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1 Introduction and Background

The present paper investigates an example of physical interest (the quantum harmonic oscillator)
using model-theoretic methods. Specifically, we associate to this system a structure QHON

(dependent on the positive integer number N) on the universe L which is a finite cover of order
N, of the projective line P = P(F), F an algebraically closed field of characteristic 0. We prove
that QHON is a complete irreducible Zariski geometry of dimension 1. We also prove that QHON

is not classical in the sense that the structure is not interpretable in an algebraically closed field
and, for the case F = C, is not a structure on a complex manifold.

There are several reasons that motivate our interest in this particular example. Model-
theoretically, very ample Zariski geometries (as introduced in [2]) give an abstract characterization
of the geometry of algebraic varieties whereas ample Zariski geometries can only be shown to
be finite covers of projective curves over F for some algebraically closed field F. In [2] a class
of ample but not very ample Zariski geometries is constructed; the construction involves certain
non-abelian group extensions and produces Zariski geometries which are acted upon by these
groups via Zariski automorphisms. The structure QHON is an example of an ample but not very
ample Zariski geometry differing from the examples in [2]. In this regard, we hope that QHON

sheds some new light on the ample/very ample distinction.
From a representation-theoretic perspective, the relevant algebra for the analysis of the quan-

tum harmonic oscillator is the Heisenberg algebra; namely the algebra over F with generators P
and Q satisfying the relation

[Q,P] = QP− PQ = i, (1)

where i denotes a specific choice of
√
−1 in F. Note that this algebra is isomorphic to the

F-algebra with generators N,a†,a subject to the relations

[N,a†] = a† [N,a ] = −a [a ,a†] = 1

with isomorphism given by

N 7→ 1

2
(P2 +Q2)− 1

2
a 7→ 1√

2
(Q + iP) a† 7→ 1√

2
(Q − iP)

The reader familiar with physics will recognize a† and a as being creation and annihilation
operators respectively and N as being the number operator of the system (Hamiltonian minus
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1/2). The structure QHON has a quotient QN which is a bundle of eigenspaces of N and will
be seen to consist virtually of an uncountable collection of irreducible representations of the
Heisenberg algebra A (each of countably infinite dimension over F) which are neither highest nor
lowest weight.

We proceed to give a summary of this paper. In section 2, the relevant structures QHON

and QN are defined. We demonstrate that for even N , the theory of QHON is categorical in
uncountable cardinals. Sections 4 and 5 are devoted to the aforementioned non-interpretability
proofs, after the introduction of appropriate background material on Galois cohomology. In
section 6, we carry out an analysis of definable sets in QN using the methods of [10]. In particular,
it is shown that the structure QN is a Zariski structure (according to the definition of [11]).
It should be noted that the algebra A differs from the class of quantum algebras at roots of
unity considered in [10] insofar as irreducible modules for A are necessarily infinite-dimensional.
Consequently, this paper constitutes an extension of the construction and method of proof in [10]
to a wider class of noncommutative algebras, although it is not clear at present precisely what
this class of noncommutative algebras is. Finally, it follows that QHON is a Zariski geometry by
virtue of the two structures QHON and QN being bi-interpretable.

Some remarks about the methods of noncommutative geometry (algebraic or á la Connes)
and possible interactions with model theory are in order. A feature of noncommutative geometry
is that concrete constructions of geometric counterparts to the algebras studied isn’t carried out,
the algebraic (or C∗-algebraic) methods in themselves sufficing for any “geometric” arguments
one may need to produce. It is our belief, that though these methods are very powerful in their
own right, the absence of geometric counterparts corresponding to (noncommutative) algebras
results in a picture that is incomplete. This paper, and the paper [10] represent steps taken in
the direction towards filling this gap. Furthermore, given that the notion of a Zariski geometry
provides an abstract characterization of the geometry on an algebraic variety, model-theoretically
one has the means of proving that a non-classical geometric structure associated to a specific
noncommutative algebra is suitably algebro-geometric.

It should be noted that the Heisenberg algebra is a ∗-algebra: it is an algebra equipped with
an additional operation ∗ which associates to each element X of the algebra an element X∗,
seen (by analogy with Hilbert space theory) as the adjoint to X. It is not a C∗-algebra: any
representation of the Heisenberg algebra as an algebra of operators on a Hilbert space must, by
the nature of the defining relations, result in at least one of the operators being unbounded. Of
course, an important theorem in the representation theory of C∗-algebras is that any C∗-algebra
can be represented as an algebra of bounded operators on some Hilbert space. Consequently, one
does not have many of the methods available to non-commutative geometers to study this algebra
directly. The Weyl algebra (the ‘exponential’ of the Heisenberg algebra) is a C∗-algebra and is
consequently the favoured object of study. What is interesting about the approach developed
in this paper is that this apparent issue with the Heisenberg algebra has not manifested itself
geometrically: the corresponding geometry is still rich.

By the postulates of quantum mechanics, P and Q are considered to be self-adjoint (self-
adjoint operators have real eigenvalues). Consequently, so is H. The Zariski structure considered
does not originally witness the ∗-structure on the Heisenberg algebra, and so it produces, for
F = C, essentially a (non-classical) complex geometry. The assumption of self-adjointness, in the
canonical commutative context, leads to cutting out the real part of a complex variety. The result



2 THE STRUCTURES QHON AND QN 3

of the same operation with our structure QHO is the discrete substructure, (the finite cover of)
the natural numbers N. From a physical standpoint, this leads to the quantization of the energy
levels of the Hamiltonian. Our Zariski geometry could therefore be seen as the complexification
of this discrete structure.

2 The structures QHON and QN

Definition 2.1. We consider the two-sorted theory TN with sorts L and F in the language
L = Lr ∪ {∞, π, ·,A,A†} subject to the following axioms:

1. F is an algebraically closed field of characteristic 0.

2. P is the projective line over F.

3. π : L→ P is surjective.

4. Let µN denote the group of N -th roots of unity in F. We have a free and transitive group
action · : µN × L→ L on each of the fibers π−1(x) for x ∈ P.

5. The ternary relations A, A† (on L2 × F) obey the following property:

(∀a ∈ F)(∀e ∈ π−1(a))(∃b ∈ F)(∃e′ ∈ π−1(a+1))(b2 = a∧A†(γ ·e, γ ·e′ , b)∧A(γ ·e′ , γ ·e, b))

for every γ ∈ µN .

6. For N even, we postulate the following additional properties for A,A†:

A†(e, e
′

, b)→ A(γ · e,−γ · e′ ,−b)
A(e

′

, e, b)→ A†(γ · e′ ,−γ · e,−b)

The significance of the relations A,A† will become apparent from Remark 2.2 below. Evi-
dently the theory TN is first-order. We will denote models of TN by QHON . It is clear, by the
freeness and transitivity of the action of µN , that each fiber has size N . Thus any model QHON

is a finite cover of the projective line over some algebraically closed field F. Fix a model QHON

and take the quotient of L× F by the equivalence relation

(e, y) ∼ (e′, y′)⇔ (∃γ ∈ µN )(γ · e = e
′ ∧ γ−1y = y

′

)

We shall denote this bundle by QN .

Remark 2.1. Let [(e, y)] denote the equivalence class of (e, y) ∈ L×F. The set Hx := {[(e, y)] :
π(e) = x} is a definable F-vector space of dimension 1. Moreover, scalar multiplication is com-
patible with the action of µN on L.
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Proof. We abuse notation by denoting the equivalence class [(e, y)] by (e, y). Define

λ(e, y) := (e, λy) (e, y1) + (e, y2) := (e, y1 + y2) y1, y2 ∈ F, x ∈ P

These are easily verified to be well-defined. Compatibility with the action of µN follows from the
observation that (γ · e, y) = (e, γy) = γ(e, y) for γ ∈ µN .

Thus the universe of QN consists of a trivial line bundle H =
⋃

x∈PHx. We define linear
maps a , a† (induced from the relations A,A†) by

a†(e, 1) := (e
′

, b) a (e
′

, 1) := (e, b)

and extending linearly, where A†(e, e
′

, b) (and A(e′, e, b)) hold in the structure QHON .

Remark 2.2. The maps a ,a† are well-defined.

Proof. Suppose we have that a†(e, 1) = (e
′

, b). Then for any γ ∈ µN , it follows that

a†(γ · e, 1) = γa†(e, 1) = γ(e
′

, b) = (γ · e′ , b)

but we already have that A†(γ · e, γ · e, b) in the structure QHON . If N is even then −1 ∈ µN

and
a†(−e, 1) = a†(e,−1) = (e

′

,−b)
and (−b)2 = a. But we also have that A†(e,−e′,−b) holds in QHON . Analogously for a .

Lemma 2.1. Let F = C. Then for each N , one can construct QHON definable in R.

Proof. Consider C as R + iR, definable in R. Choose an R-definable complex function x 7→ x
1

2

satisfying (x
1

2 )2 = x. Define L to be P
1(C) × µN and π to be the projection on the first factor.

Then one can define the relation A† to hold on points ((x, α), (x + 1, β), y) if

y = αβ−1x
1

2

The relation A is definable in terms of A†. These relations are readily seen to be definable in R.
Let us also note that the same definition works for any real closed field.

Proposition 2.1. The theory TN is consistent and, for even N, is categorical in uncountable
cardinals. Moreover, if F and F

′ correspond to the field sort in two models QHO and QHO′

of theory TN and there exists i : F → F
′, a ring isomorphism, then i can be extended to an

isomorphism î : QHO→ QHO′. In particular the only relations on F induced from QHO are the
initial relations corresponding to the field structure.

Proof. Consistency is immediate from Lemma 2.1. To prove categoricity, we may assume that
F = F

′ and i is the identity. Partition P into the orbits of the action of the additive subgroup
Z ⊆ F:

P =
⋃

s∈S

s+ Z
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where S is some choice of representatives, one for each orbit (∞+m =∞ for each m ∈ Z, so we
have a one 1-element orbit). For each s ∈ S choose first es ∈ L(QHO) and e′s ∈ L(QHO′). Now

for each n ∈ Z choose arbitrarily (s + n)
1

2 . By the axioms there is e ∈ L ∩ π−1(s + 1) such that

A†(es, e, ǫ(s+1)
1

2 ) holds for some ǫ ∈ {1,−1}. Define es+1 := ǫe which is in L since N is even and

ǫ ∈ µN . ThenA†(es, es+1, (s+1)
1

2 ) also holds by the axioms. Analogously define e′s+1 ∈ L(QHO′).

By induction we can define es+n and e′s+n for all n ≥ 0 so that A†(es+n, es+n+1, (s + n)
1

2 )

(respectively A†(e′s+n, e
′
s+n+1, (s + n)

1

2 )) holds in QHO (respectively QHO′).

By a similar inductive procedure for all n > 0 define es−n so that A(es−n+1, es−n, (s − n)
1

2 )
holds in QHO (with analogous relations for the second model). We then extend i by mapping
es+n 7→ e′s+n for all n ∈ Z. Repeating for each representative in S defines an isomorphism
QHO→ QHON extending i.

We now discuss QHON (C) under the additional assumption that P and Q are self-adjoint.
By virtue of the relation N = a†a = 1

2(P
2 +Q2)− 1

2 , one sees that N is also self-adjoint; hence
must have real non-negative eigenvalues. The only points in P that survive this extra condition
are the non-negative integers N. The corresponding points in L form the N -cover of N, so we
get the discrete structure QHON (N) as the real part of QHON (C). Conversely, the latter is the
complexification of the former. We close this section with the following easy observation.

Remark 2.3. QHON and QN are bi-interpretable. Indeed, elements of the form [(e, 1)] in H

comprise the sort L, A†((e, 1), (e′ , 1), b) holds if and only if a†[(e, 1)] = [(e′, b)]. Similarly for A.

3 The Weil-Châtelet group

In order to show that the structure QHON is not definable in an algebraically closed field, we
need to recall some facts about principal homogeneous spaces under a group A, their description
in terms of Galois cohomology, and the group structure on their isomorphism classes in the case
A is Abelian.

Definition 3.1 (Principal homogeneous space). Let A be a group. A principal homogeneous
space over A (or torsor) is a set X with a free transitive action of A on X.

This notion can be of course internalised to various categories. We will be interested in the
following case: if A is an algebraic group defined over a field k, the set A(K) of K-points for
any Galois extension K/k is acted upon by the Galois group Gal(K/k). If X is a variety defined
over k which is a acted upon freely and transitively by A then the set X(K) of K-points of X is
a principal homogeneous space over A(K), and moreover the action of A is compatible with the
action of Gal(K/k).

Definition 3.2 (Principal homogeneous space over a G-group). Let G be a group. A G-set is a
set endowed with an action of G. A G-group A is a group that is endowed with an action of G
which is compatible with the group operation: g(a · b) = ga · gb. A principal homogeneous space
over A is a G-set with a right action of A which is free and transitive and is compatible with the
action of G: g(x · a) = x · ga.
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A morphism between principal homogeneous spaces under the same G-group A is a map that
preserves the action by A.

The principal homogeneous spaces over a G-group can be classified up to isomorphism using
group cohomology (we refer to [7] for detailed exposition).

Definition 3.3 (Zeroth and first group cohomology groups). Let G be a group and let A be a
G-group. The group H0(G,A) is defined as the subgroup of G-invariant elements of A: {a ∈ A |
∀g ∈ G ga = a}.

The maps h : G → A, σ 7→ hσ that satisfy the condition hστ = hσσ(hτ ) are called cocy-
cles. Two cocycles h, h′ are called cohomologous if there exists an element a ∈ A such that
hσ = σ(a)hσa

−1. For a general A one defines the first group cohomology set H1(G,A) to be the
set of cocycles modulo the equivalence relation of being cohomologous. In case A is Abelian, the
elementwise product of cocycles is a cocycle and they form an Abelian group, moreover, the set of
cocycles cohomologous to the zero cocycle forms a subgroup, so H1(G,A) has the natural group
structure.

Given a principal homogeneous space P one constructs a cocycle as follows: choose a point
p ∈ P and act on it by an element σ of the group G. Since the action of A on P is transitive
and free there is a unique element of A that maps p to σ · p, so let hσ be this element. Then
h is a cocycle. If one takes another point q ∈ P then one obtains a cocycle h′ of the form
h′σ = (σ · b)hσa−1 where b is the element of A such that bp = q.

This defines a map from the set of isomorphism classes of principal homogeneous spaces over
a G-group A to H1(G,A). An inverse map is straightforwardly defined: for a cocycle h make
A into a principal homogeneous space by twisting action of G, σ ∗ a = hσ(σ · a) (the cocycle
condition ensures that this indeed defines an action).

When A is an algebraic group, one is interested in recovering the principal homogeneous space
structure as an algebraic, not just abstract, action of A.

Proposition 3.1. Let K/k be a finite Galois extension. Then the set of k-isomorphism classes
of principal homogeneous A-spaces defined over K is in bijective correspondence with elements of
H1(Gal(K/k), A(K)).

Proof. If K/k is a finite Galois extension then it has a primitive element, so that K = k(α). Let
f(x) ∈ k[x] be the minimal polynomial of α and let X be the affine 0-dimensional variety defined
by it. TheK-points (or, which is the same, kalg-points) ofX are acted upon freely and transitively
by Gal(K/k). In order to construct a principal homogeneous space for A corresponding to the
cocycle h, pick a point x0 ∈ X, consider the space A×X and the action of Gal(K/k) given by

σ · (a, η · x0) = (η(hσ) · a, ση · x0)

It is a well-known fact that the quotient of a quasi-projective variety by the finite group action is
a quasi-projective variety, therefore there exists a quotient of A ×X be the action we have just
described, call it Y . One checks that the K-points of Y are an abstract principal homogeneous
space corresponding to the cocycle h. As an alegbraic variety, Y is invariant under the action of
Gal(K/k), so is defined over k.
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In case A is Abelian, there is a group structure on the k-isomorphism classes of princi-
pal homogeneous A-spaces defined over K. This group is called Weil-Châtelet group, denoted
WC(K/k,A).

The group law was defined by Châtelet for elliptic curves and for arbitrary Abelian varieties by
Weil in [8]. Weil’s construction essentially uses the theorem on birational group laws (also known
as “Weil’s group chunk theorem”). In case A is 0-dimensional, this technology in unnecessary
and the construction proceeds as follows.

Let Pg, Ph be principal homogeneous spaces over the same Abelian 0-dimensional group A that
correspond to cocycles g, h ∈ H1(Gal(K/k), A(K)). Consider the following action of Gal(K/k)
on Pg × Ph:

σ · (a, b) = (σ · a, σ−1 · b)
and let Z be the quotient under this action. Points of Z correspond to orbits of the action.
Define the action of Gal(K/k) on Z: let the orbit with a representative (a, b) be mapped by σ
to the orbit with the representative (σ · a, b). Since A is Abelian, this is well defined: (σ · a, b) is
equivalent to (σ · (η · a), η · b) for any η ∈ Gal(K/k).

Proposition 3.2. The Weil-Châtelet group WC(K/k,A) is isomorphic to H1(Gal(K/k), A(K)).

Proof. We need to ensure that the product of principal homogeneous spaces corresponds to the
product of cocycles.

Let Pg, Ph be principal homogeneous spaces corresponding to cocycles g, h respectively and
let x ∈ Pg(K), y ∈ Ph(K) be such that for all σ ∈ Gal(K/k)

gσ = a such that ax = σx
hσ = a such that ay = σy

Consider the element of Pg·h which is the image of (x, y). Then (g ·h)σ = gσ ·hσ since σ · (x, y) =
(gσx, hσy) and (gσx, hσy) ∼ (gσhσx, y).

Last remark we are going to make is that everything that has been said above generalizes to
non-finite Galois extensions and absolute Galois groups, once group cohomology is replaced with
profinite group cohomology.

Definition 3.4 (Group cohomology for profinite groups). A profinite group is a topological group
which is an inverse limit of finite discrete groups.

Let G be a profinite group and let A be a topological G-group, i.e. a group endowed with a
continuous action of G. The first cohmology set H1(G,A) is defined to be the set of all continuous
cocycles h : G→ A,h 7→ hσ modulo the equivalence relation of being cohomological. In case A is
discrete this amounts to the requirement that the cocycle map factors through a finite quotient of
G.

The definition of the zeroth cohomology group is the same as in the case when G is finite.

Proposition 3.3 ([7], Ch.I, §2, Proposition 8). Let G be profinite and A be a discrete G-group.
Then

H1(G,A) = lim←−H
1(G/U,AU )

where U runs through all open normal subgroups and AU is the subgroup of A fixed by the action
of U .
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One sees easily that the group H1(Gal(ksep/k), A(ksep)) classifies principal homogeneous sub-
spaces over A defined over any Galois extension of k.

4 Non-definability of QHON in the theory ACF0

Let M be a structure in a language L and N be a structure in a language L
′. An interpretation

of M in N is a structure with the universe being a definable set (further denoted M(N)) in N eq

and such that the predicates of L are definable relations in N eq (further denoted P (N) where
P is a predicate of L) such that M(N) is isomorphic to M as an L-structure. The notation
M(N) will be used to denote both the definable set and the structure with such universe. If X
is definable set in Mk then the image of it under the isomorphism is denoted X(N).

If moreover M(N) is a definable subset of Nk for some k, one says that M is defined in N .

Remark 4.1. We adopt a similar notation for realisations of definable sets. If X is a definable
set and M is a model then X(M) will mean the set of M -tuples that belong to the realisation of
X in M .

Let (F,+, ·, 0, 1) be an infinite field and let K be an algebraically closed field. Let F be
interpreted (or rather defined, since ACFp has elimination of imaginaries) in K. Then F (K) in
a definable set in the field K with definable field operations.

Theorem 4.1 ([5], Theorem 4.13; [6],Theorem 4.15 ). There is a bijection between F (K) and
K, definable in K, which is a field isomorphism.

Theorem 4.2 (Kummer theory, [1]). Let k be a perfect field and let n be an integer that does
not divide the characteristic of k. Suppose k contains n-th roots of unity. Then

H1(Gal(ksep/k), µn) ∼= Hom(Gal(ksep/k), µn) ∼= k×/(k×)n

Remark 4.2. The correspondence G 7→ H1(G,A) where A is a trivial module is actually a func-
tor, i.e. to any homomorphism f : G1 → G2 corresponds a homomorphism
H1(f) : H1(G2, A)→ H1(G1, A). In particular, given an automorphism σ : k → k, one can
lift it to an automorphism of the separable closure. The conjugation by σ gives an automorphism
σ̄ : Gal(ksep/k) → Gal(ksep/k). One can check that in the Kummer theory setting the induced
map on cohomology is

H1(σ̄) : k×/(k×)n → k×/(k×)n x 7→ σ(x)

Theorem 4.3. QHON is not definable in an algebraically closed field.

Proof. Suppose that QHON is definable in a field K over a set of parameters k which we can
assume without lack of generality to be a subfield. By Theorem 4.1, F(K) is definably isomorphic
to K as a field, so may just as well suppose that F(K) is interpreted as A1

K with field operations
given by that of K.

Let x be a generic point of the affine line A
1
K over k. Let K ′ be an algebraically closed field

that contains x and k (for example, one can take the algebraic closure of {x} ∪ k in the monster
model).
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By definition of the structure QHON , for any a ∈ K ′, the set La = p−1(a) is the principal
homogeneous space over the group of N -th roots of unity, µN . The definable set Lx is a principal
homogeneous space over µN defined over k = k(x) (since x is generic and hence transcendental
over k). By Theorem 4.2 a cocycle class in H1(Gal(ksep/k), µN ) ∼= k×/(k×)N that describes La

is represented by some rational function f(x) ∈ k(x) which without loss of generality can be
assumed to be a polynomial since every coset of (k(x)×)N in k(x)× contains one.

By Remark 4.2, a cocycle class corresponding to Lx+1 is σ(f) where σ : k → k is the
automorphism that sends x to x+ 1, i.e. the corresponding polynomial is f(x+ 1).

Now notice that by definition of A† (clause 5 in Definition 2.1), the principal homogeneous
space

√
xµN (K ′) is the product of the principal homogeneous space Lx(K

′) and the principal
homogeneous space opposite to Lx+1. Then by Proposition 3.2 we have

f(x)

f(x+ 1)
= xN/2 mod (k×)N

Define the homomorphism degN : k×/(k×)N → Z/NZ to be the degree of the nominator minus the

degree of denominator moduloN . Clearly, degN ( f(x)
f(x+1)) = 0 for any f(x) and degN (xN/2) = N/2,

therefore the equality cannot hold and we have come to a contradiction.

It is natural to ask whether QHON is also definable in the structure of compact complex
spaces ([9], [4]). We denote by A the multi-sorted structure where each sort is the set of points of
a compact complex space, and the language consists of predicates corresponding to all complex
analytic subvarieties of all possible finite products of sorts. Let us pick some very saturated
elementary extension of A and denote it A

′. We refer to [3] for some basic facts about this
structure and a dictionary between model-theoretic and complex geometric notions.

Theorem 4.4 ([3]). Let F be an algebraically closed field of characteristic 0. If F is definable
in A

′ then F (A′) is definably isomorphic to C(A′).

Theorem 4.5. QHON is not definable in the structure A
′.

Proof. Suppose the contrary, so QHON is defined in A
′ over some set of parameters B. Then

by Theorem 4.4 F(A′) is definably isomorphic to C(A′), and we can without loss of generality
suppose that F(A′) is interpreted by the field C(A′).

Pick a point x in C(A′) generic over B. As in the proof of Theorem 4.3 denote Lx and
Lx+1 the definable sets p−1(x) and p−1(x + 1) respectively. Notice that Lx(A

′) and Lx+1(A
′)

are internal to C(A′), i.e. there exist bijections between them and some principal homogeneous
sets definable in the field C(A′) definable after adding some parameters (one only has to name
a single point of Lx or Lx+1). It follows from the fact that every closed set of any Cartesian
power of P1(A) is algebraic (by Chow’s theorem; or one can derived this from the purity theorem
for Zariski geometries), and from quantifier elimination that the field C(A′) is pure, i.e. has no
additional definable sets but those that are definable in it as a field. Therefore, the proof of
Theorem 4.3 applies without modifications.
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5 Definable sets in QN

We can view QN as a two-sorted structure (H,F), where H is defined as before. Introduce the
projection map p : H → P where p : (e, x) 7→ π(e). Note that p is definable. We wish to pick
‘canonical basis’ elements in each fiber Hx which we regard as having modulus one. In our termi-
nology, these canonical basis elements are exactly the elements (e, 1) in each fiber. We introduce
a (definable) predicate E(e, y) which says ’e is a canonical basis element of the fiber p−1(y).

We provide some motivation for the definable sets we wish to consider. Suppose that v =
(v1, . . . , vs) is a tuple from the sort H. We can re-index the vi according to the fibers of p in
which they appear. Namely, we fix an enumeration {vij : 1 ≤ i ≤ t; 1 ≤ j ≤ si,

∑

i si = s} so
that given vij, vkl, we have i = k if and only if p(vij) = p(vkl). By the axioms, we can find ai ∈ P

such that p(vij) = ai for every 1 ≤ i ≤ t. Moreover, because each p−1(ai) is one-dimensional
and we have basis elements ei ∈ E(H, ai), we can find scalars λij ∈ F such that

t
∧

i=1

si
∧

j=1

λijei = vij

holds. Thus one expects all the sentences satisfied by v to be determined by all the inter-
relationships between the ei. But the relationships between the ei depend on the orbits of
the action of the additive subgroup Z ⊆ F on P. We set up some notation to describe these
relationships. Suppose that ei and ej lie in the same orbit. Then p(ej) − p(ei) = n for some
n ∈ Z; without loss n is non-negative. Then there is a ‘path’ in the structure connecting the fiber
containing ei to the fiber containing ej via the operator a†. We wish to construct an existential
sentence θij that codes this path. Writing e0i for ei, our candidate for θij is the following:

∃γij∃pk=1bijk∃
p
k=1e

k
i

( ∧p
k=1E(eki ,p(e

k−1
i ) + 1) ∧∧p

k=1 a
†ek−1

i = bijke
k
i

∧b2ijk = p(eki ) ∧ ej = γije
p
i

)

This sentence is, of course, satisfied in QN . We now have enough information to construct a class
of formulas with which to prove quantifier elimination.

Definition 5.1. Let {vij : 1 ≤ i ≤ t; 1 ≤ j ≤ si,
∑

i si = s} and x = (x1, . . . xr) be tuples of
variables from the sorts H and F respectively. A core formula with variables (v, x) is defined
to be a formula of the following shape:

∃λ∃ti=1ei∃ti=1yi∃γ∃b
( ∧t

i=1

∧si
j=1 p(vij) = yi ∧ λijei = vij ∧E(ei, yi) ∧

∧

(i,j)∈Ξ φij(ei, ej , bij , γij)

∧S(λ, y, γ, b, x)

)

where

1. Ξ is a subset of {(i, j) : 1 ≤ i, j ≤ t}.

2. yi = yk if and only if i = k.

3. S defines a Zariski constructible subset of Fr1 × P
t × µr2

N where
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(a) r1 = l(x) + l(b) + s (l denotes length)

(b) r2 = l(γ)

4. φij is θij with the existential quantification over γij, bik removed.

A core type is defined to be a consistent collection of core formulas. If (v, a) is a tuple of
elements from H

s × F
r and C ⊆ F is a set of parameters, the core type of (v, a) over C,

denoted ctp(v, a/C), is defined to be the set of all core formulas with parameters from C satisfied
by (v, a).

Proposition 5.1. Let QN be ℵ0-saturated. Suppose that (v, c), (w, d) are both tuples from H
s×Fr

with the property that ctp(v, c/C) = ctp(w, d/C). Then tp(v, c/C) = tp(w, d/C).

Proof. We construct an automorphism σ̃ such that σ̃ : (v, c) 7→ (w, d). The tuple v is indexed
as {vij : 1 ≤ i ≤ t; 1 ≤ j ≤ si,

∑

i si = s} so that given vij, vkl, we have i = k if and only if
p(vij) = p(vkl). By what has already been discussed, the axioms provide us with:

1. Tuples a1i such that p(vij) = a1i for every 1 ≤ i ≤ t.

2. Basis elements e1i ∈ E(H, ai) and scalars λ1
ij such that

t
∧

i=1

si
∧

j=1

λ1
ije

1
i = vij

Now we construct the set Ξ so that (i, j) ∈ Ξ if and only if there is a path from p−1(a1i ) to
p−1(a1j ) (coded by θij). Then the following conjunct holds:

t
∧

i=1

si
∧

j=1

p(vij) = a1i ∧ λ1
ije

1
i = vij ∧E(e1i , a

1
i ) ∧

∧

(i,j)∈Ξ

φij(e
1
i , e

1
j , b

1
ij , γ

1
i )

Denote the above formula by φ(v, e1, a1, λ1, γ1, b1). Consider the following set of formulas:

Σ =
{φ(w, e′, x′, λ′, γ′, b′) ∧ S(x′, λ′, γ′, b′, d) :

QN |= φ(v, e1, a1, λ1, γ1, b1) ∧ S(a1, λ1, γ1, b1, c)}
Here the variables have been primed to distinguish them from actual parameters. The S range
over all constructible subsets of an appropriate cartesian power of F with parameters from C.

Claim: Σ is consistent.

Proof. We show that Σ is finitely consistent. By definition Σ is closed under finite conjunctions,
so let φ ∧ S ∈ Σ. Then

QN |= φ(v, e1, a1, λ1, γ1, b1) ∧ S(a1, λ1, γ1, b1, c)

Existentially quantifying out e1, a1, λ1, γ1 and b1, we obtain a core formula satisfied by (v, c) over
C. But ctp(v, c/C) = ctp(w, d/C), so there are e2, a2, λ2, γ2, b2 such that

QN |= φ(w, e1, a1, λ1, γ1, b1) ∧ S(a1, λ1, γ1, b1, d)

as required.
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By saturation, the type Σ is satisfied by a tuple (e2, a2, λ2, γ2, b2) say. In particular, we have
that

tpF(a1, λ1, γ1, b1, c) = tpF(a2, λ2, γ2, b2, d)

and by saturation of F we therefore obtain an isomorphism σ of F such that

σ : (a1, λ1, γ1, b1, c) 7→ (a2, λ2, γ2, b2, d)

It remains to extend σ to the whole of QN ; the proof proceeds as for categoricity. Partition P

into orbits of Z,

P =
⋃

x∈Λ

x+ Z

for some set of representatives Λ. Given x ∈ Λ suppose that only a1i1 , . . . , a
1
iq

occur in the orbit

x+ Z. Without loss, x = a1i1 and the a1ij are listed in order of increasing distance from x. Now
inductively extend as in the proof of Proposition 2.1 noting that the construction automatically
maps e1ij 7→ e2ij for every 1 ≤ j ≤ q.

It follows by compactness that every formula with parameters from F is equivalent to a
boolean combination of core formulas. Some further analysis reveals the structure of subsets
defined using parameters from both H and F. These are determined by a class of formulas similar
to core formulas, the only difference being that these formulas can also express information about
how bases from the fibers containing these parameters from H are connected to other fibers via
paths.

Definition 5.2. Let e′ be a tuple of elements from H with length p such that all e′i are basis
elements. Let v = (v1, . . . , vm), w = (w1, . . . , wn) be tuples of variables from H. A general core

formula with variables (v,w, x) over e′ is defined to be a formula of the following shape:

∃λ∃µ∃si=1ei∃si=1yi∃γ∃b
( ∧s

i=1

∧si
j=1 p(vij) = yi ∧ λijei = vij ∧E(ei, yi) ∧ φ ∧

∧

(i,j)∈Ξ φij

∧S(λ, µ, y, γ, b, x)

)

where

1. {vij : 1 ≤ i ≤ s, 1 ≤ j ≤ si} is an appropriate enumeration of v

2. Ξ ⊆ {(i, j) : 1 ≤ i, j ≤ s}

3. S is a constructible subset of Fr1 × P
s × µr2

N where

(a) r1 = l(x) + l(b) +m+ n

(b) r2 = l(γ)

4. φ is defined to be

p
∧

i=1

pi
∧

j=1

µije
′
i = wij ∧

∧

(i,j)∈Ξ1

φij(e
′
i, ej , bi, γij) ∧

∧

(i,j)∈Ξ2

φij(ei, e
′
j , bi, γij)
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where

Ξ1 ⊆ {(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ s} Ξ2 ⊆ {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ p}

and {wij : 1 ≤ i ≤ p, 1 ≤ j ≤ pi} is an appropriate enumeration of w.

We denote such a formula by ∃eS and call S the Zariski constructible component of ∃eS.

Proposition 5.2. If φ is a formula with parameters from H,F then it is equivalent to a Boolean
combination of general core formulas.

Proof. Suppose that φ(v, x) is a formula with free variables (v, x) over a finite set of parameters
w = (w1, . . . , wp) of H and some unspecified parameters from F. Then φ(v, x) is equivalent to
some φ1(v,w, x) where φ1(v,w

′, x) is a formula with free variables (v,w′, x) merely over some set
of parameters from F. Hence φ1 is equivalent to a boolean combination of core formulas over
F by Proposition 5.1. We show that every core formula is equivalent to a finite disjunction of
general core formulas after substitution.

So let ϕ(v,w′, x) be a core formula. We can fix an enumeration {vij : 1 ≤ i ≤ s, 1 ≤ j ≤
si,

∑

i si = n} of (v,w′) such that

1. n is the length of (v,w′).

2. p(vij) = p(vkl) if and only if i = k.

3. Those vij for which vij is not in w′ for any j are listed first, i.e. there is a maximum m ≤ s
such that vij 6∈ w′ for all i ≤ m.

4. For i > m, the w′ variables are listed last, i.e. there is a minimum ti ≤ si such that vij ∈ w′

for all j > ti.

Now ϕ(v,w′, x) looks like

∃λ∃ti=1ei∃ti=1yi∃γ∃b
( ∧t

i=1

∧si
j=1 p(vij) = yi ∧ λijei = vij ∧E(ei, yi) ∧

∧

(i,j)∈Ξ φij(ei, ej , bij , γij)

∧S(λ, y, γ, b, x)

)

for some Ξ ⊆ {(i, j) : 1 ≤ i, j ≤ s} and S over k. Substitute w for w′. The resulting formula
can be simplified by noting that some of the information it expresses is already contained in the
theory. If k > m, then yk = p(wkl) is determined, thus ∃yk and such conjuncts can be dropped for
k > m. Moreover, ∃ek can be dropped by replacing the formula with a finite disjunction, where
each disjunct contains e′k for ek and e′k ranges over the finitely many canonical basis elements of
p−1(yk). This allows us to make further deletions from each disjunct, namely E(e′k, yk) (which
trivially holds) and λkle

′
k = wkl for l > tk (because λkl is determined), and we can therefore drop

∃λkl. This leaves us with the formula

∨

e′ = (et+1, . . . , es)
e′k ∈ p−1(p(wkl)) ∧E(e′k,p(wkl))

∃λ∃mi=1ei∃mi=1yi∃γ∃b
( ∧m

i=1

∧si
j=1 p(vij) = yi ∧ λijei = vij

∧E(ei, yi) ∧ φ′

)
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for appropriate φ′ which we now determine. Clearly in

∧

(i,j)∈Ξ

φij(ei, ej , bij , γij)

if we substitute the parameters e′k for k > m then some conjuncts are eliminable; namely those
φkl(e

′
k, e

′
l, bkl, γkl) for k, l > m (the theory itself tells us about paths that connect the fibers

containing these e′k, e
′
l). Hence the quantifiers ∃bkl and ∃γkl can also be eliminated from each

disjunct. Define the sets

Ξ1 = {(i, j) ∈ Ξ : 1 ≤ i ≤ m,m < j ≤ s} Ξ2 = {(i, j) ∈ Ξ : m < i ≤ s, 1 ≤ j ≤ m}

Φ = {(i, j) ∈ Ξ : 1 ≤ i, j ≤ m}
Then we have φ′ as the formula

s
∧

i=m+1

ti
∧

j=1

λije
′
i = vij ∧

∧

(i,j)∈Φ

φij ∧
2
∧

i=1

∧

(i,j)∈Ξi

φij ∧ S′(λ, y, γ, b, x)

where S′ is S with the determined parameters λkl, yk, bkl and γkl substituted for the appropriate
variables. Now re-label, putting µij = λi+m,j. We see that each disjunct is a general core formula
as required.

5.1 Constructibility

Proposition 5.2 suggests taking sets of the form ∃eC (where C defines a closed subset of a cartesian
power of F) as giving us the closed subsets of a topology on the sorts of QN and their cartesian
powers. Additional technicalities are required (suitably adapted from [10]) to deal with finite
intersections of sets of the form ∃eC (there is no a priori guarantee that they will still be of this
form). Specifically, we require an analysis of how C transforms under applications of µN to basis
elements in the fibers.

Definition 5.3. Let ∃eC be a general core formula with C giving a closed subset of Fr1×Ps×µr2
N .

We define the action of δ ∈ µr2
N on C to be

Cδ = {(λij , µ, y, γ, b, a) : (δ
−1
i λij , µ, y, δ · γ, b, a) ∈ C}

where

δ · γ =







δ−1
i γijδj (i, j) ∈ Ξ
γijδj (i, j) ∈ Ξ1

δ−1
i γij (i, j) ∈ Ξ2

C is defined to be µN-invariant if Cδ = C for every δ ∈ µr2
N .

Lemma 5.1. If φ is a formula with parameters from H,F then it is equivalent to a Boolean
combination of general core formulas with Zariski constructible component of the type ∃e(C1 ∧
¬C2) where C1, C2 are Zariski closed and C2 is µN -invariant.
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Proof. The same as [10] which we restate in our case. Fix a tuple α ∈ F and recall that tpF(α)
denotes the type of a in the language of fields. Put

Σ(α) = {C1 ∧ ¬C2 : QN |= (C1 ∧ ¬C2)(α) and C1, C2 are µN -invariant}

It suffices to prove that Σ(α) |= tpF(α) (we can then stipulate that the Zariski constructible sets S
are boolean combinations of elements of Σ(α) for α = (a1, λ1, γ1, b1, c) in the proof of Proposition
5.1. The proof of this proposition goes through, then apply Proposition 5.2). By quantifier-
elimination for F and noting that every constructible subset is a disjunction of conjuncts of the
kind C1 ∧ ¬C2, it remains to prove that C1, C2 (where C1 ∧ ¬C2 ∈ tpF(α)) can be replaced with
C̃1, C̃2 (respectively) such that C̃2 is µN -invariant and (C̃1 ∧ ¬C̃2)→ (C1 ∧ ¬C2). Put

C̃2 =
∨

δ∈µ
r2
N

Cδ
2

C̃2 is closed, µN -invariant and ¬C̃2 implies ¬C2. If ¬C̃2 ∈ p = tpk(α) then we are done. Otherwise
¬C2∧ C̃2 ∈ p. Let ∆ be the maximal (hence proper) subset of µr2

N consisting of those δ such that

¬D =
∧

δ∈∆

¬Cδ
2 ∈ p

∆ is non-empty because 1 ∈ ∆. Put

Stab(∆) = {δ ∈ µr2
N : δ∆ = ∆}

If δ 6∈ Stab(∆) then by maximality of ∆ we have ¬Dδ ∧ ¬D 6∈ p, hence Dδ ∈ p. Thus

∧

δ∈µ
r2
N

\Stab(∆)

Dδ ∈ p

Claim: We have
QN |=

∧

δ∈µ
r2
N

\Stab(∆)

Dδ ∧
∨

δ∈µ
r2
N

¬Dδ →
∨

δ∈Stab(∆)

¬Dδ

Proof. Suppose that b ∈ F is such that Dδ(b) holds for every δ ∈ µr2
N \Stab(∆) and ¬Dδ1(b) holds

for some δ1 ∈ µr2
N . Then δ1 ∈ Stab(∆) and the claim follows.

The latter disjunct is clearly equivalent to ¬D and ¬D implies ¬C2. So we take

C̃1 = C1 ∧
∧

δ∈µ
r2
N

\Stab(∆)

Dδ

and replace C̃2 with
∧

δ∈µ
r2
N
Dδ. The result now follows.

Lemma 5.2. Let ∃e(C1∧¬C2) be a general core formula with C2 closed and µN -invariant. Then
there exists µN -invariant C̃1 such that

∃e(C1 ∧ ¬C2) ≡ ∃e(C̃1 ∧ ¬C2)
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Proof. Define

C̃1 =
∨

δ∈µ
r2
N

Cδ
1

It is immediate that ∃e(C1 ∧ ¬C2) implies ∃e(C̃1 ∧ ¬C2). Conversely, suppose that there is a
tuple (v,w, a) and λ, µ, e, y, γ, b such that

s
∧

i=1

si
∧

j=1

p(vij) = yi ∧ λijei = vij ∧E(ei, yi) ∧ φ ∧
∧

(i,j)∈Ξ

φij ∧ (Cδ
1 ∧ ¬C2)(λ, µ, y, γ, b, a)

holds for some δ. Then

s
∧

i=1

si
∧

j=1

p(vij) = yi ∧ λ′
ije

′
i = vij ∧E(e′i, yi) ∧ φ ∧

∧

(i,j)∈Ξ

φij ∧ (C1 ∧ ¬C2)(λ
′, µ, y, δ · γ, b, a)

holds by µN -invariance of C2, where λ′
ij = δ−1

i λij. Now existentially quantify out λ′, µ, e′, y, δ ·
γ, b.

Remark 5.1. Suppose that ∃eS is a general core formula with basis parameters e′ = (e′1, . . . , e
′
p).

Let e′′ = (e′′1 , . . . , e
′′
p) be another tuple of basis elements with p(e′i) = p(e′′i ) for every i. There

is δ = (δ1, . . . , δp) ∈ µp
N such that δie

′
i = e′′i for every i. Then ∃eS ≡ ∃eS′ where S′ is obtained

from S by replacing the variables µij by µijδi, γij by γijδi for (i, j) ∈ Ξ1 and γij by γijδ
−1
i for

(i, j) ∈ Ξ2.

Lemma 5.3. Let ∃eC1,∃eC2 be general core formulas with the same enumeration of variables.
Let C1, C2 be Zariski closed and suppose that C2 µN -invariant. Then

1. QN |= ∃e(C1 ∧ C2)↔ ∃eC1 ∧ ∃eC2

2. QN |= ∃e(¬C2)↔ ¬∃eC2

Proof. By Remark 5.1 we may assume that ∃eC1,∃eC2 have the same basis parameters.

1. Left-to-right is trivial. Conversely, if the right-hand side holds for a tuple (v,w, a), then we
may obtain different basis elements e and e′ as witnesses to ∃eC1 and ∃eC2 respectively.
But the µN -invariance of C2 means that we can transform e′ to e without affecting validity.
So the left-hand side holds.

2. Right-to-left is easy. Conversely, suppose that (v,w, a) satisfies ∃e(¬C2) and that e is a
tuple of basis elements witnessing this. If some basis elements e′ witness ∃eC2 then we can
transform e′ to e, and using the µN -invariance of C2 we get a contradiction.

Proposition 5.3. All definable subsets are constructible, namely every definable subset is a
boolean combination of those defined by general core formulas ∃eC where C is Zariski closed and
µN -invariant.

Proof. Immediate by Lemmas 5.1, 5.2 and 5.3.
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6 Zariski Structure

We use the following definition of a Zariski structure.

Definition 6.1. A (Noetherian) Zariski structure is a tuple (M, τn,dim : n ∈ Z>0) where

• τn is a Noetherian topology on Mn (satisfies the descending chain condition on closed sets)

• dim is a function which associates to each definable set a non-negative integer (we call this
the dimension of the set)

such that the following two sets of axioms are satisfied:

Topological

1. singletons of Mn are closed, cartesian products of closed sets are closed, diagonals are
closed, the image of a closed set under a permutation of coordinates is closed;

2. for a ∈Mm and C a closed subset of Mm+n the set

C(a,Mn) = {b ∈Mn : (a, b) ∈ C}

is closed.

Dimension

1. singletons are 0-dimensional

2. dim(X ∪ Y ) = max{dimX,dim Y }

3. closed irreducible subsets of locally closed irreducible subsets have strictly smaller dimension

4. let X be an irreducible locally closed subset of Mm+n, π : Mm+n → Mn a projection onto
the first m coordinates. Then

dimX = dimπ(X) + min
a∈π(X)

dim(π−1(a) ∩X)

and there is an open subset U of π(X) such that

dim(π−1(a) ∩X) = min
a∈π(X)

(π−1(a) ∩X)

Syntactically, the topologies τn can be specified by introducing a predicate for each closed
subset into the language. The reader is referred to [11] for more details. A closed subset is irre-
ducible if it cannot be written as the union of two proper closed subsets. By Noetherianity, every
closed set is a finite union of irreducible components. We also require the following additional
properties of a Zariski structure M may posess:

1. Pre-smoothness: for any constructible X,Y ⊆ Mn and any irreducible component Z of
X ∩ Y , dimZ ≥ dimX + dimY − n
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2. Completeness: projections of closed sets are closed.

Remark 6.1. If dim is defined to be Krull dimension (dimC for C closed irreducible is the
maximal length of a chain of irreducible sets C0 ⊂ C1 ⊂ . . . Cn = C), dimM = 1 and M is
presmooth, then Definition 6.1 is equivalent to the definition of a Zariski geometry in [2] (see
[11], Section 3.3).

6.1 Topology

We introduce a topology on H
n×F

m by taking as a basis of closed subsets those subsets that are
defined by general core formulas ∃eC(v,w, x) ((v,w, x) a tuple of variables from H

n×F
m) where

C is Zariski closed and µN -invariant. Closed subsets are given by finite unions and arbitrary
intersections of basic closed subsets. Note that if n = 0, then these formulas reduce to those of
the form C(x) where C defines a Zariski closed subset of Fm. Thus the topology gives us the
classical Zariski topology on the sort F and its cartesian powers.

Lemma 6.1. Let ∃eC1, ∃eC2 be general core formulas with C1, C2 Zariski closed and µN -
invariant. Suppose that both formulas have the same enumeration of variables. Then

QN |= ∃eC1 ↔ ∃eC2 ⇒ QN |= C1 ↔ C2

Proof. By Lemma 5.3, ∃eC1 ∧ ¬∃eC2 is equivalent to ∃e(C1 ∧ ¬C2) hence C1 ∧ ¬C2 must be
inconsistent. The rest of the lemma follows by symmetry.

Although a general core formula ∃eS was defined with respect to two tuples of variables
v = (v1, . . . , vm) and w = (w1, . . . , wn), we shall henceforth amalgamate these into one tuple
which we enumerate as {vij : 1 ≤ i ≤ s, 1 ≤ j ≤ si} where there is t ≤ s for which vij ∈ w for all
i > t.

Proposition 6.1. The topology defined on QN is Noetherian.

Proof. Suppose for contradiction that (∃eCi : i ∈ N) defines an infinite descending chain of basic
closed subsets, i.e. we have proper inclusions ∃eCi(H,F) ⊃ ∃eCi+1(H,F) for every i. Because
there are only finitely many ways of enumerating the variables v as {vij : 1 ≤ i ≤ s, 1 ≤ j ≤ si},
there are infinitely many ∃eCi with the same enumeration. Hence we can assume, without loss
of generality, that all ∃eCi have the same enumeration of v variables. By Lemma 5.3,

∃eCi+1(H,F) = (∃eCi ∧ ∃eCi+1)(H,F) = ∃e(Ci ∧ Ci+1)(H,F)

By Lemma 6.1 it follows that Ci(F) ⊇ Ci+1(F). Because ∃eCi(H,F) ⊃ ∃eCi+1(H,F), Lemma
5.3 gives that ∃e(Ci ∧ ¬Ci+1) is satisfiable. Thus we have proper inclusions Ci(F) ⊃ Ci+1(F) for
every i, contradicting that the Zariski topology is Noetherian.

6.2 Zariski structure

If ∃eC be general core formula defining a basic closed set then C is determined up to isomorphism
by Lemma 6.1.
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Lemma 6.2. If ∃eC is closed and irreducible, then it is basic closed. Moreover, C =
∨

Dδ where
D defines a closed irreducible subset of C(F).

Proof. The first statement is immediate. Let C =
∨

Di where Di are irreducible components.
Then C =

∨

i

∨

Dδ
i by µN -invariance of C, hence

∃eC ≡
∨

i

∃e(
∨

Dδ
i )

and by irreducibility, ∃eC ≡ ∃e∨Dδ
j for some j. Now apply Lemma 6.1.

Definition 6.2. Let ∃eC define a basic closed irreducible subset of Hn × F
k. The dimension

of ∃eC(H,F) is defined to be the dimension of C(F). For ∃eC defining a closed set,

dim ∃eC := max{dimCi}

where Ci are the irreducible components of ∃eC. If ∃eS is constructible, its dimension is defined
to be the dimension of its closure.

By Proposition 5.3 the projection of any constructible set is constructible. For definable sets
defined by general core formulas we have more.

Lemma 6.3. Let ∃eS be a general core formula with the aforementioned convention on enu-
meration of variables. For a fixed 1 ≤ i ≤ s, let j range over a subset J ⊆ {1, . . . , si}. Then
∃j∈Jvij∃eS is a general core formula with Zariski constructible component equivalent to one of
the following:

1. ∃j∈JλijS.

2. ∃j∈Jµi−t,jS

3. ∃µi−t,1∃(i−t,j)∈Ξ1
bi−t,j∃(i−t,j)∈Ξ1

γi−t,j∃(k,i−t)∈Ξ2
bk,i−t∃(k,i−t)∈Ξ2

γi−t,kS

4.
∃yi∃(i,k)∈Ξbik∃(i,k)∈Ξγik∃(j,i)∈Ξbji∃(j,i)∈Ξγji
∃(j−t,i)∈Ξ1

bj−t,i∃(j−t,i)∈Ξ1
γj−t,i∃(i,j−t)∈Ξ2

bi,j−t∃(i,j−t)∈Ξ2
γi,j−tS

Proof. The proof divides into four cases:

1. 1 ≤ i ≤ t.

2. t+ 1 ≤ i ≤ s.

3. t+ 1 ≤ i ≤ s and si = 1.

4. 1 ≤ i ≤ t and si = 1.

In case:

1. the vij do not occur in φ and we can eliminate the conjuncts λijei = vij , thus moving the
quantifiers ∃j∈Jλij to S.
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2. ∃vij∃eS is equivalent to

∃λ . . . ∃b





t
∧

i=1

si
∧

j=1

π(vij) = yi ∧ λijei = vij ∧E(ei, yi) ∧ ∃vijφ ∧
∧

(i,j)∈Ξ

φij ∧ S(λ, µ, y, γ, b, a)





Recall that φ is

∧p
i=t+1

∧pi
j=1 µi−t,je

′
i−t = vij ∧

∧

(i−t,j)∈Ξ1
φi−t,j(e

′
i−t, ej , bi−t,j , γi−t,j)∧

∧

(i,j−t)∈Ξ2
φi−t,j(ei, e

′
j−t, bi,j−t, γi,j−t)

Thus ∃vijφ is equivalent to φ′, where the latter is φ but with the conjuncts µi−t,je
′
i−t = vij

removed for j ∈ J . It follows that we can move the quantifiers ∃j∈Jµi−t,j to S as required.

3. similar to 2, but more is eliminable from φ because we can get rid of the parameter e′i.
Hence we can eliminate φi−t,k(e

′
i−t, ek, bi−t,k, γi−t,k) and φk,i−t(ek, e

′
i−t, bk,i−t, γk,i−t). The

quantifiers

∃µi−t,1∃(i−t,j)∈Ξ1
bi−t,j∃(i−t,j)∈Ξ1

γi−t,j∃(k,i−t)∈Ξ2
bk,i−t∃(k,i−t)∈Ξ2

γk,i−t

can then be moved to S.

4. the most is eliminable. We no longer require E(ei, yi) and those conjuncts φjk with (j, k) ∈ Ξ
and j or k equal to i. But we can also eliminate conjuncts from φ, namely φj−t,i for
(j − t, i) ∈ Ξ1 and φi,j−t for (i, j − t) ∈ Ξ2. Thus we move the quantifiers

∃yi∃(i,k)∈Ξbik∃(i,k)∈Ξγik∃(j,i)∈Ξbji∃(j,i)∈Ξγji
∃(j−t,i)∈Ξ1

bj−t,i∃(j−t,i)∈Ξ1
γj−t,i∃(i,j−t)∈Ξ2

bi,j−t∃(i,j−t)∈Ξ2
γi,j−t

to S.

Theorem 6.1. QN is a Zariski structure which is presmooth.

Proof. We have a Noetherian topology on H
n × F

k for each n, k by Proposition 6.1. The topo-
logical axioms are immediate as are the first three dimension axioms (our notion of dimension is
derived from Krull dimension on F

k). 4 and presmoothness are immediate from Lemma 6.3 and
the corresponding properties for algebraic varieties.

Corollary 6.1. QHON is an irreducible one-dimensional complete Zariski geometry.

Proof. QHON is interpretable in QN (Remark 2.3) with the universe L = E, A†, A closed
relations in the topology on QN . Now take the induced topological structure on QHON .
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