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GROTHENDIECK RINGS OF THEORIES OF MODULES

AMIT KUBER1,

School of Mathematics, University of Manchester,
Manchester M13 9PL, England.

Abstract. The model-theoretic Grothendieck ring of a first order structure,
as defined by Krajicěk and Scanlon, captures some combinatorial properties
of the definable subsets of finite powers of the structure. In this paper we
compute the Grothendieck ring, K0(MR), of a right R-module M , where R is
any unital ring. As a corollary we prove a conjecture of Prest that K0(M) is
non-trivial, whenever M is non-zero. The main proof uses various techniques
from the homology theory of simplicial complexes.

1. Introduction

In [11], Krajicěk and Scanlon introduced the concept of the model-theoretic Grothendieck
ring of a structure. Amongst many other results, they proved that such a Grothendieck
ring is nontrivial if and only if the definable subsets of the structure satisfy a ver-
sion of the combinatorial pigeonhole principle, called the “onto pigeonhole princi-
ple” (ontoPHP ). Grothendieck rings have been studied for various rings and fields
considered as models of a first order theory (see [11], [2], [3], [4] and [5]) and they
are found to be trivial in many cases (see [2],[3]).

Prest conjectured that in stark contrast to the case of rings, for any ring R, the
Grothendieck ring of a nonzero right R module MR, denoted K0(MR), is nontriv-
ial. Perera ([12]) investigated the problem in his doctoral thesis and found that
elementarily equivalent modules have isomorphic Grothendieck rings, which is not
the case for general structures. He computed the Grothendieck ring for modules
over semisimple rings and showed that they are polynomial rings in finitely many
variables over the ring of integers.

In this paper we compute the Grothendieck ring for arbitrary modules and show
that they are quotients of monoid rings Z[X ], where X is the multiplicative monoid
of isomorphism classes of fundamental definable subsets of the module - the pp-
definable subgroups. This is the content of the main theorem, theorem 5.2.3, which
also describes the ‘invariants ideal’ - the ideal of the monoid ring that codes indices
of pairs of pp-definable subgroups. We further show (corollary 5.2.11) that there
is a split embedding Z → K0(M), whenever the module M is nonzero, proving
Prest’s conjecture.

The proof of the main theorem uses inputs from various mathematical areas like
model theory, algebra, combinatorics and algebraic topology. A special case of the
main theorem (theorem 4.1.2) is proved at the end of section 4. The special case
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2 GROTHENDIECK RINGS OF THEORIES OF MODULES

assumes that the theory T of the module M satisfies the model theoretic condition
T = T ℵ0 . This condition is equivalent to the statement that the invariants ideal
is trivial. The reader should note that the proof of the general case of the main
theorem is not given in full detail since it develops along lines similar to the special
case and uses only a few modifications to incorporate the invariants ideal.

The fundamental theorem of the model theory of modules (theorem 2.5.5) states
that every definable set is a boolean combination of pp-definable sets, but such a
boolean combination is far from being unique. We achieve a ‘uniqueness’ result as a
by-product of the theory we develop. We call this result the ‘cell decomposition the-
orem’ (Theorem 6.3.6) which states that definable sets can be represented uniquely
using pp-definable sets provided the theory T of the module satisfies T = T ℵ0 .
Though this theorem is not used directly in any other proof, its underlying idea
is one of the most important ingredients of the main proof. Based on this idea,
we define various classes of definable sets of increasing complexity, namely pp-sets,
convex sets, blocks and cells. Our strategy to prove every result about a general
definable set is to prove it first for convex sets, then blocks and then cells.

An important theme of the paper is the use of geometric and topological ideas in the
setting of definable sets. We use the idea of a ‘neighbourhood’ and ‘localization’ to
understand the structure of definable sets. We develop a notion of ‘connectedness’
of a definable set in 6.4 and prove theorem 6.4.6 which clearly shows the analogy
with its topological counterpart.

The main proof takes place at two different levels, which we name ‘local’ and ‘global’
following geometric intuition. We try to describe the “shape” of each definable set
in terms of integer valued functions called ‘local characteristics’. These numbers
are computed using Euler characteristics of various abstract simplicial complexes
which code the “local geometry” of the given set. The local data is combined to get
a family of integer valued functions, each of which is called a ‘global characteristic’.
The global characteristics enjoy the property of being preserved under definable
bijections. The family of such functions is indexed by the elements of the monoid
X and the functions collate to give the necessary monoid ring.

The rest of the paper is organized as follows. Section 2 contains the background
material on Grothendieck rings and the model theory of modules. It also describes
some important theorems in the homology theory of simplicial complexes. The
core part of the proof of the special case is the content of section 3. It introduces
the terminology that we use and proves important facts about local and global
characteristics. The highlights of this section are theorems 3.2.10 and 3.5.9. Sec-
tion 4 contains proofs of the multiplicative properties of the global characteristics,
completing the proof of the special case. Section 5 introduces new terminology
and the modifications in the proof of the special case necessary to handle the gen-
eral case. Some applications of the main theorem are discussed in section 6. The
maps between modules which fit with model theory are called pure embeddings.
We study their effect on Grothendieck rings in 6.1. We also show the existence of
Grothendieck rings containing nontrivial torsion elements in 6.2. The cell decompo-
sition theorem is proved in 6.3, whereas the discussion on connectedness is included
in 6.4. We conclude the paper with section 6.5 which contains further remarks on
the technique of the proof and mentions some directions for further research in this
area.
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2. Preliminaries

2.1. Semirings and Grothendieck rings

We recall the notion of a semiring and how to construct a ring in a canonical
fashion from a given semiring. A detailed exposition on this material can be found
in [10].

Let Lring = 〈0, 1,+, · 〉 be the language of rings.

Definitions 2.1.1. Any Lring structure S satisfying the following conditions is a
commutative semiring with unity.

• (S,+, 0) is a commutative monoid

• (S, · , 1) is a commutative monoid

• a· 0 = 0 for all a ∈ S

• multiplication (·) distributes over addition (+)

A semiring homomorphism is an Lring-homomorphism.

A semiring S is said to be cancellative if a+ c = b+ c ⇒ a = b for all a, b, c ∈ S.

In [10], a cancellative semiring is called a halfring. All the semirings considered
here are commutative semirings with unity, allowing the possibility 0 = 1.

Definition 2.1.2. A binary relation ∼ on a semiring S is said to be a congruence

relation if the following properties hold.

• ∼ is an equivalence relation

• a ∼ b, c ∼ d for a, b, c, d ∈ S ⇒ (a+ c) ∼ (b+ d), a· c ∼ b· d

There is a canonical way of constructing a cancellative semiring from any semiring
S as stated in the following theorem.

Theorem 2.1.3. Quotient construction: Let S be a semiring and let ∼ be the
binary relation defined as follows.

(1) For a, b ∈ S, a ∼ b ⇔ ∃c ∈ S, a+ c = b+ c

Then ∼ is a congruence relation. If ã denotes the ∼ equivalence class of a ∈ S, then
S̃ := {ã : a ∈ S} is a cancellative semiring with respect to the induced addition and

multiplication operations. There is a surjective semiring homomorphism q : S → S̃
given by a 7→ ã. Furthermore, given any cancellative semiring T and a semiring
homomorphism f : S → T , there exists a unique semiring homomorphism f̃ : S̃ →

T such that the diagram S
q

//

f

��
❃❃

❃❃
❃❃

❃❃
S̃

∃!f̃
����
��
��
��

T

commutes.

One can embed a cancellative semiring in a ring in a canonical fashion as stated in
the following theorem.

Theorem 2.1.4. Ring of Differences for a Cancellative Semiring: Let R
denote a cancellative semiring and let E denote the binary relation on the set R×R
of ordered pairs of elements from R defined as follows.

(2) For (a, b), (c, d) ∈ R×R, (a, b)E(c, d) ⇔ a+ d = b+ c
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Then R is an equivalence relation. If (a, b)E denotes the E-equivalence class of
(a, b), then the quotient structure (R×R)/E := {(a, b)E : (a, b) ∈ R×R} is a ring
with respect to the operations given by

(a, b)E + (c, d)E := (a+ c, b+ d)E(3)

(a, b)E · (c, d)E := (a· c+ b· d, a· d+ b· c)E(4)

−(a, b)E := (b, a)E(5)

for (a, b)E , (c, d)E ∈ (R×R)/E. We denote the ring (R×R)/E by K0(R) following
the conventions of K-theory. The semiring R can be embedded into the ring K0(R)
by the semiring homomorphism i given by a 7→ (a, 0). Furthermore, given any
ring T and a semiring homomorphism g : R → T , there exists a unique ring

homomorphism g : K0(R) → T such that the diagram R
i

//

g

��
❃❃

❃❃
❃❃

❃❃
K0(R)

∃!g
||②②
②②
②②
②②
②

T
commutes.

Note that each of the E-equivalence classes of the elements from R × R, as con-
structed in the previous theorem, contains a pair of the form (a, 0) or (0, a) for
some a ∈ R.

For a semiring S, let K0(S) denote the ring K0(S̃) for simplicity, where S̃ is the
cancellative semiring obtained from S as stated in the theorem 2.1.3 and let the
canonical map S → K0(S) be denoted by ηS . We finally note the following result
which combines the previous two theorems.

Corollary 2.1.5. A semiring S can be embedded in a ring if and only if S is can-
cellative. Given any ring T and a semiring homomorphism g : S → T , there exists a

unique ring homomorphism g : K0(S) → T such that the diagram S
ηS

//

g

��
❃❃

❃❃
❃❃

❃❃
K0(S)

∃!g
||②②
②②
②②
②②

T
commutes.

This result can be stated in category theoretic language as follows. LetCSemiRing

denote the category of commutative semirings with unity and semiring homomor-
phisms preserving unity. Let CRing denote its full subcategory consisting of com-
mutative rings with unity and let I : CRing → CSemiRing be the inclusion
functor. Then I admits a left adjoint, namely K0 : CSemiRing → CRing. For
each semiring S, the ring K0(S) is called the Grothendieck Ring constructed from
S. If η is the unit of the adjunction, the diagram in the previous corollary represents
the universal property of the adjunction.

2.2. Grothendieck rings of first order structures

We aim to introduce the notion of the model theoretic Grothendieck ring of a first
order structure in this section. This account is based on [11]. After setting some
background in model theory, we state how to construct the semiring of definable
isomorphism classes of definable subsets of finite cartesian powers of the given
structure M . Following the method described in the previous section, we then
construct the Grothendieck ring K0(M).

Let L denote any language and M denote any first order L-structure. The term
definable will always mean definable with parameters from M .
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Definitions 2.2.1. For every n ≥ 1, we define Def(Mn) to be the collection of all
definable subsets of Mn. We define Def(M) :=

⋃
n≥1 Def(Mn).

Definition 2.2.2. We say that two definable sets A,B ∈ Def(M) are definably

isomorphic if there exists a definable bijection between them, i.e., a bijection f :
A → B such that the graph Gr(f) ∈ Def(M). This is an equivalence relation on

Def(M) and the equivalence class of a set A is denoted by [A]. We use D̃ef(M)
to denote the set of all equivalence classes with respect to this relation. We use

[−] : Def(M) → D̃ef(M) to denote the surjective map defined by A 7→ [A].

We can regard D̃ef(M) as an Lring-structure. In fact, it is a semiring with respect
to the operations defined as follows.

• 0 := [∅]

• 1 := [{∗}] for any singleton subset {∗} of M

• [A] + [B] := [A′ ⊔B′] for A′ ∈ [A], B′ ∈ [B] such that A′ ∩B′ = ∅

• [A]· [B] := [A×B]

(NB: We use ⊔ to denote disjoint unions.)

Now we are ready to give the most important definition.

Definition 2.2.3. We define the model-theoretic Grothendieck ring of the

first order structureM , denoted by K0(M), to be the ring K0(D̃ef(M)) obtained

from corollary 2.1.5, where the semiring structure on D̃ef(M) is as defined above.

This ring captures the definable combinatorics of the structure M . We are in-
terested to know whether K0(M) = {0}. It is useful to consider some definable
combinatorial aspects to tackle this problem.

Definition 2.2.4. We say that an infinite structure M satisfies the pigeonhole

principle if for each A ∈ Def(M), each definable injection f : A ֌ A is an
isomorphism. We write this as M � PHP .

This condition is very strong to be true for many structures. As an example,
consider the additive group of integers Z in the language of abelian groups. The

function Z
(−)×2
−−−−→ Z is a definable injection but not an isomorphism. So it is useful

to consider some weaker forms. Though there are several of them (see [11]), we
note the one important for us.

Definition 2.2.5. We say that an infinite structure M satisfies the onto pigeon-

hole principle if for each A ∈ Def(M) and each definable injection f : A ֌ A,
we have f(A) 6= A \ {a} for any a ∈ A. We write this as M � ontoPHP .

The following proposition gives the necessary and sufficient condition for K0(M)
to be nontrivial (i.e. 0 6= 1 in K0(M)). We include a proof for the sake of com-
pleteness.

Proposition 2.2.6. Given any infinite structure M , K0(M) 6= {0} if and only if
M � ontoPHP .

Proof. Recall the construction of the cancellative semiring from (1). The condition

0 = 1 in K0(M) is thus equivalent to the statement that for some A ∈ Def(M),
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we have 0 + [A] = 1 + [A]. This is precisely the statement that M 2 ontoPHP .
�

A brief survey of known Grothendieck Rings: Very few examples of Grothendieck
rings are known in general. If M is a finite structure, then K0(M) ∼= Z. Krajiček
and Scanlon have shown in [11, Example 3.6] that K0(R) ∼= Z using the dimension
theory and cell decomposition theorem for o-minimal structures, where R denotes
the real closed field. Cluckers and Haskell ([2], [3]) proved that the fields of p-adic
numbers have trivial Grothendieck rings, by constructing definable bijections from
a set to the same set minus a point. Denef and Loeser ([4],[5]) have found that
the Grothendieck ring K0(C) of the field C of complex numbers regarded as an
Lring-structure admits the ring Z[X ;Y ] as a quotient. Krajiček and Scanlon have
strengthened this result and shown that K0(C) contains an algebraically indepen-
dent set of size continuum, and hence the ring Z[Xi : i ∈ c] embeds into K0(C).
Perera showed in [12, Theorem4.3.1] that K0(M) ∼= Z[X ] wheneverM is an infinite
module over an infinite division ring. Prest conjectured [12, Ch. 8,Conjecture A]
that K0(M) is nontrivial for all nonzero right R-modulesM . We prove that K0(M)
is actually a quotient of a monoid ring and furthermore it is nontrivial. Most of
the paper is devoted to the proof of this statement.

2.3. Euler characteristic of simplicial complexes

We introduce the concept of an abstract simplicial complex and a couple of ways
to calculate its Euler characteristic. We also state some important results in the
homology theory of simplicial complexes. The material on homology and relative
homology presented in this section is taken from [7, II.4]. This theory provides the
basis for the analysis of ‘local characteristics’ in 3.2.

Definition 2.3.1. An abstract simplicial complex is a pair (X,K) where X is
a finite set and K is a collection of subsets of X satisfying the following properties.

• ∅ /∈ K

• {x} ∈ K for each x ∈ X

• if F ∈ K and ∅ 6= F ′ ( F , then F ′ ∈ K

We usually identify the simplicial complex (X,K) with K. The elements F ∈ K are
called the faces of the complex and the singleton faces are called the vertices of
the complex. We use V(K) to denote the set of vertices of K.

Let ∆k := P([k + 1]) \ {∅} denote the standard k-simplex, where P denotes the
power set operator and [k+1] = {1, 2, . . . , k+1} for k ≥ 0. We define the geometric

realization of the standard k-simplex, denoted |∆k|, to be the set of all points of
Rk+1 which can be expressed as a convex linear combination of the standard basis
vectors of Rk+1. In fact we can associate to every abstract simplicial complex a
topological space |K|, called its geometric realization. This topological space is
constructed by ‘gluing together’ the geometric realizations of its simplices.

We assign dimension to every face F ∈ K by stating dimF := |F | − 1 and we say
that the dimension of the complex is the maximum of the dimensions of its
faces.

Definition 2.3.2. We define the Euler characteristic of the complex K, denoted
χ(K), to be the integer ΣdimK

n=0 (−1)nvn where vn is the number of faces in K with
dimension n.
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It is easy to check that χ(∆k) = 1 for each k ≥ 0. Since we also allow our complex
to be empty, we define χ(∅) := 0 though dim∅ is undefined.

There is yet another way to obtain the Euler characteristics of simplicial complexes,
via homology. The word homology will always mean simplicial homology with
integer coefficients in this paper. If bn denotes the nth Betti number of the simplicial
complex K (i.e. the rank of the nth homology group Hn(K)), then we have the
identity χ(K) = Σ∞

n=0(−1)nbn where the sum on the right hand side is finite. We
use the notation C∗(K) to denote the chain complex Cn(K)n≥0 andH∗(K) to denote
the chain complex (Hn(K))n≥0, where Cn(K) is the free abelian group generated
by the set of n-simplices in K.

The following result states that homology is a homotopy invariant. It will be useful
in proving a key result (proposition 3.2.11).

Theorem 2.3.3. If K1 and K2 (meaning, their geometric realizations) are homo-
topy equivalent, then H∗(K1) ∼= H∗(K2).

The definition of Euler characteristic in terms of Betti numbers gives the following
corollary.

Corollary 2.3.4. If K1 and K2 are homotopy equivalent, then χ(K1) = χ(K2).

The homology groups Hn(K), for n ≥ 1, calculate the number of “n-dimensional
holes” in the geometric realization of the complex K. But sometimes it is important
to ignore the data present in a smaller part of the given structure. This can be done
in two ways, viz. using the cone construction for a subcomplex or by using relative
homology. Given a complex K and a subcomplex Q ⊆ K, we write K ∪ Cone(Q)
for the simplicial complex whose vertex set is V(K) ∪ {x}, where x /∈ V(K), and
the faces are K ∪ {{x} ∪ F : F ∈ Q}. We say that x is the apex of the cone. In
the same situation, we use the notation Hn(K;Q) to denote the nth homology of
K relative to Q.

The following theorem connects the relative homologies with the homologies of the
original complexes.

Theorem 2.3.5. (see [8, Theorem2.16]) Given a pair of simplicial complexes
Q ⊂ K, we have the following long exact sequence of homologies.

· · · → Hn(Q) → Hn(K) → Hn(K;Q) → Hn−1(Q) → · · · → H0(K;Q) → 0

We shall also make use of the following result.

Theorem 2.3.6. Given a pair of simplicial complexes Q ⊆ K, we have Hn(K;Q) ∼=
Hn(K ∪ Cone(Q)) for n ≥ 1 and H0(K ∪ Cone(Q)) ∼= H0(K;Q)⊕ Z.
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Illustration 2.3.7. Let K = {{1}, {2}, {3}, {1, 2}, {2, 3}} and Q denote the subcom-
plex {{1}, {3}}. Then

Hn(K) =

{
Z, if n = 0,

0, otherwise

Hn(Q) =

{
Z⊕ Z, if n = 0,

0, otherwise

Hn(K;Q) =

{
Z, if n = 1,

0, otherwise

Hn(K ∪ Cone(Q)) =

{
Z, if n = 0, 1,

0, otherwise

Combining the previous two results with the definition of Euler characteristic, we
get

Corollary 2.3.8. For a pair of simplicial complexes Q ⊆ K, χ(K ∪ Cone(Q)) +
χ(Q) = χ(K) + 1.

2.4. Products of simplicial complexes

We define various products of simplicial complexes and study their interrelations.
The inclusion-exclusion principle stated in lemma 2.4.4 is equivalent to the state-
ment that ‘local characteristics are multiplicative’ (lemma 4.2.1).

Let K and Q be two simplicial complexes with vertex sets V(K) and V(Q) re-
spectively and let π1 : V(K) × V(Q) → V(K) and π2 : V(K) × V(Q) → V(Q)
denote the projection maps. We define two simplicial complexes with the vertex
set V(K)× V(Q). The following product is defined in [6, §3].

Definition 2.4.1. The simplicial product K △ Q of two simplicial complexes K
and Q is a simplicial complex with vertex set V(K) × V(Q) where a nonempty set
F ⊆ V(K)× V(Q) is a face of K △ Q if and only if π1(F ) ∈ K and π2(F ) ∈ Q.

Definition 2.4.2. The disjunctive product K⊠Q of two simplicial complexes K
and Q is a simplicial complex with vertex set V(K) × V(Q) where a nonempty set
F ⊆ V(K)× V(Q) is a face of K ⊠Q if and only if π1(F ) ∈ K or π2(F ) ∈ Q.

Observe that the previous two definitions are identical except for the word ‘and’ in
the former is replaced by the word ‘or’ in the latter. Thus the simplicial product
K △ Q is always contained in the disjunctive product K ⊠Q.

Illustration 2.4.3. Let K = {{1}, {2}} denote the complex consisting precisely of
two vertices. Then K △ K contains only the vertices of the ‘square’ K⊠K given by
{{(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}, {(1, 1), (1, 2)}, {(2, 1), (2, 2)}, {(1, 1), (2, 1)},
{(1, 2), (2, 2)}}. For each k ≥ 0 the complex K △ ∆k is the union of two disjoint
copies of ∆k, whereas the complex K ⊠∆k is a copy of ∆2k+1.

The main aim of this section is to prove the following lemma about the Euler
characteristic of the disjunctive product.

Lemma 2.4.4. The Euler characteristics of two simplicial complexes K and Q
satisfy

(6) χ(K ⊠Q) = χ(K) + χ(Q)− χ(K)χ(Q).
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Illustration 2.4.5. Let K be as defined in 2.4.3. Then we observe that χ(K) = 2.
Since K⊠K contains 4 vertices and 4 edges, we get χ(K⊠K) = 0 = 2χ(K)−χ(K)2

verifying equation (6) in this case.

The proof of the lemma uses tensor products of chain complexes.

Definition 2.4.6. Let C∗ = {Cn, ∂n}n≥0 and D∗ = {Dn, δn}n≥0 denote two
bounded chain complexes of abelian groups. The tensor product complex C∗ ⊗
D∗ = {(C∗ ⊗D∗)n, dn}n≥0 is defined by

(C∗ ⊗D∗)n =
⊕

i+j=n

Ci ⊗Dj,

dn(ai ⊗ bj) = ∂i(ai)⊗ bj + (−1)iai ⊗ δj(bj).

Illustration 2.4.7. We compute the tensor product C∗(∂∆
2)⊗Cn(∆

1) as an exam-
ple, where ∂∆2 denotes the boundary of ∆2.

Cn(∂∆
2) =

{
Z⊕ Z⊕ Z, if n = 0, 1,

0, otherwise

Cn(∆
1) =





Z⊕ Z, if n = 0,

Z, if n = 1,

0, otherwise

Cn(∂∆
2)⊗ Cn(∆

1) =





⊕6
i=1Z, if n = 0,

⊕9
i=1Z, if n = 1,

⊕3
i=1Z, if n = 2,

0, otherwise

There is yet one more product of simplicial complexes, viz., the cartesian product,
defined in the literature (see [6]). We avoid its use by dealing with the product of
geometric realizations (with the product topology). The homology of such (finite)
product spaces is easily computed using triangulation. We first note that the Euler
characteristic is multiplicative.

Proposition 2.4.8. (see [15, p.205,Ex. B.4]) Let K and Q be any simplicial com-
plexes. Then

χ(|K| × |Q|) = χ(K)χ(Q).

A famous theorem of Eilenberg and Zilber (see [6]) connects the homologies of two
semi-simplicial complexes (a term used in 1950 that includes the class of simplicial
complexes) with that of their cartesian product. We state this result below using
the cartesian product of their geometric realizations. More details can be found in
[8, §2.1] and [7, §III.6].

Theorem 2.4.9. (see. [7, §III.6.2]) Let K and Q be any two simplicial complexes.
Then we have
H∗(|K| × |Q|) ∼= H∗(C∗(K) ⊗ C∗(Q)).

Furthermore, Eilenberg and Zilber state the following corollary of the previous
theorem in [6].

Corollary 2.4.10. Let K and Q be any two simplicial complexes. Then
H∗(K △ Q) ∼= H∗(C∗(K)⊗ C∗(Q)).
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Illustration 2.4.11. We continue the example in 2.4.7. The computation of the
boundary operators yields

Hn(C∗(∂∆
2)⊗ C∗(∆

1)) =

{
Z, if n = 0, 1,

0, otherwise

The space |∂∆2| × |∆1| is a cylinder which is homotopy equivalent to S1. Hence
Hn(|∂∆2| × |∆1|) = Z for n = 0, 1 and is zero for other values of n. This completes
the illustration of theorem 2.4.9.

Furthermore the complex ∂∆2 △ ∆1 is the union of three copies of ∆3 each of which
shares exactly one edge (i.e. a copy of ∆1) with every other copy and these three
edges are pairwise disjoint. It can be easily see that this complex (i.e. its geometric
realization) is homotopy equivalent to the circle and hence the conclusions of the
corollary 2.4.10 hold.

Proof. (Lemma 2.4.4) We first observe that there is an embedding of simplicial
complexes ι1 : K △ (∆|V(Q)|−1) → K ⊠ Q induced by some fixed enumeration
of V(Q). Similarly there is an embedding ι2 : (∆|V(K)|−1) △ Q → K ⊠ Q in-
duced by some fixed enumeration of V(K). Furthermore, the intersection ι1(K △

(∆|V(Q)|−1)) ∩ ι2((∆|V(K)|−1) △ Q) is precisely the complex K △ Q.

This gives us, using the counting definition of the Euler characteristics, that the
identity

(7) χ(K ⊠Q) = χ(K △ (∆|V(Q)|−1)) + χ((∆|V(K)|−1) △ Q)− χ(K △ Q)

holds.

If we can prove that χ(K △ Q) = χ(K)χ(Q) for any simplicial complexes K and Q,
then (7) will yield (6) since χ(∆k) = 1 for each k ≥ 0.

Now we have H∗(K △ Q) ∼= H∗(C∗(K) ⊗ C∗(Q)) ∼= H∗(C∗(|K| × |Q|)), where the
first isomorphism is by 2.4.10 and the second by 2.4.9.

Hence we have χ(K △ Q) = χ(|K| × |Q|) = χ(K)χ(Q) by 2.4.8 as required. This
completes the proof. �

2.5. Model theory of modules

We introduce the terminology and some basic results in the model theory of modules
in this section. A detailed exposition can be found in [13]. Instead of working with
formulas all the time, we fix a structure and work with the definable subsets of
finite cartesian powers of that structure.

Let R be a fixed ring with unity. Then every right R-module M is a structure
for the first order language LR = 〈0,+,−,mr : r ∈ R〉, where each mr is a unary
function symbol representing the action of right multiplication by the element r.
When we are working in a fixed module M , we usually write the element mr(a) in
formulas as ar for each a ∈M .

First we note the following result of Perera which states that the Grothendieck ring
of a module is an invariant of its theory. A proof of this proposition can be found
at the end of section 5 as a corollary of theorem 5.2.3.

Proposition 2.5.1. (see [12, Corollary5.3.2]) LetM and N be two right R-modules
such that M ≡ N , then K0(M) ∼= K0(N).
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Let us fix a right R-module M . Then every definable subset of Mn for any n ≥ 1
can be expressed in terms of certain fundamental definable subsets ofMn. In order
to state this partial quantifier elimination result, we first define the formulas which
define these fundamental subsets.

Definition 2.5.2. A positive primitive formula (pp-formula for short) is a
formula in the language LR which is equivalent to one of the form

φ(x1, x2, . . . , xn) = ∃y1∃y2 . . . ∃ym

t∧

i=1




n∑

j=1

xjrij +
m∑

k=1

yksik + ci = 0


 ,

where rij , sik ∈ R and the ci are parameters from M .

A subset ofMn which is defined by a pp-formula (with parameters) will be called a
pp-set. If a subgroup ofMn is pp-definable, then its cosets are also pp-definable. The
following lemma is well known and a proof can be found in [13, Corollary2.2].

Lemma 2.5.3. Every parameter-free pp-formula φ(x) defines a subgroup of Mn,
where n is the length of x. If φ(x) contains parameters from M , then it defines
either the empty set or a coset of a pp-definable subgroup of Mn. Furthermore, the
conjunction of two pp-formulas is (equivalent to) a pp-formula.

Let Ln denote the meet-semilattice of all pp-subsets ofMn ordered by the inclusion
relation ⊆. We will use the notation Ln(MR), specifying the module, when we work
with more than one module at a time.

Definition 2.5.4. Let M be a right R-module and let A,B ∈ Ln be subgroups. We
define the invariant Inv(M,A,B) to be the index [A : A ∩ B] if this if finite or ∞
otherwise.

An invariants condition is a statement that a given invariant is greater than or
equal to or less than a certain number. These invariant conditions can be expressed
as sentences in LR. An invariants statement is a finite boolean combination of
invariants conditions.

We are now ready to state the promised fundamental theorem of the model theory
of modules.

Theorem 2.5.5. (see [1]) Let T be the theory of right R-modules and φ(x) be an
LR formula (possibly with parameters). Then we have

T � ∀x(φ(x) ↔
m∨

i=1


ψi(x) ∧

li∧

j=1

¬χij(x)


 ∧ I),

where I is an invariants statement and ψi(x), χij(x) are pp-formulas.

We may assume that χij(M) ⊆ ψi(M) for each value of i and j, otherwise we rede-
fine χij as χij ∧ψi. When we work in a complete theory, the invariants statements
will vanish and hence we get the following form.

Theorem 2.5.6. For each n ≥ 1, every definable subset of Mn can be expressed
as a finite boolean combination of pp-subsets of Mn.

Using this result together with the meet-semilattice structure of Ln, we can express
each definable subset of Mn in a “disjunctive normal form” of pp-sets. Expressing
a definable set as a disjoint union helps to break it down to certain low complexity
fragments, each of which has a specific shape given by the normal form. A proof of
this result can be found in [12, Lemma3.2.1].
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Lemma 2.5.7. Every definable subset ofMn can be written as
⊔t

i=1(Ai\(
⋃si

j=1 Bij))
for some Ai, Bij ∈ Ln.

The following lemma is one of the important tools in our analysis.

Lemma 2.5.8. Neumann’s Lemma (see [13, Theorem2.12])
If H and Gi are subgroups of some group (K,+) and a coset of H is covered
by a finite union of cosets of the Gi, then this coset of H is in fact covered by
the union of just those cosets of Gi where Gi is of finite index in H, i.e. where
[H : Gi] := [H : H ∩Gi] is finite.

c+H ⊆
⋃

i∈I

ci +Gi ⇒ c+H ⊆
⋃

i∈I0

ci +Gi,

where I0 = {i ∈ I : [H : Gi] <∞}.

3. Special Case: Additive Structure

3.1. The condition T = Tℵ0

Let M be a fixed right R-module. For brevity we denote Th(M) by T . We work
with this fixed module throughout this section. If X,Y ⊆ Mn, X,Y 6= ∅, then we
use the Minkowski sum notation X + Y to denote the set {x + y : x ∈ X, y ∈ Y }.
In case X = {x}, we use x+ Y to denote X + Y .

Proposition 3.1.1. The following conditions are equivalent for a module M .

(1) Inv(M ;A,B) is either equal to 1 or ∞ for each A,B ∈ Ln such that 0 ∈
A ∩B, for each n ≥ 1,

(2) M ≡M ⊕M ,

(3) M ≡M (ℵ0).

Definition 3.1.2. The theory T = Th(M) is said to satisfy the condition T = T ℵ0

if either (and hence all) of the conditions of proposition 3.1.1 hold.

We wish to add yet one more condition to the list. The rest of this section is devoted
to formulating the condition and deriving its consequences.

We need to introduce some new notation to do this. Let us denote the set of all
finite subsets of Ln \ {∅} by Pn and the set of all finite antichains in Ln \ {∅} by
An. Clearly An ⊆ Pn for each n ≥ 1. We use lowercase Greek letters to denote
elements of An and Pn.

Definition 3.1.3. A definable subset A of Mn will be called pp-convex if there is
some α ∈ Pn such that A =

⋃
α.

Neumann’s lemma (2.5.8) takes the following simple form if we add the equivalent
conditions of 3.1.1 to our hypotheses.

Corollary 3.1.4. Suppose T = T ℵ0 . If A ∈ Ln and F ⊆ Ln such that A ⊆
⋃
F ,

then A ⊆ F for at least one F ∈ F .

Under the same hypotheses, we want to show that for every α ∈ Pn the pp-convex
set
⋃
α is uniquely determined by the antichain β ⊆ α of all maximal elements in

α.
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Proposition 3.1.5. Suppose that T = T ℵ0 holds. Let A ⊆Mn be a pp-convex set
for some n ≥ 1. Then there is a unique β ∈ An such that A =

⋃
β.

Proof. Let α1, α2 ∈ Pn be such that A =
⋃
α1 =

⋃
α2. Without loss of

generality we may assume α1, α2 ∈ An. Let α1 = {C1, C2, . . . , Cl} and α2 =
{D1, D2, . . . , Dm}.

We have Dj ⊆
⋃l

i=1 Ci for each 1 ≤ j ≤ m. Then by 3.1.4, we have Dj ⊆ Ci for
at least one i. By symmetry we also get that each Ci is contained in a Dj . Using
that both α1 and α2 are antichains with the same union, the proof is complete.
�

This proposition shows that under the hypothesis T = T ℵ0 the set of pp-convex
subsets of Mn is in bijection with An for each n ≥ 1. We shall often use this
correspondence without mention. For α ∈ An, we define the rank of the pp-convex
set
⋃
α to be the integer |α|.

The set An can be given the structure of a poset by introducing the relation ≺n

defined by β ≺n α if and only if for each B ∈ β, there is some A ∈ α such that
B ( A.

Definition and Lemma 3.1.6. Assume that T = T ℵ0 . We say that a definable
subset C ofMn is a cell if there are α, β ∈ An with β ≺n α such that C =

⋃
α\
⋃
β.

We denote the set of all cells contained in Mn by Cn. The antichains α and β,
denoted by P (C) and N(C) respectively, are uniquely determined by the cell C. In
other words, there is a bijection between the set Cn and the set of pairs of antichains
strictly related by ≺n. In case |P (C)| = 1, we say that C is a block. We denote
the set of all blocks in Cn by Bn.

Proof. Given any α, β ∈ An such that β ≺n α and C =
⋃
α \

⋃
β, the pp-convex

set
⋃
(α ∪ β) is determined by C. But this set is uniquely determined by the set

of maximal elements in α ∪ β by 3.1.5. Since β ≺n α, the required set of maximal
elements is precisely α. Furthermore, the set

⋃
α \ C =

⋃
β is pp-convex and thus

is uniquely determined by β by 3.1.5 and this finishes the proof. �

We know from 2.5.7 that any definable subset ofMn can be represented as a disjoint
union of blocks. So it will be important for us to understand the structure of blocks
in detail. A block is always nonempty since any finite union of proper pp-subsets
cannot cover the given pp-set by 3.1.5. For each B ∈ Bn, we use the notation B to
denote the unique element of P (B).

Theorem 3.1.7. Let M be an R-module. Then Th(M) = Th(M)ℵ0 if and only if
for each B ∈ Bn, n ≥ 1, we have B+B−B = B. Under these conditions, we also
get B −B = B whenever B is a subgroup.

Proof. Assume that Th(M) = Th(M)ℵ0 holds. Let B ∈ Bn be such that N(B) =
{D1, D2, . . . , Dl} ≺ P (B) = {A}. Let D =

⋃
N(B). We want to show that

B + B − B = A. But clearly B ⊆ B + B − B. So it suffices to show that
D ⊆ B +B −B.

First assume that A is a subgroup of Mn. Let d ∈ D. Since A \ (D − d) 6= ∅, we
can choose some x ∈ A \ (D− d) by 3.1.4. Then x+ d ∈ (A+ d) \D = A \D = B,
since A is a subgroup. Again choose some y ∈ A \ ((D − d) ∪ (D − d − x)). Then
y+d ∈ (A+d)\(D∪(D−x)) for similar reasons. Thus y+d, y+x+d ∈ A\D = B.
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Now d = (d + x) + (d + y) − (d + x + y) ∈ B + B − B and hence the conclusion
follows.

In the case when A is a coset of a pp-definable subgroup G, say A = a + G, let
C = D − a. Then, by the first case, G = C + C − C. Now if d ∈ A, then
d − a ∈ G. Hence there are x, y, z ∈ C such that d − a = x + y − z. Thus
d = (x + a) + (y + a) − (z + a) ∈ B + B − B and this completes the proof in one
direction.

For the converse, suppose that Th(M) 6= Th(M)ℵ0 . Then there are two pp-definable
subgroups G,H of Mn for some n ≥ 1 such that H ≤ G and 1 < [G : H ] <∞. Let
[G : H ] = k and let H1, H2, · · · , Hk be the distinct cosets of H in G. Since H is a

pp-set, all the cosets Hi are pp-sets as well. Now let B = Hk = G \
⋃k−1

i=1 Hi. Then
B is a nonempty block since k > 1. But, since B is a coset, B + B − B = B 6= G
which proves the result in the other direction.

Now we prove the last statement under the hypothesis Th(M) = Th(M)ℵ0 . Let
B,A,D be as defined in the first paragraph of the proof and assume that A is a
subgroup of Mn. Given any a ∈ A, we choose x ∈ A \ (D ∪ (D − a)), which is
possible by 3.1.4. Then x, x + a ∈ B and hence a = (x + a) − x ∈ (B − B). This
shows the inclusion A ⊆ B−B. We clearly have (B−B) ⊆ (A−A) and A−A = A
since A is a subgroup. This completes the proof. �

A map f : B →Mn is linear if f(x+ y− z) = f(x)+ f(y)− f(z) for all x, y, z ∈ B
such that x+ y− z ∈ B. We use the previous theorem to show that any linear map
on B can be extended uniquely to a linear map on B.

Lemma 3.1.8. Suppose that T = T ℵ0 holds. Then for each n ≥ 1, each B ∈ Bn

and each injective linear map f : B ֌ Mn, there exists a unique injective linear
extension f : B ֌Mn.

Proof. Let B = A \
⋃m

i=1Di be a block and assume that A is a pp-definable
subgroup. Let D =

⋃m
i=1Di and, for each i, let Hi denote the subgroup of A whose

coset is Di. Let H =
⋃m

i=1Hi. We choose and fix elements xi ∈ B sequentially
depending on the earlier choices as follows. We choose x1 ∈ A \ (D ∪ H) and for

each 1 < i ≤ m, choose xi ∈ A\ (D∪H ∪
⋃i−1

j=1(D+xj)). We can choose xi at each

step by 3.1.4. Then we define f(di) = f(xi+di)−f(xi) for di ∈ Di and f(b) = f(b)
for b ∈ B.

f is well-defined: Let d ∈ Di ∩ Dj for some j < i. Then by the choice of xi,
(xi − xj) ∈ B. Also xi, xi + d, xj , xj + d ∈ B. Hence f(xi − xj) is defined and
is equal to both f(xi) − f(xj) and f(xi + d) − f(xj + d). Hence we see that

f(xi + d) − f(xi) = f(xj + d) − f(xj), which proves that f(d) is well-defined for
each d ∈ D.

f is linear: Let b ∈ B and d ∈ Di. Then there are two possibilities namely, b+d ∈ B
or b+d ∈ Dj for some j. In the former case we have f(b+d) = f(b+d) = f(b+xi+

d− xi) = f(b) + f(xi + d)− f(xi) = f(b) + f(d) since xi + d, xi, b ∈ B, while in the
latter case we have f(b+d) = f(b+d+xj)−f(xj) = f(b+d+xj−xi+xi)−f(xj) =
f(b) + f(xi + d)− f(xi) + f(xj)− f(xj) = f(b) + f(xi + d)− f(xi) = f(b) + f(d)
since b, xi, xj , xi + d, xj + d ∈ B.

Let b ∈ Dk and d ∈ Di. Then there are two possibilities namely, b + d ∈ B
or b + d ∈ Dj for some j. In the former case we have f(b + d) = f(b + d) =

f(b+ xk − xk + d+ xi − xi) = f(b+ xk)− f(xk) + f(d+ xi)− f(xi) = f(b) + f(d)
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since b+xk, xk, xi, xi+ d ∈ B, while in the latter case we have f(b+ d) = f(b+ d+
xj)− f(xj) = f(b+ xk − xk + d+ xi− xi+ xj)− f(xj) = f(b+ xk)− f(xk)+ f(d+

xi)− f(xi) + f(xj)− f(xj) = f(b) + f(d) since b+ xk, xk, xi, xi + d, xj ∈ B.

In the case when b, d ∈ B and b+d ∈ B, the linearity of f follows from the linearity
of f . When b+d ∈ Di, f(b+d) = f(b+d+xi)−f(xi) = f(b)+f(d)+f(xi)−f(xi) =
f(b)+f(d) since b, d, xi ∈ B. So we have showed in each case that f is linear.

f is injective: Without loss we may assume that f(0) = 0, otherwise we may
consider the function f(−) − f(0). Let a ∈ A be such that f(a) = 0. Then if
a ∈ B, then f(a) = 0 and hence a = 0 by injectivity of f . If a ∈ Di, then
f(xi + a) − f(xi) = 0 and hence f(xi + a) = f(xi). But then xi + a = xi by
injectivity of f since both xi + a, xi ∈ B. This again implies that a = 0.

f is unique: Let h : A → Mn be any linear injective extension of f . Then h(b) =

f(b) = f(b) for each b ∈ B and hence, for d ∈ Di, we have f(d) = f(xi+d)−f(xi) =
h(xi + d)− h(xi) = h(d) since xi + d, xi ∈ B and h is linear.

If A is a nontrivial coset of some pp-definable subgroup G ofMn, D ( A, B = A\D
and we are given some linear map f : B ֌ Mn, we choose and fix some b ∈ B.
Then clearly A − b = G and we take C = B − b. Define g : C → Mn by setting
g(c) = f(c + b) − f(b). Now whenever x, y ∈ C such that x + y ∈ C, we have
g(x+ y) = f(x+ y+ b)− f(b) = f((x+ b)− b+ (y+ b))− f(b) = f(x+ b)− f(b) +
f(y+b)−f(b) = g(x)+g(y) since x+b, y+b, b ∈ B and f is linear. Hence g is linear
on C. Therefore by the subgroup case, we have a unique linear injective extension
of g to G, say g. Then we define f : A → Mn by setting f(a) = g(a − b) + f(b).

It can be easily seen that f is indeed an extension of f . The uniqueness, linearity
and injectivity of f follows from the uniqueness of g. This argument completes the
proof of this case and hence that of the lemma. �

3.2. Local characteristics

We fix some n ≥ 1 and drop all the subscripts n. We also assume hereafter that
Th(M) = Th(M)ℵ0 holds for some fixed right R-moduleM . For brevity, we denote
the sets L \ {∅},A \ {∅}, . . . by L∗,A∗, . . . respectively.

Definition 3.2.1. Let D be a finite subset of L∗. The smallest sub-meet-semilattice
of L containing D will be called the pp-nest (or simply nest) corresponding to D

and will be denoted by D̂. Note that D̂ is finite. In general, any finite sub-meet-
semilattice of L will also be referred to as a pp-nest.

Definition 3.2.2. For each finite subset F of L∗ and F ∈ F , we define the F-core

of F to be the block CoreF (F ) := F \
⋃
{G : G ∈ F , G ∩ F ( F}.

Let D ⊆ Mn be definable. Then D =
⊔m

i=1 Bi for some Bi ∈ B by 2.5.7. We say
that D is the nest corresponding to this partition of D if it is the nest corresponding
to the finite family

⋃m
i=1(P (Bi) ∪ N(Bi)). Every definable set can be partitioned

canonically given a suitable nest, which is the content of the following lemma whose
proof is omitted.

Definition and Lemma 3.2.3. Suppose D ⊆ Mn is definable and D is the nest
corresponding to a given partition D =

⊔m
i=1Bi. For every nonempty F ∈ D,

CoreD(F ) ∩ D 6= ∅ if and only if CoreD(F ) ⊆ D. We define the characteristic

function of the nest D, δD : D → {0, 1}, by δD(F ) = 1 if and only if F 6= ∅ and
CoreD(F ) ⊆ D. We denote the sets δ−1

D (1) and δ−1
D (0) by D+ and D− respectively.

Then D =
⋃

F∈D+ CoreD(F ).
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Illustration 3.2.4. If B is a block with P (B) = A and N(B) = {D1, D2} such that
D1 ∩ D2 6= ∅, then D = {A,D1, D2, D1 ∩ D2} is the corresponding nest. Clearly
B = CoreD(A) and hence D+ = {A}.

We will sometimes use another family of characteristic functions stated in the fol-
lowing definition.

Definition 3.2.5. Given any C ∈ C, we define the characteristic function of the
cell C, δ(C) : L∗ → {0, 1}, as δ(C)(P ) = 1 if P ⊆ C and δ(C)(P ) = 0 otherwise,
for each P ∈ L∗. When P = {a}, we write the expression δ(C)(a) instead of
δ(C)({a}).

The set A of antichains is ordered by the relation ≺ but can also be considered as
a poset with respect to the natural inclusion ordering on the set of all pp-convex
sets. For α, β ∈ A, we define α ∧ β to be the antichain corresponding (in the
sense of 3.1.5) to (

⋃
α) ∩ (

⋃
β) and α ∨ β to be the antichain corresponding to

(
⋃
α) ∪ (

⋃
β). Since the intersection and union of two pp-convex sets are again

pp-convex, the binary operations ∧,∨ : A × A → A are well-defined. It can be
easily seen that A is a distributive lattice with respect to these operations.

We want to understand the structure of any definable set “locally” in a neighbour-
hood of a point in Mn. The following lemma defines a class of sub-lattices of A
which provides the necessary framework to define the concept of localization. The
proof is an easy verification of an adjunction and is not given here.

Definition and Lemma 3.2.6. Fix some a ∈ Mn. Let La := {A ∈ L : a ∈ A}
and Aa denote the set of all antichains in the meet-semilattice La. Then Aa is a
sub-lattice of A. We denote the inclusion Aa → A by Ia. We also consider the map
Na : A → Aa defined by α 7→ α∩La. We call the antichain Na(α) the localization

of α at a. Then Na is a right adjoint to Ia if we consider the posets A and Aa

as categories in the usual way, and the composite Na ◦ Ia is the identity on Aa.
This in particular means that Aa is a reflective subcategory of A. Furthermore, the
map Na not only preserves the meets of antichains, being a right adjoint, but it also
preserves the joins of antichains.

Fix some a ∈ Mn. Let us denote the set of all finite subsets of La by Pa and let
α ∈ Pa. We construct a simplicial complex Ka(α) which determines the “geometry”
of the intersection of elements of α around a. This construction is similar to the
construction of the nerve of an open cover, except for the meaning of the “triviality”
of the intersection. We know that a pp-set is finite if and only if it has at most 1
element. We also know that

⋂
α ⊇ {a}.

Definition 3.2.7. We associate an abstract simplicial complex Ka(α) to each α ∈
Pa by taking the vertex set V(Ka(α)) := α\{a}. We say that a nonempty set β ⊆ α
is a face of Ka(α) if and only if

⋂
β is infinite (i.e., strictly contains a). If the only

element of α is {a} or if α = ∅, then we set Ka(α) = ∅, the empty complex.

Illustration 3.2.8. Consider the real vector space RR. The theory of this vector
space satisfies the condition T = Tℵ0 . We consider subsets of R3. If α denotes
the antichain corresponding to the union of 3 coordinate planes and a is the origin,
then Ka(α) is a copy of ∂∆2. The 2-dimensional face of ∆2 is absent since the
intersection of the coordinate planes does not contain the origin properly.

Since β1 ⊆ β2 ⇒
⋂
β2 ⊆

⋂
β1, Ka(α) is indeed a simplicial complex. We tend to

drop the superscript a when it is clear from the context. To extend this definition
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to arbitrary elements of P , we extend the notion of localization operator (at a)
to P by setting Na(α) = α ∩ La for each α ∈ P . Now we are ready to define
a family of numerical invariants for convex subsets of Mn, which we call “local
characteristics”.

Definition 3.2.9. We define the function κa : P → Z by setting κa(α) := χ(K(Na(α)))−
δ(α)(a), where χ(K) denotes the Euler characteristic of the complex K as defined
in 2.3.2 and δ(α) is the characteristic function of the set

⋃
α as defined in 3.2.5.

The value κa(α) will be called the local characteristic of the antichain α at a.

If we view the local characteristic κa(α) as a function of a for a fixed antichain α,
the correction term δ(α)(a) makes sure that κa(α) = 0 for all but finitely many
values of a. This fact will be useful in the next section.

We want to show that the local characteristic satisfies the inclusion-exclusion prin-
ciple for antichains.

Theorem 3.2.10. For α, β ∈ A, we have κa(α ∨ β) + κa(α ∧ β) = κa(α) + κa(β).

The rest of this section is devoted to the proof of this theorem. First we observe
that it is sufficient to prove this theorem for α, β ∈ Aa. We also observe that it
is sufficient to prove this theorem in the case when κa is replaced by the function
χ(K(−)) because κa(α) = χ(K(α))−1 whenever a ∈

⋃
α and the cases when either

a /∈
⋃
α or a /∈

⋃
β are trivial. We write κa as κ for simplicity of notation.

The following proposition is the first step in this direction, which states that κ(α)
is actually determined by the pp-convex set

⋃
α.

Proposition 3.2.11. Let α ∈ Aa and β ∈ Pa. If
⋃
α =

⋃
β, then κ(α) = κ(β).

Proof. It is clear that β ⊇ α since β is finite. Hence K(α) is a full sub-complex
of K(β) (i.e. if β′ ∈ K(β) and β′ ⊆ α, then β′ ∈ K(α)). We can also assume that
{a} /∈ β. Note that every element β \α is properly contained in at least one element
of α. We use induction on the size of β \ α to prove this result.

If β \ α = ∅, then the conclusion is trivially true. For the inductive case, suppose
α ⊆ β′ ( β and the result has been proved for β′. Let B ∈ β \ β′. Since α is the
set of maximal elements of β, there is some A ∈ α such that A ) B.

Consider the complex K1 = {F ∈ K(β′) : (F ∪ {B}) ∈ K(β′ ∪ {B})} as a full
sub-complex of K(β′). Observe that whenever B ∈ F ∈ K(β′ ∪ {B}), we have
(F ∪ {A}) \ {B} ∈ K(β′). As a consequence, K1 = Cone(K(β′ \ {A})) where the
apex of the cone is A. In particular, K1 is contractible.

Also note that K(β′ ∪ {B}) = K(β′) ∪ Cone(K1), where the apex of the cone is B.
Now we compare the pair K1 ⊆ K(β′) with another pair Cone(K1) ⊆ K(β′∪{B}) of
simplicial complexes. Observe the set equality K(β′)\K1 = K(β′∪{B})\Cone(K1).
Also both K1 and Cone(K1) are contractible. Thus we conclude that K(β′ ∪ {B})
and K(β′) are homotopy equivalent. Finally, an application of 2.3.4 completes the
proof. �

Note that this result is very helpful for the computation of local characteristics as
we get the equalities κ(α∨β) = κ(α∪β) and κ(α∧β) = κ(α ◦ β) for all α, β ∈ Aa,
where α ◦ β = {A∩B : A ∈ α,B ∈ β}. The vertices of K(α ◦ β) will be denoted by
the elements from α× β.

We use induction twice, first on |β| and then on |α|, to prove the main theorem of
this section. The following lemma is the first step of this induction.
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Lemma 3.2.12. For α, β ∈ Aa and |α| ≤ 1, we have κ(α ∨ β) + κ(α ∧ β) =
κ(α) + κ(β).

Proof. The cases |α| = 0 and α = {{a}} are trivial. So we assume that α = {A}
where A is infinite. We can make similar non-triviality assumptions on β, namely
there is at least one element in β and all the elements of β are infinite.

There are only two possible cases when |β| = 1 and the conclusion holds true
in both these cases. For example when β = {B} and A ∩ B = {a}, we have
K(α) ∼= K(β) ∼= ∆0, K(α ◦ β) is empty and K(α ∪ β) is disjoint union of two
copies of ∆0. Hence the identity in the statement of the lemma takes the form
1 + (−1) = 0 + 0.

Suppose for the inductive case that the result is true for β i.e. κ(α ∨ β) + κ(α ∧
β) = κ(α) + κ(β) holds. We want to show that the result holds for β ∪ {B} i.e.
κ(α ∨ (β ∪ {B})) + κ(α ∧ (β ∪ {B})) = κ(α) + κ(β ∪ {B}).

We introduce some superscript and subscript notations to denote new simplicial
complexes obtained from the original. The following list describes them and also
explains the rules to handle two or more scripts at a time.

• Let K0 denote the complex K(α), i.e. the complex consisting of only one
vertex and K denote the complex K(β).

• Let KS denote the complex K(β ∪ S) for any finite S ⊆ La which contains
only infinite elements. Also, KA,B is a short hand for K{A,B}.

• Whenever C is a vertex of Q, the notation QC denotes the sub-complex
{F ∈ Q : C /∈ F, F ∪ {C} ∈ Q} of Q.

• If Q = K(γ) for some antichain γ and A /∈ γ, then the notation AQ denotes
the complex K({A} ◦ γ).

• The notation CKS
B means C((KS)B). This describes the order of the scripts.

• The Euler characteristic of CKS
B will be denoted by CχS

B.

Using this notation, the inductive hypothesis is

(8) χA + Aχ = χ0 + χ

and our claim is

(9) χB,A + AχB = χ0 + χB.

Case I: (A ∩ B) = {a}. In this case, the faces of KA,B not present in KA are the
faces of KB . Hence bn(K) − bn(KB) = bn(KA) − bn(KA,B) for all n ≥ 0, where bn
denotes the nth Betti number. Hence we get

χB,A − χA = χB − χ

Also note that the hypothesis (A∩B) = {a} yields H∗(
AK) = H∗(

AKB) since only
infinite elements matter for the computations. It follows that equation (9) holds in
this case.

Case II: A∩B ) {a}. Note that whenever C is not a vertex of Q, we have QC
C ⊆ Q

and Q ∪ Cone(QC
C) = QC , where the apex of the cone is C. Hence corollary 2.3.8

can be restated in this notation as the following identity.

(10) χ(Q) + 1 = χ(QC) + χ(QC
C)
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As particular cases of (10), we get the following equalities.

(11) χ+ 1 = χB + χB
B.

(12) χA + 1 = χA,B + χA,B
B

(13) χB
B + 1 = χA,B

B + χA,B
A,B

It can be checked that KA,B
A,B

∼= AKB
B via the map F 7→ {{C,A} : C ∈ F}. This

gives us the following equation.

(14) χA,B
A,B = AχB

B

If we combine equations (8),(11),(12),(13) and (14), it remains to prove the following
to get equation (9) in the claim.

(15) Aχ+ 1 = AχB + AχB
B

Observe that the natural inclusion maps i1 : K0 → KA and i2 : K → KA are
inclusions of sub-complexes and their images are disjoint. Furthermore, the set
theoretic map g : KA \ (Im(i1) ⊔ Im(i2)) → AK defined by F 7→ {σ ⊆ F : A ∈
σ, |σ| = 2} is a bijection. Now consider the composition AKB ∼= KA,B \ (i1(K0) ⊔

i2(KB))
πB−−→ KA \ (i1(K0) ⊔ i2(K)) ∼= AK, where πB(F ) = F \ {B}. The union

of images (under this composition of maps) of those faces in AKB which contain
A ∩ B is the sub-complex AKB

B of AK. Hence (AK ∪ Cone(AKB
B))

∼= AKB , where
the apex of the cone is {A,B}. An application of 2.3.8 gives the required identity
in equation (15). �

We use definition 2.3.2 of Euler characteristic to prove the second step in the proof
of the main theorem since we do not have a proof using homological techniques.
In this step, we allow the size of β to be an arbitrary fixed positive integer and
we use induction on the size of α. The lemma just proved is the base case for this
induction. Let A be a new element of La to be added to α and assume the result
is true for α. Again we may assume that A is infinite.

We construct the complex K(α∪β∪{A}) in steps starting with the complex K(α∪β)
and the conclusion of the theorem holds for the latter by the inductive hypothesis.
We do this in such a way that at each step K1 of the construction, the following
identity is satisfied.
(16)
χ(K(α∪{A})∩K1)+χ(K(β)) = χ(K(α∪{A}∪β)∩K1)+χ(K((α∪{A})◦β)∩K1)

In this expression, K((α∪{A})◦β)∩K1 denotes the subcomplex of K((α∪{A})◦β)
whose faces are appropriate projections of the faces of K1.

For the first step, we construct all the elements in K(α∪ {A}) not in K(α). Let K′
1

denote the resulting complex. No new faces of the complex K((α ∪ {A}) ◦ β) are
constructed in this process. Hence, for each n ≥ 0, we have

vn(K
′
1)− vn(K(α ∪ β ∪ {A})) = vn(K

′
1 ∩ K(α ∪ {A}))− vn(K(α ∪ {A})),

where vn(Q) denotes the number n-dimensional faces of Q. Hence equation (16) is
satisfied for K′

1.

For the second step, we further construct all the faces corresponding to {A} ◦ β.
The conclusion in this case follows from the previous lemma.

Finally we construct the faces containing A and intersecting both α and β. We
construct a face F of size m+k whenever all the proper sub-faces of F have already
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been constructed, where F ∩ (α ∪ {A}) and F ∩ β have sizes m and k respectively.
It is clear that m, k ≥ 1.

Let the sub-complex of K(α ∪ β ∪ {A}) consisting of the already constructed faces
be denoted by K. We assume, for induction, that equation (16) is true for K. Let
g(F ′) = {σ ⊆ F ′ : |σ∩(α∪{A})| = 1, |σ∩β| = 1} for F ′ ∈ K. Let K3 =

⋃
F ′(F g(F

′)

and K2 =
⋃

F ′∈K g(F
′). Note the inclusions K ⊆ K2 ⊆ K((α ∪ {A}) ◦ β).

The construction of the face F changes χ(K) by (−1)dimF = (−1)m+k−1, while the
numbers χ(K(α ∪ {A})) and χ(K(β)) are unaltered.

We calculate the change in the value of χ(K3) after the addition of F . The complex
g(F ) is contractible. Hence its Euler characteristic is equal to 1 by 2.3.4.

Let wn denote the number of n-dimensional faces of K3. Recall that V(K3) = (α ∪
{A})×β. If dimF ′ = n+2 for some F ′ ∈ K(α∪β∪{A}) such that |F ′∩(α∪{A})| ≥
1, |F ′ ∩ β| ≥ 1, then dim(g(F ′)) = n. Therefore to calculate wn, we choose total
n + 2 vertices from F , making sure that we choose at least one vertex from both
α ∪ {A} and β. Hence wn = Σn+1

j=1

(
m
j

)(
k

n+2−j

)
. This number can be easily shown

to be equal to
(
m+k
n+2

)
−
(

m
n+2

)
−
(

k
n+2

)
.

The maximum dimension of the face of K3 is equal to m+k−3. Hence the required
change in the value of χ(K3) is 1− Σm+k−3

n=0 (−1)n[
(
m+k
n+2

)
−
(

m
n+2

)
−
(

k
n+2

)
].

To obtain equation (16) for K ∪ {F}, we need to show that there is no change in
the value of χ(K) + χ(K3) after construction of F .

But we know that Σm+k
n=0 (−1)n[

(
m+k
n

)
−
(
m
n

)
−
(
k
n

)
] = 0 since each of the three

alternating sums is zero. This equation rearranges to give the required cancelation
equation and completes the proof.

3.3. Global characteristic

Let the function κ : A ×Mn → Z be defined by κ(α, a) = κa(α). Suppose α is a
singleton. If

⋃
α is infinite, then κ(α,−) is the constant 0 function and if α = {a},

then κ(α, b) = 0 for all b 6= a and κ(α, a) = −1. For arbitrary α ∈ A, if a /∈
⋃
α,

then κ(α, a) = 0.

Definitions 3.3.1. For α ∈ A, we define the set of singular points of α to be
the set Sing(α) := {a ∈ Mn : κ(α, a) 6= 0}. Sing(α) is always finite since all the
singular points appear as singletons in the nest corresponding to α. Using finite-
ness of Sing(α), we define the global characteristic of α to be the sum Λ(α) :=
−Σa∈Mnκ(α, a), which in fact is equal to the finite sum Λ(α) = −Σa∈Sing(α)κ(α, a).

Fix some a ∈ Mn. Let α, β ∈ A be such that β ≺ α. Then either Na(α) =
Na(β) = ∅ or Na(β) ≺ Na(α). If C :=

⋃
α \

⋃
β is a cell, we define the homology

H∗(C) to be the relative homology H∗(K(Na(α ∪ β));K(Na(β))). In particular,
the alternating sum of the Betti numbers of H∗(C), denoted by χa(C), is equal to
the difference χ(K(Na(α))) − χ(K(Na(β))) by 3.2.11 and 2.3.5. We also have the
equation δ(C) = δ(α) − δ(β). Hence if we define the local characteristic of C as
κa(C) := χa(C)− δ(C)(a), we get the identity κa(C) = κa(P (C))−κa(N(C)). We
define the extension of the function κ to include all cells by setting κ(C, a) := κa(C)
for a ∈Mn, C ∈ C.

Definitions 3.3.2. We define the set of singular points Sing(C) for C ∈ C anal-
ogously by setting Sing(C) := {a ∈ Mn : κa(C) 6= 0}. This set is finite since
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Sing(C) ⊆ Sing(P (C)) ∪ Sing(N(C)). We also extend the definition of global char-
acteristic for cells by setting Λ(C) := −Σa∈Mnκ(C, a).

It is immediate that Λ(C) = Λ(P (C)) − Λ(N(C)) for every C ∈ C.

The main aim of this section is to prove that the global characteristic is additive
in the following sense.

Theorem 3.3.3. If {Bi : 1 ≤ i ≤ l}, {B′
j : 1 ≤ j ≤ m} are two finite fami-

lies of pairwise disjoint blocks such that
⊔l

i=1 Bi =
⊔m

j=1 B
′
j, then Σl

i=1Λ(Bi) =

Σm
j=1Λ(B

′
j).

The proof of this theorem follows at once from the following local version.

Lemma 3.3.4. If a ∈ Mn and {Bi : 1 ≤ i ≤ l}, {B′
j : 1 ≤ j ≤ m} are

two finite families of pairwise disjoint blocks such that
⊔l

i=1 Bi =
⊔m

j=1 B
′
j, then

Σl
i=1κa(Bi) = Σm

j=1κa(B
′
j).

Proof. It will be sufficient to show that both these numbers are equal to the
sum ΣB∈F κa(B) where F is any finite family of blocks finer than both the given
families. We can in particular choose a finite pp-nest D containing all the elements

in
⋃l

i=1(P (Bi)∪N(Bi))∪
⋃m

j=1(P (Bj)∪N(Bj)) and set F = {CoreD(D) : D ∈ D+}.

This involves partitioning every Bi and B
′
j into smaller blocks of the form CoreD(D)

for D ∈ D+.

Thus it will be sufficient to show that if F is a finite family of blocks corresponding to
cores of a pp-nest D such that B =

⋃
F ∈ B, then κa(B) = ΣF∈Fκa(F ). Consider

the sub-poset H of L containing all the elements of
⋃

F∈F (P (F ) ∪ N(F )). Then
we construct the antichains {αs}s≥0 in such a way that αs is the set of all minimal
elements of H \

⋃
0≤t<s αt. Then this process stops, say αv is P (B). Then we

have a chain of antichains α0 ≺ α1 ≺ · · · ≺ αv. Now κa(B) = κa(αv) − κa(α0) =
Σv

t=1κa(αt) − κa(αt−1). In other words, if Ct denotes the cell
⋃
αt \

⋃
αt−1 for

1 ≤ t ≤ v, then κa(B) = Σv
t=1κa(Ct).

Now it remains to show that for each 1 ≤ t ≤ v, κa(Ct) = ΣF∈αt
κa(CoreD(F )).

This follows from the following proposition by first choosing Aj to consist of el-
ements of αt and then choosing Aj to consist of elements of αt−1. Then by our
construction of the chain and the definition of κa(Ct), we get the required result.
�

Proposition 3.3.5. For any αj ∈ A, Aj =
⋃
αj , j ∈ [k] = {1, 2, . . . , k} where

k ≥ 2, we have κa(
⋃

j∈[k]Aj) = ΣS⊆[k],S 6=∅κa(
⋂

s∈S As \
⋃

t/∈S At).

Proof. We observe that all the arguments on the right hand side of the above
expression are cells or possibly empty sets and they form a partition of the cell in
the argument of the left hand side. Then we restate theorem 3.2.10 as κa((

⋃
α) ∪

(
⋃
β)) = κa((

⋃
α)\ (

⋃
β))+κa((

⋃
β)\ (

⋃
α))+κa((

⋃
α)∩ (

⋃
β)). Since the set of

pp-convex sets is closed under taking unions and intersections, a simple induction
proves the proposition with 3.2.10 being the base case. �

Theorem 3.3.3 allows us to define the global characteristic for arbitrary definable
sets.
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Definition 3.3.6. Let D ⊆ Mn be definable. Then we define the global char-

acteristic Λ(D) as the sum of global characteristics of any finite family of blocks
partitioning D.

3.4. Preservation of global characteristics

The aim of this section is to show that the global characteristic is preserved under
definable isomorphisms.

Theorem 3.4.1. Suppose D ∈ Def(Mn) and f : D →Mn is a definable injection.
Then Λ(D) = Λ(f(D)).

Proof. We first prove the local version which states that for any a ∈ Mn and
B ∈ B if g : B →M is a pp-definable injection, then κa(B) = κg(a)(g(B)). We ob-
serve that δ(B)(a) = δ(g(B))(g(a)). Lemma 3.1.8 gives that the complex K(Na(α))
is isomorphic to the complex K(Ng(a)(g[α])) where g[α] = {g(A) : A ∈ α} and α
is either P (B) orN(B). We conclude that g(Sing(B)) = Sing(g(B)). Hence Λ(B) =
Σa∈Sing(B)κa(B) = Σa∈Sing(B)κg(a)(g(B)) = Σa∈Sing(g(B))κa(g(B)) = Λ(g(B)).

To prove the theorem, we consider any partition of D into finitely many blocks
Bi, 1 ≤ i ≤ m such that f ↾ Bi is pp-definable. This is possible by an application
of lemma 2.5.7) to the set Graph(f) followed projection of the finitely many blocks
onto the first n coordinates. Note that D =

⊔m
i=1 Bi ⇒ f(D) =

⊔m
i=1 f(Bi) since f

is injective. Hence Λ(f(D)) = Σm
i=1Λ(f(Bi)) = Σm

i=1Λ(Bi) = Λ(D), where the first
and third equality follows by theorem 3.3.3 and the second equality follows from
the previous paragraph. �

Now we are ready to prove a special case of the result promised at the end of section
2.2, which states that the Grothendieck ring of a right R-module M satisfying
M ≡ M (ℵ0) contains Z as a subgroup. This shows, in particular, that K0(M) is
nontrivial in this case.

Corollary 3.4.2. Suppose D ⊆ Mn is definable and f : D ֌ D is a definable
injection whose image is cofinite in the codomain, then f is an isomorphism.

Proof. We extend the function f to an injective function g :Mn ֌Mn by setting
g(a) = f(a) if a ∈ D and g(a) = a otherwise. Now F := Mn \ Im(g) is finite; say
it has p elements. Further Λ(Im(g)) = Λ(Mn \ F ) = Λ(Mn)− Λ(F ) = −p.

By theorem 3.4.1, we get Λ(Mn) = Λ(Im(g)) since g is definable injective. Hence
p = 0 and thus g is an isomorphism. Since g is the identity function outside D, we
conclude that f is a definable isomorphism. �

3.5. Coloured global characteristics

Let P ∈ L∗ be fixed for this section. We develop the notion of localization at
P and local characteristic at P ; we have developed these ideas earlier when P
is a singleton. After stating what we mean by a colour, we define the notion of
a “coloured global characteristic” and outline the proof that these invariants are
preserved under definable isomorphisms.

Definition 3.5.1. We use LP to denote the meet-semilattice of all upper bounds
of P in L, i.e. LP := {A ∈ L : A ⊇ P}. As usual, we denote the set of all finite
antichains in this semilattice by AP .
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Since every element of LP contains P , we may as well quotient out P from each
such element. Such a process is consistent with our earlier definition of localization
since taking quotient with respect to a singleton set gives an isomorphic copy of
the original set.

Definitions 3.5.2. We define the operator QP on the elements of LP by setting
QP (A) := p+ A−p

P−p = {a+ (P − p) : a ∈ A} for any p ∈ P . We can clearly extend

this operator to finite subsets of LP . Now let L(P ) := QP [LP ]. We use A(P ) to
denote the set of all finite antichains in this semilattice.

It is easy to see that A(P ) = QP [AP ].

The appropriate analogue of the localization operator Na : A → Aa is a function
NP : A → A(P ).

Definition and Lemma 3.5.3. For α ∈ A, we define NP (α) := QP (α∩LP ). As
an operator on pp-convex sets, NP preserves both unions and intersections.

The proof is easy and thus omitted.

Recall from definition 3.2.7 of Ka(α) that the “trivial intersections” were precisely
those which were empty or a singleton. On the other hand, “nontrivial intersec-
tions” were precisely those which contained the pp-set {a} properly. As NP takes
values in A(P ), we get the correct notion of non-trivial intersections followed by the
quotient operation so that the techniques developed for a singleton P still remain
valid. Now we are ready to state the analogue of definition 3.2.7.

Definition 3.5.4. For α ∈ A, we define the simplicial complex of α in the

neighbourhood of P as the complex K(NP (α)) = {β ⊆ NP (α) : |
⋂
β| = ∞}. For

simplicity of notation, we denote this complex by KP (α).

We can easily extend the notion of local characteristic at P as follows.

Definition 3.5.5. We define the local characteristic of α at P by κP (α) :=
χ(KP (α)) − δ(α)(P ).

It can be observed that we recover the definition of the local characteristic at a point
a ∈ M by choosing P = {a}. The proofs of theorem 3.2.10 and lemma 3.3.4 go
through if we replace κa by κP . Thus we can define κP (D) for arbitrary definable
sets D ⊆Mn.

We define the function κ : Def(Mn)×L∗ → Z by setting κ(D,P ) := κP (D).

Definition 3.5.6. The set of L-singular elements of a definable set D ⊆ Mn

is defined as the set SingL(D) := {P ∈ L : κ(D,P ) 6= 0}.

Fixing any partition of D into blocks, it can be checked that the set SingL(D)
is contained in the nest corresponding to that partition and hence is finite. This
finiteness will be used to define analogues of the global characteristic, which we call
“coloured global characteristics”.

Definition 3.5.7. For a given P ∈ L, we define the colour of P to be the set
{A ∈ L : there is a bijection f : A ∼= P such that Graph(f) is pp-definable }. We
denote the colour of P by [[P ]].

Note the significance of this definition. Theorem 2.5.5 describes the pp-sets as
fundamental definable sets and we are trying to classify definable sets up to de-
finable isomorphism (definition 2.2.2). In fact it is sufficient to classify pp-sets up
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to pp-definable isomorphisms, which is the motivation behind the definition of a
colour.

Let X denote the set of colours of elements from L. We use letters A,B,C etc.
to denote the colours. It can be observed that [[∅]] is a singleton. We denote the
colour of any singleton by U. We use X ∗ to denote X \ {[[∅]]}.

The global characteristic Λ(D) is equal to −ΣP∈UκP (D) for each definable set D.
This observation can be used to extend the notion of global characteristic.

Definition 3.5.8. For A ∈ X ∗, we define the coloured global characteristic

with respect to A for a definable set D to be the integer ΛA(D) := −ΣP∈AκP (D).
This integer is well defined as it is equal to the finite sum −Σ{κP (D) : P ∈ (A ∩
SingL(D))}.

The property of coloured global characteristics that we are looking for is stated in
the following analogue of theorem 3.4.1. The proof is analogous to that of 3.4.1
and thus is omitted.

Theorem 3.5.9. If f : D → D′ is a definable bijection between definable sets
D,D′, then ΛA(D) = ΛA(D

′) for each A ∈ X ∗.

4. Special Case: Multiplicative Structure

4.1. Monoid rings

We need the notion of an algebraic structure called a monoid ring.

Definition 4.1.1. Let (A, ⋆, 1) be a commutative monoid and S be a commuta-
tive ring with unity. Then we define an Lring-structure (S[A], 0, 1,+, · ) called a
monoid ring as follows.

• S[A] := {φ : A→ S : the set Supp(φ) = {a : φ(a) 6= 0} is finite}

• (φ+ ψ)(a) := φ(a) + ψ(a) for a ∈ A

• (φ·ψ)(a) := Σb⋆c=aφ(b)ψ(c) for a ∈ A

An element φ of S[A] can be represented as a formal sum Σa∈Asaa where sa = φ(a).

As an example, let A = N ,equivalently the monoid {Xn}n≥0 considered multi-
plicatively. Then the monoid ring S[A] = S[N] ∼= S[X ], the polynomial ring in one
variable with coefficients from S.

Let the symbols L,A,X , . . . etc. denote the unions
⋃∞

n=1 Ln,
⋃∞

n=1 An,
⋃∞

n=1 Xn, . . .

respectively. We shall be especially concerned with the sets L
∗
:= L \ {∅} and

X
∗
:= X \ {[[∅]]}.

There is a binary operation × : L
∗
× L

∗
→ L

∗
which maps a pair (A,B) to the

cartesian product A × B. This map commutes with the operation [[−]] of taking
colour i.e., whenever [[A1]] = [[A2]] and [[B1]] = [[B2]], we have [[A1 × B1]] =

[[A2 × B2]]. This allows us to define a binary operation ⋆ : X
∗
× X

∗
→ X

∗
which

takes a pair of colours (A,B) to [[A × B]] for any A ∈ A, B ∈ B. The colour U

of singletons acts as the identity element for the operation ⋆. Hence (X
∗
, ⋆,U) is a

monoid.

Consider the maps ΛA : D̃ef(M) → Z for A ∈ X
∗
defined by [D] 7→ ΛA(D

′) for
any D′ ∈ [D]. These maps are well defined due to theorem 3.5.9. We can fix some
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[D] ∈ D̃ef(M) and look at the set Supp([D]) := {A ∈ X
∗
: ΛA(D) 6= 0}. This set is

finite since it is contained in the finite set {[[P ]] : P ∈ SingL(D)}. This shows that

the evaluation map ev[D] : X
∗
→ Z defined by A 7→ ΛA([D]) for each [D] ∈ D̃ef(M)

is an element of the monoid ring Z[X
∗
].

Let us consider an example. We take R to be an infinite skew-field (i.e. a (possibly
non-commutative) ring in which every nonzero element has two-sided multiplicative
inverse) andM to be any nonzeroR-vector space. This example has been studied in
detail in [12]. In this case, we have Th(M) = Th(M)ℵ0. Using the notion of affine

dimension, it can be shown that X
∗ ∼= N. It has been shown that K0(M) ∼= Z[X ] ∼=

Z[N]. The proof in [12] explicitly shows that the semiring D̃ef(M) is cancellative
and is isomorphic to the semiring of polynomials in Z[X ] with non-negative leading
coefficients.

We will prove that a similar fact holds for an arbitrary moduleM , i.e., the structure

of the Grothendieck ring K0(M) is entirely determined by the monoid X
∗
.

Theorem 4.1.2. Let M be a right R-module satisfying Th(M) = Th(M)ℵ0. Then

K0(M) ∼= Z[X
∗
]. In particular, K0(M) is nontrivial for every nonzero module M .

The proof of this theorem will occupy the next two sections.

4.2. Multiplicative structure of D̃ef(M)

Given D1 ∈ Def(Mn) and D2 ∈ Def(Mm), their cartesian product D1 × D2 ∈
Def(M (n+m)). This shows that Def(M) is closed under cartesian products. We
want to show that the sets L, A, B and C are all closed under multiplication.

Let P ∈ Ln and Q ∈ Lm. Then there are pp formulas φ(x) and ψ(y) defining those
sets respectively. Without loss, we may assume that x ∩ y = ∅. Now the formula
ρ(x, y) = φ(x) ∧ ψ(y) is again a pp-formula and it defines the set P × Q ∈ Ln+m.
This shows that the set L is closed under multiplication.

Now we want to show that the product of two antichains α ∈ An and β ∈ Am is
again an antichain in An+m. We have natural projection maps π1 : Mn+m → Mn

and π2 : Mn+m → Mm which project onto the first n and the last m coordinates
respectively. First we observe that (

⋃
α) × (

⋃
β) =

⋃
A∈α

⋃
B∈β A × B. If either

A1, A2 ∈ α are distinct or B1, B2 ∈ β are distinct, then all the distinct elements
from {Ai ×Bj}2i,j=1 are incomparable with respect to the inclusion ordering since

at least one of their projections is so. Hence
⋃
α ×

⋃
β is indeed an antichain of

the rank |α| × |β|. We will denote this antichain by α× β.

Given C1, C2 ∈ C, we have C1 × C2 =
⋃
(α1 × α2) \ (

⋃
(α1 × β2) ∪

⋃
(β1 × α2))

where αi = P (Ci) and βi = N(Ci) for i = 1, 2. This shows that C1 × C2 ∈ C
since A is closed under both products and unions. Furthermore, we observe that
P (C1 × C2) = P (C1)× P (C2). This in particular shows that the set B of blocks is
also closed under products.

Lemma 4.2.1. Let P,Q ∈ L and α, β ∈ A. Then κP×Q(α× β) = −κP (α)κQ(β).

Proof. First assume that δ(α)(P ) = δ(β)(Q) = 1. Then observe that

(17) KP×Q(α× β) ∼= KP (α) ⊠KQ(β).
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Hence we have

κP×Q(α× β) = χ(KP×Q(α × β))− 1

= χ(KP (α)) + χ(KQ(β)) − χ(KP (α))χ(KQ(β)) − 1

= (κP (α) + 1) + (κQ(β) + 1)− (κP (α) + 1)(κQ(β) + 1)− 1

= −κP (α)κQ(β)

The first and third equality is by definition of the local characteristic and the second
is by equation (6) of lemma 2.4.4 applied to (17).

In the remaining case when either δ(α)(P ) or δ(β)(Q) is 0, we have δ(α×β)(P×Q) =
0. Hence κP×Q(α×β) = 0 and either κP (α) or κQ(β) is 0. This gives the necessary
identity and thus completes the proof in all cases. �

The aim of this section is to prove the following theorem.

Theorem 4.2.2. The map ev : D̃ef(M) → Z[X
∗
] defined by [D] 7→ ev[D] is a

semiring homomorphism.

Proof. We have already seen that ev is additive, since each ΛA is. So it remains
to show that it is multiplicative.

We have observed that the set [A] is a monoid with respect to cartesian product, the
isomorphism class of a singleton being the identity for the multiplication. So we will

first show that ev : [A] → Z[X
∗
] is a multiplicative monoid homomorphism.

Let α, β ∈ A be fixed. Note that

(18) S := SingL(α× β) ⊆ {P ×Q : P ∈ SingL(α), Q ∈ SingL(β)}.

We need to show that ev[α]· ev[β] = ev[α×β] as maps on X
∗
. This is equivalent to

ev[α×β](C) =
∑

A⋆B=C
ev[α](A)ev[β](B) for each C ∈ X

∗
. Using the definition of the

evaluation map, it is enough to check that ΛC([α× β]) =
∑

A⋆B=C
ΛA([α])ΛB([β])

for each C ∈ X
∗
.

The left hand side of the above equation is

ΛC([α × β]) = −
∑

R∈C

κR(α × β)

= −
∑

R∈(C∩S)

κR(α× β)

=
∑

R∈(C∩S)

κπ1(R)(α)κπ2(R)(β)

The last equality is given by the lemma 4.2.1 since, by (18), every R ∈ C ∩ S can
be written as R = π1(R)× π2(R). The right hand side is

∑

A⋆B=C

ΛA([α])ΛB([β]) =
∑

A⋆B=C

(
−
∑

P∈A

κP (α)

)
−

∑

Q∈B

κQ(β)




=
∑

A⋆B=C

∑

P∈A,Q∈B

κP (α)κQ(β)
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Using the definition of SingL(−), we observe that the final expressions on both sides
are equal. This completes the proof that ev is a multiplicative monoid homomor-
phism on [A].

Now we will show that ev is also multiplicative on the monoid [C]. Let C1, C2

be cells with αi = P (Ci) and βi = N(Ci) for each i = 1, 2. Then C1 × C2 =⋃
(α1×α2)\ (

⋃
(α1×β2)∪

⋃
(β1×α2)). We also know that ev[C] = evP (C)−evN(C)

for each cell C.

We need to show that ΛC(C1 ×C2) =
∑

A⋆B=C
ΛA([C1])ΛB([C2]) for each C ∈ X

∗
.

Now we have

ΛC(C1 × C2) = ΛC(α1 × α2)− ΛC((α1 × β2) ∨ (β1 × α2))

and we also have
∑

A⋆B=C

ΛA([C1])ΛB([C2]) =
∑

A⋆B=C

(ΛA([α1])− ΛA([β1]))(ΛB([α2])− ΛB([β2]))

= ΛC(α1 × α2) + ΛC(β1 × β2)− ΛC(β1 × α2)− ΛC(α1 × β2)

Therefore we need to show

ΛC((α1 × β2) ∨ (β1 × α2)) + ΛC(β1 × β2) = ΛC(α1 × β2) + ΛC(β1 × α2).

This is true by theorem 3.2.10 since we have (α1×β2)∧(β1×α2) = (β1×β2).

In the last step, we show that ev[D1×D2] = ev[D1]· ev[D2] for arbitrary definable

sets D1, D2. Let [D1] =
∑k

i=1[B1i] and [D2] =
∑l

j=1[B2j ] be obtained from any

decompositions ofD1 andD2 into blocks. Then [D1×D2] =
∑k

i=1

∑l
j=1[B1i×B2j ]).

For each C ∈ X
∗
, we have

ev[D1]· ev[D2](C) =
∑

A⋆B=C

ΛA([D1])ΛB([D2])

=
∑

A⋆B=C

(
k∑

i=1

ΛA([B1i])

)


l∑

j=1

ΛB([B2j ])




=

k∑

i=1

l∑

j=1

∑

A⋆B=C

ΛA([B1i])ΛB([B2j ])

=

k∑

i=1

l∑

j=1

ΛC([B1i ×B2j ])

= ΛC(

k∑

i=1

l∑

j=1

[B1i ×B2j ])

= ev[D1×D2](C).

This completes the proof showing ev is a semiring homomorphism. �

4.3. Computation of the Grothendieck ring

In the previous section, we showed that ev : D̃ef(M) → Z[X
∗
] is a semiring homo-

morphism. Since the codomain of this map is a ring, it factorizes through the unique

homomorphism of cancellative semirings ẽv :
˜̃

Def(M) → Z[X
∗
] where

˜̃
Def(M) is

the quotient semiring of D̃ef(M) obtained as in theorem 2.1.3. Our next aim is to
prove the following lemma.
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Lemma 4.3.1. The map ẽv :
˜̃

Def(M) → Z[X
∗
] is injective.

Proof. We will prove this lemma in several steps. First we will identify a subset
of Def(M) where the restriction of the evaluation function is injective.

Let U = {α ∈ A : A1 ∩ A2 = ∅ for all distinct A1, A2 ∈ α}. Then it can be easily

checked that ΛA(α) = |α∩A| for each A ∈ X
∗
and α ∈ U . Hence if ev[α] = ev[β] for

any α, β ∈ U , then we have [α] = [β]. This proves that the map ev is itself injective
on U .

Given any [D1], [D2] ∈ D̃ef(M) such that ev[D1] = ev[D2], we will find some [X ] ∈

D̃ef(M) such that [D1]+ [X ] = [α′] and [D2]+ [X ] = [β′] for some α′, β′ ∈ U . Then
we get ev[α′] = ev[D1] + ev[X] = ev[D2] + ev[X] = ev[β′] and hence we will be done
by the previous paragraph.

Claim: It is sufficient to assume [D1], [D2] ∈ [A].

Let [D1] =
∑k

i=1[B1i] and [D2] =
∑l

j=1[B2j ] be obtained from any decomposi-

tions of D1 and D2 into blocks. We have [P (B)] = [B] + [N(B)] for any B ∈ B.

Therefore if we choose [Y ] =
∑k

i=1[N(B1i)] +
∑l

j=1[N(B2j)], we get [D1] + [Y ] =
∑l

i=1[P (B1i)] +
∑l

j=1[N(B2j)] and [D2] + [Y ] =
∑l

i=1[N(B1i)] +
∑l

j=1[P (B2j)].

Hence both [D1]+ [Y ], [D2]+ [Y ] ∈ [A]. This finishes the proof of the claim.

Now let α, β ∈ A be such that ev[α] = ev[β]. We describe an algorithm which
terminates in finitely many steps and yields some [X ] such that [α]+[X ], [β]+[X ] ∈
[U ]. Before stating the algorithm, we define a complexity function Γ : A → N.
For each antichain α, the complexity Γ(α) is defined to be the maximum of the
lengths of chains in the smallest nest corresponding to α, where the length of a chain
is the number of elements in it. Note that Γ(α) ≤ 1 if and only if α ∈ U .

Let α = {A1, A2, . . . , Ak} be any enumeration and let αi = {A1, A2, . . . , Ai} for
each 1 ≤ i ≤ k. Similarly choosing an enumeration β = {B1, B2, . . . , Bl}, we de-

fine βj for each 1 ≤ j ≤ l. Then we observe that
⋃
α =

⊔k
i=1 Coreαi

(Ai) and⋃
β =

⊔l
j=1 Coreβj

(Bj). Now each Coreαi
(Ai) is a block, which can be com-

pleted to a pp-set if we take its (disjoint) union with N(Coreαi
(Ai)). This can

be written as the equation [Ai] = [Coreαi
(Ai)] + [N(Coreαi

(Ai))]. If
⋃
α ⊆ Mn,

we consider Mnk and inject Coreαi
(Ai) in the obvious way into the ith copy of

Mn in Mnk for each i. This gives us a definable set definably isomorphic to
⋃
α.

The advantage of this decomposition is that we can also add an isomorphic copy
of N(Coreαi

(Ai)) at the appropriate place for each i and obtain a new antichain

representing
∑k

i=1[Ai].

Repeating the same procedure for β yields a representative of
∑l

j=1[Bj ]. In or-
der to maintain the evaluation function on both sides, we add disjoint copies
of the antichains N(Coreαi

(Ai)), N(Coreβj
(Bj)) to both sides. So we choose

[W ] =
∑k

i=1[N(Coreαi
(Ai))]+

∑l
j=1[N(Coreβj

(Bj))], hence [α]+[W ], [β]+[W ] are

both in [A] so that the particular antichains α′, β′ in these classes we constructed
above satisfy Γ((

⋃
α′) ⊔ (

⋃
β′)) < Γ((

⋃
α) ⊔ (

⋃
β)). The inequality holds since

we isolate the maximal elements of the nest corresponding to (
⋃
α) ∪ (

⋃
β) in the

process.

We repeat this process, inducting on the complexity of the antichains, till the dis-
joint union of the pair of antichains in the output lies in U . Since the complexity
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decreases at each step, this algorithm terminates in finitely many steps. The re-
quired [X ] is the sum of the [W ]’s obtained at each step. This finishes the proof of
the injectivity of the map ẽv. �

Finally we are ready to prove theorem 4.1.2 regarding the structure of the Grothendieck
ring K0(M).

Proof. (of Theorem 4.1.2) It is easy to observe that the image of U under the

evaluation map is the monoid semiring N[X
∗
]. The Grothendieck ring K0(N[X

∗
])

is clearly isomorphic to the monoid ring Z[X
∗
].

Since the map ẽv is injective by lemma 4.3.1 and N[X
∗
] ⊆ Im(ẽv) ⊆ Z[X

∗
], we

have K0(M) = K0(Im(ẽv)) ∼= Z[X
∗
] by the universal property of K0 in theorem

2.1.4. �

5. General Case

5.1. Finite indices of pp-pairs

So far we have considered the Grothendieck ring of a right R-module M whose
theory T := Th(M) satisfies T = T ℵ0 . From this section onwards we remove this
condition and work with an arbitrary right R-module M .

We continue to use the notations Ln,Pn,An,Xn to denote the set of all pp-subsets
of Mn, the set of all finite subsets of Ln, the set of all finite antichains in Ln

and the set of all pp-isomorphism classes (colours) in Ln respectively. We still
use the representation theorem 2.5.7, but lemma 3.1.4 is unavailable to obtain the
uniqueness - proposition 3.1.5. As a result we do not have a bijection between the
set of all pp-convex sets, which we denote by On, and the set An. The elements of
the set Cn := {(

⋃
α) \ (

⋃
β)|α, β ∈ An,

⋃
β (

⋃
α} will be called cells. The cells

allowing a representation of the form P \
⋃
β for some P ∈ Ln and β ∈ A such

that P (
⋃
β will be called blocks and the set of all blocks in Cn is denoted by

Bn.

Let (−)◦ : Ln → Ln denote the function which takes a coset P to the subgroup
P ◦ := P − p, where p ∈ P is any element. We use L◦

n to denote the image of
this function, i.e. the set of all pp-definable subgroups. Let ∼n denote a relation
on L◦

n defined by P ∼n Q if and only if [P : P ∩ Q] + [Q : P ∩ Q] < ∞. This is
the commensurability relation and it can be easily checked to be an equivalence
relation. We can extend this relation to all elements of Ln using the same definition
if we set the index [P : Q] := [P ◦ : P ◦ ∩Q◦] for all P,Q ∈ Ln. Let Yn denote the
set of all commensurability equivalence classes of Ln (bands for short). We use
capital bold letters P,Q, · · · etc. to denote bands. The equivalence class (band) of
P will be denoted by the corresponding bold letter P.

Now we fix some n ≥ 1 and drop all the subscripts as usual. Note that, in the special
case, a band is just the collection of all cosets of a pp-subgroup. In particular any
two distinct elements of a band are disjoint. This ‘discreteness’ has been exploited
heavily in all the proofs for the special case. We need to work hard to set up
the technical machinery for defining the local characteristics. The proofs for the
general case will be similar to those for the special case once we obtain the required
discreteness condition.
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Let P ∈ Y. It can be easily checked that if P,Q ∈ P and P ∩Q 6= ∅ then P ∩Q ∈ P

i.e. P is closed under intersections which are nonempty. By definition of the index,
it is also clear that if P ∈ P and a ∈ Mn, then a + P ∈ P. Let A(P),P(P) and
O(P) denote the sets of all finite antichains in P, finite subsets of P and unions of
finite subsets of P respectively.

We have the following analogue of proposition 3.1.5 for pp-convex sets. The proof
is omitted as it is similar to the T = Tℵ0 case.

Proposition 5.1.1. Let X ∈ O. Then the set S(X) := {P ∈ Y : ∃α ∈ A (P ∈ α,⋃
α = X)} is finite. Furthermore for any two α, β ∈ A such that

⋃
α =

⋃
β = X

and each P ∈ S(X), we have
⋃
(α∩P) =

⋃
(β∩P). Thus X is uniquely determined

by the family {XP :=
⋃
(α ∩ P) ∈ O(P) | P ∈ S(X)} for any α ∈ A such that⋃

α = X.

Given some X ∈ O(P) there could be two different α, β ∈ A(P) such that
⋃
α =⋃

β = X . The nests corresponding to such antichains could have entirely different
(semilattice) structures. The following proposition gives us a way to obtain an
antichain α representingX such that if A,B ∈ α and A 6= B, then A∩B = ∅.

Proposition 5.1.2. Let X ∈ O(P). Then for any α ∈ A(P) such that
⋃
α = X,

there is some P(α) ∈ P◦ such that X is a finite union of distinct cosets of P(α).

Proof. Choose P(α) =
⋂
{Q◦ : Q ∈ α} and observe that P(α) ∈ P since P is

closed under finite nonempty intersections. �

The previous two propositions together imply that we can always find a ‘nice’
antichain representing the given pp-convex set. The following definition describes
what we mean by this.

Definition 5.1.3. A finite set α ∈ P is said to be in discrete form if α ∩ P

consists of finitely many cosets of a fixed element of P◦, denoted P(α), for each
P ∈ Y. The set of all finite sets α ∈ P in discrete form will be denoted by Pd and
the set of all antichains in discrete form will be denoted by Ad.

We would like to define the local characteristics for the elements of Pd as before
and show that they satisfy the conclusion of theorem 3.2.10. We will restrict our
attention only to those α ∈ Pd such that α = α̂ (i.e. the nest corresponding to α

is α itself). We denote the set of all such finite sets by P̂d. Since we will deal with
finite index subgroup pairs in L◦, we will need more conditions on compatibility of
P and α as stated in the following definition.

Definition 5.1.4. A finite family F of elements of P is called compatible if F ⊆
P̂d and for all α, β ∈ F and P ∈ Y, we have P(α) = P(β) whenever P∩α,P∩β 6= ∅.
Furthermore, we say that P ∈ L is compatible with a finite family F of elements
of P if F is compatible and P ∈

⋃
F .

It is very easy to observe that given any finite family {X1, X2, . . . , Xk} of pp-convex
sets, we can obtain a compatible family {α1, α2, . . . , αk} of antichains such that⋃
αi = Xi for each i. Finally we are ready to define the local characteristics in this

set-up.

Definition 5.1.5. Let P ∈ L be compatible with a family F and let α ∈ F .
We associate an abstract simplicial complex KP (α) with the pair (α, P ) by set-
ting KP (α) := {β ⊆ α : β 6= ∅,

⋂
β ) P}. We define the local characteristic κP

by the formula κP (α) := χ(KP (α))− δ(α)(P ).
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Now we are ready to state the analogue of theorem 3.2.10 and it has essentially the
same proof. The previous statement is justified because we have carefully developed
the idea of a compatible family to avoid finite index pairs of pp-subgroups. Since we
achieve discreteness simultaneously for any finite family of antichains, no changes
in the proof of theorem 3.2.10 are necessary.

Theorem 5.1.6. Let X,Y ∈ O. Then X ∪ Y,X ∩ Y ∈ O. For any compatible
family F := {α1, α2, β1, β2} such that

⋃
α1 = X,

⋃
α2 = Y ,

⋃
β1 = X ∪ Y and⋃

β2 = X ∩ Y and any P ∈ L compatible with F , we have

κP (α1) + κP (α2) = κP (β1) + κP (β2).

We observe that the set Ad is closed under cartesian products and thus we have
the following analogue of lemma 4.2.1 with the same proof.

Lemma 5.1.7. Let P,Q ∈ L be compatible with {α, β} ⊆ Ad. Then

κP×Q(α× β) = −κP (α)κQ(β).

5.2. The invariants ideal

Once again, we use the notations L,X to denote the unions
⋃∞

n=1 Ln,
⋃∞

n=1 Xn etc.

and set L
∗
= L \ {∅},X

∗
= X \ {[[∅]]} where [[−]] : L → X is the map taking

a pp-set to its colour. Now, X
∗
is a multiplicative monoid and we consider the

monoid ring Z[X
∗
].

In the case when T 6= Tℵ0 , there are P,Q ∈ Ln such that 1 < Inv(M ;P,Q) <∞ for
each n ≥ 1. We can assume without loss that 0 ∈ Q ⊆ P . Now we define an ideal
of the monoid ring, called the invariants ideal, which encodes these invariants.
The following proposition is the motivation.

Proposition 5.2.1. Let P ∈ Yn and X ∈ O(P). For any α, β ∈ Ad
n with

⋃
α =⋃

β = X, we have

[P(α) : P(β)]|α ∩P| = [P(β) : P(α)]|β ∩P|

Proof. Partition those cosets of both P(α) and of P(β) which are contained in X
into cosets of P(α) ∩P(β) to get the required equality. �

Definition 5.2.2. Let δA : X
∗
→ Z denote the characteristic function of the colour

A for each A ∈ X
∗
. We define the invariants ideal J of the monoid ring Z[X

∗
]

to be the ideal generated by the set

{δ[[P ]] = [P : Q]δ[[Q]] : P,Q ∈ L, P ⊇ Q, Inv(M ;P,Q) <∞}.

The main aim of this section is to prove the following theorem.

Theorem 5.2.3. For every right R-module M , we have

K0(M) ∼= Z[X
∗
]/J .

We have proved this theorem when T = Tℵ0 since the invariants ideal is trivial in
that case.

Let Y =
⋃∞

n=1 Yn. Given A ∈ X
∗
, we define Y(A) := {P ∈ Y : P∩A 6= ∅}. In order

to define the global characteristics in this case, we need to find the set over which

they vary. Let A,B ∈ X
∗
. We say that A ≈ B if and only if Y(A) ∩ Y(B) 6= ∅.

This relation is reflexive and symmetric. We use ≈ again to denote its transitive

closure. The ≈-equivalence class of A will be denoted by Ã.
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Definition 5.2.4. Let A ∈ X
∗
. Define the colour class group R(Ã) as the

quotient of the free abelian group Z〈δA : A ∈ Ã〉 by the subgroup J (Ã) generated by

the relations {δ[[P ]] = [P : Q]δ[[Q]] : P,Q ∈
⋃
Ã, P ⊇ Q}.

It can be observed that the underlying abelian group of the monoid ring Z[X
∗
] is

formed by taking the quotient of the direct sum of the free abelian groups Z〈δA :

A ∈ Ã〉, one for each equivalence class of colours, by the multiplicative relations of

the monoid X
∗
. Furthermore, the set

⋃
{J (Ã) : Ã ∈ X

∗
} generates the ideal J in

this ring.

The discussion in the previous paragraph suggests to us to isolate the information
in the evaluation map into different global characteristics, one for each colour class.
These maps take values in the corresponding colour class group. We define the

global characteristic Λ
Ã

corresponding to Ã as the function P̂d → R(Ã) given

by α 7→ −
∑

A∈Ã

(∑
P∈A

κP (α)
)
δA.

The following result is an easy corollary of proposition 5.2.1. It states that the global
characteristics depend only on the pp-convex sets and not on their representations
as antichains.

Corollary 5.2.5. Let X ∈ O and α, β ∈ P̂d be such that
⋃
α =

⋃
β = X. Then

Λ
Ã
(α) = Λ

Ã
(β) for each A ∈ X

∗
.

This finishes the technical setup for the general case when the theory T of the
module M does not necessarily satisfy T = T ℵ0 . The antichains in discrete form
behave as if the theory satisfies T = T ℵ0 , the bands allow us to go down (via
intersections) so that any finite family can be converted to a compatible family
and the notion of compatibility allows us to do appropriate local analysis. The
local data can be pasted together using the information coded in the colour class
groups.

Now we give some important definitions and state results from the special case
T = Tℵ0 in a form compatible with the general case. The proofs of these results
are omitted since they are similar to their special counterparts; the basic ingredients
are provided by lemma 3.1.4, theorem 5.1.6, lemma 5.1.7 and corollary 5.2.5. The
necessary change is to deal only with antichains which are in discrete form.

Since cells are the difference sets of two pp-convex sets, we can obtain a compatible
family {α, β} for any C ∈ C such that C =

⋃
α \
⋃
β.

Definition 5.2.6. Let C ∈ C and A be a colour. We define the global characteristic

Λ
Ã
(C) := Λ

Ã
(α)−Λ

Ã
(β) ∈ R(Ã) for any compatible family {α, β} representing C.

The following theorem is the analogue of theorem 3.3.3 and uses the inductive
version of 5.1.6 in its proof.

Theorem 5.2.7. If {Bi : 1 ≤ i ≤ l}, {B′
j : 1 ≤ j ≤ m} are two finite fami-

lies of pairwise disjoint blocks such that
⊔l

i=1 Bi =
⊔m

j=1 B
′
j, then Σl

i=1ΛÃ
(Bi) =

Σm
j=1ΛÃ

(B′
j) for every A ∈ X

∗
.

This theorem allows us to extend the definition of global characteristics to all sets in
Def(M). Moreover the following theorem, the proof of which is an easy adaptation
of that of theorem 3.4.1, states that each of them is preserved under definable
bijections.
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Theorem 5.2.8. Suppose D ∈ Def(Mn) and f : D →Mn is a definable injection.

Then Λ
Ã
(D) = Λ

Ã
(f(D)) for each colour class Ã.

Let ev : Def(M) → Z[X
∗
]/J be the map defined by D 7→

∑
{Λ

Ã
(D) : Ã ∈ X

∗
/ ≈}.

This map is well defined since the sum is finite for every D for reasons similar to
those for the special case. Furthermore evD1

= evD2
whenever D1 and D2 are

definably isomorphic since Λ
Ã
(D1) = Λ

Ã
(D2) for each colour class Ã. In fact ev

is a semiring homomorphism. The proof of the following theorem is analogous to
that of theorem 4.2.2.

Theorem 5.2.9. The map ev : D̃ef(M) → Z[X
∗
]/J defined by [D] 7→ ev[D] is a

semiring homomorphism.

The final step in the proof of 5.2.3 is the following analogue of lemma 4.3.1.

Lemma 5.2.10. The map ẽv :
˜̃

Def(M) → Z[X
∗
]/J is injective.

Proof. The proof of this lemma needs some modification of the first paragraph
of the proof of lemma 4.3.1 in order to incorporate the invariants ideal. Let U :=

{α ∈ Ad : A1 ∩ A2 = ∅ for all distinct A1, A2 ∈ α}.

If ev[α] = ev[β] for some α, β ∈ U , then we can obtain two antichains α′ ∈ [α] ∩
U , β′ ∈ [β]∩U such that

⋃
α =

⋃
α′,
⋃
β =

⋃
β′ and {α′, β′} is compatible. Hence

we have Λ
Ã
(α) = Λ

Ã
(α′), Λ

Ã
(β) = Λ

Ã
(β′) for each colour class Ã. Observe that

the equalities, if considered in the codomain ring, are modulo the invariants ideal.

Now Λ
Ã
(α′) = |α′ ∩ (

⋃
Ã)|δ[[P(α′)]], where P is the only band (if exists) such that

P∩α′∩ (
⋃
Ã) 6= ∅. Since P(α′) = P(β′) for each such colour class by the definition

of compatibility, we get |α ∩ (
⋃

Ã)| = |β ∩ (
⋃
Ã)| for each colour class Ã.

A definable isomorphism can be easily constructed between the pp-convex sets rep-
resented by α′ and β′, which are the sets represented by α and β respectively. The
rest of the proof is similar to the proof of 4.3.1. �

Proof. (Theorem 5.2.3) We have shown that the map ẽv is injective in the previous
lemma. Then we observe that the sets of the form

⋃
α for some α ∈ U are capable

of producing every element of the quotient ring Z[X
∗
]/J of the form

∑
nAδA +

J , where the nonzero coefficients are positive. This completes the proof by an
argument similar to the proof of theorem 4.1.2. �

Since the Grothendieck ring is a quotient ring, we do not necessarily know if it is
nontrivial. But the following corollary of theorem 5.2.3 shows this result, proving
Prest’s conjecture in full generality.

Corollary 5.2.11. If M is a nonzero right R-module, then there is a split embed-
ding Z ֌ K0(M).

Proof. Consider the colour class Ũ, where U is the identity element of the monoid

X
∗
. A pp-set P is an element of

⋃
Ũ if and only if P is finite. Finite sets enjoy

the special property that two finite sets are isomorphic to each other if and only
their cardinalities are equal. Furthermore, every such isomorphism is definable. In

particular, R(Ũ) ∼= Z ifM is a nonzero module. Next we observe that the set
⋃
Ũ is

closed under multiplication and hence the colour class group R(Ũ) can be given the

structure of a quotient of the monoid ring Z[
⋃
Ũ] with certain relations, where the



34 GROTHENDIECK RINGS OF THEORIES OF MODULES

multiplicative relations of the monoid ring are finitary and hence already present

in the relations for R(Ũ). We have thus described the ring structure of R(Ũ) and
this ring is naturally a subring of K0(M).

To complete the proof, we show that the map π0 : K0(M) → R(Ũ) given by∑
Ã∈(X

∗

/≈) nÃ
δ
Ã
7→ n

Ũ
δ
Ũ
is a surjective ring homomorphism.

The map π0 is clearly an additive group homomorphism. Note that the multiplica-

tive monoid
⋃
Ũ is a sub-monoid of X

∗
. Also note that J (Ã)∩J (B̃) = ∅ if Ã 6= B̃.

Furthermore, A ⋆B ∈
⋃
Ũ if and only if A,B ∈

⋃
Ũ. Thus the coefficient of δ

Ũ
in

the product of two elements of K0(M) is determined by the coefficient of δ
Ũ
of the

individual elements. Hence π0 is also multiplicative. The surjectivity is clear. This
completes the proof. �

Now we can give a proof that the Grothendieck ring of a module is an invariant of
its theory.

Proof. (Proposition 2.5.1) Elementarily equivalent modules have isomorphic lat-
tices of pp-sets and they also satisfy the same invariant conditions (see [13, Corol-
lary 2.18]). Hence theorem 5.2.3 yields the result. �

6. Applications

6.1. Pure embeddings and Grothendieck rings

We will investigate some categorical properties of Grothendieck rings of modules in
this section. The main aim is to prove the following theorem.

Theorem 6.1.1. Let i : N → M be a pure embedding of right R-modules such
that the theory of M satisfies Th(M) = Th(M)ℵ0 . Then i induces a surjective ring
homomorphism I : K0(M) ։ K0(N).

This theorem will be proved using a series of results of functorial nature. We begin
with the definition of a pure embedding.

Definition 6.1.2. Let M be a right R-module. A submodule N ≤ M is called a
pure submodule if, for each n, A ∩Nn ∈ L◦

n(N) for every A ∈ L◦
n(M).

A monomorphism i : N → M is said to be a pure monomorphism if iN is a
pure submodule of M .

The following lemma states that a pure embedding induces a map of lattices of
pp-formulas.

Lemma 6.1.3. (see [14, Lemma3.2.2]) If i : N → M is a pure embedding then,
for each n, the natural map i : L◦

n(M) → L◦
n(N) given by i(A) = A ∩ Nn is a

surjection of lattices.

Now we state the following result about integral monoid rings.

Proposition 6.1.4. (see [9, II, Proposition3.1]) Let Φ : A → B be a homomor-
phism of monoids. Then there exists a unique homomorphism h : Z[A] → Z[B]
such that h(x) = Φ(x) for all x ∈ A and h(1) = 1. Furthermore, h is surjective if
Φ is so.

Corollary 6.1.5. A pure embedding i : N → M induces a surjective homomor-

phism i : Z[X
∗
(M)] ։ Z[X

∗
(N)] of rings.
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Proof. Observe that every colour A ∈ X
∗
has a representative in L

◦
:=
⋃∞

n=1 L
◦
n.

Thus we get an induced surjective homomorphism X
∗
(M) ։ X

∗
(N) of the colour

monoids using lemma 6.1.3. Then proposition 6.1.4 yields the required surjective
map of the integral monoid rings. �

Proof. (Theorem 6.1.1) Observe that since Th(M) = Th(M)ℵ0 holds, theorem

4.1.2 givesK0(M) ∼= Z[X
∗
(M)]. By theorem 5.2.3, we haveK0(N) ∼= Z[X

∗
(N)]/J (N).

Let π : Z[X
∗
(N)] ։ K0(N) denote the natural quotient map. Take I = π ◦ i, where

i is the map from the previous corollary, to finish the proof. �

We will see an example at the end of the next section to see that theorem 6.1.1 fails
if Th(M) 6= Th(M)ℵ0 .

Recall that the notation M (ℵ0) denotes the direct sum of countably many copies
of a module M . It follows immediately from [13, Lemma 2.23(c)]) that the lattices
L1(M) and L1(M

(ℵ0)) are isomorphic and T := Th(M (ℵ0)) satisfies T = T ℵ0 . We
summarize these observations in the following corollary of theorem 6.1.1.

Corollary 6.1.6. Let in :M →M (ℵ0) denote the natural embedding of M onto the
nth component of M (ℵ0). Then in induces the natural quotient map K0(M

(ℵ0)) =

Z[X
∗
(M)] ։ Z[X

∗
(M)]/J (M) = K0(M).

For a ring R, let Mod-R denote the category of right R-modules. The theory
Th(Mod-R) is not a complete theory. But we may take a canonical complete
theory extending it as follows. Recall that Grothendieck rings of elementarily
equivalent modules are isomorphic by proposition 2.5.1. Equivalently, K0(M) is
determined by Th(M) which, in turn, is determined by its invariants conditions
(theorem 5.2.3).

Definition 6.1.7. Let P be a direct sum of one model of each complete theory
of right R-modules. Then T ∗ = Th(P ) is referred to as the largest complete

theory of right R-modules.

Thus every right R-module is elementarily equivalent to a direct summand of some
model of Th(P ). Now we note the following result without proof and define the
Grothendieck ring of the module category.

Definition and Lemma 6.1.8. (see [12, 6.1.1, 6.1.2]) Let T ∗ denote the largest
complete theory of right R-modules. Then T ∗ = (T ∗)ℵ0 . Furthermore if P1 and P2

are both direct sums of one model of each complete theory of right R-modules, then
K0(P1) ∼= K0(P2). We define the Grothendieck ring of the module category,
denoted K0(Mod-R), to be the Grothendieck ring of the largest complete theory of
right R-modules.

As a consequence of theorem 6.1.1, we state a result connecting Grothendieck rings
of individual modules with that of the module category.

Corollary 6.1.9. Let M be a right R-module. Then K0(M) is a quotient of
K0(Mod-R).

Proof. Let T ∗ be the largest complete theory of right R-modules. Then lemma
6.1.8 gives that, for any P |= T ∗, Th(P ) = T ∗ satisfies T ∗ = (T ∗)ℵ0 and we also
have K0(P ) ∼= K0(Mod-R).
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By the definition of T ∗, there is a module M ′ elementarily equivalent to M such
that M ′ is a direct summand of P . Since the embedding M ′ ֌ P is pure, we
get a surjective homomorphism K0(P ) ։ K0(M

′). Thus the required quotient
map is the composite K0(Mod-R) ∼= K0(P ) ։ K0(M

′) ∼= K0(M), where the last
isomorphism is obtained from proposition 2.5.1. �

6.2. Torsion in Grothendieck rings

As an application of the structure theorem for Grothendieck rings, theorem 5.2.3,
we provide an example of a module whose Grothendieck ring contains a nonzero
torsion element (i.e. a nonzero element a such that na = 0 for some n ≥ 1). We
also calculate the Grothendieck ring K0(ZZ).

Definition 6.2.1. The ring of p-adic integers, denoted Zp, is the inverse limit
of the system . . .։ Z/pnZ ։ . . .։ Z/p2Z ։ Z/pZ ։ 0.

The ring Zp is a commutative local PID with the ideal structure given by

Zp ) pZp ) . . . ) pnZp ) . . . ) 0.

In particular, Zp is a commutative noetherian ring and hence satisfies the hypothesis
of the following proposition.

Proposition 6.2.2. (see [13, p.19,Ex. 2(ii)]) If R is a commutative noetherian ring
then the pp-definable subgroups of the module RR are precisely the finitely generated
ideals of R.

It can be observed that the maps tn : Zp → pnZp which are ‘multiplication by pn’
are pp-definable isomorphisms for each n ≥ 1. Thus a simple computation shows

that the monoid of colours, X
∗
(Zp), is isomorphic to the monoid N.

If X denotes the class of Zp in K0(Zp), then the invariants ideal J (Zp) is generated
by the relations {X = pnX : n ≥ 1}. The relation (pn − 1)X = 0 is an integral
multiple of the relation (p− 1)X = 0 for each n ≥ 1. Thus J (Zp) is principal and
generated by the single relation (p− 1)X = 0. We summarize this discussion as the
following corollary to theorem 5.2.3.

Corollary 6.2.3. Let Zp denote the ring p-adic integers. Then

K0(Zp) ∼= Z[X ]/〈(p− 1)X〉.

Consider the split (hence pure) embedding i : Z(2)
p ֌ Z(3)

p of Zp-modules given by

(a, b) 7→ (a, b, 0), where M (k) denotes the direct sum of k copies of M . We want to
show that this embedding witnesses the failure of theorem 6.1.1 since the theory

T := Th(Z(3)
p ) of the target module doesn’t satisfy the condition T = T ℵ0. The

following proposition is helpful for the calculation of Grothendieck rings.

Proposition 6.2.4. (see [13, Lemma2.23]) If φ(x) and ψ(x) denote pp-formulas,
then

(1) φ(M ⊕N) = φ(M)⊕ φ(N),

(2) Inv(M ⊕N ;φ, ψ) = Inv(M ;φ, ψ)Inv(N ;φ, ψ).
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It is clear that the induced map i : Z[X
∗
(Z(3)

p )] → Z[X
∗
(Z(2)

p )] is the identity

map on Z[X ] since Z[X
∗
(Z(k)

p )] ∼= K0(Z
(ℵ0)
p ) ∼= Z[X ] for any k ≥ 1. Further the

previous proposition shows that J (Z(k)
p ) = 〈(pk − 1)X〉 for any k ≥ 1. Since

J (Z(3)
p ) * J (Z(2)

p ), there is no surjective map K0(Z
(3)
p ) ։ K0(Z

(2)
p ).

The abelian group of integers: Since the ring Z is a commutative PID, the
pp-definable subgroups of the module ZZ are precisely the ideals nZ for n ≥ 0.

Thus the monoid X
∗
(Z) is isomorphic to N. Furthermore if X denotes the class

of Z in K0(Z), the invariants ideal is generated by the relations X = nX for each
n ≥ 1. This forces J (Z) = 〈X〉 and thus K0(ZZ) ∼= Z.

6.3. Representing definable sets uniquely

We fix some R-module M whose theory T satisfies the condition T = T ℵ0 and
some n ≥ 1. As usual we drop all the subscripts n and write L\ {∅},A\ {∅}, . . . as
L∗,A∗, . . . respectively.

The pp-elimination theorem for the model theory of modules (theorem 2.5.5) states
that every definable set can be written as a finite disjoint union of blocks. But
this representation is far from being unique in any sense. On the other hand we
have unique representations for pp-convex sets (proposition 3.1.5) and cells (lemma
3.1.6). We exploit these ideas to achieve a unique representation for every definable
set - an expression as a disjoint union of cells. This result will be called the ‘cell
decomposition theorem’.

We begin by defining some terms useful to describe the cell decomposition theo-
rem.

Definition 6.3.1. Let F = {Cj}lj=1 ⊆ C be a family of pairwise disjoint cells. If
there is a permutation σ of [l] such that P (Cσ(j+1)) ≺ N(Cσ(j)) for 1 ≤ j ≤ l − 1,
then we say that the family F is a tower of cells. We call the number l the
height of the tower. We denote the set of all finite towers of cells by T . We define
a function ζ : T → N which assigns its height to a tower.

Definition 6.3.2. Let αi ∈ A∗ for 1 ≤ i ≤ k. If αi+1 ≺ αi for each 1 ≤ i ≤ k − 1,
we say that α = {αi}

k
i=1 is a ≺-chain. We denote the set of all finite ≺-chains in

A∗ by W. We define a function ω : W → N, which assigns height to each ≺-chain,

by ω(α) = ⌈( |α|2 )⌉ where ⌈q⌉ is the smallest integer larger than or equal to q.

The following proposition states that towers and chains are two different ways of
expressing the same kind of object.

Proposition 6.3.3. There is a bijection Φ : T → W preserving height i.e.,
ω(Φ(F)) = ζ(F) for every F ∈ T .

Proof. Let F = {Cj}lj=1 be a tower of cells with height l. Without loss, we may

assume that P (Cj) ≺ N(Cj+1), i.e., the associated permutation is the identity. We
first define a non-negative integer k as follows.

k =





0, if l = 0,

2l + 1, if l > 0 and N(Cl) = ∅,

2l + 2, if l > 0 and N(Cl) 6= ∅.

For each 1 ≤ i ≤ k, we define an antichain αi ∈ A∗ as follows.
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αi =

{
P (Cj), if i = 2j + 1,

N(Cj), if i = 2j + 2.

Then α = {αi}ki=1 is clearly a ≺-chain and the map Φ(F) := α can be easily checked
to be injective.

To prove surjectivity, let β ∈ W . We modify β to obtain a ≺-chain β
′
= {β′

i}
2ω(β)
i=1

in A as follows.

β′
i =

{
βi, if 1 ≤ i ≤ |β|,

∅, if |β| 6= 2ω(β) and i = 2ω(β).

Then |β
′
| is an even integer. We define C′

j =
⋃
β2j+1 \

⋃
β2j+2 for 1 ≤ j ≤ |β

′
|/2.

The family F ′ := {C′
j}

|β
′

|/2
j=1 clearly satisfies Φ(F ′) = β.

The height preservation property is easy to check from the explicit constructions
above. �

Proposition 6.3.4. Let {Ai}mi=1 ∈ P and B ∈ B be such that B ⊆
⋃m

i=1 Ai. Then

B ⊆
⋃m

i=1Ai.

Proof. We have B = B ∪
⋃
N(B). Hence B ⊆

⋃m
i=1Ai ∪

⋃
N(B). By 3.1.4,

B ⊆ Ai for some i, or B ⊆ D for some D ∈ N(B). The latter case is not possible
since N(B) ≺ P (B) = {B}. Hence the result. �

Lemma 6.3.5. Let D ∈ Def(Mn). Then there is a unique pp-convex set D which
satisfies D ⊆

⋃
α ⇒ D ⊆

⋃
α for every α ∈ A.

Proof. Let D =
⊔m

i=1Bi =
⊔l

j=1 B
′
j be any two representations of D as disjoint

unions of blocks.

Claim:
⋃m

i=1 Bi =
⋃l

j=1 B
′
j

Proof of the claim: We have Bi ⊆
⊔m

i=1 Bi =
⊔l

j=1 B
′
j ⊆

⋃l
j=1 B

′
j for each i. Hence

Bi ⊆
⋃l

j=1 B
′
j by the previous proposition. Therefore

⋃m
i=1 Bi ⊆

⋃l
j=1 B

′
j . The

reverse containment is by symmetry and hence the claim.

Now we define D =
⋃m

i=1 Bi. By the claim, this pp-convex set is uniquely de-
fined.

Let α ∈ A be such that D ⊆
⋃
α. But D =

⊔m
i=1Bi. Hence Bi ⊆

⋃
α for each i.

By arguments similar to the proof of the claim, we get
⋃m

i=1 Bi ⊆
⋃
α i.e., D ⊆

⋃
α.

�

The assignment D 7→ D, where D is the pp-convex set obtained from the lemma,
defines a closure operator Def(Mn) → An. This closure operation is extremely
useful in proving the cell decomposition theorem.

Theorem 6.3.6. Cell Decomposition Theorem: There is a bijection between
the set Def(Mn) of all definable subsets of Mn and the set T of towers of cells.

Proof. Let D ∈ Def(Mn). We construct a tower F of cells by defining a nested
sequence {Dj}j≥0 of definable subsets of D as follows.
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We set D0 := D and, for each j > 0, we set Dj := Dj−1 \ Cj , where Cj :=

Dj−1 \ (Dj−1 \Dj−1) is a cell. We stop this process when we obtain Dj = ∅ for
the first time. This process must terminate because the elements of the antichains
involved in this process belong to some finite nest containing a fixed decomposition
of D into blocks.

In the converse direction, we assign
⋃
F ∈ Def(Mn) to F ∈ T .

It is easy to verify that the two assignments defined above are actually inverses of
each other. �

The following corollary combines theorem 6.3.6 with lemma 6.3.5 and gives a com-
binatorial representation theorem for Def(Mn), which roughly states that every
definable subset of Mn can be represented uniquely as a finite ≺-chain in the free
distributive lattice A over the meet semilattice L.

Corollary 6.3.7. There is a bijection between the set Wn of finite chains in A∗
n

and Def(Mn).

6.4. Connectedness

We fix a right R-module M satisfying Th(M) = Th(M)ℵ0 and some n ≥ 1. We
drop all the subscripts n as usual.

Recall that every global characteristic of a definable set is preserved under definable
isomorphisms (Theorem 3.5.9). In this section we describe what we mean by the
statement that a definable subset of a (finite power of a) module is connected.
The property of being connected is not preserved under definable isomorphisms.
We prove a (topological) property of connected sets which states that a definable
connected set A contained in another definable set B is in fact contained in a
connected component of B.

Let F ,F ′ ⊆ B be two finite families of disjoint blocks such that
⋃
F =

⋃
F ′. Then

we say that F ′ is a refinement of F if for each F ′ ∈ F ′, there is a unique F ∈ F
such that F ′ ⊆ F . Recall from 3.2.3 that if

⋃
F ∈ B and if D is the corresponding

nest, then {CoreD(D)}D∈D+ is a refinement of F , where D+ is the set δ−1
D {1}. We

use this property of nests to attach a digraph with each of them.

Definition 6.4.1. Let D be a nest corresponding to a fixed finite family of pairwise
disjoint blocks. We define a digraph structure H(D+) on the set D+. The pair
(F1, F2) of elements of D+ will be said to constitute an arrow in the digraph if
F1 ( F2 and F1 ⊆ F ⊆ F2 for some F ∈ D+ if and only if F = F1 or F = F2.

If
⋃

F∈D+ CoreD(F ) ∈ B, then D+ is an upper set and in particular H(D+) is
weakly connected i.e., its underlying undirected graph is connected. It seems
natural to use this property to define the connectedness of a definable set.

Definition 6.4.2. Let D ∈ Def(Mn) be represented as D =
⋃
F , where F ⊆ B be

a finite family of pairwise disjoint blocks and let D denote the nest corresponding
to F . We say that D is connected if and only if the digraph H(D′+) is weakly
connected for some nest D′ containing D.

Note the existential clause in this definition. Let F ,F ′ be two finite families of pair-
wise disjoint blocks with

⋃
F =

⋃
F ′ and let D,D′ denote the nests corresponding

to them. If F ′ refines F , then the number of weakly connected components of
H(D′+) is bounded between 0 and the number of weakly connected components of
H(D+). This observation allows us to define the following invariant.
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Definition 6.4.3. We define the number of connected components of D, de-
noted λ(D), for every nonempty definable set D to be the least number of weakly
connected components of H(D+), where D varies over nests refining a fixed partition
of D into disjoint blocks. We set λ(∅) = 0.

In the discussion on connectedness, we have treated blocks as if they are the basic
connected sets. Note that a definable setD is connected if and only if λ(D) = 1. We
denote the set of all connected definable subsets of Mn by Conn. We tend to drop
the suffix n if it is clear from the context. We have Bn ⊆ Conn as expected.

Illustration 6.4.4. Consider the vector space RR. The pp-definable subsets of the
plane, R2, are points and lines and the plane.

Note that if a definable subset of R2 is topologically connected, then it is connected
according to definition 6.4.2. But the converse is not true. The set B = {(x, 0) :
x 6= 0} is not topologically connected, but B ∈ Con since B is a block.

If D denotes the union of two coordinate axes with the origin removed, then the
number of topologically connected components of D is 4, whereas λ(D) = 2.

Remark 6.4.5. If X is a ‘nice’ topological space (e.g., a manifold), then the rank
β0 of the homology group H0(X) is the number of (path) connected components
of X . To note the analogy, consider P ∈ Ln and α ∈ LP . If α 6= ∅, then
β0(KP (α)) = λ(

⋃
α\P ). Note that the ‘deleted neighbourhood’ of P in α, i.e., the

set
⋃
α \ P , occurs in this correspondence since the ‘non-deleted neighbourhood’⋃

α is connected.

Topologically connected sets satisfy the following property. If a connected set A is
contained in another set B, then A is actually contained in a connected component
of B. We have a similar result here.

Theorem 6.4.6. Let A,Bi ∈ Con for 1 ≤ i ≤ m be such that λ(
⋃m

i=1Bi) = m. If
A ⊆

⋃m
i=1 Bi, then A ⊆ Bi for a unique i.

Proof. Let D be a nest containing the nests corresponding to some fixed families
of blocks partitioning A and all the Bi. The restriction of the digraph H(D+) to A
is a subdigraph of H(D+). Since the former is weakly connected, it is a sub-digraph
of exactly one of the m weakly connected components of the latter. �

6.5. Remarks and questions

Consider the structure of the proof of the special case of the main theorem. Ma-
nipulation of different lattice-like structures is one of the important themes in this
paper. The partial quantifier elimination result for theories of modules (theorem
2.5.5) makes the meet-semi-lattice Ln, of pp-definable sets, the basic object of
study. The lattice of antichains An is the free distributive lattice on Ln and simpli-
cial methods are natural for studying the ‘set-theoretic geometry’ associated with
antichains. The local processes in Def(Mn) are similar to, but independent from,
the local processes in Def(Mm) when n 6= m and these different ‘dimensions’ start
to interact with each other only when we are concerned with the multiplicative
structure. The fact that the pp-sets are closed under projections is not directly
relevant to the technique.

Note that the model-theoretic condition T = Tℵ0 is equivalent to the lattice-
theoretic statement that every element of Ln considered as an element of the lattice
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An is ‘join-irreducible’. The unique representation theorem (theorem 6.3.6) relies
solely on this fact and in particular this is a statement about lattices of sets. We
would like to know if this idea can be expressed in some more abstract setting.

The algebraic K-theory functor K0 : Ring → Ab is covariant, whereas the model-
theoretic Grothendieck ring functor K0 is contravariant on pure embeddings (the-
orem 6.1.1). Note that K0(M) depends on L(M) in a covariant way and the
assignmentM 7→ L(M) is contravariant. This strongly suggests that the answer to
the following question is positive.

Question 6.5.1. Is there a way to define the Grothendieck ring for a sequence
(Ln)n≥0 of meet-semi-lattices (with inclusion and projection maps) under certain
conditions in a way that is abstractly similar to the technique used in the proof of
theorem 4.1.2?

A more specific question could be asked for model-theoretic Grothendieck rings.

Question 6.5.2. Are there any structures admitting some form of quantifier elim-
ination, whose Grothendieck rings can be computed using a similar technique?

Though there are modules with additive torsion elements in Grothendieck rings
(corollary 6.2.3), we believe that there are no examples with non-trivial multi-
plicative torsion elements (i.e. elements a ∈ K0(M) such that an = 1 for some
n > 1).

Conjecture 6.5.3. There are precisely two units (namely ±1) in the Grothendieck
ring K0(M) of a nonzero module M .
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