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Abstract

For any given uncountable cardinal x with k<" = k, we present a
forcing that is <s-directed closed, has the x-cc and introduces a lightface
definable well-order of H(x%). We use this to define a global iteration
that adds such a well-order for all such s simultaneously and is capable
of preserving the existence of many large cardinals in the universe.
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1 Introduction

If  is an infinite cardinal, a lightface definable wellorder of H (k™) is a well-
order of H(xk™) that is definable over (H(x™), €) without parameters. In [2]
and [3], Sy Friedman and the first author show that given any uncountable
cardinal k that satisfies k<% = k (note that this implies that r is regular) and
2% = kT, there is a <k-directed closed, k*-cc partial order of size 2% which
yields a lightface definable well-order of H (k)¢ whenever G is generic for
that forcing. They use this to define a class sized iteration which, assuming the
GCH, introduces a lightface definable well-order of H(x™) for every uncountable
cardinal x, preserving the GCH and all cofinalities, and show that whenever « is
A-supercompact for A regular, then the A-supercompactness of x is preserved by
the iteration. Moreover they show that introducing those well-orders by a vari-
ant of the above class sized iteration also allows for preserving many instances
of n-hugeness.

We generalize those results to a non-GCH context as follows. First we show
that even if 2% > kT, there is a very nice forcing to introduce a lightface definable
well-order of H (k™). The key new ingredient will be a new coding forcing (that
we call Club Coding) which will be introduced in Section 3.

Theorem 1.1. Suppose k is an uncountable cardinal such that k<% = k. Then
there is a partial order @ with the following properties.

1. Q has a <k-directed closed dense subset.

2. Q has the k1 -chain condition.



3. QC H(kt)
4. Q forces the existence of a lightface definable wellorder of H(k™).

Using the properties of those single-step forcings, it is straightforward (see
Section 6) to iterate this for all uncountable cardinals x that satisfy k<" =
which are not counterexamples to the SCH and obtain the following.

Theorem 1.2. There is a ZFC-preserving class forcing P so that

o P preserves cofinality k whenever k is not a counterexample to the SCH,
which means there is no singular strong limit cardinal A with AT < k < 2>,

o P preserves the value of 2" whenever neither k nor 2% are counterexamples
to the SCH.

e P introduces a lightface definable well-order of H(k™) whenever k > w is
such that k<* = Kk and K is not a counterezample to the SCH.

Under the assumption of SCH, the above turns into the following, much
nicer form.

Theorem 1.3. Assume SCH. There is a ZFC-preserving class forcing P so
that

o P preserves cofinalities and the continuum function (i.e. the value of 2%
for every o).

e P introduces a lightface definable well-order of H(km) whenever k > w1 is
such that k<% = K.

The role of the SCH in the above is very similar to the situation in [5]. We
refer the reader to the first chapter of that paper (or also to [6]) for a more
detailed discussion.

In Section 7, we will show that forcing with PP allows for various forms of large
cardinal preservation. Supercompactness preservation seems to be a difficult
issue in a non-GCH setting and we only obtain a partial result (originating from
[2]) that relies on instances of the GCH to hold. Using sparser iterations, one
may use supercompactness preservation arguments for a non-GCH context that
were developed in [6] and given a simplified presentation in a somewhat different
context in [5]. We give a sample result of this in Section 8. Back in Section 7,
we also present stronger results on large cardinal preservation for other types of
large cardinals: hyperstrong and n-superstrong cardinals for 2 < n < w.

2 More on related Results

In this short section, we want to comment on the results of this paper and their
relationship with other recent results on introducing locally lightface definable
well-orders by forcing. In [5], Sy Friedman together with the second and third
author provides a class sized iteration that introduces a lightface definable well-
order of H(x1) whenever £ is inaccessible (see Section 8 of the present article for
the exact statement of their theorem). It is fairly simple to introduce a lightface
definable well-order of H(x™) for a single inaccessible cardinal , so that paper



is mainly concerned with finding a sufficiently uniform way of building a class
sized forcing that does this for all inaccessibles k and allows for large cardinal
preservation. In the present article, we improve on this by providing a much
more well-behaved forcing to introduce a lightface definable well-order of H (k™)
that works both for (suitable) successor cardinals and for inaccessibles. This
actually allows us to give (as a sample result) a different proof (which we will
only hint towards) of the main result of [5] in Section 8.

In [8], the second and third author show that given an uncountable cardinal
k that satisfies k<" = k, A< < & for any A < x and 2* regular, under an addi-
tional anti-large cardinal hypothesis® it is possible to introduce a ¥;-definable
well-order of H(x™) that only uses s as parameter (and is thus Y3-definable
over H(x™) without parameters) by <r-closed forcing that preserves all cofinal-
ities < 2% and the value of 2”. In particular, this shows that it is consistent to
have 2% large while having a lightface definable well-order of H(x™). While the
complexity of the well-orders introduced by the forcing provided in the present
article is certainly higher than X3, our forcings are cofinality-preserving, they
work for a larger class of cardinals and they lend themselves well to large car-
dinal preservation (see Section 7). Most importantly however, we do not need
to assume any kind of anti-large cardinal hypothesis to hold.

3 Club Coding (relative to a stationary set)

In this section we will introduce a coding forcing that could be seen as combining
ideas from Solovay’s almost disjoint coding ([10]) and the canonical function
coding introduced by Sy Friedman and the first author in [2] and [3]. Although
we will never explicitly make use of this coding forcing, it will be woven into
our main forcing construction in Section 5 and later proofs will be variations of
the arguments given in this section. Moreover the forcing itself might prove to
be interesting (in fact it has already been made use of in [7] and [8]). We will
call the coding we want to introduce club coding (relative to a stationary set S).
Given an uncountable cardinal x that satisfies k<" = k, we will present a notion
of forcing with nice properties that will allow us to make a subset of H(x™)
definable by a generically added subset of k. Under the above assumptions on
K, both the almost disjoint coding forcing at x and canonical function coding at x
are capable of making a subset of H (k™) definable by a generically added subset
of k, however canonical function coding requires the additional assumption that
2% = kT and almost disjoint coding does not possess the crucial property (for
our present purposes) that we will verify for club coding in Lemma 3.7 (see the
paragraph following its proof).

Throughout this section we fix a regular uncountable cardinal x with k =
k<" a stationary set S C x N cof(w), and a non-empty subset A of “x. We
will first recall the definition of almost disjoint coding at s (see [8] for a more
detailed account and a collection of its basic properties).

Definition 3.1. Assume that § = (s, | @ < k) is an enumeration of <"k with
the property that every element of <k is enumerated x-many times. We define
a partial order Q(A) by the following clauses.

1Namely that fat stationary subsets of x in L remain fat stationary in V.



e A condition in Q(A) is a pair p = (tp, ap) with t,: ap — 2 for some o, < &
and a, € [A]<".

e We have q <g(4) p if and only if ¢, C ¢4, a, C a, and
sgCax — t(B8)=0
for every = € a, and o, < 8 < ay.

Now we want to introduce the definition of club coding (relative to a sta-
tionary set S). The important differences when compared to the almost disjoint
coding forcing are that the enumeration of <"k is added generically and (and
that’s the main point) whenever x € A, this is reflected correctly only on a club
(relative to S) and not (as is the case with the almost disjoint coding) on a final
segment of the generically added coding subset of « (if G is generic for either
the almost disjoint coding forcing Q(A) or the club coding forcing Q*(A4, S),
this coding subset of x is equal to UpeG tp).

Definition 3.2. We define Q*(A, S) to be the partial order whose conditions
are tuples

P = (Sp,tp, (ch | ® € ap))

such that the following statements hold for some successor ordinal v, < k.
® S, Y — PR, t, 1y, — 2 and a, € [A]<".
o If x € ay,, then ¢ is a closed subset of ~, and
spla) Cx — tp(a) =0
foralla e &N S.

We define ¢ < p to hold if s, = s [ Yp, tp =g [ Vp, ap C aq and ¢k = c Ny,
for every = € a,.

Lemma 3.3. The partial order Q*(A,S) is <r-closed, kT -Knaster and has
cardinality at most 2" .

Proof. Let A < k and (po | @ < A) be a descending sequence in Q*(4,5). If
there is an @ < A with 7, = 7, for all @ < a < A, then

p = <spa7tpa7< U sz)a |$€ U apa>>
TE€ayp,, a<A

is a condition in Q*(A4, S) with p < p, for all @ < A\. Now define v = sup,, . Vp.
and assume that v > «,_ for all @ < . Define

o s = {(0)} U Ulspa [ <A}
t = {0} U Uftp, [ a <A}
a = WHap, | a <AL

ez = {7} U & |a< ) zeap,}foralzea

e p = (s,t,{(c, | x €a)).



Then p is a condition in Q*(A4,.S) with p < p, for all & < A.

To show that Q*(A4,S) is xT-Knaster, let (p, | o < ') be an injective
sequence of conditions in Q*(A,S). Then there is an X € [T]*" and an r €
[A]<" such that sp, = Sp., tp, = tps, 7 = ap, Nap, and P> = P for all
a,a € X with a # a and z € r. Given a, @ € X the tuple

(8pasrtpar (5" [ € ag™) U {7 |z € ;™))

is a condition in Q*(A, S) that extends both p, and ps.
The last claim of the lemma follows from a simple counting argument. [

It follows from Lemma 3.3 that forcing with Q*(A4, S) preserves cofinalities
as well as the stationarity of S.

Proposition 3.4. If z € A and o < k, then the set
Do ={peQ"(A,5) |z €ap G \a#d}
is dense in Q*(A,S).

Proof. Pick a condition p in Q*(A,S). We may assume x € a,, because other-
wise we work with the condition

p= (spitp (e |y € ap) U{(2,0)})
Pick v > ~, and define
o s =5 U{BD)|n<B<q}
ot =1, U{(B0)]p<B<q}
® p. = (s,t,(ch U7 | ¥ € ap)).
Then p, is a condition in D, , with p, < p. O

Let § and £ denote the canonical Q*(A, S)-names such that

54 U{Sp |peG}

and _
i = (J{tr IpeG}

whenever G is Q*(A, S)-generic over V.

Theorem 3.5. If G is Q*(A, S)-generic over V, then 3¢ : k — <Fg, (¢ :
Kk — 2 and A is equal to the set of all x € (’%)V[G] with the property that

VaeCnS [§%a) Cz — t%a)=0] (1)

holds for some club subset C' of k in V[G].



Proof. The first two statements follow directly from the above proposition. Pick
x € A and define C = {2 | p € G, = € a,}. Then the definition of Q*(4,.5)
implies that C is a closed subset of « that satisfies (1) and the above proposition
shows that C' is unbounded in x.

Now work in the ground model V, pick a Q*(A4, S)-name y for an element
of *x and a Q*(A,S)-name C for a club subset of x and assume, towards a
contradiction, that there is a condition py in Q*(A4, S) with

polFyd A AVYaeCnS [5(a) Cy — i(a)=0]. (2)

Let N be a countable elementary substructure of some large enough H(6)
containing Q*(A4, S), y, C and py and such that v := NNk € S. Let (p, | n < w)
be a descending (N, Q*(A4, S))-generic sequence of conditions extending py. By
the above proposition together with the genericity of (p,, | n < w),

(i) sup,, Vp, =, and

(ii) there is some u : v — & such that for every n < w there is some m > n
such that p,, forces

® |7, = ulvp, and such that
ozl #Fulvy, forall z € ap,.

Now we define
s = {(vw} U Ulsp, [ n<w}.
t =AU Uty [ n<w}.
a = Ulay, | n<w).

e = {3} U Ulelr

Then the tuple p = (s,t, (¢, | € a)) is a condition in Q*(A, S), because u € x
for all € a. But p < py and

n<w, x € ap,}foralzea

plEyeC A SH) S A i) =1,
contradicting (2). O

Remark 3.6. (i) The above theorem shows that the set A is definable over
the structure (H(k)VIC €) by a ¥;-formula with parameters S, §¢ and
t% whenever G is Q*(A, S)-generic over the ground model V.

(ii) A small variation of the above proof shows that this coding has nice persis-
tence properties - the set A is still defined by the formula (1) after further
forcing with a o-strategically closed partial order that preserves the regu-
larity of k. The next lemma however provides the crucial, for our present
purposes, property that club coding (relative to S) satisfies in contrast to
the classical almost disjoint coding.

Lemma 3.7. If Ag C A, then Q*(Ay, S) is a complete subforcing of Q*(A,S).



Proof. By the definition of Q*(A,S), it suffices to show that every maximal
antichain A in Q*(4o,S) is predense in Q*(A,S). Then A is a a maximal
antichain in Q*(4, S). Pick a condition p in Q*(A, S) and define

P = (Sp,tp, (ch | z € ap N Ag)).

Then p is a condition in Q*(Ap, S) and there are conditions ¢ and r in Q*(Ay, S)
such that ¢ € A and r is a common extension of p and ¢ in Q*(Ay, S). Define

Ps = (Sp,tp, {ch |z €an)U(E | z€ay)\ Ap)).

Then p, is a condition in Q*(A4,S) and it is a common extension of p and ¢ in

Q*(4,S). O

Remark 3.8. It is easy to see that the almost disjoint coding forcing does not
possess the property stated in the above lemma: Assume, towards a contradic-
tion, that Q(A) is a complete subforcing of Q(*) for every A C "k and let G be
Q("k)-generic over V. For each A C "k, the generic filter in Q(A) induced by
G yields a function t4 € *2 coding A. It is easy to see that the resulting func-
tion [A + t4] is an injection of P(®x)V into (2)VIS! that is definable in V[G].
Since forcing with Q(A) preserves cardinalities and the value of 2*, this yields
a contradiction. This consideration does not apply if we work with Q*(A4,S5)
instead: Suppose Ay C A, G is generic for Q*(A,S), and G’ is the restriction
of G to Q*(Ap, S). Then G’ adds ta, € "2 coding Ay in V[G']. However, the
same code t4, will code A in V[G]. The reason is that in moving from V[G’]
to V[G] we are adding new club subsets of x that ensure this to be the case.

4 More Preliminaries

Let <-,-=: Ord x Ord — Ord denote Godel’s pairing function.? We also let
<+, =1 Ord® — Ord be <, <+, >

It will be convenient to define the following notion of rank of an ordinal with
respect to a set of ordinals and the corresponding notion of perfect ordinal (see
for example [2] or [3]).

Definition 4.1. Let X be a set of ordinals and let i, u be ordinals. We define
the relation rankx (n) > p by recursion as follows:

e rankx(n) > 0 if and only if there is a nonempty X’ C X such that
sup(X') = n.

o If ;1 > 0, then rankx(n) > p if and only if n is a limit of ordinals £ such
that rankx (£) > p.

We say that an ordinal 7 is perfect if and only if rank, (1) = .

Note that the first nonzero perfect ordinal is ¢y = sup{w,w‘*’,w(‘*’w), .
Note also that ranks(d) < § for every ordinal ¢ and that, given any uncountable
cardinal A, the set of perfect ordinals below A forms a club subset of A of order

2That is, <a, B> is the order type of {(v,8) € Ordx Ord | (v,d) < (o, 8)}, where
(v,8) < (a, B8) if and only if either maz{y,d} < maz{a, B}, or maz{y,d} = maz{a, B} and
v < a, or maz{vy,d} = maz{a, B}, v = a and § < S (see for example [9], p. 30).



type A. Let (n¢)ecora be the strictly increasing enumeration of all nonzero
perfect ordinals of cofinality w.
The notions defined in the following two paragraphs appear in [2] and [3].
Given two sets of ordinals X and Y, let X N* Y be the collection of all § €
X NY such that d is not a limit point of X.? A sequence C = (C5 | § € dom(C))
is a club-sequence if dom(é) is a set of ordinals and Cj5 is a club subset of §
for each 6 € dom(C). We will say that C is coherent if there is a club-sequence

D = (Ds | § € dom(D)) such that
o C - D and

e for every § € dom(D) and every limit point v of D, v € dom(D) and
D, = DsN~.

If C = (Cs | 6 € dom(C)) is a club-sequence, we denote Uscdom(e) Cs by

range(é). Also, we will say that an ordinal 7 is the height of 67 and will
write ht(C) = 7, if ot(C5) = 7 for all § € dom(C).* A club-sequence is
called a ladder system if it has height w. We will say that a club-sequence
C = (Cy | 6 € dom(C)) with stationary domain such that sup(dom(C)) = y is
strongly type-guessing if for every club subset C' C x there is a club D C x such
that ot(Cs N* C) = ot(C;) for every & € dom(C) N D.

The following related form of club-guessing will also be used:® A ladder
system (Cs | 6 € S), where S is a stationary subset of some k&, is strongly
guessing if for every club C C k there is a club D C k such that Cs \ C is
bounded in § for every § € DN S.

The following notion of closure for partial orders will be useful: Let P be a
partial order, xk a cardinal, fp : P — Ord a function, and S a set of ordinals.
We will say that a partial order P is uniformly <k-closed relative to fBp outside
S if for every cardinal 6 > |P|, § > sup(range(fp)), and every well-order A
of H(0) there is a function F : <P — P, F definable over the structure
(H(0),€,A,P, Bp) without parameters, such that for every A < x and every
decreasing sequence (p; | ¢ < A) of conditions in P, if sup(Bp“{p; | i < A}) ¢ S,
then F({p; | i < A)) is a condition in P extending all p;. If S = (), then we will
simply say that P is uniformly <k-closed.

Finally, it will also be convenient to define the following notion of hered-
itary internal approachability (see [2]). Let 6 be an infinite cardinal and A
a well-order of H(6). Given z € H(0) we define, by recursion on the car-
dinals less than 6, the notion of being a hereditarily internally approachable
(HIA) elementary substructure of (H(6), €, A) containing x as follows: A struc-
ture N < (H(0),€,A) such that z € N is HIA if N = U, n)) Ni for a C-
continuous €-chain (N; | i < cf(|N|)) of sets of size less than |N| such that NV;
is an HIA elementary substructure of (H(6), €, A) containing « whenever N; is
infinite and ¢ is not a nonzero limit ordinal. It is easy to see that the set of HIA
elementary substructures of (H(6),€,A) containing = of size u is a stationary
subset of [H(6)]* whenever p < |H(0)| is an infinite cardinal.

The following lemma is easy.

3Note that N* is not commutative. For example, {w}N*(w+1) = {w} but (w+1)N*{w} = 0.
4The height of a club-sequence may of course not be defined.
5This notion is rather standard; see for example [1].



Lemma 4.2. Let k be a cardinal and let P be a partial order which is uniformly
<k-closed. If 6 > |P| is a cardinal, A is a well-order of H(0) and N is an HIA
elementary substructure of (H(0), €, A) containing P and of size at most k with
p € PN N, then there is an (N,P)-generic sequence of conditions extending p.

We will also need the following technical lemma in the next section.

Lemma 4.3. Assume k is reqular and uncountable, S C kN cof w is station-
ary, (cof wN k) \ S is stationary and 0 is large enough and regular. For every
countable X C H(0), there is an €-chain (N, | n < w) of countable elementary
substructures of (H(0), €) such that X C Ny, v, = sup(N,) Nk ¢ S for any
n <w and sup, ., Yn € 5.

Proof. Let (M; | i < k) be a continuous €-chain of elementary substructures
of H(#) of size less than k such that X C M, and such that sup(M; N k) €
(cofw N k) \ S whenever i is a successor ordinal. Let Lim? := lim(lim(x)).
{sup(M;) Nk | i € Lim?} is a club subset of k. Choose i € Lim? least possible
such that sup(M; N k) € S. Note that cof(i) = w. Pick a sequence (i), | n < w)
with supremum 7, consisting only of limit ordinals of cofinality w. This is possible
for i € Lim?.

First assume that there is n < w such that sup(M;,K Nk) € S. By minimality
of i, i, ¢ Lim?. But this means that i,, = k + w for some limit ordinal k. For
n<w,let N := Mpipii.

Now assume sup(M;, Nk) ¢ S for any n < w and let N} := M, foranyn < w
in this case. In both cases, we have that sup(N N k) € (cof wN k) \ S for any
n < w. Now we inductively construct (N,, | n < w) as follows. Inside of N7, let
Ny be a countable elementary substructure of N§ with sup(NoNk) = sup(NgNk)
and X C Ny. Given N; for ¢ < w, work inside of N7 5 to choose a countable
elementary substructure N;;1 of N, with N; € N;;1 and sup(N;1 N k) =
sup(N;,; N k). Then sup, ., (sup(N,) N k) € S, as desired. O

7

5 The single-step forcing

In this section we prove Theorem 1.1.

Proof of Theorem 1.1. Let us fix a regular uncountable cardinal x such that
k<" = k. Q will consist of tuples of the form (p, q) where p € S and plFsge P,
for S a notion Qf forcing in V described below and P an S-name for a notion of
forcing P in V* described below, such that 1 H—S~P cvs

For any ordinal 3, 8=~ denotes the least ordinal greater than 3 that is
closed under Gédel pairing. Let C=*> denote the closed unbounded subset of
 consisting of 0 and all limit ordinals closed under Godel pairing.

Conditions in S will be pairs (s,o) such that s: v — 2 for some ordinal
v <k, {8 <7 |s(8) =1} C C" Ncof(w) and, letting 5 = {7 | s(y) = 1},
o is a function ¢: § — <Fk (in a slight abuse of notation, we will sometimes
identify s and 3 later on). A condition (s1, 1) extends a condition (s, o0) in S

6What we basically want to do here is to let Q be the two-step iteration of S+ P. However
for technical reasons, we choose it to be a dense subset of this two-step iteration. Since
conditions in S will be elements of H(x1) and 15 forces conditions in P’ to be elements of

H(xk1)V, the above will in particular help us to obtain that Q C H(xT).



if s9 C s1 and o¢ C o7. Forcing with S adds a stationary subset S of k N cof(w)
such that (k N cof(w)) \ S is also stationary, and adds a generic enumeration
5 of <k with domain S and with the property that every element of <%k is
enumerated stationarily often. Let S and § be the canonical S-names for S and
§ respectively.

Let A := 2%. Let W be a well-order of “x of order-type \ with smallest
element 0. We want to use W to construct a very specific well-order W of *« of
order-type A + 1. If x € <¥x and y € "k, we let 27y denote the concatenation
of x and y, ie. if x = (z; | i <n) we let (z7y)(i) = x; if i < n and we let
(z7y)(n + a) = y(a) for a < k. W will be made up of A-many «-blocks with 0
atop of them. Assuming that z,y € " are both not equal to 0, z = ()" and

y = (B)"y, we set
Wy < [(Z=79 A a<pB) VW

We will need this well-order W in our coding construction in order for every
T € "k to be canonically connected to a x-block of W-consecutive elements.
Having 0 as its largest element will just be notationally convenient.

Let F: A\ — H(x%) be a bookkeeping function for H (k") (i.e., for every
x € H(k%), F~'(z) is unbounded in \) and let F': *x\ {0} — H(x") be defined
by F(z) = F(ot{y | yWa}).

Work in an g—generic extension W of V until further notice and let Gy denote
the §—generic filter. We want to construct by recursion along W a collection of
partial orders P, for z € ("x)V and set P = P;. P and the P, will depend on S
and § and we write P(5, §) instead of P when we want to emphasize this fact.

Each P, will have a canonical S-name in V., denoted by PE Conditions in P,
will be of the form
p= (L& UC, DY) i< B ez |z €a)),

We will set tP = t and similarly for any other object appearing within p as
above. Suppose now that p is a tuple as above such that
(1) peCc=r,
(2) t € A1,
(3) €is a ladder system on SN (5 + 1),
(4) for i < B, C' and D' are club-sequences with domains included in g + 1,
(5) a€[(*x)V \{0}]" and
(6)

for every T € a, ¢z is a subset of 5+ 1.

Note that any such tuple is an element of V for S is <k-closed. We want
to associate to p a certain set C(p) C (“x)V which canonically codes p.” Given
z,y € SFk, let |z, y| € "k be defined by setting |z,y|(a) = B iff « = 2-a and

"In fact we will not be able to read off from C(p) whether Z € a in case cz = §). So one may
rather say that C(p) only codes partial information about p. This minor point will however
be irrelevant.
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z(@)=pFora=2-a+1and y(@) = 8. We set |z,y|(a) = 0 whenever it is not
given a value by the above.

We code t, & and ((C%, D) | i < B) by b € ("k)V as follows. For v < &, let
b(2-vy)=1ifft(y)=1,let b(6-v+1) =1iff vy € E,, where v = <79, 71> and
€= (Be | £€SN(B+1)),b(6-v+3)=1iff v € C, where v = <y,71, 0>,

and let b(6 -y +5) =1iff vy € Dil, where again v = <79, 71,1~

Now we want to define C(p) C ("x)V \ {0} coding b and (cz | Z € a). For
x € "k, we let x € C(p) iff one of the following holds.

e There is o <  such that z = (1 + )0 and « € b.
e There is @ <  and T € a such that x = (a, 1) 7 and « € cz.

We code F by F* C (*k)V as follows. Set 2z € F* iff there is (z,y) such that
v € ("k)V, y C k codes y* € H(kT)V.,” F(z) = y* and 2 = |z,y|, where we
identify y with its characteristic function in the latter. Let W* C (®k)V code
W by letting z € W* iff there is (z,y) € W such that z = |z, y|.

Now we define A? C (&)Y \ {0} coding C(p), F* and W* by letting, for
every = € "k, x € AP iff one of the following holds.

o z € C(p).
e There is € "k such that = = (0,2)"7 and = € F™*.
e There is € "k such that z = (0,3)"7 and T € W*.

Let s* € (k)W be a canonical code for 5, say if Kk > a = <3, v~ we set

0 if 5(8)(v)
s"(a) =< 1 if 5(B)(7)
2 if B ¢ dom(5) V v > dom(5())

0
1

If x € "k, let 2~ be defined by 2~ (o) = z(1 + «) for every a < k.10 Let ¢
be the set of all x € (*k)V such that either z = 0 or whenever yWz then both
y~ Wz and for every a < &, ()" yWz.'t Since cof(A) > k, €N {y | yVO0} is
a closed and unbounded (w.r.t. W) subset of {y | y/V0}. P, will be defined iff
TET.

For z € ("k)Y and p = <t,é’, (CH, DY | i< B),{cz | T € a>> as above, let

ple = (1.6 (", DY) |i < B),(cz | 2 €an{y | yWa})).

The next claim follows by the properties of €.

Claim 5.1. Let p be a tuple for which AP is defined and let x € €. Then for
every yWez, y € AP iff y € API®,

8If ¢ is a club-sequence and j € dom(C?), we write C]@ to abbreviate Ci(5).

9n the usual way of subsets of x coding elements of H(x™).

10Thus when passing from x to ™, we just throw away the first component of x.

1 Note that in particular (1)™0, the W-least element of ("x)V, is an element of .
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Proof. Assume p is such that AP is defined. Note that AP!* C AP for any
r € ("k)V. Now assume x € ¢, yWx and y € AP. We want to show that
y € API®_ Clearly the only nontrivial case is when y is of the form (a, 1),
i.e. y codes the property that a € ¢; for some a < & and § € (“x)V \ {0}.
Using the fact that x € €, it follows that gWVz. But this obviously implies that
y € Arlz, O

Given z € ¢ and assuming that P, has been defined for all yWz with y € €,
conditions in P, are tuples of the form

p=(LE(CD) i< B) ez | 2€a))
satisfying the following properties (which imply properties (1)-(6) above).
(i) e C=tm.
(ii) t € #+12
(ili) €= (E5 | € SN (B+1)) is a ladder system.
(iv) ais a subset of W (=T )N{y | yWa} of size less than , where for £ < &,
we =@ n)u U [owgE)
ze()V\{0}

and for any zg, 71 € (“x)Y, [z0,71)"Y denotes the interval [z, z1) w.r.t.
W, ie. [zg,21)W = {2 €%k | 2 =20 V 2eW2 W11}

(v) For each T € a, ¢z is a closed subset of g+ 1.
(vi) VZ€eanNAPYa € cz NS [sq CT — t(a) = 0]

(vii) For every i < f3, (' and D' are club-sequences with domain included in
B+1, ht(C?) is defined and is a perfect ordinal of countable cofinality, and
C'" is coherent as witnessed by D?. Moreover, for every & < f3,

(a) if € =2- &, then
€€ 8¢ Ji<p ht(Ch) =ne.
(b) if ¢ =4-£ 41 and € = <&, &1, then
(£0,61) € s* & Fi < B ht(CY) = ne.
(c) if € =4-&+ 3 and sg # s¢ for all ¢ <&, then
s¢ Ct 4 Ji < B ht(Ch) = ne.
(viii) For every i < f3,

(a) every successor point of every member of the range of C' has count-
able cofinality,
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HN@E+1)=0,
dom(D?%) U range(D?)) N S = 0, and

dom(D
( ~

) Nrange(C7) = 0 for all j < 3,
Di)y N dom(D7) = @ for all j # i.

(ix) Let Z € a be given and suppose there is a W-least zWZ with z € € such
that F(z) is a QN (S * P,)-name in V for a club subset of &, let F(z)%°
denote its partial evaluation by the S-generic filter Go.'2 Then p|z is a
condition in P, and for every v < max(cz), p|z either forces v € F(z)%°
or forces v & F(z)“°. Let Cz be the set of all ¥ < max(cz) such that
plzlkp, v € F(z)%. Then

(a) Es\ Cz is finite for every § € ¢z NS, and
(b) ot(CiN* Cy) = ht(C?) for every i < 8 and & € ¢z N dom(CY).
Given conditions p. = (t€, &€, ((C€, D) | i < %), (¢S | T € af)) for € € {0,1},
we order P, by setting p; <, pg iff
(1) /80 S 51’ tO g tl, é’O g é’l’ aO g a17
(ii) for all # € a®, 2 =cL N (B° + 1), and
(i) €0 = G 1(B% + 1) and D0 = DH11(B9 4 1) for all i < 0.

Note that p; <, po implies that C(p1) 2 C(pp) and therefore APr O APo. We
go down to V for a moment to observe that our definitions yield the following.

Lemma 5.2. Q C H(x™). O

Back in W, note that if p; < pg are conditions in P, then AP* O AP, The
following is immediate by Claim 5.1 and noting (for the proof that (ix) holds
for plz) that if yWzWa and p € P, then ply = (p[z)]y.

Claim 5.3. If x € €, p € P, and 2Wzx with z € €, then plz € P,. If p,q are
both in P, and q < p, then qlz < plz. O

It is immediate (using Claim 5.1) that if z2Wz and z,2 € €, then P, C P,.
In fact, the following holds.

Claim 5.4. If 2Wz and z,x € €, then P, is a complete suborder of P,.

Proof. First note that if p 1L, ¢, then p 1, gq. To see this, assume r <, p,q.
Then r{z € P, and rlz <, p,q by Claim 5.3. To see that P, is a complete
suborder of P,, let B be a maximal antichain of P,. Let ¢ € P,. Thereisb € B
which is compatible to ¢[z. Let p € P, be stronger than both b and ¢[z. Let cZ
be & if T € a? and let it be ¢l if z € a9\ aP. Let

¢ = (P, &P, ((CPP, D"P) | i < BP), (c | & € aP Ual)).

It suffices to show that ¢* is a condition in P, extending ¢ and p. Given the
former, the latter will be obvious considering the nature of the extension relation

12 ()60 will be a P;-name in W for the same club subset of .
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of P, (which is end-extension). We will show, by induction on Wz, that ¢*[t is
a condition in P; whenever ¢ € €. For simplicity of notation, let us assume that
t = x and that ¢*[z is a condition in P, for zVx whenever z € 4. We want to
show that ¢* is a condition in P, by showing that it satisfies conditions (i)-(ix)
above. Conditions (i)-(v), (vii) and (viii) in the definition of P, are immediate.
For (vi), note that A7 = A9 U AP. We thus have to show that

Vz e (aPUa?)N(APUA) Va € 2N S [sq €T — tP(a) =0].

If Wz, then T € a? N AP and the above follows for Z from (vi) for p. Otherwise
Z € a? N A7 and the above follows for z from (vi) for q.

We still need to verify (ix) - let € a? U a? be given. If Z € a?, then (ix)
follows from (ix) for p as ¢t = &, ¢*12 € P, by induction hypothesis, and
q¢*lz < p. So assume that T € a?\ a?. Then T € a?\ {y | yW=z}. Suppose
there is a W-least yWz with y € ¢ such that F(z)% is a P -name for a club
subset of k. As, by induction hypothesis, ¢*[y is a condition in P, stronger
than gy, and as ci = ¢, it follows that for every v < maxcZ, ¢* |y either forces
v € F(z)% or forces v¢ F(z)%. Let Cz be the set of all v < max(c:) such
that ¢*|yl-v € F(z)%, which of course coincides with the set of v < max(cl)
such that qyl-v € F(z)%. We have to show that

(a) Es\ C;z is finite for every § € ¢1 NS, and
(b) ot(CP N* Cy) = ht(C?) for every i < 8 and & € ¢; N dom(CP).

Condition (a) follows immediately from (ix) for ¢q. For (b) fix some i < 7
and § € ¢z Ndom(C*?) = c N dom(C*P). Tt follows that © < 6 < B9, as
dom(C*?) N (i 4+ 1) = 0 by condition (viii). Therefore Cy¥ = Cy? and thus

ot (CyP N* Cz) = ot(Cy N* Cz) = ht(CH9) = ht(CHP). O

Next we show that P has the x'-chain condition. In fact we show that
P is xT-Knaster where, for a cardinal §, a poset Q is #-Knaster if for every
{ge | £ <0} C Q there is I C 6 of size 6 such that g¢ and g¢ are compatible
conditions for all £, £ in I. We first need the following.

Claim 5.5. If x € € and p € Py, then C(p) C W((B°)"*")n{z | 2Wz} and

is of size less than k.

Proof. Assume y € C(p). We will only treat the case when y is of the form
y = (o, 1)7g for some o < K and j € (“k)V, i.e. y codes the fact that a € cb.
But the latter implies that o < 8P and thus y € W(BP + 2) C W((8P)=+"),
and it implies that yYVz and hence by the closure properties of elements of €,
this implies that yWz. The case that y is of the form y = (1 + a>A6 is similar.
That C(p) is of size less than & is obvious from its definition and the definition
of conditions in P,. O

Lemma 5.6. P is x1-Knaster.

Proof. Let {pe | € < KT} be a set of conditions in P. We want to show that
there is B C xT of size kT such that p¢ and p¢ are compatible whenever both
€ and € are in B. Let

pe = (t5,@°, ((CF, DY) | i < B), (5 | T € af)).
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By possibly strengthening the p¢, we may assume that a¢ O C(p¢) for every
e < k1, using Claim 5.5. This implies that if € # € then AP" \ AP" C a¢ and
hence (af\ a®) N (AP" \ 4”°) = (. By a A-system argument using 2<% = &,
there are 3, t, €= (Es | 6 € SN(B+1)), a, ((C!, D) | i < B) and (cz | T € a)
such that we may assume that for all distinct €, ¢’ < k7T,

(i) t°=1t, & =& ((C=, D) | i < p) = ((C", DY) | i < B),

(ii) a*Naf = a, and

(iii) ¢& = ¢z for all T € a.

€
x

We claim that any two such conditions are compatible, as
p57€' = <t7€v <<62751> ‘ { < B>’ <C§: | €€ {676,}77_; € aE>>

is a condition in P stronger than both p. and p.: It suffices to show, by induction
along W, that p. [z is a condition in P, whenever 2 € ¥. Thus assume that
2 € € and inductively that p. . [z is a condition in P, whenever z2WWz and z € ¥
We want to show that pc [z is a condition in P,. As in the proof of Claim
5.4, conditions (i)-(v), (vii) and (viii) are immediate. For (vi), by symmetry it
suffices to show that

VE € af N (AP U AP )Va € ¢t NS [sa C 7 — ta) = 0].

Now this follows from (vi) for p¢ in case Z € a® N AP" or from (vi) for p¢ if
Z €a’ NAP and thus we may assume that Z € (a¢\ a¢) N (47" \ AP°). But
the latter set is empty by our above assumption.

We are left with proving that (ix) holds for p . [. Given z € acUa® , we may
assume (by symmetry) that € a. Suppose there is a W-least 2WWz such that
z € ¢ and F(z)% is a P,-name for a club subset of k. As, by induction, p, . [z
is a condition in P, stronger than p.[z, it follows that for every v < max(cg),
Pe.er |2 either forces v € F(z)% or forces v ¢ F(7)“0. Let Cz be the set of all
v < max(cg) such that p. o [zIFv € F(z)%. We have to show that

(a) Es\ Cjz is finite for every § € ¢ N S, and
(b) ot(C’g’p N* Cz) = ht(CP) for every i < 8 and § € ¢& N dom(CP).
But this is immediate from (ix) for p.. O
Let Sp be the function with domain P mapping a condition p to 5P.
Lemma 5.7. P is uniformly <k-closed relative to Sp outside S.

Proof. Given v < k and a decreasing sequence of conditions (p* | k <) in P
with ‘ ‘
Pt = (tF,&F (G771, DRy | i < 85, (ck | 7 € b)),

let 5 := Uk<75k, t = Uk<,ytk, € = Uk<,yé’k, Ccr = Uk<,yC’“ and D' =
Uk<7ﬁkvi for every i < 8, a = Uk<vak and ¢z = U{ck | k < v, ¢ € a*}
for every Z € a. If there is 4 < v such that $* is the same for all k& > 7,
then (t, &, ((C?, D%) | i < B),(cz | T € a)) is a condition stronger than each pF.
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Otherwise, we may assume that § ¢ S and let p be defined by setting 8P = 3,
P =tU(B,0), P = ¢, Cip = Ct and D"’ = D' for every i < (3, a? = a and
& = cz U {sup(cz)} for every 7 € a.

We claim that p is a condition in P. We will show by induction along W that
for every x € €, plx € P,. By the particular specification of p, this will show
that P is uniformly <k-closed relative to fp outside S. Thus assume z € € and
for every yWax with y € €, ply € P,. We want to check that conditions (i)-(ix)
in the definition of P, hold for p[z and thus p|z € P,. Conditions (i), (ii), (v),
(vii) and (viii) are immediate. Condition (iii) holds since 8 ¢ S. Using that (iv)
holds for the p* and that 8? > (3%)=*> for every k < v, we obtain

(x) a” S W(BP)
and thus (iv) holds for p. For (vi), we have to check that
Vz €a? N APVa e ENS[sa CT— tP(a) =0.]

Ifz e U, AP" | this is immediate from (vi) for p* for some sufficiently large
k

k < ~vyif a < P and, if a = BP, because we set tP(SP) = 0. If T € AP\U,KW AP
it is easily checked using the definition of C(p) that f(Z) is of the form k-4 ¢
for some § < A and & > BP. But by (x) this means that Z & o and therefore
this case is vacuous.

It remains to show that (ix) holds for p[z. Let T € aP be given and suppose
there is a W-least z2Wz with z € % such that F(z)% is a P,-name for a
club subset of k. As p[z is a condition in P, by induction hypothesis and
plz < pFlz for every k < 7, we have that for every v < max(ck), p[z either
forces v € F(z)% or forces v ¢ F(z)%°. Let Cz be the set of all v < max(c2)
such that plzI-v € F(z)%°. It remains to show that

(a) Es\ Cz is finite for every § € ¢z NS, and
(b) ot(CiN* Cz) = ht(C?) for every i < B and & € ¢z N dom(CY).

Condition (a) holds since, as 8 ¢ S, every § € ¢z N S is such that & € ¢k for
some k. For condition (b), fix some i < A2 and § € ¢z N dom(C?). Let k < ~
be such that z € a*, i < % and & € ¢k N dom(C*7). But then ot(Ci N* Cz) =
ot(Cy" N* C) = ht(C?) = ht(C¥P), where the middle equation holds as p* is a
condition in P. O
Lemma 5.8. Let p = (t,& ((C', D%) | i < B8),{cz | T € a)) be a condition in P.
Then V3 <k 3p' <p {ﬂp/ > B and <C‘§/ |Zea?)=(cz | Z € a)}.

Proof. Pick f* € C=*" such that g* > ', 8, B* = ng« and such that for every
v < B*, B*\ S contains a closed subset of order-type v + 1. The latter is easily
possible for S was added generically. We construct

p= (& (G, DL) | i < ") ez | T €a) <p

as follows. First we choose t* of length £* + 1 extending ¢ and such that
1B+ 1,8*] = 0. Let € = (Ef | £€SN(B*+1)) be any ladder system

on (8*+1)N S extending & Let (C¢, Dty = (C%, D% if i < 8 and for i € [8, 8*),
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let C = {(sup(X;), X;)} and D% = {(y, X; N~) | v a limit point of X,}, where
X; C B*\(B=T"U(i+1)) has order-type 7,,, has all its non-accumulation points
of cofinality w, and is closed in sup(X;), for (p; | ¢ € [5, 8*)) as determined by S,
s* and t* (up to permutation of the indices) via condition (vii) in the definition
of P. We also make sure that for ¢ # i/, (X;U{sup(X;)})N(Xy U{sup(X;)}) =0
and (X; U {sup(X;)}) NS = 0.3 We have to check that p’ is a condition in P.
It is then obvious that p’ is as desired. Conditions (i)-(v) in the definition of P
are immediate, (vii) and (viii) are ensured by our above choice of C and D!
for i < 8*, and (ix) is shown as usual.

Finally, condition (vi) in the definition of P follows if we can show that
a N AP = an AP, since (vi) holds for p. To show this is the case, assume
z€anAP. Nowif z € F* or z € W* then trivially « € AP. Thus assume
x € C(p'). Assume first that there is @ <  such that x = (1 + a)™0. We
distinguish several cases.

elfa =29 u¢€ AP codes the fact that ¢*(y) = 1. But having set
t*I[8 + 1, *] = 0, this means that v < 8 and thus = € AP.

e fa=6-vy+1and y= <y, 71>, 2 € AP" codes the fact that Y € B, IE
v1 < B, x € AP as in the preceding case. 1 > (3 implies that v; > =T~
and thus o > =%~ But then by condition (iv) for p, = could not have
been an element of a.

e fa=6-vy+3and v = <v9,71,i, * € AP codes the fact that Yo € cim,
If i < 8, x € AP as in the preceding cases. If i > 3, by our choice of C?
it follows that 79 and ~; are both > 8=, which in turn implies that
a > BT and again by condition (iv) for p,  thus could not have been
an element of a.

e The case t