the same key dkatethe one used for
the <=-direction above: the only éierence can be in the choice of formulas for the
termscy, Cp, S, andt. Since the reflected fragment is fitting, we know which forazul

10



can be proved bg; andc,. Thus, we can shape this as a unification problem: find
formulasXy, Y1, Xo, Yz, Zo, Xs, andX; such thatJL.s + S: Xs, rllcgs + t: X, and the
following is a=-calculus derivation o§: X, t: X; + syl(t, s) : H modulo derivability of
statements from (1):

1. C1: (Xl - (Y]_ - X]_)) (flt)

2. S: Xs (Hyp)
3. cr-s:(Y1— Xq) (+A2)
4. (X2 = (Y2 = 2Z2)) = (X2 = Y2) = (X2 — Z2)))  (fit)

5 G- (c1-9:((X2—= Y2) = (X2 = Z2)) (xA2)
6. t: X (Hyp)
7.(co-(c1-9) - t: H (+A2)

To make the applications of the rui\2 work in lines 3, 5, and 7, the unification
variables have to satisfy the following equations:

X1 =Xs from 3. (2)

Xo—> (Yo—> 2Z2)=Y1 > X from 5. 3)
Xo = Yo = Xt from 7. 4)
Xo—Z,=H from 7. (5)

By (2) and (3),Xs = X3 = Y2 — Z,. This equation combined with (4) and (5) shows
thatH is indeed an implication that follows by HS frok and X justified byt ands
respectively. O

Lemma 17 (Strippingk conjunctions) For any integer k> 0 there exists a term of
size k) that encodes the operation of stripping k conjunctions, i.e

les F%&:D = D = H — C, where C is a k-conjunct of H.
Proof. We prove by induction ok that the conditions are satisfied for

to=(co-cy)-C1,
ties = SYl(Cazn2, t) -

Sincelti, 1| = [tl + [Carn2l + O(1) = [t + O(1), it is clear thatty| = [to| + KO(1) = O(K).
Base case, ke 0. (). If C is a 0-conjunct oH, thenH = C, and it is easy

to see thaty corresponds to the standard derivation of the tautolégy> C from

propositional axioms (cf. combinatgkK.

(=). Any =-derivation ofty: D must have the following key elements:

1 (X2 = (Y2 = Z2)) = (X2 = Y2) = (X2 — Z2)))  (fit)
2. C1: (Xl - (Y]_ - X]_)) (flt)
3. C2-CLi((X2 = Y2) = (X2 — 2p)) (xA2)
4 C1: (X3 e (Y3 — X3)) (flt)
5 (c-¢)-ci:D (xA2)

11



For+A2 from line 5 to be valid, it is necessary tHat= X, — Z,. It follows from xA2
in line 3 thatX; — (Yo —» Z5) = X3 — (Y1 — Xyp), in which caseX; = X; = Z,.
ThereforeD = X, — Xz, which is an implication from a formula to its 0-conjunct.
Induction step (). LetH be a formula with ak + 1)-conjunctC. ThenH must
be of the formH; A H, with C being ak-conjunct ofH; for somei = 1,2. By the
induction hypothesisiLcs + tk : (Hi — C) for thisi. For bothi = 1 andi = 2
rILes F (Cara2):(H — H;). Then, by Lemma 16JL¢s + tys1: (H — C).
(=). By the induction hypothesidy justifies only implications from a formula to
one of itsk-conjuncts. SinceJLcs is fitting, ca1.A2 justifies only implications from
a formula to one of its 1-conjuncts. By Lemma 18, justifies only hypothetical
syllogisms obtained from the latter and the former, blktanjunct of a 1-conjunct of
a formulais its k + 1)-conjunct. O

Lemma 18. For any term s and any integer* O there exists a ternconj(s, ) of
size ({|si2') with the following property:

D=B— C; A---ACy such that

NlesFoons):D = 5 ' s@B>C)foralli=1,...,2

Proof. We prove by induction ohthat the conditions are satisfied for

conj(s, 0) = syl(s to) ,
conj(s | + 1) = (cz - syl(conj(s 1), ¢,)) - conj(s. 1) .

It is not hard to see thatonj(s, 1)] = 2'(|S + K + L) — L, whereK andL are constants
such thatconi(s, 0) = |9 + K and|conj(s, | + 1) = 2/conj(s, )| + L.

Base case, £ 0. (). For any formuleC, rlL¢s + tp: (C — C) by Lemma 17.
Then, by Lemma 16JL¢s + S:(B — C) impliesriLcs F syl(s, tp) : (B — C).
(=). By Lemma 16, syk, to) justifies only implicationd — C for which there exists
a formulaA such thatdL¢cs + s:(B — A) andriLcs F to: (A — C). By Lemma 17, the
latter impliesA = C. ThereforerJL¢s + s:(B — C).1°

Induction step(<). LetH = C; A - - - A Ca1 With rdL¢gs + S: (B — C;) for all its
(I + 1)-conjunctsC;. ThenH = H; A Hy, whereCy, Cy, ..., Ca arel-conjuncts ofH;
andCy,1,Cy,o, ..., Cyu arel-conjuncts ofH,. By the induction hypothesis,

rles + conjs 1):(B— Hy) , (6)
rJLcs + conj(s, 1): (B — Hy) . @)

In addition,rJL¢s F cx:(H1 — (H2 = Hi A Hp)); in other words,
I'JLCS F C/\:(H]_ - (H2 — H)) . (8)
From (8) and (6) by Lemma 16, faf = syl(conj(s 1), c,) we have

rJlcs F S’(B - (H2 - H)) .

10Note that, in general, corg(0) = sdoes not satisfy the=-direction.
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Then, from (7) andJL¢s + ¢2: ((B — (Hz = H)) — ((B — Hz) — (B — H))):
les FC2-S:((B— Hz) = (B— H)) and, finally,
rILcs F (C2 - S) - conj(s, 1):(B— H) .

It remains to note that corg(l + 1) = (c» - §) - conj(s, 1).
(=). By Lemma 16, the rule
t:(A—-B) s:(B—C)
sylt,s):(A— C)

(Syl)

is admissible in botk-calculi. So any«-derivation of conj§ | + 1) : D must contain
the following key elements (we have already incorporateditiduction hypothesis
about conj§ 1) as well as Lemma 16):

1 conjs,1):(B—=C1ACaA---ACy) (IH)
2 Cri(Xn = (Ya = XA AYL)) (fit)
3. S:(B— (YA = Xx AYR)) (Syh
4. Co. ((X2 - (Y2 - Zz)) - ((X2 - Y2) - (X2 - Zz))) (flt)
5 Co- 5 (X2 = Ya) = (X2 = Z2)) (+A2)
6 conjs,1): (B" = Cu,g ACo,0 A+ ACou) (IH)
7.(c2-s)-conjisl):D (xA2)

whererdLegs F s: (B — Cj) andrdLgs F s: (B — Cay) fori=1,...,2". Let us collect
all unification equations necessary for this to be a valigritant of a«-derivation:

CiACoA---ACa =X, from 3. 9)
Bo(YAo2 XiAY))=Xo—> (Yoo Z) from 5. (20)

B > Cu,i ACoios A ACaa =X > Yo from 7. (1))
Xo—>2Z,=D from 7. (12)

By (10) and (11)B = X, = B". Thus,rJL¢s F s:(B — C) fori = 1,...,2"*1. Also
Ya=Y2=Co1 ACaa A - ACoaa
again by (10) and (11). So, by (9) and (10),
Zo =X AYA=(CLACoA---ACA)A(Coi1 ACoo A-+- ACou) .

By (12),Dis indeed an implication frorB to this balanced conjunction for all of whose
(I + 1)-conjuncts the termsjustifies their entailment frorB. O

Lemma 19. For the termdisj = ¢,y of size (1),
rlLcs + disj:D = D = B — H, where B is a disjunct of H.

Proof. Easily follows from the fact that the reflected fragment isrfg. O
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4. Reduction from Vertex Cover, Part |

We now use the justification terms from the previous sectopuild a polynomi-
al-time many-one reduction from BVC to a fitting reflectedyireentrLcs.

Lemma 20. Let a term of size ((:kz') be defined by
tksr = conj(t, 1) .
For any binary exponential graph & (V, E) with |V| = 2<and any set G V of size2,
rles F ks i (Fv = Fe) .

Proof. conji, 1) = O(1tl2') = O(k2).

All I-conjunctsp; of Fc, wherei € C, must bek-conjuncts ofFy. Thus, for
any of them by Lemma 1#JL¢cs + t: (Fv — pi). Now, by Lemma 18, we have
rdLcs F conjty, 1) : (Fv — Fe). O

Lemma 21. Let a term of size @) be defined by
tl—>edge= Syl(tl’ diSj) .

For any binary exponential graph G= (V,E), any set Cc V of size2', and any
edge e E,

rJLcs F tiedge: (Fc — Fe) — e is covered by C.

Proof. |syl(t;, disj)| = [t;] + |disj| + O(1) = O(l) + O(1) = O(l).

(). If i € en C is the vertex inC that coverse, thenp; is a disjunct ofF,, so
rlLcs + disj: (pi — Fe) by Lemma 19. Butp; is also anl-conjunct ofF¢, so, by
Lemma 17,rdL¢cs + t : (Fc — pi). Finally, rdLcs + syl(t, dis)) : (Fc — Fe) by
Lemma 16.

(=). If C does not coveg, it is easy to see th&ic — F¢ is not valid propositionally.
All justification logics are conservative over classicabpositional logic, therefore
JLcs ¥ Fc — Fe. By Theorem 8rJLcgs ¥ s:(Fc — F¢) for any terms. O

Lemma 22. Let a term of size @2™) be defined by
Som = Conj(tl—nadge m) .

For any binary exponential graph G (V, E) with |E| = 2™ and any set CC V of
size?',

rllcs F Som:(Fc — Fg) — C is a vertex cover for G.
Proof. [conji-edge M| = O ([ti-eqqd2™) = O(127).
(). If C is a vertex cover, thenlLes F tiedge: (Fc — Fe¢) for all e € E, by
Lemma 21. Alim-conjuncts ofFg areF¢'s with e € E. Hence, by Lemma 18, we have
rIles F Conj(t|—>edge m):(Fc — Fg).
(=). If C is not a vertex cover, by Lemma 14.3, formi#g — Fg is not valid

propositionally. The same argument as in the previous lesirows that for any terra
rdlcs ¥ S:(Fc - FG). O
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Theorem 23. Let a term of size ((J(Z') + O (12 be defined by

tkoiom = SYI(tko1, S—m) -

For any binary exponential graph G- (V, E) with |[V| = 2€ and|E| = 2™ and any
integer0 < | <Kk,

G has a vertex cover of size2' = rlcs F tkoi-m: (Fv = Fg) .

Proof. [syl(ti. Sm)| = tioi] + [Sml + O(1) = O(k2') + O (127).

By Lemma 201JL¢s + te : (Fv — F¢) for any sefC C V of size 2. If G has a
vertex cover of sizec 2', it can be enlarged to a vertex cover of sizel2tC be such
a vertex cover of size'2 Then, by Lemma 22JL¢s F S—m: (Fc — Fg). Thus, by
Lemma 16yJLcs F SYl(tkst, S—m): (Fv = Fg). O

Note that the tern_,_,m depends only on size ®f a vertex cover and on how
many vertices and edg&shas.

5. Reduction from Vertex Cover, Part Il

To finish the polynomial-time reduction from BVC to any figimeflected frag-
mentrJLcs it now remains to prove the other direction:

rILcs F tksiom: (Fv — Fe) = G has a vertex cover of size 2'.

Lemma 24 (Converse to Lemma 20)

H=B- D,
rles F tkor i H = where D is a balanced conjunction of depth
whose all I-conjuncts are k-conjuncts of B.

Proof. By definition,t_,; = conj(t, 1), so by Lemma 18, it justifies only implications
B— CiA---ACywithrdlgs - t: (B — C)fori =1,...,2". By Lemma 17, the
termty justifies only implications from a formula to itsconjuncts. O

Lemma 25(Converse to Lemma 21)

H=B— DV Dy,

Mles Flisedge H where either B or D, is an |-conjunct of B.

Proof. By definition, tiedge = SYl(ti, disj). By Lemma 16H can only be an impli-
cationB — D such thatJL¢s + t: (B — C) andriL¢s + disj: (C — D) for some
formulaC. By Lemma 19, the latter statement implies tBbat D; v D, with C = D;
for somei = 1,2. By Lemma 17D; is anl-conjunct ofB. O

Lemma 26 (Converse to Lemma 22)

H=B— (C;VDi))A---A(ComV Dom),
rdlcs F Som:H = where either Cor D; is an I-conjunct of B
foreachi=1,...,2M
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Proof. By definition,s_m = conj(ti—.edge M). By Lemma 18H must be an implication
from some formul&B to a balanced conjunction of depthm such that, for all itsn-
conjunctsF, rlLcs + tisedge (B — F). By Lemma 25, each of these-conjuncts must
be a disjunction with one of its disjuncts beinglaconjunct ofB. O

Theorem 27(Converse to Theorem 23)

H=B— (C;VDi))A---A(ComV Dzom)
rles F toiom:H = and there is a size 2' set X of k-conjuncts of B
with eitherG € X or D, € X foreachi=1,...,2™M

Proof. By definition, tx—j—m = syl(tk-1, S—m). By Lemma 16H = B — F with
(@)rdlcgs F tkor 1 (B — Q), (b)rdLcs F S—m: (Q — F) for some formulaQ. From (a),
by Lemma 24 Q must be a conjunctio®; A --- A Q. such that all itd-conjunctsQ;
are alsok-conjuncts ofB. So the seX = {Q; | i = 1,...,2'} has size< 2' (because
of possible repetitions) and consistskefonjuncts ofB. It now follows from (b), by
Lemma 26, thaF = (Cy vV D7) A --- A (Com vV Dom) with eitherC; or D; being an
I-conjunct ofQ for eachi = 1,...,2", i.e., with eitherC; € X or D; € X for each
i=1,...,2M O

Theorem 28. For any binary exponential graph & (V, E) with |V| = 2K and|E| = 2™
and any integed < | <k,

les F tkoiom: (Fv — Fg) = G has a vertex cover of size2'.

Proof. The <-direction was proved in Theorem 23. We now prove=zthedirection.
Fv — Fg already has the form prescribed by Theorem 27. The &dgnjuncts
of Fy are the sentence letteps, ..., px. Therefore, there must exist a $éof < 2!
of these sentence letters such that for eaetonjunctFe of Fg at least one of the
disjuncts off, i.e., eitherpy,g Or py,(. is in X. This literally means th&b has a set
of < 2 vertices that covers all the edges@f O

6. Lower Bounds for Reflected Fragments
Theorem 29. For any fitting reflected fragmeniLcs, derivability inrJLcs is NP-hard.

Proof. It is easy to see that bothy and Fg have size polynomial in the size &.
As for the termty_;m, it was shown in Theorem 23 thiat il = O(k2) + O (12m),
which is polynomial in the size d& providedl < k (BVC for | > ks trivial). Thus,
Theorem 28 shows thall ¢s is NP-hard. O

It is time now to reap the fruits of the preceding theorem bywghg that a wide
range of constant specifications produce fitting reflectedrfrents.

In the following proof, we need to perform operations on sobe of formulas
rather than on individual formulas. Thus, it is convenientepresent axiom schemes
using the Substitution Rule: «

Xo
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whereo is any substitution of formulas for sentence letters (seeinstance, formu-
lation of classical propositional logic in [11, Sect. 1.3]n justification logics, we
additionally have to allow substitutiomsto replace justification variables with justifi-
cation terms.

The Substitution Rule allows to make axiomatizations fibigeause each axiom
scheme can be replaced by a single axsuch that each of infinitely many instances
of the axiom scheme is a substitution instancé.ofote that in general we cannot use
this representation to defidécs becaus&€S need not be schematic. It is easy to see
that

Lemma 30(Substitution Property, [2, 3, 4])The Substitution Rule is admissible for a
justification logicJLcs, and hence forlLcs, iff CS is schematic.

Strictly speaking, we presented axioms schemes (e.d-Apusing variables over
formulas and variables over terms, etgF — F is understood in the sense that it is an
axiom for any ternt and any formuld. Each axiom scheme written in this way can be
easily converted to an axiom in the corresponding systeimtivé Substitution Rule by
replacing distinct variables over formulas by distinctteece letters and distinct vari-
ables over terms by distinct justification variables, glge,schemé: F — F becomes
a formulax: p — p. The latter will be called anost general instancéngi) of the
former (note that an mgi is not unique: the choice of sentégiters and justification
variables plays no role).

By analogy with axiom schemessaheme of formulasith an mgiF is the set

{Fo | o is a substitutioh .

Lemma 31. LetJL € {J,JD,JT,J4,JD4,LP, T,LP, S4,LP, S5,LP}. Any schemati-
cally injective and axiomatically appropriate constanesficationCS for JL yields a
fitting reflected fragmentLcs.

Proof. All formulas that fit the five patterns from (1) can be broketoiseven schemes
of propositional tautologies with mgi's

p—@—p), (13)
(P->@—=>r)—->(p>d—>(p—T1), (14)
PLA P2 — P1, (15)

PLAP2— P2, (16)
p—(@—pAq, (17)
PL—pPLVpz, (18)
P2—pP1Vpz, (19)

wherep, g, r, p1, and p, are distinct sentence letters (strictly speaking, we shoul
have used a distinct set of sentence letters for each mgi)A k&and for any of these
seven mgi's. For eachL, its axiomatization contains Al, i.e., a full axiomatizati
of classical propositional logic. Therefore, the proposial tautologyA is a theorem
of JL¢s. SinceCS is axiomatically appropriate, by Lemma 4, there exists etsr
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which contains neithes nor any justification variables, such thii;s + s: A, and
hencerdL¢cs + s: A. By the Substitution Property (Lemma 3@)L¢s + Ao for any
substitutiono. In other words, the terns satisfies (1) in the—-direction for the
respective axiom scheme.
For the=-direction, it is stficient to note that for any-free ground ternt the
set
CS(t) ={F | rdLgs Ft:F}

is either empty or a scheme whose mgi we will denotedhyThis statement can be
proved by induction on the size of For constants, it is guaranteed by the schematic
injectivity of CS. Justification variables do not occur in ground termsCHt’) is
empty, so iCS(! t). Otherwise, for logics with! s as their«-calculus,

CS(It)={t':F|FeCS({)} =1
{t':(Avo) | o is a substitutioh= {(t": Av)o | o is a substitution . (20)

The last equality follows from the fact thdtdoes not contain variables. Thus, in this
caseAv =t': Av. In the logics with«cs as theirs-calculus, the same argument works
fort’ =!-..1 c,n> 0, whereas for all other term&S(! ') = 0 independent o€ S(t’).

Finally,

CS(t1 - ) = {G | @F)(F - G € CS(t1) andF € CS(t2))} =1
{G| @F)3o)do2)(F —» G = Ayor andF = A,o2)} . (21)

It follows from Theorem 8 tha#, cannot be a single sentence letter. Clearly, if the
main connective o, is not an implication, the@S(t; - tz) = 0. It remains to consider
the case;, = B — C. If B cannot be unified with,, thenCS(t; - t2) = 0. Otherwise,
there must exist a most common unifier (mgw) mgu(B, A,). Any formulaF in (21)
must be a substitution instance of bdhand A;,. Hence there must exist a substitu-
tion o such thatF = Bro = A,to. Accordingly, any formuldG € CS(t; - t2) must
have the formCro. It follows thatCS(t; - t;) = {Cro | o is a substitutioh Thus,

in this case A, = Ctr = Cmgu(, A,). Clearly, the operation, which enables us

to combine several fierent schemes, would have broken this pattern, but it does no
occur int.

Thus, our ternms must justify some scheme, of which the formiélé an instance,
i.e., A = Aqo for some substitutionr. It can be checked that, B = AandBis a
tautology, therB = A. Hence As = A by Theorem 8.

Therefore, the ground termjustifies exactly the scheme with mgi This discus-
sion shows that there exist terrag ¢z, andc, that justify exactly the schemes with
mgi’s (13), (14), and (17) respectively, as well as teans c.2, Cy1, andcy, for the
schemes with mgi’s (15), (16), (18), and (19) respectivilyemains to note that the
termcy1 + Cy2 satisfies all the requirements@f v2 and the ternt,; + C,2 fits the role
of CaL A2 O

Theorem 32. LetCS be a schematically injective and axiomatically appropsiadbn-
stant specification fodL € {J,JD, JT, J4,JD4, LP, T, LP, S4,LP, S5,LP}. Then deriv-
ability in rJLcs is NP-complete.
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Proof. It was proved in [14, 17] thatlLss is in NP. By Lemma 31rJL¢s is fitting.
Thus, by Theorem 28JL¢s is NP-hard. O

7. Reflected Justification Logics with Hypotheses

The goal of this section is to extend thecalculi to situations wherelL is aug-
mented with additional axioms. This will be important foetproof of Theorem 43
in the next section that shows tmﬁ-hardness of the Derivability Problems for pure
justification logics.

Some proofs in this section will be semantic. Accordinglg, introduce the sim-
plest semantics for pure justification logics, that of sytitomodels, also called Mkr-
tychev models or simply-models This semantics was first introduced foP by
Alexey Mkrtychev in [22] and extended to other pure justifica logics in [15].

Definition 33. Let CS be a constant specification for a pure justification laflice
{J,JD, JT,J4,JD4,LP}. An M-model fordLcs is a pairdlt = (V, A), whereV is a
propositional valuatiorandA is anadmissible evidence functidor JLcs. Informally,
an admissible evidence function specifies for each teamd formulaF whethert is
considered admissible evidence for If A(t, F) = True, we say thatA satisfies tF.
Being satisfied byA is one of the criteria necessary fofF to hold in an M-model.

Formally, a functionA: Tmx Fm — {True Falség is called aradmissible evidence
function for a justification logidLcs iff it is closed under deduction in thecalculus
for the reflected fragmemdLcs (see Table 2). That is to say, if an admissible evidence
function A satisfies a seX of justification assertions and . s: G in the respective
x-calculus, therA must also satisfg: G. In addition, ifJL € {JD, JD4}, an admissible
evidence function fodLcs must satisfy the following conditionA(t, L) = Falsefor
all termst. We will useA(t, F) as an abbreviation fafi(t, F) = Trueand also-~A(t, F)
as an abbreviation farA(t, F) = False!!

Finally, thetruth relation9t = H is defined as follows:

MEP iff V(P) = True
Boolean connectives behave classically;
M E F andAt, F) if JL € (JT,LP},

MELF iff )
A(t, F) if JL € {J,JD, J4,JD4}.

Let CS be a constant specification for a pure justification latli@andI” be any set
of formulas. We writelLs{I'} to denote the closure df o5 UT under modus ponens.
It is easy to verify that the deduction theorem holdsass, and hence we have that

JLes{THE A iff there exists a finite sdfy C I' such thatlL¢s + /\ Ip— A .

Definition 34. Suppose that every formula Ihhas the fornt: A, i.e.,I" consists only
of justification assertions. We define the following calculi

scsir =*cs+Iand  #lesir =#les +T . (22)

1IN, Krupski and Mkrtychev used the notatiéne «(t) instead ofA(t, F) andF ¢ «(t) instead of-~A(t, F).
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That is to say, in each case the set of axioms is extended hystflcation assertions
from " while the rules remain the same and can be freely appliedetodiv axioms.
When the type of a-calculus and a particula'S are clear from the context or when
they can be arbitrary, we will use the tercalculus.

It is natural to ask whether a giveq-calculus can prove every formula in the re-
flected fragment ofiL¢s{I'} for the respectivelLcs. Unfortunately, there are cases
where this does not hold. As an example from Kuznets [17]siclar the situation
for LP¢s wherel’ = {c: p,c: —p}. Then, via the Factivity AxiomlP¢s{T'} is incon-
sistent, whereas there are certainly justification agsestihat cannot be proved in the
xlog,r-calculus. Thus, we need additional restrictiondofror this, we introduce the
following

Definition 35. A set of justification assertiorisis calledfactiveprovided that, when-
evert: A € T, either (@)A is of the forms: B andA € I" or (b) A is a purely propo-
sitionaf? formula. The set of purely propositional formulassuch that : A € T for
some ternt is called thepropositional contendf I', and is denote@rop('). We call a
factive sefl” consistenprovidedProp(T') is (propositionally) consistent.

The next theorem generalizes N. Krupski's Theorem 5.1 froj. [

Theorem 36. LetI" be a consistent factive set of justification assertions@8de a

constant specification for a pure justification lodic € {J, JD, JT, J4,JD4, LP}. Then,

for any formula of the form:t~, we have
JlesfTHFt:F — . t:F

-
for the respectiver-calculus.

Proof. The proof is similar to the proof of Theorem 5.1 from [14], whiin turn uses
constructions of Mkrtychev [22]. The=-direction follows from the fact that anyt-
derivation can be easily converted into a derivatiodlips{I'}. Indeed, all axioms of
the xr-calculus are either instances of axiom internalizatiodligs or members of”
and hence axioms 0t cs{I'}. Each rule inkp-calculus translates into the corresponding
axiom of JL followed by one or two applications of modus ponens.

We prove the=-direction by showing its contrapositive. Suppese“ t:F. Let
the functionAr: Tmx Fm — {True Falsg be defined by

Ar(s, G) — sk S:G .

For JL € {J,JD,JT}, wherebyxr = xcs.r, it is clear thatAr is an admissible evi-
dence function fodT¢s; similarly, for JL € {J4,JD4, LP}, whensr = *!cs,r, We have
that Ar is an admissible evidence function foPcs. Note that any constant specifi-
cation forJ or JD can also serve as a constant specificatiordfobecause all axioms
of J andJD are also axioms alT. Similarly, if a constant specification can be used

127 purely propositionaformula is one that does not contain any justification terms.
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for J4 or JD4, it can also be used farP. In either case, by definitior; satisfies all
justification assertions fromi but does not satisfi. F by our assumption.

Sincel is consistent, there exists a propositional valuatidhat satisfie®rop(T’).
Consider the M-modelt = (V, Ar) for JTcs or for LP¢s respectively. Note that
M ¥ t:F since-Ar(t, F). In addition, for eithedT¢s or LPcs we can prove that

follows from G € Prop(T).

The existence of aTcs-model (anLP¢cs-model) where all formulas fror hold
while t : F is false shows thalT¢es{I'} ¥ t: F (respectivelLPcs{T’} ¥ t: F). But
everyJcs- or JD¢s-derivation is also dT¢s-derivation (for the samé€S); similarly,
anyJdcs- or JD4¢s-derivation is also ahPgss-derivation. HencdlLs{I'} ¥ t: F. This
completes the proof of Theorem 36. O

By analogy withrJL:s we will denote the reflected fragmentdifos{I'}
rIlesil) = {t:F | ILes{T} F LI FY .

As we provedrlLcs{T} is axiomatized by its respectivg-calculus. Note that the
only difference between-acalculus and its correspondirg-calculus is the addition
of axiomsI'. Therefore, a reflected fragmerdiLcs{I'} is axiomatized by the same
x-calculus agJL¢g as far as rules are concerned. Consequently, there arerstill
two sets of rules chosen based on whether full positive $pieotion holds idL. The
differences between thesealculi, as in the case odLcg, is in their axioms.

As a consequence of the above construction, other resaitd\thKrupski [14]
established foLP¢s also hold forJLcs{I'}. First, by the minimality of the admissible
evidence functiotAr, the disjunction property for formulas of the fosnF vt: G holds
for JLcs{T} (cf. Corollary 2 of [14]). Similarly, ifCS is schematic (and polynomially
decidable) and is finite, then the Derivability Problem forg-calculus is in NP for
either of the calculi, i.e.rdLcs{I'} is in NP. This is proved by a construction similar
to the one used in the proof of Theorem 5.2 in [14], the maifedknce being that
derivations inrJLcs{I"} correspond taJLcs-derivations from hypothesds whereas
N. Krupski considered only derivations without hypotheses

For us, the importance of Theorem 36 lies in the fact thatélselts of Sects. 3-5
translate taJLcs{I'} for a proper subclass of consistent factive $ets

Lemma 37. Let CS be a constant specification for a pure justification loglc e
{J,JD, JT, J4,JD4, LP} such that the reflected fragmeriiLcs is fitting. LetI be a
consistent factive set of justification assertions suchtti@only terms that occur ik
are justification variables. Then Lemmas 16-19, 21, 22, 28, 26 all still hold if
rdLcs is uniformly replaced byJLcs{T'} in the statements of the lemmas.

Proof. Since any derivation inJL¢s is also a derivation imlL¢s{I'}, the proofs of the
«—=-directions in all these lemmas do not require any chandges=F-directions also
hold because the only terms that gain additional provalsiyffiad formulas inrJLcs{I'}
are those that contain justification variables frbnbut no variables have been used for
construction of the terms in the proofs of all these lemmas. O
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8. A Lower Bound for Full Justification Logics

Sections 4 and 5 established a reduction from the Vertex iICBra@blem to the
Derivability Problem in a given reflected fragment therebgying NP-hardness of the
latter. In the present section, we extend the proof methaldodntain stronger lower
bounds for full (non-reflected) pure justification logitls;s.'®> We first prove that a
quantified version of the Vertex Cover Problenﬂ.}hard by reducing co-QSATto
it. Then we reduce this Quantified Vertex Cover Problem toDkevability Problem
in a given justification logic.

Definition 38. By co-QSAT, we mean the following problem. Letbe any 3CNF for-
mula, i.e., a propositional formula in conjunctive normairh with exactly three lit-
erals in each clause. Given such avith its sentence letters partitioned into two sets
B=1{p1,...,Pp}andqd = {q,...,qq, determine whether

Y =(Yp) - (YPp))(Fa0) - - - (TG (23)
is true.

The following theorem is standard. Several of its slightiffetent variants can be
found, for instance, in [23, 24, 25].

Theorem 39. co-QSA7% is Hg-complete.

Lety = (YVB)@AG)Cy A --- A C;) be a formula of type (23), where eaChis a
3-clauseCi = Li1 VvV Lip Vv Liz, i = 1,...r. Each literall; ; must bep;, —pj, q;, or -q;
for some;j.

Giveny we construct a grapB, = (V,, E,) with vertices labeled by literals (the
construction is identical with the reduction of 3SAT to VCgigen in [13]). The graph
is defined as follows:

e For each claus€;, i = 1,...,r, in y we have a triangle of pairwise joined ver-
ticesci 1, G2, andciz in G,. Each vertexc; is labeled by the corresponding lit-
eralL; ;. These are calledause verticeandclause edges

o For each sentence lettgy, there are two verticeg o andv;; joined by an edge. The
vertexvjo is labeled withg; andvj, is labeled with-q;. These are calletiteral
verticesandliteral edges

e For each sentence lettgr, there are two vertices;jo andu;; joined by an edge.
The vertexujo is labeled withp; andu;; is labeled with-p;. These are also called
literal verticesandliteral edges

e A clause vertex and a literal vertex are joined bgannecting edgéf they are
labeled by the same literal.

3Applying this method to hybrid logics does not make sensecsihey are mostly at least PSPACE-hard
by virtue of being conservative over the corresponding rhiodgc. As for S5;LP, the only hybrid logic that
may not be PSPACE-hard, its conservativity oiBrwould easily yield the lower bound that can be obtained
by our method.
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There are B+ 2N vertices inGy, whereN = |G| + |G]; namely, 3 clause vertices and
2N literal vertices. Similarly, there are & N edges inG,; namely, 3 clause edges,
N literal edges, andr3connecting edges.

As is argued in [13]G, has a vertex cover of size 2r + N iff ¢ is satisfiable.
First, any vertex cover dB, must have at leastr2+ N vertices since a vertex cover
must contain at least one vertex for each literal edge arehat two vertices from each
clause triangle. Second, since any vertex c@vef size 2 + N must contain exactly
one literal vertex per literal edge in the graph, it is polesto define a propositional
valuationrc by lettingrc(L) = Truefor exactly those literals that label literal vertices
from the vertex cover. It is not hard to see that this valustipsatisfiesp. Conversely,
if T is any valuation that satisfies then there exists a vertex coverof size 2 + N
such thatr = 7¢.

Definition 40. Let = denote a (partial) valuation with domajh A vertex coverC
of G, is called itsr-coverif C contains all literal vertices labeled by literals from the
set

{pj | 7(p;) = True} U {-p; | n(p;) = Falsg .
The above discussion yields the following proposition.

Proposition 41. A sentencé as in (23) is true iff for every valuationwith domaing,
the graph G, has ar-cover of sizer + N.

In order to work with balanced conjunctions, we modgy to transform the ques-
tions about the existence sfcovers into Binary Vertex Cover Problems. For this, we
construct a grapl®;, that has the following properties: (&, has ¥ + 2|p| vertices,
(b) G, has 2" edges, (c) the sought-farcovers have size' 2and (d) the size oGl’(/
is linear in the size ofy. In effect,G/, is a binary exponential graph, except that the
verticesu;o anduj;, labeledp; and-p; respectively, are not counted. The construc-
tion of G, from G, mimics that from the proof of Theorem 12: to ensure (c), adobex
pairs of vertices joined by edges; to ensure (b), add a “sth#pe as in Stage 2 of the
proof of Theorem 12; then, to ensure (a), add extra isolagetices. By construction,
Proposition 41 now implies the following property Gf;:

Proposition 42. A sentence as in (23) is true iff for every valuationwith domainp,
the graph G has ar-cover of size'.

We are now ready to prove tm%’—hardness of the Derivability Problem fdlc¢s.

Theorem 43. Let CS be a constant specification for a pure justification logic e
{J,JD, JT, J4,JD4, LP} such that the reflected fragmett ¢ is fitting. Then the Deriv-
ability Problem forJLcs is I15-hard.

Proof. We prove the theorem by reduction from co-Q$ATGiven a formulay as
in (23), we construct the grapB), as described above and apply to this graph the
encoding from Definition 13. We define a $gtof formulas by

Iy, = xXppvxplji=21....I1pl},

23



wherepj is a sentence letter that corresponds to the literal vertgandp; is a sen-
tence letter that corresponds to the literal vertgx Intuitively, the sentence lettqy;
in the encoding corresponds to the liteglin the formulay while the sentence let-
terp; corresponds to the literalpj, which explains the chosen notation. We hope that
the resulting small collision of notation; is the sentence letter that encodes the literal
vertex that corresponds to the liteggl will facilitate understanding rather than hinder
it.

Let y, be the conjunction of the formulas Ir. (Unlike the other conjunctions
we work with,y, need not be balanced.) L¥f, be the set of all vertices @/, and
let Vi) = Vj \ {ujo,Uj1 | j = 1,....Ipl}. Note thatiV)| = 2¢is a power of two. We
defineK, to be

Kw = Yy tl/<—>|—>m:(FVJ,' - FG[;) ,

where a ternt;_, plays a role similar tdy_;m and is defined below. To prove
Theorem 43 it will sifice to show thail¢s + K, iff ¢ is true.

By the deduction theorenl¢gs + Ky iff

JLcs{rw} F tL—>|—>m:(FV&,’ - FG.L) . (24)
For any valuationr with domainp, define
Ve = {pjlx(p;) = Trueg} U (P; | n(p;) = Falsg

and letl’, , be the set of formulagx: L | L € V,}. Note that for any valuation with
domainp the sefl’, - is a finite consistent factive set of justification asseiand the
only term that occurs in it is the justification variableHence, by Lemma 37, for any
valuationz with domainp, Lemmas 16-19, 21, 22, 25, and 26 hold $ags{I'y }.
Consider the assertions

JLcs{rw’,{} = t&_ﬂ_}m:(FV‘;’r — FG{/;) . (25)

Clearly, (24) holds iff (25) holds for aft. Thus, by Theorem 36 and Proposition 42, in
order to prove Theorem 43, it will lice to prove the following

Lemma 44. For all valuationsr with domaing,
NlestTyal F i umi(Fvy > Fg) < G has ar-cover of size 2

where by the derivability imJL¢s{Ty .} we understand the derivability in the corre-
spondingkr, -calculus.

Proof. The proof of this lemma is very much like the proof of TheoreBniaut we still
need to define the tertfy , . First, lett; | be the term conif + ¢;-x,1). By almost
exactly the same reasoning as in Lemma 20, for ang s#tsize 2 with C C VU Vg

I’JLC‘g{rw’,{} F t|,(_)| :(FVJ/’ e Fc) . (26)

Indeed, by Lemma 17JLcs + t:(Fv, — L) for any sentence lettérthat corresponds
to a vertex fromV/. Itis easy to see thallcs{Iy .} + C1-X: (FV&; — L) foranyL € V,
becauselLcs - cp: (L — (FVJ — L)). Thus, (26) follows by Lemma 18.
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The converse is proved in a way similar to Lemma 24. In padicby Lemma 18,
rlesilyz) + t_, - H holds precisely for formulasl of the formB — D, where
D is a balanced conjunction of depth such that for everj~conjunctC; of D we have
rLes{Ty.x) F (tk+ciX) (B — Cj). By Lemma 17, the terriy only justifies implications
from a formula to itsk-conjunct. Clearly,c; - x only justifies implicationsY — L
with L € V. Therefore,

all I-conjuncts ofD that are not iV, must bek-conjuncts ofB. (27)

Note thatt; | = O(k2') as wagti.
Now definet, | to be the term syl _, 5_.m). By exactly the same argument as

in Theorem 23, using the same Lemmas 16 and 22, with (26)aiegldhe claim of
Lemma 20, we have

G, has ar-cover of size< 2' < |V| = rLes{Tyx} + tiom: (Fvy = Fg))

Conversely, Theorem 27 holds folL¢s{Iy -} in place ofriLcs, except that now
the setX can contain sentence lettdrss V, in addition tok-conjuncts ofB. Indeed,
Lemmas 16 and 26 hold fadL¢s{Iy .}. The claim of Lemma 24 is here replaced
by (27), which allows elements &; in X along withk-conjuncts ofB.

Lemma 44 now follows by exactly the same argument as in thefpybTheo-
rem 32. O

This completes the proof of Theorem 43. O

Theorem 45. LetCS be a schematically injective and axiomatically appropsiadbn-
stant specification for a pure justification logie € {J,JD, JT, J4,JD4, LP}. Then the
Derivability Problem forJL¢s is T15-hard.

Proof. By Lemma 31yJL¢s is fitting. Thus, by Theorem 43L¢s is Hg-hard. O

Theorem 46. LetCS be a schematically injective and axiomatically appropsiadbn-
stant specification for a pure justification logit. € {J,JD,JT,J4,LP}. Then the
Derivability Problem fordLcs is IT5-complete.

Proof. It was proved in [15, 18] thallL¢cs is inI15. On the other hand, tH&5-hardness
follows from Theorem 45. O

The lower bound from Theorem 45 was first provedifBgs by Milnikel in [21]. A
slightly stronger result can be found thereJdgs: itis Hg-hard for any schematic and
axiomatically appropriat€S. The results for the other four logics are new. By anal-
ogy with Milnikel's result forJ4cs, we conjecture that the requirement of schematic
injectivity in Theorem 45 fodcs can be relaxed to that of schematicness.
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9. The Role ofCS

Our method for proving lower bounds for both justificatiomilcs and their re-
flected fragments as well as Milnikel's original proof of tlever bound forLPcs
from [21] requireCS to be axiomatically appropriate and schematically injectiA
natural question arises: whether these two conditionS®mre essential for proving
the lower bounds? In particular, i itself IT)-hard? Although we cannot answer the
latter question, in this section we will try to explore thgodadency of the lower bound
on a constant specification.

It is clear that neither schematic injectivity nor axioncadppropriateness are nec-
essary for the lower bounds to hold. In particular,

Lemma 47. LetJL € {J,JD,JT,J4,JD4,LP, T,LP, S4,LP, S5,LP}. There exists a
constant specificatio@S for JL that is neither schematically injective nor axiomati-
cally appropriate such thatlLcs is NP-hard. IfJL € {J,JD, JT, J4,JD4, LP}, then, in
addition,JL¢s is I15-hard.

Proof. Let termscy, Cy, Ca1.42, Cr, @NdCy1v2 from (1) be constants. Let all tautologies
from the right sides of the five equivalencies in (1) be axidrosn Al. Finally, let

a constant specificatiof\S be such that all five equivalencies from (1) hold while no
other constant justifies any axioms at all. Then the refleftegimentrJLcs is clearly
fitting. Thus, by Theorem 29,J)L¢s is NP-hard. In addition, ifiL is a pure justifica-
tion logic, by Theorem 43]L¢s is Hg-hard. At the same time, thSS is surely not
axiomatically appropriate. Itis not schematically injeeteither since constantss »»
andcy 1 v2 justify two axiom schemes each.

The constructed constant specification is schematic, ben éve schematicness
condition is easy to violate provided the constants,, Ca1.42, Ca, aNdcy.v2 remain
schematic. It should noted that schematicness is oftenedktedprove the matching
upper bound. O

The constant specification from the proof of the previoustenalso demonstrates
another curious fact: the-operation does not play a big role in the lower bound on the
complexity of the logic.

Lemma 48. Let JL € {J,JD,JT,J4,JD4,LP, T,LP, S4,LP, S5,LP}. There exists a
constant specificatio@S such that ther-free reflected fragment 0t cs is NP-hard.

Proof. Although + was used to construct terneg; ,o and cyq,v2 for schematically
injective constant specifications, it is not required fog tonstant specificatioBS
from the proof of Lemma 47. Nowhere else in our reduction wassed. Therefore,
even if axiom A3 and ruleA3 are omitted from the axiomatizations &f and of
its reflected fragment respectively and the operatids dropped from the language
completely (see [12] for precise definitions) the resultinfree reflected fragment is
still fitting and, hence, NP-hard. O

However, the ability of one term to justify several axiom egtes does seem to
be necessary for the proven lower bounds. This ability caerseired already on the
level of constants, without the use #f However, if the lack of+ is coupled with
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the schematic injectivity of a constant specification, taerms éfectively become
schematically injective and the reflected fragment is poigially decidable, which
can be shown by analyzing N. Krupski's algorithm from [14].

The preceding discussion shows that the lower bounds asmne sense, local.
Namely, they can be ensured by finitely many constants usihg a small portion
of propositional reasoning. In fact, the proof of the existe of undecidabléPcg
from [16] has a similar flavor: only a few constants aréfisient to make the logic un-
decidable. For instance, it is possible thiags can be shown to bHS-hard using one
part of the constant specificatialS and to be undecidable using another part. There-
fore, the requirements of schematicness/anschematic injectivity can be relaxed to
apply only to a small subset of justification constants.

Since axiomatic appropriateness is also a local propefthgdomes clear that it is
independent of whether the reflected fragment is fitting. drtipular, Lemma 47 can
be easily reformulated for an axiomatically appropriaterimt schematically injective
constant specification. The only change in the proof wouldmbaddition of a sixth
constant that proves all the axioms.

However little of internalization is used in the proof of dower bounds, it cannot
be dispensed of completely:

Lemma 49. Let JL € {J,JD,JT,J4,JD4,LP, T,LP, S4,LP, S5,LP}. There exists a
schematically injective but not axiomatically appropdatonstant specificatio@S
for JL such thatrJLcg is in P. If JL € {J,JD,JT, J4, LP}, then, in additionJL¢s is
in co-NP.

Proof. It has been known thatPy with the empty constant specificati@® = 0 is in
co-NP. Its reflected fragment is trivially in P since it is esnExtending these results
to other justification logics is straightforward. O

The preceding lemma can also be proved using a non-emptgnsdically injective
constant specification, but the proof is much more involved.
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