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Abstract

We introduce constructive and classical systems for nonstandard arithmetic and

show how variants of the functional interpretations due to Gödel and Shoenfield

can be used to rewrite proofs performed in these systems into standard ones. These

functional interpretations show in particular that our nonstandard systems are con-

servative extensions of E-HAω and E-PA
ω, strengthening earlier results by Moerdijk

and Palmgren, and Avigad and Helzner. We will also indicate how our rewriting

algorithm can be used for term extraction purposes. To conclude the paper, we will

point out some open problems and directions for future research, including some

initial results on saturation principles.
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1 Introduction

In this paper we present functional interpretations for both constructive and classical
systems of nonstandard arithmetic. The interpretations have two aspects: they show
that the nonstandard systems are conservative over ordinary (standard) ones and they
show how terms can be extracted from nonstandard proofs.

After inventing nonstandard analysis and showing that it was a versatile idea leading
to nonstandard proofs in various areas of mathematics, Robinson suggested one could
look at nonstandard arguments “syntactically” (proof-theoretically). From this point
of view, one would see nonstandard analysis as “introduc[ing] new deductive procedures
rather than new mathematical entities” [43]. Apparently he did not think that adding
these new deductive procedures to standard systems would make them more powerful
or stronger in a proof-theoretic sense. In fact, in [42] he formulates as a general problem
“to devise a purely syntactic transformation which correlates standard and nonstandard
proofs of the same theorems in a large area, e.g., complex function theory”. In [30] he is
reported as asking a more specific question, whether a certain system for nonstandard
arithmetic is conservative over PA. These ideas of Robinson have borne fruit in the
work of Kreisel [30, 31], Friedman (unpublished), Nelson [38, 39], Moerdijk, Palmgren
[36, 37, 41], Avigad [5, 2] and others, who proved for various systems for nonstandard
analysis that they are conservative extensions of standard systems. Often their argu-
ments are effective in that one could extract algorithms from their proofs which convert
nonstandard arguments into standard ones.

As an example of this, let us have a short look at the work of Nelson, also because
it is a major source of inspiration for this article. The idea of Nelson was to add a new
unary predicate symbol st to ZFC for “being standard”. In addition, he added three
new axioms to ZFC governing the use of this new unary predicate, called Idealization,
Standardization and Transfer. The resulting system he called IST, which stands for
Internal Set Theory. The main logical result about IST is that it is a conservative
extension of ZFC, so any theorem provable in IST which does not involve the st-predicate
is provable in ZFC as well. Hence such theorems are genuine mathematical results,
acceptable from the generally shared foundational standpoint of ZFC.

The conservativity of IST over ZFC was proved twice. In the original paper where
he introduces Internal Set Theory [38] (recently reprinted with a foreword by G. F.
Lawler in Volume 48, Number 4 of the Bulletin of the American Mathematical Society
in recognition of its status as a classic), Nelson gives a model-theoretic argument which
he attributes to Powell. In a later publication [39], he proves the same result syntacti-
cally by providing a “reduction algorithm” (a rewriting algorithm) for converting proofs
performed in IST to ordinary ZFC-proofs. There is a remarkable similarity between
his reduction algorithm and the Shoenfield interpretation [45]; this observation was the
starting point for this paper.

We will work with systems in higher types, such as HA
ω and PA

ω, rather than set
theory, because, as we mentioned before, we will not just be interested in establishing
conservation results, but also in extracting terms from nonstandard proofs and “proof
mining”. Proof mining is an area of applied logic in which one uses proof-theoretic
techniques to extract quantitive information (such as bounds on the growth rate of
certain functions) from proofs in ordinary mathematics. In addition, such techniques
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can reveal certain uniformities leading to new qualitative results as well. Functional
interpretations are one of the main tools in proof mining (for an introduction to this part
of applied proof theory, see [25]). To extract interesting bounds, however, it is important
that the mathematical arguments one analyses can be performed in sufficiently weak
systems: therefore one considers systems such as HA

ω or PA
ω, or fragments thereof,

rather than ZFC. The reason for considering systems in higher types (rather than PA,
for instance) is not just because they are more expressive, but also because higher types
are precisely what makes functional interpretations work.

Although establishing conservation and term extraction results for systems of non-
standard arithmetic is what this paper is about, there is another way of looking at the
results of this paper, which has more to do with the ideas of Lifschitz on calculable
numbers [35], of Berger on uniform Heyting arithmetic [7] and of Hernest on the light
Dialectica interpretation [19], than with nonstandard arithmetic. Their idea was to
have two kinds of quantifiers, one with computational content and one without. On the
realizability interpretation of Lifschitz, the computationally meaningful quantifiers are
interpreted in the usual way (which, in the case of the existential quantifier, means that
a realizer needs to exhibit a witness, while a realizer for a universal statement ∀nϕ(n)
is a program which computes a realizer of ϕ(n) from the value n). The computationally
empty quantifiers, on the other hand, are to be interpreted uniformly (which means that
it need not exhibit a witness in the existential case: a witness simply has to exist; while
in the case of the universal quantifier it has to be a realizer which, uniformly, realizes
ϕ(n) for all n).

A new unary predicate st introduces two types of quantifiers as well: the internal
quantifiers ∀x and ∃x, as well as the external quantifiers ∀stx and ∃stx (which can be
seen as abbreviations of ∀x ( st(x) → . . .) and ∃x ( st(x) ∧ . . .) respectively). Our initial
idea was to interpret the former uniformly, while interpreting the latter in the usual
way, in complete analogy with the ideas of Lifschitz. But this led to several, to us,
undesirable effects (in particular, one could not realize the statement that the standard
natural numbers are closed downwards). Our solution was to weaken the computational
meaning of the external quantifiers: in particular, to realize ∃stnϕ(n) it suffices to exhibit
a finite lists of candidates n1, . . . , nk such that at least one of the statements ϕ(ni) is
realized. Because of the analogy with Herbrand disjunctions from proof theory, we have
dubbed this type of realizability “Herbrand realizability”.

To make Herbrand realizability work in a higher type setting, it is convenient to
work in an extension of HAω with types for finite sequences. More precisely, we will
assume that there is a type σ∗ for sequences of objects of type σ. The type σ∗ carries
the structure of a preorder (with x � y if every element in the list coded by x also occurs
in the list coded by y) and one would naturally expect realizers to be closed upwards
with respect to this preorder. To make this work nicely, it will be useful to introduce
a new kind of application (of functions to arguments) which is monotone in the first
component. This can be done and with this additional ingredient Herbrand realizability
can be defined. We will do this in Section 4.

It has to be admitted that the connection of Herbrand realizability to nonstandard
arithmetic is rather tangential and, as a matter of fact, we will not be very interested
in Herbrand realizability per se. This will change radically if we turn to the functional
interpretation introduced in Section 5, which bears the same relation to Herbrand real-
izability as the usual Dialectica interpretation does to modified realizability. It turns out
that if one defines a Dialectica-type functional interpretation using the new application,
with implication interpreted à la Diller–Nahm [9], basing it on some of the characteristic
principles of Herbrand realizability, and the idea of having Herbrand disjunctions realize
existential statements, this interpretation will, almost by magic, interpret and eliminate
principles recognizable from nonstandard analysis. Our main reason for including Her-
brand realizability is to have an easy point of access to and to provide some intuition
for this functional interpretation.

So far the techniques we mentioned work only for constructive systems. But by
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combining the functional interpretation we mentioned above with negative translation,
we are able to define a Shoenfield-type functional interpretation for classical nonstandard
systems as well. In this way we also obtain conservation and term extraction results for
classical systems. We will work out the technical details in Sections 6 and 7 below.

The resulting functional interpretations have some striking similarities with the
bounded functional interpretations introduced by Ferreira and Oliva in [12] and [10]
(see also [13]). In the same way, Herbrand realizability seems related to the bounded
modified realizability interpretation due to Ferreira and Nunes (for which, see [11]). We
will briefly comment on this in Section 5 below.

The contents of this paper are therefore as follows. In Section 2 we will introduce
an intuitionistic base system for our investigations into constructive nonstandard arith-
metic. In Section 3, we will discuss some principles from nonstandard analysis and
their relations. This will give one some ideas of how interpretations of nonstandard
systems have to look like and will provide us with some “benchmarks” with which one
can measure the success of an interpretation. In Section 4 we will introduce Herbrand
realizability and discuss its merits as an interpretation of nonstandard arithmetic. Our
nonstandard functional interpretation will be introduced in Section 5 and we will use it
to prove several conservation and term extraction results in an intuitionistic context. In
Section 6 we introduce a classical base system for nonstandard arithmetic and discuss
two variants of the negative translation. These we will use in Section 7 to obtain a
Shoenfield-type functional interpretation and derive conservation and term extraction
results in a classical context. Finally, Section 8 discusses work in progress on saturation
principles and other plans for future work.

We would like to thank Paulo Oliva, the participants in the Spring 2010 proof theory
seminar at the Technische Universität Darmstadt, especially Ulrich Kohlenbach, Jaime
Gaspar, and Alexander Kreuzer, and the referee for helpful comments.

2 Formalities

In this section, we introduce our base systems for investigating nonstandard arithmetic.

2.1 The system E-HA
ω∗

In this paper, E-HA
ω∗ will be the extension of the system called E-HA

ω
0 in [48] and

E-HA
ω
→ in [49] with types for finite sequences. More precisely, the collection of types T∗

will be smallest set closed under the following rules:

(i) 0 ∈ T
∗;

(ii) σ, τ ∈ T
∗ ⇒ (σ → τ) ∈ T

∗;

(iii) σ ∈ T
∗ ⇒ σ∗ ∈ T

∗.

Because we have not included product types in T
∗, we will often be handling tuples

of types or terms. We will always refer to such lists of types and terms as tuples and
never as sequences, so as not to confuse them with terms of sequence type (i.e., of type
σ∗ for some σ ∈ T

∗). In dealing with tuples, we will follow the notation and conventions
of [48] and [25]. In particular, if x = x0, . . . , xm−1 and y = y0, . . . , yn−1, then

1. [] stands for the empty tuple, while x, y stands for x0, . . . , xm−1, y0, . . . , yn−1;

2. xiy stands for (. . . ((xiy0)y1) . . .)yn−1, while xy stands for x0y, . . . , xm−1y (and
never for x0, . . . , xm−1y);

3. λx.y stands for λx.y0, . . . , λx.yn−1;
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4. and, finally, if x = xσ0

0 , . . . , x
σm−1

m−1 and y = yσ0

0 , . . . , y
σm−1

m−1 are tuples having the
same length and types, we will write x =σ y for

m−1
∧

j=0

xj =σj
yj .

Because we have included sequence types, we will have to enrich the term language
(Gödel’s T ); it now also includes a constant 〈〉σ of type σ∗ and an operation c of type
σ → (σ∗ → σ∗) (for the empty sequence and the operation of prepending an element to
a sequence, respectively), as well as a list recursor Lσ,ρ satisfying the following axioms:

Lσ,ρ 〈〉σyz =ρ y,

Lσ,ρ c(a, x)yz =ρ z(Lσ,ρ xyz)a,

where ρ = ρ1, . . . , ρk is a k-tuple of types, y = y1, . . . , yk is a k-tuple of terms with yi of
type ρi and z = z1, . . . , zk is a k-tuple of terms with zi of type ρ1 → . . .→ ρk → σ → ρi
(compare [49, p. 456] or [25, p. 48]). In addition, we have the recursors and combinators
for all the new types in Gödel’s T , satisfying the usual equations. The resulting extension
we will denote by T ∗.

We will have a primitive notion of equality at every type and equality axioms ex-
pressing that equality is a congruence (as in [49, p. 448-9]). Since decidability of
quantifier-free formulas is not essential for this paper, this choice will not create any
difficulties. In addition, we assume the axiom of extensionality for functions:

f =σ→τ g ↔ ∀xσ fx =τ gx.

Of course, the underlying logic of E-HAω∗ is constructive; we will assume it is ax-
iomatized as in [25, p. 42]. We also have all the usual axioms of E-HAω, as in [25,
p. 48-9], for example, where it is to be understood that the induction axiom applies to
all formulas in the language (i.e., also those containing variables of sequence type and
the new terms that belong to T ∗). Finally, we add the following sequence axiom:

SA : ∀yσ
∗

( y = 〈〉σ ∨ ∃aσ, xσ
∗

y = c(a, x) ).

In normal E-HAω, as in [25] or [49], for example, one can also talk about sequences,
but these have to be coded up (see [25, p. 59]). As a result, E-HAω∗ is a definitional
extension of, and hence conservative over, E-HAω as defined in [25] or [49].

2.2 The system E-HA
ω∗
st

Definition 2.1. The language of the system E-HA
ω∗
st is obtained by extending that of

E-HA
ω∗ with unary predicates stσ as well as two new quantifiers ∀stxσ and ∃stxσ for

every type σ ∈ T
∗. Formulas in the language of E-HAω∗ (i.e., those that do not contain

the new predicate stσ or the two new quantifiers ∀stxσ and ∃stxσ) will be called internal.
Formulas which are not internal will be called external.

We will adopt the following

Important convention: We follow Nelson [39] in using small Greek
letters to denote internal formulas and capital Greek letters to denote for-
mulas which can be external.

Definition 2.2 (E-HAω∗
st ). The system E-HA

ω∗
st is obtained by adding to E-HA

ω∗ the
axioms EQ, T ∗

st and IA
st , where
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• EQ stands for the defining axioms of the external quantifiers:

∀stxΦ(x) ↔ ∀x ( st(x) → Φ(x) ),

∃stxΦ(x) ↔ ∃x ( st(x) ∧ Φ(x) ),

with Φ(x) an arbitrary formula, possibly with additional free variables.

• T ∗
st consists of:

1. the axioms st(x) ∧ x = y → st(y),

2. the axiom st(t) for each closed term t in T ∗,

3. the axioms st(f) ∧ st(x) → st(fx).

• IA
st is the external induction axiom:

IA
st :

(

Φ(0) ∧ ∀stn0(Φ(n) → Φ(n+ 1))
)

→ ∀stn0Φ(n),

where Φ(n) is an arbitrary formula, possibly with additional free variables.

Here it is to be understood that in E-HA
ω∗
st the laws of intuitionistic logic apply to all

formulas, while the induction axiom from E-HA
ω∗

(

ϕ(0) ∧ ∀n0(ϕ(n) → ϕ(n+ 1))
)

→ ∀n0ϕ(n)

applies to internal formulas ϕ only.

Lemma 2.3. E-HA
ω∗
st ⊢ Φ(x) ∧ x = y → Φ(y) for every formula Φ.

Proof. By induction on the logical structure of Φ. Note that the st-predicate is exten-
sional by T ∗

st and the case of the external quantifiers ∀st and ∃st can be reduced to that
of the internal quantifiers ∀ and ∃ by using the EQ-axiom. �

Lemma 2.4. E-HA
ω∗
st ⊢ st0(x) ∧ y ≤ x→ st0(y).

Proof. Apply external induction to the formula Φ(x) :≡ ∀y ( y ≤ x→ st(y)). �

Remark 2.5. The previous lemma implies that, whenever n is a standard natural num-
ber, a bounded internal quantifier of the form ∃sti ≤ n can always be replaced by ∃i ≤ n
and vice versa (the same applies to the universal quantifiers, of course). So we can re-
gard such bounded quantifiers as internal or external, depending on what suits us best.
Most often, however, it will be convenient to regard them as internal quantifiers.

Definition 2.6. For any formula Φ in the language of E-HAω∗
st , we define its internal-

ization Φint to be the formula one obtains from Φ by replacing st(x) by x = x, and ∀stx
and ∃stx by ∀x and ∃x, respectively.

One of the reasons E-HAω∗
st is such a convenient system for our proof-theoretic inves-

tigations is because we have the following easy result:

Proposition 2.7. If a formula Φ is provable in E-HA
ω∗
st , then its internalization Φint is

provable in E-HA
ω∗. Hence E-HA

ω∗
st is a conservative extension of E-HAω∗ and E-HA

ω.

Proof. Clear, because the internalizations of the axioms of E-HA
ω∗
st are provable in

E-HA
ω∗. �
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2.3 Operations on finite sequences

Using the list recursor Lσ,ρ one can define a length function | · | : σ∗ → 0 satisfying

|〈〉σ| = 0,

|c(a, x)| = S|x|.

Moreover, we can fix for every type σ a term Oσ in T ∗ of that type. One can then also
define a projection function σ∗ → (0 → σ); we will write (x)i for the ith projection of
x. It satisfies:

(〈〉σ)n = Oσ,

(c(a, x))0 = a,

(c(a, x))Sn = (x)n.

In addition, we will have an operation which given x0, . . . , xn−1 of type σ builds an
object x = 〈x0, . . . , xn−1〉 of type σ

∗ for which we have |x| = n and

(x)i = xi if i < |x|,
(x)i = Oσ otherwise.

We will also need a concatenation operation ∗σ∗ : σ∗ → (σ∗ → σ∗) defined by:

〈〉σ ∗σ∗ y = y,

c(a, x) ∗σ∗ y = c(a, x ∗ y).

This we can use to define an n-fold concatenation: If F : 0 → σ∗ and n is of type 0,
then we can set:

(F (0) ∗σ∗ . . . ∗σ∗ F (n− 1)) =

{

〈〉σ if n = 0,
(F (0) ∗σ∗ . . . ∗σ∗ F (n− 2)) ∗σ∗ F (n− 1) if n > 0.

Note that F (0) ∗σ∗ . . . ∗σ∗ F (n− 1) = F (0) if n = 1.

Lemma 2.8. 1. E-HA
ω∗
st ⊢ st(xσ

∗

) → st(|x|),

2. E-HA
ω∗
st ⊢ st(xσ

∗

) → st((x)i),

3. E-HA
ω∗
st ⊢ st(xσ0 ) ∧ . . . ∧ st(xσn) → st(〈xσ0 , . . . , x

σ
n〉),

4. E-HA
ω∗
st ⊢ st(xσ

∗

) ∧ st(yσ
∗

) → st(x ∗σ y).

5. E-HA
ω∗
st ⊢ st(F 0→σ∗

) ∧ st(n0) → st(F (0) ∗ . . . ∗ F (n− 1)).

Proof. Follows from the T ∗
st-axioms together with the fact that the list recursor L

belongs to T ∗. �

Notation 2.9. 1. Given x = xσ0

0 , . . . , x
σm−1

m−1 and i = i00, . . . , i
0
m−1 we will write |x|

for |xσ0

0 |, . . . , |x
σm−1

m−1 | and (x)i for (x
σ0

0 )i0 , . . . , (x
σm−1

m−1 )im−1
.

2. Given x = xσ0

0 , . . . , x
σm−1

m−1 and y = yσ0

0 , . . . , y
σm−1

m−1 , we will write 〈x〉 for

〈xσ0

0 〉, . . . , 〈x
σm−1

m−1 〉, and 〈x, y〉 for 〈x0, y0〉, . . . , 〈xm−1, ym−1〉.

3. Given x = x
σ∗

0

0 , . . . , x
σ∗

m−1

m−1 and y = y
σ∗

0

0 , . . . , y
σ∗

m−1

m−1 , we will write x ∗σ∗ y for

x0 ∗σ∗

0
y0, . . . , xm−1 ∗σ∗

m−1
ym−1.
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2.4 Finite sets

Most of the time, we will regard finite sequences as stand-ins for finite sets. In fact, we
will need the notion of an element and that of one sequence being contained in another,
as given in the definitions below.

Definition 2.10. For sσ, tσ
∗

we write s ∈σ t and say that s is an element of t if

∃i < |t|( s =σ (t)i ).

For sσ = sσ0

0 , . . . , s
σn−1

n−1 and tσ
∗

= t
σ∗

0

0 , . . . , t
σ∗

n−1

n−1 we write s ∈σ t and say that s is an
element of t if

n−1
∧

k=0

sk ∈σk
tk.

In case no confusion can arise, we will drop the subscript and write simply ∈ instead of
∈σ or ∈σ∗ .

Lemma 2.11. E-HA
ω∗
st ⊢ st(xσ

∗

) ∧ y ∈σ x→ st(yσ).

Proof. Follows from Lemma 2.8.2 and the extensionality of the st-predicate (first part
of the T ∗

st-axiom). �

Definition 2.12. For sσ
∗

, tσ
∗

we write s �σ t and say that s is contained in t if

∀xσ (x ∈ s→ x ∈ t ),

or, equivalently,
∀i < |s| ∃j < |t| (s)i =σ (t)j .

For sσ
∗

= s
σ∗

0

0 , . . . , s
σ∗

n−1

n−1 and tσ
∗

= t
σ∗

0

0 , . . . , t
σ∗

n−1

n−1 we write s �σ t and say that s is
contained in t if

n−1
∧

k=0

sk �σk
tk.

Lemma 2.13. E-HA
ω∗ proves that �σ determines a preorder on the set of objects of

type σ∗. More precisely, for all xσ
∗

we have x �σ x, and for all xσ
∗

, yσ
∗

, zσ
∗

with x �σ y
and y �σ z, we have x �σ z.

Proof. Obvious. �

In relation to this ordering the notion of a property being upwards closed in a variable
x will be of importance.

Definition 2.14. A property Φ(xσ
∗

) is called upwards closed in x if Φ(x)∧x � y → Φ(y)
and downwards closed in x if Φ(x) ∧ y � x→ Φ(y).

2.5 Induction and extensionality for sequences

The aim of this subsection is to prove induction and extensionality principles for se-
quences. It all relies on the following lemma:

Lemma 2.15. 1. E-HA
ω∗ ⊢ ∀xσ

∗

( |x| = 0 ↔ x = 〈〉σ ).

2. E-HA
ω∗ ⊢ ∀n0, xσ

∗

( |x| = Sn↔ ∃a, yσ
∗

(x = c(a, y) ∧ |y| = n ) ).

Proof. The right-to-left directions hold by definition of the length function | · |. So
suppose we have an element x of type σ∗. Then, by the sequence axiom SA, either
x = 〈〉σ or there are aσ, yσ

∗

such that x = c(a, y). In the latter case, |x| = S|y| > 0, so if
|x| = 0, then x = 〈〉σ. But if |x| = Sn, then x 6= 〈〉σ and there are a, y with x = c(a, y)
and |y| = n. �
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Proposition 2.16. E-HA
ω∗ proves the induction schema for sequences:

ϕ(〈〉σ) ∧ ∀aσ, yσ
∗

(ϕ(y) → ϕ(c(a, y) ) → ∀xσ
∗

ϕ(x).

Proof. Suppose ϕ(〈〉σ) and ∀aσ, yσ
∗

(ϕ(y) → ϕ(c(a, y) ). It now follows from the
previous lemma that we can prove

∀n0 ∀xσ
∗

( |x| = n→ ϕ(x) )

by ordinary induction. �

One consequence is the following useful fact:

Lemma 2.17. E-HAω∗ proves that for any two elements xσ
∗

, yσ
∗

we have |x∗y| = |x|+|y|
and

(x ∗ y)i = (x)i if i < |x|,
(x ∗ y)i = (y)i−|x| otherwise.

Therefore it also proves that x �σ x ∗ y and y �σ x ∗ y.

Proof. Easy argument using the recursive definitions of | · | and ∗ and the induction
schema for sequences. �

Another consequence is the principle of extensionality for sequences. We will call
two elements xσ

∗

, yσ
∗

extensionally equal, and write x =e,σ∗ y, if

|x| =0 |y| ∧ ∀i < |x| ( (x)i =σ (y)i ).

Proposition 2.18. E-HA
ω∗ proves

∀xσ
∗

, yσ
∗

(x =e,σ∗ y → x =σ∗ y ).

Proof. Proof by sequence induction on x.
If x =e y and x = 〈〉σ, then |y| = |x| = 0. So y = 〈〉σ.
If x =e y and x = c(a, x′), then |x| = Sn where n = |x′|. So also |y| = Sn and hence

y = c(b, y′) for some bσ, y′σ
∗

with |y′| = n. Since x =e y, we have a = b and x′ =e y
′.

From the latter we get x′ = y′ by induction hypothesis, so x = c(a, x′) = c(b, y′) = y.
�

Corollary 2.19. E-HA
ω∗
st proves

∀xσ
∗

st(|x|) ∧ ∀i < |x| st((x)i) → st(x).

Proof. Suppose xσ
∗

is a sequence of standard length and all components (x)i are
standard. Then x′ := 〈x0, . . . , x|x|−1〉 is also standard (by Lemma 2.8). But x =e,σ∗ x′,
so x = x′ by extensionality for sequences and st(x) by extensionality of the standardness
predicate. �

Corollary 2.20. E-HA
ω∗
st proves the external induction axiom for sequences:

Φ(〈〉σ) ∧ ∀staσ, yσ
∗

(Φ(y) → Φ(c(a, y) ) → ∀stxσ
∗

Φ(x).

Proof. Suppose Φ(〈〉σ) and ∀staσ, yσ
∗

(Φ(y) → Φ(c(a, y) ). The idea now is to prove

∀stn0 ∀stxσ
∗

( |x| = n→ Φ(x) )

by external induction IA
st, using the previous corollary to argue that if x = c(a, y) and

xσ
∗

is standard, then both a and y are standard as well. �
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2.6 Finite sequence application

The following operations will be crucial for what follows.

Definition 2.21 (Finite sequence application and abstraction). If s is of type (σ → τ∗)∗

and t is of type σ, then

s[t] := (s)0(t) ∗ . . . ∗ (s)|s|−1(t) : τ
∗.

For every term s of type σ → τ∗ we set

Λxσ.s(x) := 〈λxσ .s(x)〉 : (σ → τ∗)∗.

The point is that these two operations act like application and abstraction, for we
have

(Λx.s(x))[t] =τ∗ (λx.s(x))(t) =τ∗ s(t).

We will often write s[t] and Λx.t; in handling these expressions, the same conventions
as for ordinary application and abstraction apply (see Section 2.1).

Note that the defining equations for the sequence application and Λ-abstraction imply
that finite sequence application and ordinary application are (provably) interdefinable,
in the following sense: E-HAω∗ proves that for every s : (σ → τ∗)∗ there is a t : σ → τ∗

(viz., t = λx.s[x]) such that s[x] = t(x) for all x, as well as that for every t : σ → τ∗

there is an s of type (σ → τ∗)∗ (viz., s = Λx.t(x)) such that s[x] = t(x) for all x.
In what follows we will need that one can define recursors Rρ for each tuple of types

ρ∗ = ρ∗0, . . . , ρ
∗
k, such that

Rρ(0, y, z) =ρ∗ y,

Rρ(n+ 1, y, z) =ρ∗ z[n,Rρ(n, y, z)],

(where yi is of type ρ
∗
i and zi is of type (0 → ρ∗0 → . . .→ ρ∗k → ρ∗i )

∗). Indeed, by letting

Rρ := λn0, y, z.Rρ∗(n, y, (λsρ
∗

, t0.z[t, s])),

where Rρ are constants for simultaneous primitive recursion as in [25], we get

Rρ(0, y, z) =ρ∗ Rρ∗(0, y, (λsρ
∗

, t0.z[t, s])) =ρ∗ y

and

Rρ(n+ 1, y, z) =ρ∗ Rρ∗(n+ 1, y, (λsρ
∗

, t0.z[t, s]))

=ρ∗ (λsρ
∗

, t0.z[t, s])(Rρ∗(n, y, (λsρ
∗

, t0.z[t, s])), n)

=ρ∗ z[n,Rρ∗(n, y, (λsρ
∗

, t0.z[t, s]))]

=ρ∗ z[n,Rρ(n, y, z)].

Notice that when compared to the case of the ordinary primitive recursors Rρ we have

switched the order of the arguments of z. This is simply to make the realizer for the
interpretation of the induction schema nicer.

With respect to the preorder � from Definition 2.12 the new application is monotone
in the first component, in the following sense:

Lemma 2.22. E-HA
ω∗ proves

1. If s(σ→τ∗)∗ � s̃(σ→τ∗)∗ , then s[t] � s̃[t], for all tσ.

2. If s � s̃, then s[t] � s̃[t] for all t of suitable types.

10



3. If s � s̃, then s[t] � s̃[t] for all t of suitable types.

Proof. We will only prove the first point, as the other two are similar. Let i < |s[t]|, and
consider (s[t])i. Since s[t] =τ∗ (s)0(t) ∗ . . . ∗ (s)|s|−1(t) there is k < |s| and m < |(s)k(t)|
such that

(s[t])i =τ∗ ((s)k(t))m.

Since s � s̃ there is j < |s̃| such that (s)k =σ→τ∗ (s̃)j . Thus m < |(s̃)j(t)| and

(s[t])i =τ∗ ((s̃)j(t))m,

and so since s̃[t] =τ∗ (s̃)0(t) ∗ . . . ∗ (s̃)|s̃|−1(t) there is some n < |s̃[t]| such that

(s̃[t])n =τ∗ ((s̃)j(t))m =τ∗ (s[t])i.

�

Lemma 2.23. E-HA
ω∗
st proves

st(σ→τ∗)∗(x) ∧ stσ(y) → stτ
∗

(x[y])

and
stσ→τ∗

(s) → st(σ→τ∗)∗(Λxσ.s(x)).

Proof. Follows from Lemma 2.8. �

3 Nonstandard principles

Semantic approaches to nonstandard analysis exploit the existence of nonstandard mod-
els of the first-order theory of the natural numbers or the reals. In fact, one may use
the compactness theorem for first-order logic or the existence of suitable nonprincipal
ultrafilters to show that there are extensions of the natural numbers, the reals or any
other first-order structure one might be interested in, that are elementary: that is, sat-
isfy the same first-order sentences, even when allowing for parameters from the original
structure. For the natural numbers, for instance, this means that there are structures
∗
N and embeddings i : N → ∗

N that satisfy

∗
N |= ϕ(i(n0), . . . , i(nk)) ⇐⇒ N |= ϕ(n0, . . . , nk)

for all first-order formulas ϕ(x0, . . . , xk) and natural numbers n0, . . . , nk. Usually, one
identifies the elements in the image of i with the natural numbers and calls these the
standard natural numbers, while those that do not lie in the image of i are the non-
standard natural numbers. Sometimes, one adds a new predicate st to the structure ∗

N,
which is true only of the standard natural numbers. One can then use the elementarity
of the embedding to show that ∗

N is still a linear order in which the nonstandard natural
numbers must be infinite (i.e., bigger than any standard natural number). The charm
and power of nonstandard proofs is that one can use these infinite natural numbers to
prove theorems in the nonstandard structure ∗

N, which must then be true in N as well,
as the embedding i is elementary. The same applies to nonstandard extensions ∗

R of
the reals, in which there are besides infinite reals, also infinitesimals (nonstandard reals
having an absolute value smaller than any positive standard real): these infinitesimals
can then be used to prove theorems in analysis in ∗

R; again, one can then go on to
use the elementarity of the embedding to show that they must hold in R as well. The
catch is that only first-order, internal statements can be lifted in this way: so using
nonstandard models requires some understanding about what can and what can not be
expressed in first-order logic as well as some careful verifications as to whether formulas
are internal.
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Besides creating an interesting world in which there are infinite natural numbers and
infinitesimals, nonstandard analysis also comes with some new proof principles, among
which the following are the most important:

1. Overspill: if ϕ(x) is internal and holds for all standard x, then ϕ(x) also holds for
some nonstandard x.

2. Underspill: if ϕ(x) is internal and holds for all nonstandard x, then ϕ(x) also holds
for some standard x.

3. Transfer: an internal formula ϕ (possibly with standard parameters) holds in ∗
N

iff it holds in N.

Of course, transfer expresses the elementarity of the embedding. The other two principles
are consequences of the fact that it is impossible to define standardness in ∗

N using an
internal formula: for if one could, then ϕ(n) would hold in ∗

N, and hence in N, for every
natural number n. This would imply that ∀xϕ(x) holds in N and hence in ∗

N as well;
but that contradicts the existence of nonstandard elements in ∗

N.
In the remainder of this section, we will discuss these principles in more detail, for

two related reasons. First of all, they will provide us with three benchmarks with which
we will be able to measure the success of the different interpretations. Also, because they
have some nontrivial consequences (especially in the intuitionistic context), discussing
these will give us some important clues as to how any interpretation of nonstandard
analysis will have to look like.

Remark 3.1. Unless we state otherwise, the principles we will subsequently introduce
in this paper may have additional parameters besides those explicitly shown. Also
recall that we follow Nelson’s convention in using small Greek letters to denote internal
formulas and capital Greek letters to denote formulas which can be external.

3.1 Overspill

When formalised in E-HA
ω∗
st , overspill (in type 0) is the following statement:

OS0 : ∀stx0 ϕ(x) → ∃x0 (¬ st(x) ∧ ϕ(x) ).

Proposition 3.2. [40] In E-HA
ω∗
st , the principle OS0 implies the existence of nonstandard

natural numbers,
ENS0 : ∃x0 ¬ st(x),

as well as:

LLPO
st
0 : ∀stx0, y0 (ϕ(x) ∨ ψ(y) ) → ∀stx0 ϕ(x) ∨ ∀sty0 ψ(y).

Proof. ENS0 follows trivially from OS0 by taking for ϕ(x) some trivially true formula
(for instance, x = x).

If ∀stx0, y0 (ϕ(x) ∨ ψ(y) ), then one can use external induction to prove:

∀stn0 (∀m ≤ nϕ(m) ∨ ∀m ≤ nψ(m) ).

By applying overspill to this statement, we see that it holds for some nonstandard n.
Using external induction again, we can prove that a nonstandard natural number must
be bigger than any standard natural number. Hence ∀stx0 ϕ(x) ∨ ∀sty0 ψ(y). �

Of course, overspill can be formulated for all types:

OS : ∀stxσ ϕ(x) → ∃xσ (¬ st(x) ∧ ϕ(x) ).

But, actually, the interpretations that we will discuss will not only verify this princi-
ple, but also a far-reaching generalization of it, viz. a higher-type version of Nelson’s
idealization principle [38]:

I : ∀stxσ
∗

∃yτ∀x′ ∈σ xϕ(x
′, y) → ∃yτ∀stxσ ϕ(x, y).
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Proposition 3.3. [40] In E-HA
ω∗
st , the idealization principle I implies overspill, as well

as the statement that for every type σ there is a nonstandard sequence containing all the
standard elements of that type:

USEQ : ∃yσ
∗

∀stxσ x ∈σ y.

Proof. OS for an internal formula ψ(y) follows from I by taking ϕ(x, y) :≡ y 6= x∧ψ(y),
while USEQ follows by taking ϕ(x, y) :≡ x ∈σ y. �

Proposition 3.4. In E-HA
ω∗
st , the idealization principle I implies the existence of non-

standard elements of any type,

ENS : ∃xσ ¬ st(x),

as well as LLPO
st for any type:

LLPO
st : ∀stxσ, yσ (ϕ(x) ∨ ψ(y) ) → ∀stxσ ϕ(x) ∨ ∀styσ ψ(y).

Proof. The first statement is obvious, so we concentrate on the second.
Suppose ∀stxσ, yσ (ϕ(x) ∨ ψ(y) ). Then one easily proves by external sequence in-

duction and by taking v := u that

∀stuσ
∗

∃vσ
∗

∀u′ ∈ u
(

u′ ∈ v ∧ (∀v′ ∈ v ϕ(v′) ∨ ∀v′ ∈ v ψ(v′) )
)

.

By applying idealization to this statement we obtain

∃vσ
∗

∀stuσ
(

u ∈ v ∧ (∀v′ ∈ v ϕ(v′) ∨ ∀v′ ∈ v ψ(v′) )
)

,

from which LLPO
st follows. �

Classically, idealization is equivalent to its dual, which we have dubbed the realization
principle (intuitionistically, things are not so clear):

R : ∀yτ∃stxσ ϕ(x, y) → ∃stxσ
∗

∀yτ∃x′ ∈ xϕ(x′, y).

As it turns out, both our interpretations will eliminate this principle as well. Actu-
ally, both interpretations for constructive nonstandard analysis eliminate the stronger
nonclassical realization principle:

NCR : ∀yτ∃stxσ Φ(x, y) → ∃stxσ
∗

∀yτ∃x′ ∈ xΦ(x′, y),

where Φ(x, y) can be any formula. This is quite remarkable, as NCR is incompatible
with classical logic (hence the name) in that one can prove:

Proposition 3.5. In E-HA
ω∗
st , the nonclassical realization principle NCR implies the

undecidability of the standardness predicate:

¬∀xσ ( st(x) ∨ ¬ st(x) ).

Proof. Assume that standardness would be decidable. Then we would have

∀yσ∃stxσ ( st(y) → x = y ).

Applying NCR to this statement yields:

∃stxσ
∗

∀yσ∃x′ ∈ x ( st(y) → x′ = y ),

which is the statement that there are only finitely many standard elements of type σ.
This is clearly absurd. �
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3.2 Underspill

Underspill (in type 0) is the following statement:

US0 : ∀x0 (¬ st(x) → ϕ(x) ) → ∃stx0 ϕ(x).

In a constructive context it has the following nontrivial consequence (compare [5]):

Proposition 3.6. In E-HA
ω∗
st , the underspill principle US0 implies

MP
st
0 :

(

∀stx0 (ϕ(x) ∨ ¬ϕ(x) ) ∧ ¬¬∃stx0ϕ(x)
)

→ ∃stx0ϕ(x).

In particular, E-HAω∗
st + US0 ⊢ ¬¬ st0(x) → st0(x).

Proof. We reason in E-HA
ω∗
st + US0. Suppose ∀stx0 (ϕ(x) ∨ ¬ϕ(x) ) and ¬¬∃stx0ϕ(x).

Since the latter is intuitionistically equivalent to ¬∀stx0¬ϕ(x), this means that for
every infinite natural number ω, we have ¬∀x ≤ ω¬ϕ(x). In other words, we have

∀ω0 (¬ st(ω) → ¬∀x ≤ ω¬ϕ(x) ).

So by US0 we have

∃sty ¬∀x ≤ y¬ϕ(x),

which implies ∃stxϕ(x) by decidability of ϕ(x) for standard values of x.
As a special case we have ¬¬ st0(x) → st0(x), because st0(x) is equivalent to

∃sty0 (x =0 y ) and equality of objects of type 0 is decidable. �

Also underspill has a direct generalization to higher types:

US : ∀xσ (¬ st(x) → ϕ(x) ) → ∃stxσ ϕ(x).

A natural question is whether this implies a version of Markov’s Principle for all types.
Our suspicion is that this is not the case, but we were unable to prove this.

3.3 Transfer

Following Nelson [38], the transfer principle is usually formulated as follows:

TP∀ : ∀stt (∀stxϕ(x, t) → ∀xϕ(x, t) ).

(Here, for once, we do not allow parameters: so it is important that x and t include all
free variables of the formula ϕ.) This is classically, but not intuitionistically, equivalent
to the following:

TP∃ : ∀stt (∃xϕ(x, t) → ∃stxϕ(x, t) ),

where, once again, we do not allow parameters.
It turns out that interpreting transfer is very difficult, especially in a constructive

context (in fact, Avigad and Helzner have devoted an entire paper [5] to this issue).
There are, at least, the following three problems:

1. Transfer principles together with overspill imply instances of the law of excluded
middle, as was first shown by Moerdijk and Palmgren in [37]. In our setting we
have:

Proposition 3.7. (a) In E-HA
ω∗
st , the combination of ENS0 and TP∀ implies the

law of excluded middle for all internal arithmetical formulas.

(b) In E-HA
ω∗
st , the combination of USEQ and TP∀ implies the law of excluded

middle for all internal formulas.
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Proof. Ad (a): assume ENS0 and TP∀. We show that every internal arithmetic
formula ϕ is decidable by induction on the number of internal quantifiers in ϕ.
Atomic formulas are decidable anyway, so the base case is easy.

If ϕ(x0, t) is an internal formula which is decidable and arithmetical (and with all
free variables shown), then one can use internal induction to show

∀y0 (∃x ≤ y ¬ϕ(x, t) ∨ ∀x ≤ y ϕ(x, t) ).

Let t be some arbitrary standard value and let y be some infinite natural number
ω, using ENS0. Then we either have ∃x ≤ ω ¬ϕ(x, t) and in particular ∃x¬ϕ(x, t)
or we have ∀x ≤ ω ϕ(x, t) and in particular ∀stxϕ(x, t). So:

∀stt (∃x¬ϕ(x, t) ∨ ∀stxϕ(x, t) ).

Applying TP∀ once we get

∀stt (∃x¬ϕ(x, t) ∨ ∀xϕ(x, t) )

and applying it another time we get

∀t (∃x¬ϕ(x, t) ∨ ∀xϕ(x, t) ).

This completes the induction step.

In (b) we argue similarly. First, we use the extensionality principles for functions
and sequences to eliminate all equality predicates at higher types in favour of
equalities at type 0. This makes all atomic formulas decidable. Since decidable
formulas are closed under all propositional connectives, this leaves the case of the
quantifiers. So suppose ϕ(xσ , t) is a internal formula which is decidable and let u
be a sequence containing all standard elements of type σ (using USEQ). Then we
have:

∃u′ ∈ u¬ϕ(u′, t) ∨ ∀u′ ∈ uϕ(u′, t).

In the former case it holds that ∃xσ ¬ϕ(x, t) and in the latter that ∀stxσϕ(x, t).
And from here the argument proceeds as before. �

2. As Avigad and Helzner observe in [5], also the combination of transfer principles
with underspill results in a system which is no longer conservative over Heyting
arithmetic. More precisely, adding US0 and TP∀, or US0 and TP∃, to E-HA

ω∗
st

results in a system which is no longer conservative over Heyting arithmetic HA.
The reason is that there are quantifier-free formulas A(x) such that

HA 6⊢ ¬¬∃xA(x) → ∃xA(x).

Since one can prove a version of Markov’s Principle in E-HA
ω∗
st +US0, adding either

TP∀ or TP∃ to it would result in a nonconservative extension of HA (and hence of
E-HA

ω∗). We refer to [5] for more details.

3. The last point applies to functional interpretations only. As is well-known, in the
context of functional interpretations the axiom of extensionality always presents a
serious problem and when developing a functional interpretation of nonstandard
arithmetic, the situation is no different. Now, E-HAω∗

st includes an internal axiom of
extensionality (as it is part of E-HAω∗), but for the functional interpretation that
we will introduce in Section 5 that will be harmless. What will be very problematic
for us, however, is the following version of the axiom of extensionality: if for two
elements f, g of type σ1 → (σ2 → . . .→ 0)), we define

f =st g :≡ ∀stxσ1

1 , xσ2

2 , . . . ( fx =0 gx ),
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then extensionality formulated as

∀stf ∀stx, y (x =st y → fx =st fy )

will have no witness definable in ZFC. But that means that also TP∀ can have no
witness definable in ZFC: for in the presence of TP∀ both versions of extensionality
are equivalent.

One way out of this quandary, which is strongly suggested by the last point and
is the route taken in most sources (beginning with [36]), is to have transfer not as a
principle, but as a rule. As we will see, this turns out to be feasible. In fact, we will
have two transfer rules (which are not equivalent, not even classically):

∀stxϕ(x)

∀xϕ(x)
TR∀

∃xϕ(x)

∃stxϕ(x)
TR∃

(This time round there are no special requirements on the parameters of ϕ.)

Remark 3.8. In this section we have also explored several connections between non-
standard principles. More principles will be introduced below and we will prove one
more implication (see Proposition 5.11). We have not tried to determine the precise
relationships between these principles – in particular, we do not know precisely which
principles follow and do not follow over E-HAω∗

st from combinations of other principles.
In fact, we believe that mapping these connections would be an interesting research
project.

4 Herbrand realizability

In this section we will introduce a new realizability interpretation, which will allow
us to prove our first consistency and conservation results in the context of E-HA

ω∗
st .

Our treatment here will be entirely proof-theoretic; for a semantic approach towards
Herbrand realizability, see [6].

4.1 The interpretation

The interpretation works by associating to every formula Φ(x) a formula Ψ(t, x), also
denoted by t hrΦ(x), where t is a tupe of new variables all of which are of sequence
type, determined solely by the logical form of Φ(x). The soundness proof will then
involve showing that for every formula Φ(x) of E-HAω∗

st with E-HA
ω∗
st ⊢ Φ(x) there is an

appropriate tuple t of terms from T ∗ such that E-HAω∗
st ⊢ t hrΦ(x).

The idea of the interpretation is that we interpret internal quantifers uniformly and
that we do not attempt to give them any computational content. In a sense, the only
predicate to which we will assign any computational content is the standardness predi-
cate st: to realize stσ(x), however, it suffices to provide a nonempty finite list of terms
of type σ, one of which will have to be equal to x. Therefore to realize a statement of
the form ∃stxσ Φ(x) one only needs to provide a finite list 〈y0, . . . , yn〉 and to make sure
that Φ(yi) is realized for some i ≤ n (which is like giving a Herbrand disjunction; hence
the name “Herbrand realizability”).

The precise definition is as follows:
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Definition 4.1 (Herbrand realizability for E-HAω∗
st ).

[] hrϕ :≡ ϕ for an internal atomic formula ϕ,

s hr st(x) :≡ x ∈ s,

s, t hr(Φ ∨Ψ) :≡ s hrΦ ∨ t hrΨ,

s, t hr(Φ ∧Ψ) :≡ s hrΦ ∧ t hrΨ,

s hr(Φ → Ψ) :≡ ∀stt ( t hrΦ → s [t ] hrΨ),

s hr∃xΦ(x) :≡ ∃x (s hrΦ(x)),

s hr∀xΦ(x) :≡ ∀x (s hrΦ(x)),

s, t hr∃stxΦ(x) :≡ ∃s′ ∈ s
(

t hrΦ(s′)
)

,

s hr∀stxΦ(x) :≡ ∀stx
(

s [x] hrΦ(x)
)

.

Before we show the soundness of the interpretation, we first prove some easy lemmas:

Definition 4.2 (The ∃st -free formulas). We call a formula (in the language of E-HAω∗
st )

∃st -free, if it is built up from atomic formulas (including ⊥) using the connectives ∧, ∨,
→ and the quantifiers ∃x, ∀x and ∀stx. Alternatively, one could say that these are the
formulas in which st and ∃st do not occur. We denote such formulas by Φ 6∃st .

Lemma 4.3 (Interpretation of ∃st -free formulas). All the interpretations t hrΦ(x) of
formulas Φ(x) of E-HAω∗

st are ∃st -free. In addition, every ∃st -free formula is interpreted
by itself. Hence the interpretation is idempotent.

The following lemma will be crucial for what follows:

Lemma 4.4 (Realizers are provably upwards closed). The formula t hrΦ(x) is provably
upwards closed in t, that is:

E-HA
ω∗
st ⊢ s hrΦ ∧ s � t→ t hrΦ.

Proof. By induction on the structure of Φ, using the monotonicity of the new applica-
tion in the first component in the clauses for → and ∀st. �

Theorem 4.5 (Soundness of Herbrand realizability). Let Φ be an arbitrary formula of
E-HA

ω∗
st and ∆6∃st be an arbitrary set of ∃st-free sentences. Whenever

E-HA
ω∗
st +∆6∃st ⊢ Φ(x),

then one can extract from the formal proof closed terms t in T ∗, such that

E-HA
ω∗
st +∆6∃st ⊢ t hrΦ(x).

Proof. As for the logical axioms and rules, the differences with the usual soundness
proof of modified realizability for E-HAω (as in [48] or Theorem 5.8 in [25]) are

(a) that we require the realizing terms to be closed,

(b) that we have a nonconstructive interpretation of disjunction, and

(c) that we interpret the quantifiers in a uniform fashion.

Therefore one has to make the following modifications:

1. The contraction axiom A∨A→ A is realized by Λx, y.x∗y, using that the collection
of realizers is provably upwards closed.

2. The weakening axiom A→ A ∨B is realized by Λx.x,O.
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3. The permutation axiom A ∨B → B ∨ A is realized by Λx, y.y, x.

4. The axioms of ∀-elimination ∀xΦ(x) → Φ(t) and ∃-introduction Φ(t) → ∃xΦ(x)
are realized by the identity tuple Λx . x.

5. The expansion rule A→B
A∨C→A∨C

: if t hrA → B, then Λx, y.t[x], y is a Herbrand
realizer of A ∨ C → A ∨ C.

6. The ∀-introduction rule Φ→Ψ(x)
Φ→∀xΨ(x) is interpreted, because s hr(Φ → Ψ(x)) im-

plies s hr(Φ → ∀xΨ(x)): for if t hrΦ and st(t), then s[t] hrΨ(x) and therefore
s[t] hr∀xΨ(x).

7. The ∃-introduction rule Φ(x)→Ψ
∃xΦ(x)→Ψ is interpreted, because s hr(Φ(x) → Ψ) im-

plies s hr(∃xΦ(x) → Ψ): for if t hr ∃xΦ(x) and st(t), then there is an x such that
t hrΦ(x), from which it follows that s[t] hrΨ.

The sentences from ∆6∃st and the axioms of E-HA
ω∗, including SA and the defining

axioms for equality, successor, combinators and recursion, are ∃st -free and therefore
realized by themselves. Therefore it remains to show the soundness of the following
rules and axioms:

1. The external quantifier axioms EQ: both directions in ∃stxΦ(x) ↔ ∃x(st(x)∧Φ(x))
are interpreted by the the identity. In ∀stxΦ(x) ↔ ∀x(st(x) → Φ(x)) the right-to-
left direction is realized by Λs, x.s [〈x〉], while the left-to-right direction is realized
by Λs, x.s[x0] ∗ . . . ∗ s[x|x|−1].

2. The axiom schemes T ∗
st: the principle st(x) ∧ x = y → st(y) is realized by the

identity, while st(t) is realized by 〈t〉. In addition, st(f) ∧ st(x) → st(fx) is
realized by Λf, x.〈fi(xj)〉i<|f |,j<|x|.

3. The induction schema IA
st : suppose s hrΦ(0) and t hr∀stn(Φ(n) → Φ(n+1)), with

st(s) and st(t). Then E-HA
ω∗
st proves by external induction that for standard nat-

ural numbers n, the term R(n, s, t) is standard and R(n, s, t) hrΦ(n). Therefore
Λx, y, n . R(n, x, y) hr IAst .

�

4.2 The characteristic principles of Herbrand realizability

In this section we will prove that HAC (the herbrandized axiom of choice), HIP6∃st (the
herbrandized independence of premise principle for ∃st-free formulas) and NCR axiom-
atize Herbrand realizability:

1. HAC :

∀stx∃styΦ(x, y) → ∃stF∀stx∃y ∈ F (x)Φ(x, y),

where Φ(x, y) can be any formula. If Φ(x, y) is upwards closed in y, then this is
equivalent to

∀stx∃styΦ(x, y) → ∃stF∀stxΦ(x, F (x)).

2. HIP 6∃st :
(

Φ → ∃styΨ(y)
)

→ ∃sty
(

Φ → ∃y′ ∈ yΨ(y′)
)

,

where Φ has to be an ∃st-free formula and Ψ(y) can be any formula. If Ψ(y) is
upwards closed in y, then this is equivalent to

(

Φ → ∃styΨ(y)
)

→ ∃sty
(

Φ → Ψ(y)
)

.
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3. NCR:
∀x∃styΦ(x, y) → ∃sty ∀x∃y′ ∈ yΦ(x, y′),

where Φ(x, y) can be any formula. If Φ(x, y) is upwards closed in y, then this is
equivalent to

∀x∃styΦ(x, y) → ∃sty∀xΦ(x, y).

Theorem 4.6 (Characterization theorem for Herbrand realizability).

1. For any instance Φ of HAC, HIP 6∃st or NCR, there are closed terms t in T ∗ such
that

E-HA
ω∗
st ⊢ t hrΦ.

2. For any formula Φ of E-HAω∗
st , we have

E-HA
ω∗
st + HAC+ HIP 6∃st + NCR ⊢ Φ ↔ ∃stx (x hrΦ).

Proof. Soundness of HAC: If r = s, t and r hr∀stx∃styΦ(x, y), then for
every standard x there is an s′ ∈ s[x] such that t[x] hrΦ(x, s′). Hence
〈λx.s[x]〉, t hr∃stF∀stx∃y ∈ F (x)Φ(x, y). So HAC is realized by Λx, y.〈λz.x[z]〉, y.

Soundness of HIP 6∃st : Suppose Φ is ∃st-free, r = s, t and r hrΦ → ∃styΦ(y). This
means that if Φ would hold, then there would be an s′ ∈ s such that t hrΨ(s′). Hence
〈s〉, t hr∃sty(Φ → ∃y′ ∈ yΨ(y′)). So HIP 6∃st is realized by Λx, y.〈x〉, y.

In a similar manner one checks that also NCR is realized by Λx, y.〈x〉, y. This com-
pletes the proof of item 1.

Item 2 one proves by induction on the logical structure of Φ. We discuss implication
as an illustrative case, as it is by far the hardest, and leave the other cases to the reader.
We reason in E-HA

ω∗
st + HAC + HIP 6∃st + NCR. By induction hypothesis, we have that

Φ ↔ ∃stt(t hrΦ) and Ψ ↔ ∃sts(s hrΨ) and therefore

Φ → Ψ

is equivalent to
∃stt(t hrΦ) → ∃sts(s hrΨ),

which in turn is equivalent to:

∀stt
(

t hrΦ → ∃sts ( s hrΨ)
)

.

Because t hrΦ is ∃st-free and s hrΨ is upwards closed in s, we can use HIP 6∃st to rewrite
this as:

∀stt ∃sts
(

t hrΦ → s hrΨ
)

.

As t hrΦ → s hrΨ is upwards closed in s and finite sequence application and ordinary
application are interdefinable, we can use HAC to see that this is equivalent to:

∃sts ∀stt
(

t hrΦ → s[t] hrΨ
)

,

which is precisely the meaning of ∃sts ( s hr(Φ → Ψ) ). �

Theorem 4.7 (Main theorem on program extraction by hr). Let ∀stx∃styΦ(x, y) be a
sentence of E-HAω∗

st and ∆6∃st be an arbitrary set ∃st-free sentences. Then the following
rule holds

E-HA
ω∗
st + HAC+ HIP 6∃st + NCR+∆6∃st ⊢ ∀stx∃styΦ(x, y) ⇒

E-HA
ω∗
st + HAC+ HIP 6∃st + NCR+∆6∃st ⊢ ∀stx∃y ∈ t(x)Φ(x, y),

where t is a closed term from T ∗ which is extracted from the original proof using Her-
brand realizability.
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In the particular case where both Φ(x, y) and ∆6∃st are internal, the conclusion yields

E-HA
ω∗ +∆6∃st ⊢ ∀x∃y ∈ t(x)Φ(x, y).

If we assume that the sentences from ∆6∃st are not just internal, but also true (in the
set-theoretic model), the conclusion implies that ∀x∃y ∈ t(x)Φ(x, y) must be true as
well.

Proof. If

E-HA
ω∗
st + HAC+ HIP 6∃st + NCR+∆6∃st ⊢ ∀stx∃styΦ(x, y),

then the soundness proof yields terms r, s such that

E-HA
ω∗
st +∆6∃st ⊢ r, s hr∀stx∃styΦ(x, y).

Since r, s hr∀stx∃styΦ(x, y) is by definition ∀stx∃y ∈ r[x]( s hrΦ(x, y) ), the first state-
ment follows by taking t = λx.r[x].

If both Φ(x, y) and ∆6∃st are internal, then s is empty and we get

E-HA
ω∗
st +∆6∃st ⊢ ∀stx∃y ∈ t(x)Φ(x, y).

By internalizing the statement, we obtain

E-HA
ω∗ +∆6∃st ⊢ ∀x∃y ∈ t(x)Φ(x, y).

Since all the axioms of E-HAω∗ are true, this implies that ∀x∃y ∈ t(x)Φ(x, y) will be
true, whenever ∆6∃st is. �

4.3 Discussion

The main virtue of Herbrand realizability may be that it points one’s attention to princi-
ples like HAC and NCR and that it gives one a simple proof of their consistency. However,
as a method for eliminating nonstandard principles from proofs, Herbrand realizability
has serious limitations. It does eliminate the realization principle R (it even eliminates
the nonclassical principle NCR), but overspill, the idealization principle I and the trans-
fer rules are ∃st-free and therefore simply passed to the verifying system. Even worse,
the underspill principle US0 does not have a computable Herbrand realizer:

Proposition 4.8. MP
st
0 and US0 do not have computable Herbrand realizers.

Proof. It is well-known that there can be no computable function witnessing the
modified realizability interpretation of Markov’s principle, because its existence would
imply the decidability of the halting problem. A similar argument shows that MP

st
0 does

not have a computable Herbrand realizer: Kleene’s T -predicate T (e, x, n) is primitive
recursive and hence

E-HA
ω∗
st ⊢ ∀ste, x, n

(

T (e, x, n) ∨ ¬T (e, x, n)
)

.

So if MP
st
0 would have a computable realizer, then so would

∀ste
(

¬¬∃stnT (e, e, n) → ∃stnT (e, e, n)
)

.

But if t would be such a realizer, we could decide the halting problem by checking
T (e, e, n) for all n ∈ t[e].

Since US0 implies MP
st
0 (see Proposition 3.6), it follows that US0 does not have a

computable realizer either. �

In the next section, we will show that these problems can be overcome by moving
from realizability to, more complicated, functional interpretations.
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5 A functional interpretation for E-HA
ω∗
st

In this section we will introduce and study a functional interpretation for E-HAω∗
st .

5.1 The interpretation

The basic idea of the Dst -interpretation (the nonstandard Dialectica interpretation) is
to associate to every formula Φ(a) a new formula Φ(a)Dst ≡ ∃stx∀sty ϕDst

(x, y, a) such
that

1. all variables in x are of sequence type and

2. ϕDst
(x, y, a) is upwards closed in x.

We will interpret the standardness predicate stσ similarly to the case for Herbrand
realizability: For a realizer for the interpretation of stσ(x) we will require a standard
finite list 〈y0, . . . , yn〉 of candidates, one of which must be equal to x.

Definition 5.1 (The Dst -interpretation for E-HA
ω∗
st ). We associate to every

formula Φ(a) in the language of E-HA
ω∗
st (with free variables among a) a formula

Φ(a)Dst ≡ ∃stx∀sty ϕDst
(x, y, a) in the same language (with the same free variables) by:

(i) ϕ(a)Dst :≡ ϕDst
(a) :≡ ϕ(a) for internal atomic formulas ϕ(a),

(ii) stσ(uσ)Dst :≡ ∃stxσ
∗

u ∈σ x.

Let Φ(a)Dst ≡ ∃stx∀sty ϕDst
(x, y, a) and Ψ(b)Dst ≡ ∃stu∀stv ψDst

(u, v, b). Then

(iii) (Φ(a) ∧Ψ(b))Dst :≡ ∃stx, u∀sty, v
(

ϕDst
(x, y, a) ∧ ψDst

(u, v, b)
)

,

(iv) (Φ(a) ∨Ψ(b))Dst :≡ ∃stx, u∀sty, v
(

ϕDst
(x, y, a) ∨ ψDst

(u, v, b)
)

,

(v) (Φ(a) → Ψ(b))Dst :≡ ∃stU, Y ∀stx, v
(

∀y ∈ Y [x, v]ϕDst
(x, y, a) → ψDst

(U [x], v, b)
)

.

Let Φ(z, a)Dst ≡ ∃stx∀sty ϕDst
(x, y, z, a), with the free variable z not occuring among

the a. Then

(vi) (∀zΦ(z, a))Dst :≡ ∃stx∀sty∀z ϕDst
(x, y, z, a),

(vii) (∃zΦ(z, a))Dst :≡ ∃stx∀sty∃z∀y′ ∈ y ϕDst
(x, y′, z, a),

(viii) (∀stzΦ(z, a))Dst :≡ ∃stX∀stz, y ϕDst
(X[z], y, z, a),

(ix) (∃stzΦ(z, a))Dst :≡ ∃stx, z ∀sty ∃z′ ∈ z ∀y′ ∈ y ϕDst
(x, y′, z′, a).

Definition 5.2. We say that a formula Φ is a ∀st-formula if Φ ≡ ∀stxϕ(x), with ϕ(x)
internal.

Lemma 5.3. Let Φ be a ∀st-formula. Then ΦDst ≡ Φ.

Proof. By induction on the structure of Φ. �

Notice that because of the clause for ∃stz the interpretation is not idempotent. Sim-
ilarly to what is the case for Herbrand realizability it will be crucial that realizers are
upwards closed:

Lemma 5.4. Let Φ(a) be a formula in the language of E-HA
ω∗
st with interpretation

∃stx∀sty ϕDst
(x, y, a). Then the formula ϕDst

(x, y, a) is provably upwards closed in x,
i.e.,

E-HA
ω∗ ⊢ ϕDst

(x, y, a) ∧ x � x′ → ϕDst
(x′, y, a).
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Proof. By induction on the structure of Φ(a), using Lemma 2.22 in the clauses for →
and ∀st. �

The Dst -interpretation will allow us to interpret the nonclassical realization principle
NCR, and also both I and HAC. Additionally we will be able to interpret a herbran-
dized independence of premise principle for formulas of the form ∀stxϕ(x), and also a
herbrandized form of a generalized Markov’s principle:

1. HIP∀st:
(

∀stxϕ(x) → ∃styΨ(y)
)

→ ∃sty
(

∀stxϕ(x) → ∃y′ ∈ yΨ(y′)
)

,

where Ψ(y) is a formula in the language of E-HAω∗
st and ϕ(x) is an internal formula.

If Ψ(y) is upwards closed in y, then this is equivalent to
(

∀stxϕ(x) → ∃styΨ(y)
)

→ ∃sty
(

∀stxϕ(x) → Ψ(y)
)

.

2. HGMP
st:

(∀stxϕ(x) → ψ) → ∃stx
(

∀x′ ∈ xϕ(x′) → ψ
)

,

where ϕ(x) and ψ are internal formulas in the language of E-HA
ω∗
st . If ϕ(x) is

downwards closed in x, then this is equivalent to

(∀stxϕ(x) → ψ) → ∃stx(ϕ(x) → ψ).

The latter gives us a form of Markov’s principle by taking ψ ≡ 0 =0 1 and
ϕ(x) ≡ ¬ϕ0(x) (with ϕ0(x) internal and quantifier-free), whence the name.

Theorem 5.5 (Soundness of the Dst -interpretation). Let Φ(a) be a formula of E-HAω∗
st

and let ∆int be a set of internal sentences. If

E-HA
ω∗
st + I+ NCR+ HAC+ HGMP

st + HIP∀st +∆int ⊢ Φ(a)

and Φ(a)Dst ≡ ∃stx∀sty ϕDst
(x, y, a), then from the proof we can extract closed terms t

in T ∗ such that
E-HA

ω∗ +∆int ⊢ ∀y ϕDst
(t, y, a).

Proof. As in the proof of the soundness of the Dialectica interpretation we proceed by
induction on the length of the derivation.

1. We will first consider the logical axioms and rules:

(a) A→ A ∧ A:

With ADst ≡ ∃stx∀sty ϕ(x, y, a) we have

(A→ A ∧ A)Dst ≡ ∃stX ′, X ′′, Y ∀stx, y′, y′′
(

∀z ∈ Y [x, y′, y′′]ϕ(x, z, a) → ϕ(X ′[x], y′, a) ∧ ϕ(X ′′[x], y′′, a)
)

,

and we can take

X ′ := Λ x . x,

X ′′ := Λ x . x,

Y := Λ x, y′, y′′ . 〈y′, y′′〉.

(b) A ∨ A→ A:

With ADst ≡ ∃stx∀sty ϕ(x, y, a) we have

(A ∨ A→ A)Dst ≡ ∃stX ′′, Y , Y ′∀stx, x′, y′′
(

(∀z ∈ Y [x, x′, y′′]ϕ(x, z, a) ∨ ∀z′ ∈ Y ′[x, x′, y′′]ϕ(x′, z′, a))

→ ϕ(X ′′[x, x′], y′′, a)
)

,
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and we can take

X ′′ := Λ x, x′ . x ∗ x′,

Y := Λ x, y, y′′ . 〈y′′〉,

Y ′ := Λ x, y, y′′ . 〈y′′〉.

(c) A→ A ∨B:

With ADst ≡ ∃stx∀sty ϕ(x, y, a) and BDst ≡ ∃stu∀stv ψ(u, v, b) we have

(A→ A ∨B)Dst ≡ ∃stX ′, U, Y ∀stx, y′, v
(

∀z ∈ Y [x, y′, v]ϕ(x, z, a) → ϕ(X ′[x], y′, a) ∨ ψ(U [x], v, b)
)

,

and we can take

X ′ := Λ x . x,

Y := Λ x, y′, v . 〈y′〉,

U := Λ x .O.

(d) A ∧B → A:

With ADst ≡ ∃stx∀sty ϕ(x, y, a) and BDst ≡ ∃stu∀stv ψ(u, v, b) we have

(A ∧B → A)Dst ≡ ∃stX ′, Y , V ∀stx, u, y′
(

∀z ∈ Y [x, u, y′] ∀t ∈ V [x, u, y′]
(

ϕ(x, z, a) ∧ ψ(u, t, b)
)

→ ϕ(X ′[x, u], y′, a)
)

,

and we can take

X ′ := Λ x, u . x,

Y := Λ x, u, y′ . 〈y′〉,

V := Λ x, u, y′ .O.

(e) A ∨B → B ∨ A:

With ADst ≡ ∃stx∀sty ϕ(x, y, a) and BDst ≡ ∃stu∀stv ψ(u, v, b) we have

(A ∨B → B ∨A)Dst ≡ ∃stU ′, X ′, Y , V ∀stx, u, v′, y′
(

∀z ∈ Y [x, u, v′, y′] ∀t ∈ V [x, u, v′, y′]
(

ϕ(x, z, a) ∨ ψ(u, t, b)
)

→
(

ψ(U ′[x, u], v′, b) ∨ ϕ(X ′[x, u], y′, a)
)

)

,

and we can take

U ′ := Λ x, u . u,

X ′ := Λ x, u . x,

Y := Λ x, u, v′, y′ . 〈y′〉,

V := Λ x, u, v′, y′ . 〈v′〉.

(f) A ∧B → B ∧ A:

We can take the same terms as for A∨B → B∨A, since ∨ and ∧ are handled
in the same way by the interpretation.

(g) ⊥ → A:

With ADst ≡ ∃stx∀sty ϕ(x, y, a) we have

(⊥ → A)Dst ≡ ∃stX∀sty
(

⊥ → ϕ(X, y, a)
)

,

and we can take X := O.
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(h) ∀zA→ A[t/z]:

With ADst ≡ ∃stx∀sty ϕ(x, y, z, a) we have

(∀zA→ A[t/z])Dst ≡ ∃stX ′, Y ∀stx, y′
(

∀w ∈ Y [x, y′]∀z ϕ(x,w, z, a) → ϕ(X ′[x], y′, t, a)
)

,

and we can take

X ′ := Λ x . x,

Y := Λ x, y′ . 〈y′〉.

(i) A[t/z] → ∃zA:

With ADst ≡ ∃stx∀sty ϕ(x, y, z, a) we have

(A[t/z] → ∃zA)Dst ≡ ∃stX ′, Y ∀stx, y′
(

∀w ∈ Y [x, y′]ϕ(x,w, t, a) → ∃z∀w ∈ y′ ϕ(X ′[x], w, z, a)
)

,

and we can take

X ′ := Λ x . x,

Y := Λ x, y′ . y′.

(j) The modus ponens rule:

We assume that we have terms t1 and T 2, T 3 realizing the interpretations
of respectively A and A → B, and we wish to obtain terms T 4

realizing the interpretation of B. So with ADst ≡ ∃stx∀sty ϕ(x, y, a) and

BDst ≡ ∃stu∀stv ψ(u, v, b) we have

E-HA
ω∗ +∆int ⊢ ∀y ϕ(t1, y, a)

and

E-HA
ω∗ +∆int ⊢ ∀x, v

(

∀z ∈ T 3[x, v]ϕ(x, z, a) → ψ(T 2[x], v, b)
)

.

With T 4 := T 2[t1] we get

E-HA
ω∗ +∆int ⊢ ∀v ψ(T 4, v, b),

as desired.

(k) The syllogism rule:

We assume that we have terms T 1, T 2 and T 3, T 4 realizing the interpretations
of respectively A → B and B → C, and we wish to obtain terms T 5, T 6

realizing the interpretation of A → C. So with ADst ≡ ∃stx∀sty ϕ(x, y, a),

BDst ≡ ∃stu∀stv ψ(u, v, b), and CDst ≡ ∃stw∀stz χ(w, z, c) we have

E-HA
ω∗ +∆int ⊢ ∀x, v

(

∀i ∈ T 2[x, v]ϕ(x, i, a) → ψ(T 1[x], v, b)
)

(1)

and

E-HA
ω∗ +∆int ⊢ ∀u, z

(

∀j ∈ T 4[u, z|ψ(u, j, b) → χ(T 3[u], z, c)
)

, (2)

and we wish to obtain T 5, T 6 such that

E-HA
ω∗ +∆int ⊢ ∀x, z

(

∀k ∈ T 6[x, z]ϕ(x, k, a) → χ(T 5[x], z, c)
)

.
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To do this we let T 5 := Λ x . T 3[T 1[x]], T 7 := Λ x, z . T 4[T 1[x], z] and apply (2)
with u = T 1[x], such that

E-HA
ω∗ +∆int ⊢ ∀x, z

(

∀j ∈ T 7[x, z]ψ(T 1[x], j, b) → χ(T 5[x], z, c)
)

.

As a special case of (1) we get

E-HA
ω∗ +∆int ⊢ ∀x, z∀j ∈ T 7[x, z]

(

∀i ∈ T 2[x, j]ϕ(x, i, a) → ψ(T 1[x], j, b)
)

,

and thus

E-HA
ω∗ +∆int ⊢ ∀x, z

(

∀j ∈ T 7[x, z] ∀i ∈ T 2[x, j]ϕ(x, i, a) → χ(T 5[x], z, c)
)

.

Hence it is enough to construct terms T 6 such that

T 6[x, z] =σ T 2[x, T 7[x, z]0] ∗σ . . . ∗σ T 2[x, T 7[x, z]|T 7
[x,z]|−1],

where the concatenation is to include T 2[x, T 7[x, z]j ] for each j < |T 7[x, z]|,
which one can easily do using terms from T ∗.

(l) The importation and exportation rules:

With ADst ≡ ∃stx∀sty ϕ(x, y, a), BDst ≡ ∃stu∀stv ψ(u, v, b), and

CDst ≡ ∃stw∀stz χ(w, z, c) we get

(A ∧B → C)Dst ≡ ∃stW,Y , V ∀stx, u, z
(

∀i ∈ Y [x, u, z] ∀j ∈ V [x, u, z]
(

ϕ(x, i, a) ∧ ψ(u, j, b)
)

→ χ(W [x, u], z, c)
)

and

(A→ (B → C))Dst ≡ ∃stW,Y , V ∀stx, u, z
(

∀i ∈ Y [x, u, z]ϕ(x, i, a) →
(

∀j ∈ V [x, u, z]ψ(u, j, b) → χ(W [x, u], z, c)
)

)

,

so that the same terms realize the interpretations of A ∧ B → C and
A→ (B → C).

(m) The expansion rule:

We assume that we have terms T 1, T 2 realizing the interpretation of A→ B,
and we wish to obtain terms T 3, T 4, T 5, T 6 realizing the interpretation of
C∨A→ C∨B. So with ADst ≡ ∃stx∀sty ϕ(x, y, a), BDst ≡ ∃stu∀stv ψ(u, v, b),

and CDst ≡ ∃stw∀stz χ(w, z, c) we have

E-HA
ω∗ +∆int ⊢ ∀x, v

(

∀i ∈ T 2[x, v]ϕ(x, i, a) → ψ(T 1[x], v, b)
)

,

and we want T 3, T 4, T 5, T 6 such that

E-HA
ω∗ +∆int ⊢

∀w, x, z′, v
(

∀j ∈ T 5[w, x, z
′, v] ∀i ∈ T 6[w, x, z

′, v]
(

χ(w, j, c) ∨ ϕ(x, i, a)
)

→ χ(T 3[w, x], z
′, c) ∨ ψ(T 4[w, x], v, b)

)

.

Thus we can take

T 3 := Λw, x . w,

T 4 := Λw, x . T 1[x],

T 5 := Λw, x, z′, v . 〈z′〉,

T 6 := Λw, x, z′, v . T 2[x, v].
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(n) The quantifier rules:

i. We assume that we have terms T 1, T 2 realizing the interpretation
of B → A, and we want terms T 3, T 4 realizing the interpretation of
B → ∀zA, where z is not among the free variables of B. Thus with
ADst ≡ ∃stx∀sty ϕ(x, y, z, a) and BDst ≡ ∃stu∀stv ψ(u, v, b) we have

E-HA
ω∗ +∆int ⊢ ∀u, y

(

∀i ∈ T 2[u, y]ψ(u, i, b) → ϕ(T 1[u], y, z, a)
)

,

and we want

E-HA
ω∗ +∆int ⊢ ∀u, y

(

∀i ∈ T 4[u, y]ψ(u, i, b) → ∀z ϕ(T 3[u], y, z, a)
)

.

Hence we may take T 3 := T 1 and T 4 := T 2.

ii. We have terms T 1, T 2 realizing the interpretation of A → B, and we
want terms T 3, T 4 realizing the interpretation of ∃zA → B, where z is
not among the free variables of B. Thus with ADst ≡ ∃stx∀sty ϕ(x, y, z, a)

and BDst ≡ ∃stu∀stv ψ(u, v, b) we have

E-HA
ω∗ +∆int ⊢ ∀x, v

(

∀i ∈ T 2[x, v]ϕ(x, i, z, a) → ψ(T 1[x], v, b)
)

,

and we want

E-HA
ω∗+∆int ⊢ ∀x, v

(

∀k ∈ T 4[x, v] ∃z∀i ∈ kϕ(x, i, z, a) → ψ(T 3[x], v, b)
)

.

So we can take T 3 := T 1 and T 4 := Λ x, v . 〈T 2[x, v] 〉.

2. The nonlogical axioms of E-HA
ω∗: These axioms are all internal, and so their

Dst -interpretations are all realized by the empty tuple of terms.

3. The defining axioms EQ of the external quantifiers:

(a) ∀stxΦ(x) ↔ ∀x(st(x) → Φ(x)):

We treat first ∀stxΦ(x) → ∀x(st(x) → Φ(x)). With ΦDst ≡ ∃stu∀stv ϕ(u, v, x, a)
we get

(∀stxΦ(x))Dst ≡ ∃stU∀stx, v ϕ(U [x], v, x, a)

and

(

∀x (st(x) → Φ(x))
)Dst

≡ ∃stU ′∀stz, v′∀x
(

x ∈ z → ϕ(U ′[z], v′, x, a)
)

,

and thus
(

∀stxΦ(x) → ∀x (st(x) → Φ(x))
)Dst

is

∃stŨ
′
, X, V ∀stU, z, v′

(

∀i ∈ X [U, z, v′] ∀j ∈ V [U, z, v′]ϕ
(

U [i], j, i, a
)

→ ∀x
(

x ∈ z → ϕ(Ũ
′
[U, z], v′, x, a)

)

)

.

Let now

X := ΛU, z, v′ . z,

V := ΛU, z, v′ . 〈v′〉,

Ũ
′

:= ΛU, z . U [z0] ∗ . . . ∗ U [z|z|−1]

(with

U [z0] ∗ . . . ∗U [z|z|−1] := U0[z0] ∗ . . . ∗U0[z|z|−1], . . . , Un−1[z0] ∗ . . . ∗ Un[z|z|−1]

for U = U0, . . . , Un−1).
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Next we treat ∀x(st(x) → Φ(x)) → ∀stxΦ(x). Similarly to the case above we

get that
(

∀x(st(x) → Φ(x)) → ∀stxΦ(x)
)Dst

is

∃stŨ , Z, V ′ ∀stU ′, x, v
(

∀k ∈ Z[U ′, x, v] ∀j ∈ V ′[U ′, x, v]∀x′ ∈ k ϕ(U ′[k], j, x′, a) → ϕ(Ũ [U ′, x], v, x, a)
)

.

Hence we can take

Z := ΛU ′, x, v . 〈〈x〉〉,

V ′ := ΛU ′, x, v . 〈v〉,

Ũ := ΛU ′, x . U ′[〈x〉].

(b) ∃stxΦ(x) ↔ ∃x(st(x) ∧Φ(x)):

First we treat ∃stxΦ(x) → ∃x(st(x)∧Φ(x)). With ΦDst ≡ ∃stu∀stv ϕ(u, v, x, a)
we get

(∃stxΦ(x))Dst ≡ ∃stu, x∀stv∃i ∈ x∀j ∈ v ϕ
(

u, j, i, a
)

and

(

∃x (st(x) ∧Φ(x))
)Dst

≡ ∃stz, u′∀stv′∃x′∀j ∈ v′
(

x′ ∈ z ∧ ϕ(u′, j, x′, a)
)

,

and thus
(

∃stxΦ(x) → ∃x(st(x) ∧ Φ(x))
)Dst

is

∃stZ,U ′, V ∀stu, x, v′
(

∀l ∈ V [u, x, v′] ∃k ∈ x∀n ∈ l ϕ
(

u, n, k, a
)

→

∃x′ ∀j ∈ v′
(

x′ ∈ Z[u, x] ∧ ϕ(U ′[u, x], j, x′, a)
)

)

.

Thus we can take

Z := Λ u, x . x,

U ′ := Λ u, x . u,

V := Λ u, x, v′ . 〈v′〉.

Finally we consider ∃x(st(x)∧Φ(x)) → ∃stxΦ(x). Similarly to the case above

we get that
(

∃x(st(x) ∧Φ(x)) → ∃stxΦ(x)
)Dst

is

∃stU,X, V ′ ∀stz, u′, v
(

∀l ∈ V ′[z, u′, v] ∃x′ ∀j ∈ l
(

x′ ∈ z ∧ ϕ(u′, j, x′, a)
)

→

∃k ∈ X [z, u′] ∀n ∈ v ϕ(U [z, u′], n, k, a)
)

.

Let now

X := Λ z, u′ . z,

U := Λ z, u′ . u′,

V ′ := Λ z, u′, v . 〈v〉.

4. The schemata T ∗
st:

(a) st(x) ∧ x = y → st(y): We have that
(

st(x) ∧ x = y → st(y)
)Dst

is

∃stV ∀stu
(

x ∈ u ∧ x = y → y ∈ V [u]
)

,

and so we can take V := Λ u . u.
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(b) st(t) for closed terms t in T ∗: Since

(

st(t)
)Dst

≡ ∃stx t ∈ x,

we can take x := 〈t〉.

(c) st(fσ→τ ) ∧ st(xσ) → st(f(x)): We have that
(

st(f) ∧ st(x) → st(f(x))
)Dst

is

∃stW∀stu, v
(

f ∈ u ∧ x ∈ v → f(x) ∈W [u, v]
)

,

hence it is enough to construct a closed term W such that

W [u, v] =τ∗ 〈ui(vj) : i < |u|, j < |v|〉,

and this we can do easily using closed terms from T ∗.

5. The external induction axiom IA
st: We will consider the equivalent external in-

duction rule

IR
st :

Φ(0), ∀stn0(Φ(n) → Φ(n+ 1))
∀stn0Φ(n)

,

from which one can derive IA
st by taking

Φ(m0) :≡ Ψ(0) ∧ ∀stn0(Ψ(n) → Ψ(n+ 1)) → Ψ(m).

We assume that we have terms T 1 and T 2, T 3 realizing the interpretations of
Φ(0) and ∀stn0(Φ(n) → Φ(n + 1)), and we wish to obtain terms T 4 realizing the

interpretation of ∀stn0Φ(n). So with
(

Φ(n)
)Dst

≡ ∃stx∀sty ϕ(x, y, n, a) we have

E-HA
ω∗ +∆int ⊢ ∀y ϕ(T 1, y, 0, a)

and

E-HA
ω∗ +∆int ⊢ ∀n0, x, y′

(

∀i ∈ T 3[n, x, y
′]ϕ(x, i, n, a) → ϕ(T 2[n, x], y

′, n+ 1, a)
)

,

and we want
E-HA

ω∗ +∆int ⊢ ∀n0, y ϕ(T 4[n], y, n, a). (3)

By taking T 4 := Λn0 .R(n, T 1, T 4) we get

E-HA
ω∗ +∆int ⊢ T 4[0] =ρ T 1

E-HA
ω∗ +∆int ⊢ T 4[n+ 1] =ρ T 2[n, T 4[n]],

which suffices to establish (3).

6. The principles I, NCR, HAC, HIP∀st, and HGMP
st:

(a) I: The Dst -interpretations of the premise and the conclusion of any instance
of I are identical, and it is easy to show that Λx . 〈x〉 realizes the interpretation

of the whole implication, provably in E-HA
ω∗.

(b) NCR: Suppose
(

Φ(x, y)
)Dst

≡ ∃stu∀stv ϕ(u, v, x, y). Then

(

∀x∃styΦ(x, y)
)Dst

≡ ∃stu, y ∀stv ∀x∃i ∈ y ∀j ∈ v ϕ
(

u, j, x, i
)

and

(

∃sty∀x∃k ∈ yΦ(x, k)
)Dst

≡

∃stu, y∀stv∃m ∈ y∀n ∈ v∀x∃k ∈ m∀l ∈ nϕ
(

u, l, x, k
)

,
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and so
(

∀x∃styΦ(x, y) → ∃sty∀x∃k ∈ yΦ(x, k)
)Dst

is

∃stU, Y, V ∀stu, y, v
(

∀i ∈ V [u, y, v] ∀x∃j ∈ y∀k ∈ i ϕ
(

u, k, x, j
)

→

∃m ∈ Y [u, y] ∀n ∈ v ∀x̃∃k̃ ∈ m ∀l ∈ nϕ
(

U [u, y], l, x̃, k̃
)

)

.

Thus we can take

U := Λ u, y . u,

Y := Λ u, y . 〈y〉,

V := Λ u, y, v . v.

(c) HAC: Let
(

Φ(x, y)
)Dst

≡ ∃stu∀stv ϕ(u, v, x, y). Then
(

∀stx∃styΦ(x, y)
)Dst

is

∃stU, Y ∀stx, v∃i ∈ Y [x]∀j ∈ v ϕ(U [x], j, x, i)

and
(

∃stF∀stx∃i ∈ F (x)Φ(x, i)
)Dst

is

∃stŨ , F∀stx̃, ṽ∃k ∈ F∀l ∈ x̃∀m ∈ ṽ∃i′ ∈ k(l)∀j′ ∈ mϕ
(

Ũ [l], j′, l, i′
)

,

so
(

∀stx∃styΦ(x, y) → ∃stF∀stx∃i ∈ F (x)Φ(x, i)
)Dst

is

∃stŨ , F,X, V ∀stU, Y, x̃, ṽ
(

∀n ∈ X [U, Y, x̃, ṽ]∀n′ ∈ V [U, Y, x̃, ṽ]∃i ∈ Y [n]∀j ∈ n′ ϕ(U [n], j, n, i) →

∃k ∈ F [U, Y ] ∀l ∈ x̃ ∀m ∈ ṽ ∃i′ ∈ k(l)∀j′ ∈ mϕ
(

Ũ [U, Y ][l], j′, l, i′
)

)

.

Hence we can take

Ũ := ΛU, Y . U,

F := ΛU, Y . 〈λx.Y [x]〉,

X := ΛU, Y, x̃, ṽ . x̃,

V := ΛU, Y, x̃, ṽ . ṽ.

(d) HIP∀st: Let
(

Ψ(y)
)Dst

≡ ∃stu∀stv ψ(u, v, y). Then
(

∀stxϕ(x) → ∃styΨ(y)
)Dst

is
∃stU, Y,X∀stv

(

∀k ∈ X [v]ϕ(k) → ∃i ∈ Y ∀j ∈ v ψ
(

U, j, i
)

)

and
(

∃sty
(

∀stxϕ(x) → ∃i ∈ yΨ(i)
))Dst

is

∃stU,X, y∀stv∃n ∈ y∀m ∈ v
(

∀k ∈ X [m]ϕ(k) → ∃i ∈ n ∀j ∈ mψ
(

U, j, i
)

)

,

so the Dst -interpretation of HIP∀st is

∃stŨ , X̃, Ỹ , V ∀stU, Y,X, ṽ
(

∀l ∈ V [U, Y,X, ṽ]
(

∀k ∈ X [l]ϕ(k) → ∃i ∈ Y ∀j ∈ l ψ
(

U, j, i
))

→

∃ñ ∈ Ỹ [U, Y,X ]∀m̃ ∈ ṽ
(

∀k̃ ∈ X̃[U, Y,X ][m̃]ϕ(k̃) →

∃ĩ ∈ ñ∀j̃ ∈ m̃ ψ
(

Ũ [U, Y,X ], j̃, ĩ
))

)

.

Hence we can take

Ũ := ΛU, Y,X .U,

X̃ := ΛU, Y,X .X,

Ỹ := ΛU, Y,X . 〈Y 〉,

V := ΛU, Y,X, ṽ . ṽ.
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(e) HGMP
st: The Dst -interpretation of HGMP

st is

∃stX∀stx
(

(

∀x′ ∈ xϕ(x′) → ψ
)

→ ∃j ∈ X [x]
(

∀k ∈ j ϕ(k) → ψ
)

)

,

and we can take X := Λ x . 〈x〉.

�

Theorem 5.5 implies the following conservation result, which improves on Moerdijk
and Palmgren [37] and Avigad and Helzner [5].

Corollary 5.6. The system

E-HA
ω∗
st + I+ NCR+ HAC+ HGMP

st + HIP∀st

is a conservative extension of E-HAω∗ and hence of E-HAω.

Proof. By Theorem 5.5 and Lemma 5.3.
�

Remark 5.7. We could define a system E-HA
ω∗
nst by adding primitive predicates nstσ

(“nonstandard”) to E-HA
ω∗
st for each finite type σ, along with axioms

∀xσ
(

nst(x) ↔ ¬ st(x)
)

.

If we then extend the Dst -interpretation by

(

nstσ(xσ)
)Dst

:≡ ∀styσy 6=σ x),

we get an analogue of Theorem 5.5, since
(

nst(x) → ¬ st(x)
)Dst

is provably equivalent
to

∃stY ∀stz (∀y ∈ Y [z](y 6= x) → x 6∈ z)

and
(

¬ st(x) → nst(x)
)Dst

to

∃stZ∀sty (∀z′ ∈ Z[y]x 6∈ z′ → y 6= x) ,

so that we can take Y [z] := z and Z[y] := 〈〈y〉〉 respectively .

5.2 The characteristic principles of the nonstandard functional

interpretation

In this section we will prove that the characteristic principles of the nonstandard func-
tional interpretation are I, NCR, HAC, HIP∀st, and HGMP

st. For notational simplicity
we will let

H := E-HA
ω∗
st + I+ NCR+ HAC+ HIP∀st + HGMP

st.

Theorem 5.8 (Characterization theorem for the nonstandard functional interpreta-
tion).

1. For any formula Φ in the language of E-HAω∗
st we have

H ⊢ Φ ↔ ΦDst .

2. For any formula Ψ in the language of E-HAω∗
st we have: If for all Φ in L(E-HAω∗

st )
(with ΦDst ≡ ∃stx∀sty ϕDst

(x, y)) the implication

H+Ψ ⊢ Φ =⇒ there are closed terms t ∈ T ∗ s.t. E-HA
ω ⊢ ∀y ϕDst

(t, y) (4)

holds, then H ⊢ Ψ.
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Proof.

1. We will prove item 1 by induction on the logical structure of Φ.

(a) As induction start we note that for internal atomic ϕ we obviously have
H ⊢ ϕ↔ ϕDst , that

H ⊢ st(uσ) → ∃stxσ
∗

u ∈ x

follows by taking x := 〈u〉, and that

H ⊢ ∃stxσ
∗

u ∈ x→ st(uσ)

is Lemma 2.11.

(b) For the induction step involving Φ, Ψ we will use that (see 1.6.17 in [48]) via
appropriate embeddings of tuples of types in a suitable common higher type
and tuple coding of functionals with inverses (all given by terms in T ∗) there
are ϕ(x, y), ψ(u, v) such that

E-HA
ω∗
st ⊢ ΦDst ↔ ∃stx∀sty ϕ(x, y)

and
E-HA

ω∗
st ⊢ ΨDst ↔ ∃stu∀stv ψ(u, v),

and such that ϕ(x, y) and ψ(u, v) are provably upwards closed in x and u
respectively.

i. For ∧ we must consider

∃stx∀sty ϕ(x, y) ∧ ∃stu∀stv ψ(u, v) ↔ ∃stx, u∀sty, v
(

ϕ(x, y) ∧ ψ(u, v)
)

,

which follows by intuitionistic logic. (We can assume that u, v do not
appear in ϕ, and that x, y do not appear in ψ.)

ii. For ∨ we note that

∃stx∀sty ϕ(x, y) ∨ ∃stu∀stv ψ(u, v) ↔ ∃stx, u∀sty, v
(

ϕ(x, y) ∨ ψ(u, v)
)

follows from LLPO
st, which by Proposition 3.4 follows from I.

iii. For implication we use that ψ(u, v) is upwards closed in u to conclude

∃stx∀sty ϕ(x, y) → ∃stu∀stv ψ(u, v) ↔

∀stx
(

∀sty ϕ(x, y) → ∃stu∀stv ψ(u, v)
) HIP

∀st

↔

∀stx∃stu
(

∀sty ϕ(x, y) → ∀stv ψ(u, v)
)

↔

∀stx∃stu∀stv
(

∀sty ϕ(x, y) → ψ(u, v)
) HGMP

st

↔

∀stx∃stu∀stv∃sty
(

∀i ∈ y ϕ(x, i) → ψ(u, v)
) HAC

↔

∃stU∀stx∀stv∃sty
(

∀i ∈ y ϕ(x, i) → ψ(U(x), v)
) HAC+ coding x,v into one

↔

∃stU, Y ∀stx, v
(

∀i ∈ Y (x, v)ϕ(x, i) → ψ(U(x), v)
)

↔

∃stU, Y ∀stx, v
(

∀i ∈ Y [x, v]ϕ(x, i) → ψ(U [x], v)
)

.

iv. For ∀ we use NCR and that ϕ(x, y, z) is upwards closed in x to get

∀z∃stx∀sty ϕ(x, y, z)
NCR
↔ ∃stx∀z∀sty ϕ(x, y, z) ↔ ∃stx∀sty∀z ϕ(x, y, z).

v. For ∃ we use I:

∃z∃stx∀sty ϕ(x, y, z) ↔

∃stx∃z∀sty ϕ(x, y, z)
I
↔

∃stx∀sty∃z∀y′ ∈ y ϕ(x, y′, z).
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vi. For ∀st we use HAC and that ϕ(x, y, z) is upwards closed in x:

∀stz∃stx∀sty ϕ(x, y, z)
HAC
↔ ∃stX∀stz, y ϕ(X(z), y, z) ↔ ∃stX∀stz, y ϕ(X [z], y, z).

vii. For ∃st we will again use I:

∃stz
(

∃stx∀sty ϕ(x, y, z)
)

↔

∃stz∃z′ ∈ z
(

∃stx∀sty ϕ(x, y, z′)
)

↔

∃stz ∃stx∃z′ ∈ z ∀sty ϕ(x, y, z′)
I
↔

∃stz ∃stx∀sty ∃z′ ∈ z ∀y′ ∈ y ϕ(x, y′, z′).

2. Assume that Ψ is a formula of L(E-HAω∗
st ) such that implication (4) holds, and let

ΨDst ≡ ∃stx∀sty ψDst
(x, y). Then because of item 1 we have

H+Ψ ⊢ Ψ

=⇒

∃t ∈ T ∗ s.t. E-HAω∗ ⊢ ∀y ψDst
(t, y)

=⇒

∃t ∈ T ∗ s.t. E-HAω∗
st ⊢ ∀y ψDst

(t, y)

=⇒

∃t ∈ T ∗ s.t. E-HAω∗
st ⊢ ∀sty ψDst

(t, y)

=⇒

E-HA
ω∗
st ⊢ ∃stx∀sty ψDst

(x, y)

=⇒

H ⊢ ∃stx∀sty ψDst
(x, y)

=⇒

H ⊢ Ψ.

�

Theorem 5.5 allows us to extract a finite sequence of candidates for the existential
quantifier in formulas of the form ∀stx∃sty ϕ(x, y), in the following sense:

Theorem 5.9 (Main theorem on program extraction by the Dst -interpretation). Let
∀stx∃sty ϕ(x, y) be a sentence of E-HAω∗

st with ϕ(x, y) an internal formula, and let ∆int

be a set of internal sentences. If

E-HA
ω∗
st + I+ NCR+ HAC+ HGMP

st + HIP∀st +∆int ⊢ ∀stx∃sty ϕ(x, y),

then from the proof we can extract a closed term t in T ∗ such that

E-HA
ω∗ +∆int ⊢ ∀x∃y ∈ t(x)ϕ(x, y).

Proof. Since
(

∀stx∃sty ϕ(x, y)
)Dst

≡ ∃stY ∀stx∃y ∈ Y [x]ϕ(x, y)

it follows from the soundness theorem of the Dst -interpretation that there is a closed
term s such that

E-HA
ω∗ +∆int ⊢ ∀x∃y ∈ s[x]ϕ(x, y),

and so we can let t := λx . s[x]. �
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Remark 5.10. Probably it is clear by now that our functional interpretation has some
striking similarities with the bounded functional interpretation due to Ferreira and Oliva
[12]. Also there the authors work with two types of quantifiers, get an interpretation
whose matrix is upwards closed in the first component (albeit with respect to a different
ordering), interpret implications à la Diller-Nahm and have some similar looking char-
acteristic principles, like a monotone axiom of choice. But, still, the precise relationship
is not entirely clear to us, because we are now comparing the external quantifiers with
the unbounded quantifiers in the bounded functional interpretation, which is not very
natural. These issues deserve to be further investigated.

5.3 Discussion

It follows from the soundness of the Dst -interpretation (Theorem 5.5) that it can be
used to eliminate nonstandard principles, like overspill, realization and idealization,
from proofs. It also allows one to eliminate underspill, since we have the following result
(recall that R is the realization principle from Section 4.1):

Proposition 5.11. We have

E-HA
ω∗
st + R+ HGMP

st ⊢ US,

and therefore the underspill principle US is eliminated by the Dst -interpretation.

Proof. We reason in E-HA
ω∗
st + R+HGMP

st. Assume ∀xσ(¬ st(x) → ϕ(x)). Our aim is
to find a standard x such that ϕ(x) holds.

∀xσ
(

¬ st(x) → ϕ(x)
)

is equivalent to ∀xσ
(

∀styσ(y 6= x) → ϕ(x)
)

, which, using

HGMP
st, we can rewrite as

∀xσ ∃styσ
∗(

∀y′ ∈ y(y′ 6= x) → ϕ(x)
)

.

It now follows from R that there is a standard y of type σ∗ such that

∀xσ
(

∀y′ ∈ y(y′ 6= x) → ϕ(x)
)

.

So if we choose x to be a standard element of type σ different from all y′ ∈ y, then ϕ(x)
will hold. �

We also have:

Proposition 5.12. The system H :≡ E-HA
ω∗
st + I + NCR + HAC + HGMP

st + HIP∀st is
closed under both transfer rules, TR∀ and TR∃.

Proof. If H ⊢ ∀stxϕ(x), then E-HA
ω∗ ⊢ ∀xϕ(x) by soundness of the Dst -interpretation.

Since E-HA
ω∗ is a subsystem of H, it follows that H ⊢ ∀xϕ(x). This shows that H is

closed under TR∀.
If H ⊢ ∃xϕ(x), then E-HA

ω∗ ⊢ ∃xϕ(x) by conservativity of H over E-HA
ω∗. Since

E-HA
ω∗ has the existence property (the usual argument for the existence property of

E-HA
ω, as in [25, Corollary 5.24], for instance, carries over to E-HA

ω∗), it follows that
there is a term t in T ∗ such that E-HAω∗ ⊢ ϕ(t). Again, because E-HAω∗ is a subsystem
of H, we have H ⊢ ϕ(t) as well, and since all terms from T ∗ are provably standard in H,
we have H ⊢ ∃stxϕ(x). This shows that H is closed under TR∃ as well. �

Therefore our functional interpretation Dst meets all the benchmarks that we dis-
cussed in Section 4.

6 The system E-PA
ω∗
st and negative translation

By combining the functional interpretation from the previous section with negative
translation we can obtain conservation and term extraction results for classical systems
as well. We will work out the details in this and the next section.
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First, we need to set up a suitable classical system E-PA
ω∗
st . It will be an extension

of E-PAω∗, which is E-HA
ω∗ with the law of excluded middle added for all formulas.

When working with classical systems, we will often take the logical connectives ¬,∨, ∀
as primitive and regard the others as defined. In a similar spirit, the language of E-PAω∗

st

will be that of E-PAω∗ extended just with unary predicates stσ for every type σ ∈ T
∗;

the external quantifiers ∀st, ∃st are regarded as abbreviations:

∀stxΦ(x) :≡ ∀x( st(x) → Φ(x) ),

∃stxΦ(x) :≡ ∃x( st(x) ∧ Φ(x) ).

Definition 6.1 (E-PAω∗
st ). The system E-PA

ω∗
st is

E-PA
ω∗
st := E-PA

ω∗ + T ∗
st + IA

st

where

• T ∗
st consists of:

1. the schema st(x) ∧ x = y → st(y),

2. a schema providing for each closed term t in T ∗ the axiom st(t),

3. the schema st(f) ∧ st(x) → st(fx).

• IA
st is the external induction axiom:

IA
st :

(

Φ(0) ∧ ∀stn0(Φ(n) → Φ(n+ 1))
)

→ ∀stn0Φ(n).

Again we warn the reader that the induction axiom from E-PA
ω∗

(

ϕ(0) ∧ ∀n0(ϕ(n) → ϕ(n+ 1))
)

→ ∀n0ϕ(n)

is supposed to apply to internal formulas ϕ only.

As for E-HAω∗
st , we have:

Proposition 6.2. If a formula Φ is provable in E-PA
ω∗
st , then its internalization Φint is

provable in E-PA
ω∗. Hence E-PA

ω∗
st is a conservative extension of E-PAω∗ and E-PA

ω.

We will now show how negative translation provides an interpretation of E-PAω∗
st in

E-HA
ω∗
st . Various negative translations exist, with the one due to Gödel and Gentzen

being the most well-known. Here, we work with two variants, the first of which is due
to Kuroda [33].

Definition 6.3 (Kuroda’s negative translation for E-PAω∗
st ). For an arbitrary formula Φ

in the language of E-PAω
st, we define its Kuroda negative translation in E-HA

ω∗
st as

ΦKu :≡ ¬¬ΦKu,

where ΦKu is defined inductively on the structure of Φ as follows:

ΦKu :≡ Φ for atomic formulas Φ,
(

¬Φ
)

Ku
:≡ ¬ΦKu,

(

Φ ∨Ψ
)

Ku
:≡ ΦKu ∨ΨKu,

(

∀xΦ(x)
)

Ku
:≡ ∀x¬¬ΦKu(x).

Theorem 6.4. E-PA
ω∗
st ⊢ Φ ↔ ΦKu and if E-PAω∗

st +∆ ⊢ Φ then E-HA
ω∗
st +∆Ku ⊢ ΦKu.
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Proof. It is clear that, classically, Φ, ΦKu and ΦKu are all equivalent. The second
statement is proved by induction on the proof of E-PAω∗

st +∆ ⊢ Φ. For the cases of the
axioms and rules of classical logic and E-PA

ω∗, see, for instance, [25, Proposition 10.3].
As the Kuroda negative translation of every instance of T ∗

st or IA
st is provable in E-HA

ω∗
st

using the same instance of T ∗
st or IA

st , the statement is proved. �

It will turn out to be convenient to introduce a second negative translation, extracted
from the work of Krivine by Streicher and Reus (see [32, 47, 46]). This translation will
interpret E-PAω∗

st into E-HA
ω∗
nst (see Remark 5.7).

Definition 6.5 (Krivine’s negative translation for E-PAω∗
st ). For an arbitrary formula Φ

in the language of E-PAω∗
st , we define its Krivine negative translation in E-HA

ω∗
nst as

ΦKr :≡ ¬ΦKr,

where ΦKr is defined inductively on the structure of Φ as follows

ϕKr :≡ ¬ϕ for an internal atomic formula ϕ,

st(x)Kr :≡ nst(x),
(

¬Φ
)

Kr
:≡ ¬ΦKr,

(

Φ ∨Ψ
)

Kr
:≡ ΦKr ∧ΨKr,

(

∀xΦ(x)
)

Kr
:≡ ∃xΦKr(x).

Theorem 6.6. For every formula Φ in the language of E-PAω∗
st , we have:

1. E-HA
ω∗
nst ⊢ ΦKr ↔ ΦKu.

2. If E-PAω∗
st +∆ ⊢ Φ, then E-HA

ω∗
nst +∆Kr ⊢ ΦKr.

Proof. Item 1 is easily proved by induction on the structure of Φ. Item 2 follows from
item 1 and Theorem 6.4. �

7 A functional interpretation for E-PA
ω∗
st

We will now combine negative translation and our functional interpretationDst to obtain
a functional interpretation of the classical system E-PA

ω∗
st .

7.1 The interpretation

Definition 7.1. (Sst -interpretation for E-PA
ω∗
st .) To each formula Φ(a) with free vari-

ables a in the language of E-PAω∗
st we associate its Sst -interpretation

ΦSst (a) :≡ ∀stx∃sty ϕS(x, y, a),

where ϕS is an internal formula. Moreover, x and y are tuples of variables whose length
and types depend only on the logical structure of Φ. The interpretation of the formula
is defined inductively on its structure. If

ΦSst (a) :≡ ∀stx∃sty ϕS(x, y, a) and ΨSst (b) :≡ ∀stu ∃stv ψS(u, v, b),

then

(i) ϕSst :≡ ϕ for atomic internal ϕ(a),

(ii)
(

st(z)
)Sst

:≡ ∃stx (z = x),

35



(iii) (¬Φ)Sst :≡ ∀stY ∃stx∀y ∈ Y [x]¬ϕS(x, y, a),

(iv) (Φ ∨Ψ)Sst :≡ ∀stx, u∃sty, v
(

ϕS(x, y, a) ∨ ψS(u, v, b)
)

,

(v) (∀z ϕ)Sst :≡ ∀stx∃sty∀z∃y′ ∈ y ϕS(x, y
′, z).

Theorem 7.2. (Soundness of the Sst -interpretation.) Let Φ(a) be a formula in the
language of E-PAω∗

st and suppose Φ(a)Sst ≡ ∀stx ∃sty ϕ(x, y, a). If ∆int is a collection of
internal formulas and

E-PA
ω∗
st +∆int ⊢ Φ(a),

then one can extract from the formal proof a sequence of closed terms t in T ∗ such that

E-PA
ω∗ +∆int ⊢ ∀x∃y ∈ t(x) ϕ(x, y, a).

Our proof of this theorem relies on the following lemma:

Lemma 7.3. Let Φ(a) be a formula in the language of E-PAω∗
st and assume

ΦSst ≡ ∀stx∃sty ϕ(x, y, a) and

(ΦKr)
Dst ≡ ∃stu∀stv θ(u, v, a).

Then the tuples x and u have the same length and the variables they contain have the
same types. The same applies to y and v. In addition, we have

E-PA
ω∗ ⊢ ϕ(x, y, a) ↔ ¬θ(x, y, a).

Proof. The proof is by induction on the structure of Φ.

(i) If Φ ≡ ψ, an internal and atomic formula, then ϕ ≡ ψ and θ ≡ ¬ψ, so
E-PA

ω∗ ⊢ ϕ↔ ¬θ.

(ii) If Φ ≡ st(z), then ϕ ≡ y = z and θ ≡ y 6= z, so E-PA
ω∗ ⊢ ϕ↔ ¬θ.

(iii) If Φ ≡ ¬Φ′ with (Φ′)Sst ≡ ∀stx∃sty ϕ′(x, y, a) and (Φ′
Kr
)Dst ≡ ∃stu∀stv θ′(u, v, a),

then ϕ ≡ ∀y′ ∈ Y [x] ¬ϕ′(x, y′) and θ ≡ ¬∀i ∈ Y [x] θ′(x, i). Since
E-PA

ω∗ ⊢ ϕ′ ↔ ¬θ′ by induction hypothesis, also E-PA
ω∗ ⊢ ϕ↔ ¬θ.

(iv) If Φ ≡ Φ0 ∨ Φ1 with
ΦSst

i ≡ ∀stx∃sty ϕi(x, y, a)

and
((Φi)Kr)

Dst ≡ ∃stu∀stv θi(u, v, a),

then ϕ ≡ ϕ0 ∨ ϕ1 and θ ≡ θ0 ∧ θ1. Since E-PA
ω∗ ⊢ ϕi ↔ ¬θi by induction

hypothesis, also E-PA
ω∗ ⊢ ϕ↔ ¬θ.

(v) If Φ ≡ ∀zΦ′ with
(Φ′)Sst ≡ ∀stx∃sty ϕ′(x, y, z, a)

and
(Φ′

Kr
)Dst ≡ ∃stu∀stv θ′(u, v, z, a),

then ϕ ≡ ∀z∃y′ ∈ yϕ′(x, y′, z, a) and θ ≡ ∃z∀y′ ∈ y θ′(x, y′, z, a). Since
E-PA

ω∗ ⊢ ϕ′ ↔ ¬θ′ by induction hypothesis, also E-PA
ω∗ ⊢ ϕ↔ ¬θ.

�

Remark 7.4. This lemma is the reason why we introduced the system E-HA
ω∗
nst in

Remark 5.7: it would fail if we would let the Krivine negative translation land directly
in E-HA

ω∗
st with st(z)Kr = ¬ st(z). As it is, this lemma yields a quick proof of the

soundness of the Sst -interpretation.
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Proof. (Of the soundness of the Sst -interpretation, Theorem 7.2.) Let Φ(a) be a
formula in the language of E-PAω∗

st and let ϕ and θ be such that

ΦSst ≡ ∀stx∃sty ϕ(x, y, a),

(ΦKr)
Dst ≡ ∃stx∀sty θ(x, y, a)

and E-PA
ω∗ ⊢ ϕ↔ ¬θ, as in Lemma 7.3.

Now, suppose that ∆int is a set of internal formulas and Φ(a) is a formula prov-
able in E-PA

ω∗
st from ∆int. We first apply soundness of the Krivine negative translation

(Theorem 6.6) to see that
E-HA

ω∗
nst +∆Kr

int ⊢ ΦKr,

where ΦKr ≡ ¬ΦKr. So if (ΦKr)
Dst ≡ ∃stx∀sty θ(x, y, a), then

(ΦKr)Dst ≡ ∃stY ∀stx∃y ∈ Y [x]¬θ(x, y, a).

It follows from the soundness theorem for Dst (Theorem 5.5) and Remark 5.7 that there
is a sequence of closed terms s from T ∗ such that

E-HA
ω∗ +∆Kr

int
⊢ ∀x∃y ∈ s[x]¬θ(x, y, a).

Since E-PA
ω∗ ⊢ ∆Kr

int
↔ ∆int and E-PA

ω∗ ⊢ ϕ↔ ¬θ we have

E-PA
ω∗ +∆int ⊢ ∀x∃y ∈ t(x) ϕ(x, y, a),

with t ≡ λx.s[x]. �

7.2 Characteristic principles

The characteristic principles of our functional interpretation for classical arithmetic are
idealization I (or, equivalently, R: see Section 4.1) and HACint

∀stx∃sty ϕ(x, y) → ∃stF∀stx∃y ∈ F (x)ϕ(x, y),

which is the choice scheme HAC restricted to internal formulas. To see this, note first of
all that we have:

Proposition 7.5. For any formula Φ in the language of E-PAω∗
st one has:

E-PA
ω∗
st + I+ HACint ⊢ Φ ↔ ΦSst .

Proof. An easy proof by induction on the structure of Φ, using HACint for the case of
negation and I (or rather R) in the case of internal universal quantification. �

For the purpose of showing that I and HACint are interpreted, it will be convenient
to consider the “hybrid” system E-HA

ω∗
nst + LEMint, where LEMint is the law of excluded

middle for internal formulas. For this hybrid system we have the following easy lemma,
whose proof we omit:

Lemma 7.6. We have:

1. E-HA
ω∗
nst + LEMint ⊢ ϕKu ↔ ϕ, if ϕ is an internal formula in the the language of

E-PA
ω∗
st .

2. E-HA
ω∗
nst + LEMint + I ⊢ I

Ku.

3. E-HA
ω∗
nst + LEMint + HACint + HGMP

st ⊢ HAC
Ku

int
.

This means we can strengthen Theorem 7.2 to:
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Theorem 7.7. (Soundness of the Sst -interpretation, full version.) Let Φ(a) be a for-
mula in the language of E-PAω∗

st and suppose Φ(a)Sst ≡ ∀stx ∃sty ϕ(x, y, a). If ∆int is a
collection of internal formulas and

E-PA
ω∗
st + I+ HACint +∆int ⊢ Φ(a),

then one can extract from the formal proof a sequence of closed terms t in T ∗ such that

E-PA
ω∗ +∆int ⊢ ∀x∃y ∈ t(x) ϕ(x, y, a).

Proof. The argument is a slight extension of the proof of Theorem 7.2. So, once again,
let Φ(a) be a formula in the language of E-PAω∗

st and ϕ and θ be such that

ΦSst ≡ ∀stx∃sty ϕ(x, y, a),

(ΦKr)
Dst ≡ ∃stx∀sty θ(x, y, a)

and E-PA
ω∗ ⊢ ϕ↔ ¬θ, as in Lemma 7.3.

This time we suppose ∆int is a set of internal formulas and Φ(a) is a formula provable
in E-PA

ω∗
st from I + HACint + ∆int. We first apply soundness of the Kuroda negative

translation (Theorem 6.4), which yields:

E-HA
ω∗
nst + I

Ku + HAC
Ku

int
+∆Ku

int
⊢ ΦKu.

Then the previous lemma implies that:

E-HA
ω∗
nst + LEMint + I+ HACint + HGMP

st +∆Ku

int ⊢ ΦKu.

Note that E-HAω∗
nst ⊢ ΦKu ↔ ΦKr, ΦKr ≡ ¬ΦKr and

(ΦKr)Dst ≡ ∃stY ∀stx∃y ∈ Y [x]¬θ(x, y, a).

Therefore the soundness theorem for Dst (Theorem 5.5), in combination with Remark
5.7 and the fact that the axiom scheme LEMint is internal, implies that there is a sequence
of closed terms s from T ∗ such that

E-HA
ω∗ + LEM+∆Ku

int ⊢ ∀x∃y ∈ s[x]¬θ(x, y, a).

Since E-PA
ω∗ ⊢ LEM, E-PAω∗ ⊢ ∆Ku

int
↔ ∆int and E-PA

ω∗ ⊢ ϕ↔ ¬θ, we have

E-PA
ω∗ +∆int ⊢ ∀x∃y ∈ t(x) ϕ(x, y, a)

with t ≡ λx.s[x]. �

The following picture depicts the relation between the various interpretations we
have established:

E-PA
ω∗
st + I+ HACint

(·)Ku

,,❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳

(·)Sst

��

E-HA
ω∗
nst + LEMint + I+ NCR+ HAC+ HGMP

st + HIP∀st

(·)Dst

rr❢❢❢❢
❢❢
❢❢
❢❢
❢❢
❢❢
❢❢
❢❢
❢❢
❢❢
❢❢
❢❢
❢❢

E-PA
ω∗

Figure 1: The Shoenfield and negative Dialectica interpretations.
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7.3 Conservation results and the transfer principle

Theorem 7.7 immediately gives us the following conservation result:

Corollary 7.8. E-PA
ω∗
st + I+HACint is a conservative extension of E-PAω∗ and hence of

E-PA
ω.

We conjecture that this result is not the best possible and that
E-PA

ω∗
st + I + HACint + TP∀ is also conservative over E-PA

ω∗. This would
follow from:

Conjecture 7.9. Let Φ(a) be a formula in the language of E-PA
ω∗
st and suppose

Φ(a)Sst ≡ ∀stx ∃sty ϕ(x, y, a). If ∆int is a collection of internal formulas and

E-PA
ω∗
st + I+ HACint + TP∀ +∆int ⊢ Φ(a),

then
E-PA

ω∗ +∆int ⊢ ∀x∃yϕ(x, y, a).

Unfortunately, one cannot prove this by showing that one can strengthen
the hypothesis of Theorem 7.7 from E-PA

ω∗
st + I + HACint + ∆int ⊢ Φ(a) to

E-PA
ω∗
st + I+HACint +TP∀ +∆int ⊢ Φ(a), for this strengthened version fails. To see why,

note that the Sst -interpretation of TP∀

∀stt (∀stxϕ(x, t) → ∀xϕ(x, t) )

is provably equivalent to

∀stt ∃sty (ϕ(y, t) → ∀xϕ(x, t) ).

Therefore such a strengthened version of Theorem 7.7 would imply that for any formula
in the language of E-PAω∗ without parameters ϕ(x) there are terms t1, . . . , tn such that

E-PA
ω∗ ⊢

∧

i

ϕ(ti) → ∀xϕ(x).

To refute this general statement, it suffices to consider a quantifier-free formula ϕ(x)
such that ∀xϕ(x) is true, but not provable in E-PA

ω (such as “x is not the Gödel number
of a proof in E-PA

ω of ⊥”). This last argument does not refute the conjecture, for the
statement

∀t ∃y (ϕ(y, t) → ∀xϕ(x, t) )

is a tautology and hence provable in E-PA
ω∗.

Still, we expect that adding TP∀ to E-PAω∗
st +I+HACint does not destroy conservativity

over E-PA
ω∗, because transfer is part of many similar nonstandard systems that have

been shown to be conservative over classical base theories (see [41] and [39]). One natural
way to attack this problem would be to try to prove Conjecture 7.9 along the lines of
[39]. We plan to take up these issues in future work.

8 Conclusion and plans for future work

We hope this paper lays the groundwork for future uses of functional interpretations to
analyse nonstandard arguments and systems. There are many directions, both theoret-
ical and applied, in which one could further develop this research topic. We conclude
this paper by mentioning a few possibilities which we would like to take up in future
research.

First of all, we would like to see if the interpretations that we have developed in
this paper could be used to “unwind” or “proof-mine” nonstandard arguments. Non-
standard arguments have been used in areas where proof-mining techniques have also
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been successful, such as metric fixed point theory (for methods of nonstandard analysis
applied to metric fixed point theory, see [1, 22]; for application of proof-mining to met-
ric fixed point theory, see [8, 14, 23, 27, 29, 34]) and ergodic theory (for a nonstandard
proof of an ergodic theorem, see [20]; for applications of proof-mining to ergodic the-
ory, see [3, 4, 15, 16, 26, 28, 44]), therefore this looks quite promising. For the former
type of applications to work in full generality, one would have to extend our functional
interpretation to include types for abstract metric spaces, as in [17, 24].

But there are also a number of theoretical questions which still need to be answered.
Several have been mentioned already: for example, mapping the precise relationships
between the nonstandard principles that we have introduced. Another question was
whether E-PA

ω∗
st + I + HACint + TP∀ is conservative over E-PA

ω∗. Another question
is whether our methods allow one to prove conservativity results over WE-HA

ω and
WE-PA

ω as well: this will be important if one wishes to combine the results presented
here with the proof-mining techniques from [25].

In addition, we would also like to understand the use of saturation principles in
nonstandard arguments. These are of particular interest for two reasons: first, they are
used in the construction of Loeb measures, which belong to one of the most successful
nonstandard techniques. Secondly, for certain systems it has turned out that extending
them with saturation principles has resulted in an increase in proof-theoretic strength
(see [18, 21]).

The general saturation principle is

SAT : ∀stxσ ∃yτ Φ(x, y) → ∃fσ→τ ∀stxσ Φ(x, f(x)).

Whether this principle has a Dst -interpretation within Gödel’s T ∗, we do not know; but

CSAT : ∀stn0 ∃yτ Φ(n, y) → ∃f0→τ ∀stn0Φ(n, f(n))

has and that seems to be sufficient for the construction of Loeb measures. Interpreting
CSAT and SAT in the classical context using the Sst -interpretation is probably quite
difficult and it is possible that they require some form of bar recursion. We hope to be
able to clarify this in future work.
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