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Abstract

We introduce a general framework for generating dualities between

categories of partial orders and categories of ordered Stone spaces; we

recover in particular the classical Priestley duality for distributive lat-

tices and establish several other dualities for different kinds of partially

ordered structures.
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1 Introduction

In this paper we give a topos-theoretic interpretation of Priestley duality for
distributive lattices, leading to natural analogues of this duality for other
categories of partially ordered structures. Specifically, we establish dualities
between various categories of ordered structures and categories of Priestley
spaces which can be intrinsically characterized through appropriate separa-
tion axioms analogously to the case of the classical duality.

In order to build these ‘Priestley-type’ dualities, we investigate the classi-
cal duality from both a topological and an algebraic viewpoint. As it is well-
known, topologically the duality is based on the patch topology construction,
while algebraically the Boolean algebra of clopen sets of the Priestley space
associated to a distributive lattice can be characterized as the free Boolean
algebra on it. The unification between the algebraic and the topological for-
mulations of the duality is conveniently provided by the notion of topos; in
fact, the toposes involved in Priestley-type dualities admit, on one hand, an
algebraic representation (as categories of sheaves on a preordered structure
with respect to an appropriate Grothendieck topologies on it) and on the
other hand a topological one (as categories of sheaves on natural spectra of
the structures, as provided by the techniques of [6]).

Topologically, our ‘Priestley-type’ dualities are built by considering nat-
ural spectra for the given partially ordered structures, generating patch-type
topologies from them and equipping the resulting spaces with the specializa-
tion orderings on the original spectra; algebraically, the dualities are obtained
by assigning to any given ordered structure a Boolean algebra which is free
on it (in an appropriate sense), equipped with a natural ordering on the
points of its spectrum. Specific examples of dualities generated through this
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method are given in the paper, specifically in section 5, and notably include
‘Priestley-type’ dualities for coherent posets, meet-semilattices and disjunc-
tively distributive lattices.

We also argue more generally that various kinds of free structures provide
a natural way for building dualities, to the extent that many free functors
admit an inverse defined on an appropriate subcategory. Further illustrations
of this phenomenon are provided in the section 5 of the paper.

The structure of the paper is as follows. In section 2 we carry our a gen-
eral analysis of free structures and their construction via syntactic categories,
with a particular emphasis on the construction of free Boolean algebras on
different kinds of preordered structures through Morleyizations. In section
2.4, we address the problem of realizing free structures topologically and es-
tablish several results which allow us to identify, under natural hypotheses,
a free structure on a poset as a structure generated by it inside an appropri-
ate powerset. In section 3 we present our topos-theoretic interpretation of
Priestley duality, leading to the general method for building ‘Priestley-type’
dualities described in section 4. The paper ends with a section devoted to
concrete examples of dualities generated through our methodologies.

2 Free structures and Morleyizations

Let us start with some general remarks about the relationship between free
structures and (generalized) syntactic categories.

2.1 Free structures and syntactic categories

As remarked in [6], the theory of syntactic categories can be profitably ap-
plied to the problem of constructing structures presented by generators and
relations. In fact, any syntactic category of a given theory T can be re-
garded, in a sense that we shall not make precise in the present paper, as a
structure presented by a set of ‘generators’, given by the sorts in the signa-
ture of the theory T, subject to ‘relations’ expressed by the axioms of the
theory T. Conversely, to any structure C one can attach a canonical signa-
ture ΣC to express ‘relations’ holding in the structure, consisting of one sort
⌜c⌝ for each element c of C and possibly function or relation symbols whose
canonical interpretation in C coincide with specified functions or subsets in
C in terms of which the designated ‘relations’ holding in C can be formally
expressed; over such a canonical signature one can then write down axioms
possibly involving generalized connectives and quantifiers so to obtain a S-
theory (in the sense of section 8 of [5]) T whose S-syntactic category CS

T
can
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be identified with ‘the free structure on C subject to the relations R’, meaning
that the S-structure D in which the relations R are satisfied naturally cor-
respond to the S-homomorphism CS

T
→ D, in a way which can be concretely

described as follows. To any S-structure D we can canonically associate a
S-homomorphism C → D, assigning to any element c of C the interpretation
of ⌜c⌝ in D; in particular we have a canonical S-morphism i ∶ C → CS

T
, in terms

of which the universal property of CS
T

can be expressed by saying that any
S-homomorphism f ∶ C → D to a S-structure D in which the relations R are
satisfied can be extended, uniquely up to isomorphism, along the canonical
morphism i, to a S-homomorphism CS

T
→ D.

As an example of application of this general method, let us consider the
problem of constructing, given a small category C, a cartesian category C̃
with a functor i ∶ C → C̃, such that any functor f ∶ C → D from C to a
cartesian category D can be uniquely extended (up to isomorphism) along i
to a cartesian functor f̃ ∶ C̃ → D. One can write down a cartesian theory T

over the canonical signature of the category C whose models in any cartesian
category can be identified with the functors C → D (cf. Example D1.4.8 [12]).
Then the category C̃, that is the ‘free cartesian completion’ of the category C,
can be realized as the cartesian syntactic category of the theory T. Similarly,
the ‘free Boolean completion’ of C, that is a Boolean coherent category BC,
equipped with a functor i ∶ C → BC, such that any functor from C to a Boolean
coherent category D can be extended along i uniquely to a Boolean coherent
functor BC → D, can be constructed as the first-order syntactic category of
the theory T. Analogously, the regular (resp. coherent, Heyting, geometric,
etc.) syntactic category of T yields the ‘free regular completion’ (resp. ‘free
coherent completion’, ‘free Heyting completion’, ‘free geometric completion’,
etc.) of the category C.

More generally, whenever we can axiomatize, by using a S-theory T over
a canonical signature of a category C, a given family M of functors from C
to a S-category D then the S-syntactic category of the theory S , together
with the canonical functor C → CS

T
, satisfies the universal property of the

‘free S-category on C relative to M’, that is any functor f ∶ C → D from
C to a D which belongs to the family M can be extended, uniquely up to
isomorphism, to a S-functor f̃ ∶ CS

T
→ D.

Recalling that preorders can be identified with categories in which for
any two objects there is at most one arrow from the former to the latter,
this methodology can be profitably applied in the context of propositional
theories to build ordered algebraic structures presented by generators and
relations (cf. [6] for a comprehensive treatment of this context); in this
paper we shall in particular be concerned with the construction of Boolean
algebras presented by generators and relations.
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As much as the logical construction of free structures is important and
useful, a problem which frequently arises in practice is that of obtaining
explicit descriptions of such structures, descriptions not necessarily of logi-
cal nature, but of algebraic, geometric or topological kind, or of whatever
other sort. As we already remarked in [6], the methods of Topos Theory
can be profitably exploited to obtain such descriptions starting from logical
descriptions of the given structures; indeed, any topos which can be natu-
rally attached to the given structure in such a way that the structure can be
recovered from it up to isomorphism (for example, a topos from which the
structure can be recovered as its full subcategory of C-compact objects for
a topos-theoretic invariant C - cf. [6] for many examples of such situations),
admits in general many different representations, which can be obtained by
using a variety of topos-theoretic methods; any such representation (of alge-
braic, resp. geometric or topological) nature will thus produce a correspond-
ing representation (of algebraic, resp. geometric or topological) nature of the
given structure. For instance, the classifying topos of a geometric theory can
always been built as the topos of sheaves on an appropriate syntactic category
of the theory with respect to a natural Grothendieck topology on it, but can
also be computed in several different ways (in fact, any Morita-equivalence
of the given theory with another one provides a different way of representing
the classifying topos, cf. [5]), and, at least in the propositional context, these
syntactic categories can be recovered from the classifying topos as the full
subcategories on the subterminals in the topos which are C-compact for a
topos-theoretic invariant C (cf. [6]). We shall apply these remarks below in
connection with the construction of free Boolean algebras on various kinds
of partially ordered structures.

2.2 The Morleyization of a first-order theory

Let us recall that, given any finitary first-order theory T over a signature
Σ, one can define a coherent theory T′ over an extended signature, called
the Morleyization of T (cf. Lemma D1.5.13 [12]), such that for any Boolean
coherent category C the category of T models in C and elementary morphisms
between them is naturally equivalent to the category of models of T′ in C.
The signature Σ′ of T′ has, in addition to all the sorts, function symbols and
relation symbols of the signature Σ of T, two relation symbols Cφ ↣ A1⋯An
and Dφ ↣ A1⋯An for each first-order formula φ over Σ (where A1⋯An is the
string of sorts corresponding to the canonical context of φ), while the axioms
of T′ are given by the sequents of the form Cφ ⊢x⃗ Cψ for any axiom φ ⊢x⃗ ψ of
T together with a set of coherent sequents involving the new relation symbols
Cφ and Dφ which ensure that in any model M of T′ in a Boolean coherent
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category C, the interpretation of Cφ coincides with the interpretation of φ and
the interpretation of Dφ coincides with the complement of the interpretation
of φ (cf. p. 859-860 [12] for the details).

For any finitary first-order theory T, one can also consider the classi-
cal first-order syntactic category Ccl-fo

T
of T, whose objects are the first-order

formulae-in-context over the signature of T and whose arrows are the T-
provable (with respect to classical logic) equivalence classes of first-order
formulae which are T-provably functional from the domain to the codomain.
This category enjoys the following universal property: for any Boolean co-
herent category C, we have, naturally in C, an equivalence of categories

Bool(Ccl-fo
T

,C) ≃ T-mode(C),

where Bool(Ccl-fo
T

,C) denotes the category of Boolean (equivalently, coher-
ent) functors Ccl-fo

T
→ C and natural transformations between them, and

T-mode(C) denotes the category of models of T in C and elementary mor-
phisms between them. This can be easily seen by appropriately modifying
the proof of the corresponding result for cartesian theories (as given for exam-
ple by Theorem D1.4.7 [12]) and observing that the morphisms between the
models are elementary since Boolean functors defined on Boolean categories
are Heyting functors and hence preserve the interpretations of first-order
formulae.

Before proceeding further, we record a couple of easy facts about Mor-
leyizations.

Proposition 2.1. Let T be a finitary first-order theory over a signature Σ

and T′ its Morleyization. Then

(i) For any finitary first-order sequent φ ⊢x⃗ ψ over Σ, the sequent is prov-
able in T using classical first-order logic if and only if the sequent
Cφ ⊢x⃗ Cψ is provable in T′ using coherent logic;

(ii) The classical first-order syntactic category Ccl-fo

T
of T is isomorphic to

the coherent syntactic category of T′, and to the classical first-order
syntactic category of T′.

Proof (i) This follows immediately from the classical completeness theorem
for first-order logic and the classical completeness theorem for coherent logic,
using the fact that the models of T in Set can be identified with the models
of T′ in Set and that in any such model the interpretation of φ coincides
with the interpretation of Cφ.
(ii) It is immediately verified that every finitary first-order (resp. coher-

ent) formula over the signature of T′ is classically provably equivalent (resp.
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provably equivalent in coherent logic) to a coherent formula over the signa-
ture of T′ (cf. p. 923 [12]); from this it follows at once that the coherent
syntactic category of T′ is Boolean and that every morphism between mod-
els of T′ in Boolean coherent categories is an elementary morphism. Hence,
by the fundamental property of Morleyizations, both the coherent syntactic
category of T′ and the classical first-order syntactic category of T′ satisfy
the universal property of the category Ccl-fo

T
with respect to models of T in

Boolean coherent categories; but this implies, by universality, that these two
categories are naturally equivalent to Ccl-fo

T
, as required. ◻

Remarks 2.2. (a) A first-order theory is complete in the sense of classical
Model Theory (i.e., any first-order sentence over the signature of the
theory is either provably false or provably true, but not both) if and only
if its Morleyization is complete in the sense of geometric logic (i.e., any
geometric sentence over its signature is either provably false or provably
true, but not both). Indeed, this immediately follows from the proof of
part (ii) of the proposition.

(b) From part (ii) of the proposition it immediately follows that two arbi-
trary first-order theories are equivalent (in the sense that their syntactic
Boolean pretoposes are equivalent) if and only if their Morleyizations are
Morita-equivalent (i.e. their classifying toposes are equivalent).

2.3 Free Boolean algebras through Morleyizations

As we have shown in [6], our general theory of syntactic categories provides
a way for building a great variety of preordered structures presented by gen-
erators and relations. In this section we shall apply this general technique
to construct free Boolean algebras on various kinds of preordered structures,
including in particular preorders, meet-semilattices and distributive lattices.
Specifically, we shall build such structures as first-order syntactic categories
of propositional theories axiomatizing the given class of morphisms from the
structure to Boolean algebras, or equivalently as coherent syntactic categories
of their Morleyizations (cf. Proposition 2.1).

The following definition will play a central role in our analysis.

Definition 2.3. Let C be a structure, L be a category of structures and M
be a class of functions from C to structures in L. We say that a structure D
in L, together with a function i ∶ C → D in M, is the free (L,M)-structure
on C if any function f ∶ C → L in M from C to a structure L in L can be
uniquely extended via i to an arrow D → L in L.
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It is clearly natural to wonder whether, given C, L and M as in the
definition, the free (L,M)-structure on C exists, and if so how it can be
built. If the class L can be identified as the class of models of a small
ordered algebraic theory A and the morphisms in M from C to structures
in L can be identified with the models of A which satisfy some ‘relations’
written in the canonical signature of C (in the sense of section 8 of [6]) then,
by Theorem 8.5 [6], the free (L,M)-structure on C exists and can be built
as the S-syntactic category of the S-theory corresponding to the given set
of generators and relations relative to A via the method described at pp.
125-126 [6].

In particular, suppose that L is the category of Boolean algebras. Then
L can be seen as the category of models of a small ordered algebraic theory,
namely the theory of Boolean algebras, as written in the signature consisting
of two constant symbols 0 and 1, one unary function symbol ¬ and two
binary function symbols ∨ and ∧. If Σ is the canonical signature of C then
the S-theories over Σ corresponding to a set of relations written over Σ (via
the method of pp. 125-126 [6]) are precisely the first-order propositional
theories over Σ. Therefore, the relevant free structures can be built as the
syntactic S-categories of such theories, that is as the first-order syntactic
categories of propositional theories over Σ, or equivalently as the coherent
syntactic categories of their Morleyizations. The use of Morleyizations is
important because it allows us to work with coherent theories in place of
first-order ones, and hence exploit the theory of classifying toposes to obtain
alternative descriptions of the goven syntactic categories, as remarked in
section 2.1 above.

Let us now give a few examples.

1. The free Boolean algebra on a preorder.
Given a preorder P, consider the propositional theory P over the signa-
ture consisting of one relation symbol Ra for each element a of P and
having as axioms all the sequents of the form

(Ra ⊢ Rb)

for any a, b ∈ P such that a ≤ b. Clearly, the models of this theory
in any Boolean algebra B correspond precisely to the monotone maps
P → B. The first-order syntactic category BP of the theory P thus
yields a Boolean algebra which is ‘free on P’ in the sense that there is
a canonical functor i ∶ P → BP with the property that any monotone
map P → B can be extended uniquely along i to a Boolean algebra
homomorphism BP → B.
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2. The free Boolean algebra on a meet-semilattice.
Given a meet-semilattice M, consider the theory M over the signature
consisting of one relation symbol Ra for each element a ofM and having
as axioms all the sequents of the form

(⊺ ⊢ R1M
),

(Ra ∧Rb ⊣⊢ Ra∧b)

for any a, b ∈M, where 1M denotes the top element ofM and ∧ denotes
the meet operation in M.

The models of M in a Boolean algebra B clearly correspond to the
meet-semilattice homomorphisms M → B; therefore, the first-order
syntactic category of M provides the free Boolean algebra on M; that
is, we have a canonical functor i ∶ M → BM with the property that
any meet-semilattice homomorphism M → B to a Boolean algebra B
can be extended uniquely along i to a Boolean algebra homomorphism
BM → B.

3. The free Boolean algebra on a distributive lattice.
Given a distributive lattice D, consider the theory D over the signature
having one 0-ary relation symbol Rd for each element d ∈ D, and the
following axioms:

(⊺ ⊢ R1D
);

(R0D
⊢ �);

(Ra∧b ⊣⊢ Ra ∧Rb)

for any a, b in D;
(Ra∨b ⊣⊢ Ra ∨Rb)

for any a, b ∈ D (where 1D denotes the top element of D, 0D denotes the
bottom element of D, ∧ denotes the meet operation in D and ∨ denotes
the join operation in D).

For any Boolean algebra B, the models of D in B correspond precisely
to the distributive lattice homomorphisms D → B. The first-order syn-
tactic category of D thus provides the free Boolean algebra on D, in
the sense that we have a canonical functor i ∶ D → BD with the prop-
erty that any distributive lattice homomorphism D → B to a Boolean
algebra B can be extended uniquely along i to a Boolean algebra ho-
momorphism BD → B.

9



2.3.1 The free Boolean algebra on a distributive lattice

In this section we give, as an example of our technique of using classifying
toposes for obtaining concrete descriptions of structures presented by gener-
ators and relations, an explicit description of the free Boolean algebra on a
distributive lattice.

By the discussion in the last section, the free Boolean algebra on a dis-
tributive lattice D can be identified with the classical first-order syntactic
category of the theory D introduced in section 2.3 above; this category can
in turn be identified, by Proposition 2.1, with the coherent syntactic category
of the Morleyization of D. In fact, the Morleyization of D admits in this case
a simpler description, that is we can alternatively use, in place of it, a simpler
theory having an equivalent coherent syntactic category. This theory, which
we call SD, can be described as follows. Its signature has, in addition to all
the 0-ary relation symbols of the theory D, one 0-ary relation symbol R∗ for
each (0-ary) relation symbol R over the signature of D, and, in addition to
the axioms of D, the following axioms:

(⊺ ⊢ Rd ∨R
∗
d)

for any d ∈ D, and
(Rd ∧R

∗
d ⊢ �)

for any d ∈ D.
The coherent syntactic category CSD of this theory, together with the ob-

vious map D → CSD (sending any element d ∈ D to the equivalence class of the
formula Rd) thus yields the free Boolean algebra on the distributive lattice
D. This provides a logical description of this structure which, in particular,
establishes its existence independently of any non-constructive assumptions
(such as for example weak forms of the axiom of choice necessary to establish
spatial representations for the structures in question); in fact, it is well-known
that the Stone representation of any distributive lattice as a ring of sets gives
naturally rise to a related description of the free Boolean algebra on it (cf.
also below), but such spatial representations are not guaranteed to exist in
a fully constructive framework. Concerning this, it should be mentioned
that [8] gives an elegant logical description of the free Boolean algebra on
a distributive lattice in terms of entailment relations, while [15] provides a
more algebraic, but still intrinsically logical in character, description of the
same structure. In this section we present an alternative algebraic descrip-
tion of this structure, directly involving the elements and operations on the
lattice and not relying on ‘deduction rules’ of any sort. Similarly to how we
‘computed’ the free frame on a complete join-semilattice, we achieve such a
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description by investigating the classifying topos of the theory CSD from a
‘semantical’ point of view.

As shown in [4], a convenient way for obtaining a ‘semantic’ representation
for the classifying topos of a geometric theory consists in regarding the theory
as a quotient of a theory of presheaf type; this produces a representation of
the classifying topos of the theory as a topos of sheaves on the opposite of the
category of finitely presentable models of the relevant theory of presheaf types
with respect to a Grothendieck topology which can be directly described in
terms of the axioms of the theory (cf. [4]) for the details of the general
theory). In our case, a convenient choice is that of regarding the theory
CSD as a quotient of the empty theory over its signature (note however that
this is by no means the only possibility, and that different choices would
produce different representations for the same classifying topos). This leads
to a description of the free Boolean algebra on D much in the same spirit as
that of the free frame on a complete-join semilattice obtained in [6].

Concerning notation, we denote the disjoint union of D with itself by Ddb;
for any element d ∈ D, considered as an element of the ‘first copy of D’ in
Ddb, we denote by d∗ the corresponding element in the second copy of D in
Ddb.

Theorem 2.4. The free Boolean algebra on a distributive lattice D can be
realized as the set B(D) of compact elements of the frame of upward closed
subsets I of the set Pfin(Ddb) of finite subsets of Ddb (with respect to the
subset-inclusion ordering on Pfin(Ddb)) satisfying the following properties
(endowed with the subset-inclusion ordering):

1. for any subset U ∈ Pfin(Ddb), U ∪ {1D} ∈ I implies U ∈ I;

2. for any subset U ∈ Pfin(Ddb), 0D ∈ U implies U ∈ I;

3. for any elements a, b ∈ D, if U ∪{a, a∨ b} ∈ I and U ∪{b, a∨ b} ∈ I then
U ∪ {a ∨ b} ∈ I;

4. for any elements a, b ∈ D, if U ∪ {a, b, a ∧ b} ∈ I then U ∪ {a, b} ∈ I;

5. for any d ∈ D and any subset U ∈ Pfin(Ddb), U ∪ {d, d∗} ∈ I;

6. for any d ∈ D and any subset U ∈ Pfin(Ddb), if U∪{d} ∈ I and U∪{d∗} ∈
I then U ∈ I,

endowed with the induced ordering, with the universal map D → B(D)
being the function sending any element d ∈ D to the smallest element of
B(D) containing the set {d} as one of its elements.

◻
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Proof This follows immediately from the explicit description of the classi-
fying topos Sh(Pfin(Ddb)op, J) of the theory CSD in terms of its axioms, and
from the remark that the coherent syntactic category of CSD can be recovered
as the set of compact elements of the frame of subterminals of the classifying
topos of CSD (that is, of the frame of J-ideals on Pfin(Ddb)op, cf. [6]). ◻

2.4 Spatial realization of free structures

If a given partially ordered structure can be represented as a substructure of a
powerset then it is natural to wonder if structures which are free on it (in the
sense of Definition 2.3 above) can also be naturally realized as substructures
of that powerset.

Suppose that L is a category of structures and homomorphisms between
them and that every powerset is equipped with (finitary) function and re-
lation symbols which make it into a structure in L. Given a set X and a
subset C ⊆ P(X), there always exists a smallest substructure of P(X) in L
containing C, called the substructure of P(X) generated by C (cf. pp. 7-8
[10]); we shall denote it by GX

(C,L).
The following proposition exhibits a relationship between the concept of

substructure and that of free structure.

Proposition 2.5. Let C be a structure, L be a category of structures and M
be a class of functions from C to structures in L. Suppose that C ⊆ D ⊆ P(X)
and that the inclusion m ∶ C ↪ D identifies D as the free (L,M)-structure on
C. Then, if the inclusion C ↪ GX

(C,L) is a morphism inM, we have D = GX
(C,L),

that is GX
(C,L) is the free (L,M)-structure on C.

Proof By the universal property of GX
(C,L), we have an inclusion j ∶ GX

(C,L) ⊆

D, so it remains to prove the converse inclusion. Since the inclusion i ∶ C ↪
GX
(C,L) is a morphism in M, there exists an arrow r ∶ D → GX

(C,L) in L such

that r ○m = i. In order to prove the inclusion D ↪ GX
(C,L), we will show

that t ○ r = u, where t is the inclusion GX
(C,L) ↪P(X) and u is the inclusion

D ↪ P(X). Notice that u ○ j = t, since all these functions are inclusions.
Now, by the uniqueness of the arrow k ∶ D → D such that k ○m = m given
by the universal property of the free (L,M)-structure on C, we have that
j ○ r = 1D, whence u = u ○ 1D = u ○ j ○ r = t ○ r, as required. ◻

Remark 2.6. In general, GX
(C,L) is not the free (L,M)-structure on C. Take

for example C = P(X); C, regarded as a meet-semilattice, coincides with the
Boolean algebra generated by itself, but it is not the free Boolean algebra on
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it (as a meet-semilattice), since Boolean algebra homomorphisms of Boolean
algebras do not in general coincide with meet-semilattice homomorphisms
of their underlying meet-semilattices. Anyway, as we shall see below, for a
great variety of structures C there is a natural choice of a set X such that
C can be embedded as a substructure of the powerset P(X) and the free
(L,M)-structure on C can be identified with the substructure GX

(C,L) in L of

P(X) generated by C.

The following result provides a set of natural contexts in which a free
structure on a given one can be identified as a substructure generated by it.

Theorem 2.7. Let C be a preordered structure, L be a category of preordered
structures and M be a class of functions from C to structures in L. Let
assume that all the powersets can be made into structures in L and that for
any function f ∶ X → Y the induced function P(f) = f−1 ∶ P(Y ) →P(X)
is an arrow in L. Let us moreover assume that, given a function from C to a
structure in L, if the composition of it with each of the arrows belonging to a
jointly injective family of arrows in L belongs to M then the function itself
belongs to M. Let the map m ∶ C → L identify L as the free (L,M)-structure
on C. Suppose that there exists a subcanonical Grothendieck topology JC on C
such that the morphisms C → {0,1} inM coincide precisely with a designated
set XC of jointly conservative flat JC-continuous functors C → {0,1}, and
that there is a subcanonical Grothendieck topology KL on L such that the
morphisms L→ {0,1} in L which extend the morphisms C → {0,1} in M via
m coincide with a designated set YL of jointly conservative flat KL-continuous
functors L → {0,1}. Then L can be identified with the L-substructure of
P(XC) generated by C, regarded as a subset of P(XC) via the composite
map C ↣ IdJC(C) ≅ O(XC) ⊆ P(XC) (where C ↣ IdJC(C) is the canonical
embedding of C into the frame IdJC(C) of JC(C)-ideals on C and XC is endowed
with the topology induced by that of the space of points of the topos Sh(C, JC)).
We have a geometric morphism

Sh(L,KL) ≃ Sh(YL) → Sh(XC) ≃ Sh(C, JC),

where YL is endowed with the topology induced by that of the space of points
of the topos Sh(L,KL).

If moreover the L-substructure of P(XC) generated by C is contained in
O(XC) then we have an equivalence of toposes

Sh(L,KL) ≃ Sh(YL) ≃ Sh(XC) ≃ Sh(C, JC) .

Proof Since KL is subcanonical and the topos Sh(L,KL) has enough points,
we have an embedding k ∶ L → P(YL). Similarly, we have an embedding
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h ∶ C → P(XC). Since, by our hypotheses, the arrows C → {0,1} in M
correspond bijectively (by composition with m) to the arrows L → {0,1} in
YL, we have a bijection u ∶ YL →XC such that the diagram

C

m

��

h // P(XC)

P(u)
��

L
k // P(YL)

commutes. Notice that the commutativity of this diagram implies in par-
ticular that the arrow m is injective and that therefore the free (L,M)-
structure on C can be realized (up to isomorphism) as a subset of P(XC)
containing C. In order to conclude our thesis by using Proposition 2.5,
it only remains to verify that the inclusion C ↪ GXC

(C,L) is a morphism in
M. To this end, we observe the following facts. The arrows of the form
P(x) ∶ P(XC) → {0,1} ≅ P({∗}), where x ∶ {∗} → XC is the function
defined by x(∗) = x, belong to L (by our hypotheses) and are jointly injec-
tive (for x ∈ XC); therefore, since for every x ∈ XC P(x) ○ h belongs to M,
the function h ∶ C → P(XC) belongs to M. From this it follows in turn,
by invoking our hypotheses again, that the factorization C ↪ GXC

(C,L) of h

across the inclusion GXC
(C,L) ↪P(XC) (which is an arrow of L by definition of

L-substructure of P(XC) generated by C) belongs to M, as required.
The commutativity of the square above implies that the map u ∶ YL →XC

is continuous if YL (resp. XC) is endowed with the topology induced by that
of the space of points of the topos Sh(L,KL) (resp. of the topos Sh(C, JC)),
whence it induces a geometric morphism

ũ ∶ Sh(L,KL) ≃ Sh(YL) → Sh(XC) ≃ Sh(C, JC) .

The last part of the theorem can be proved as follows. If L corresponds,
under the bijection P(u), to a subset of P(XC) contained in O(XC) then
the frame of open sets O(YL) of YL corresponds under P(u) to the set O(XC)
of open sets of the space XC (since L constitutes a basis for YL). Hence the
spaces XC and YL are homeomorphic (under the bijection u) whence the
toposes Sh(XC) and Sh(YL) are equivalent (under the geometric morphism
ũ defined above). ◻

Remarks 2.8. (a) Under the hypotheses stated in the first paragraph of the
theorem, a sufficient set of conditions for the remaining hypotheses to be
satisfied is the following: there is a subcanonical Grothendieck topology
JC on C and for any L ∈ L a subcanonical Grothendieck topology KL on
L such that:
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(i) For any L,L′ ∈ L, the morphisms L → L′ in L coincide precisely
with the morphisms of sites (L,KL) → (L′,KL′);

(ii) For any L ∈ C, the morphisms C → L in M coincide precisely with
the morphisms of sites (C, JC) → (L,KL);

(iii) The toposes Sh(C, JC) and Sh(L,KL) (for L in L) all have enough
points.

Indeed, under conditions (ii) and (iii), the morphisms C → {0,1} in M
coincide exactly with the morphisms of sites (C, JC) → ({0,1},K{0,1})
and hence with the JC-continuous flat functors C → {0,1} (notice that,
it being subcanonical, K{0,1} necessarily coincides with the Grothendieck
topology K on {0,1} such that K(0) consists of the empty sieve and the
maximal one, and K(1) consists of the maximal sieve only); and these
flat functors are jointly conservative if and only if the topos Sh(C, JC)
has enough points. Similarly, it follows from (i) and (iii) that, for any
L ∈ L, the morphisms L → {0,1} in L correspond precisely to the points
of the topos Sh(L,KL) and are jointly conservative for it.

(b) We shall apply the theorem only in the particular case of the assumptions
of part (a) above where the class M can be identified with the class of
geometric morphisms Sh(L,KL) → Sh(C, JC) (that is, with the class of
models of the theory of JC-prime filters on C in the topos Sh(L,KL), cf.
[6]). Notice in passing that under these hypotheses both the spaces XC
and YL are sober, since they are homeomorphic to spaces of points of
localic toposes.

(c) The morphism m ∶ C → L realizing L as the free (L,M)-structure on C is
a morphism of sites (C, JC) → (L,KL). Indeed, the geometric morphism
ũ ∶ Sh(YL) → Sh(XC) defined in the proof of the theorem satisfies the
property that its inverse image ũ∗ restricts to the map m ∶ C → L, and
hence m must be a morphism of sites (C, JC) → (L,KL) inducing ũ (cf.
Lemma C2.3.8 [12]).

3 A topos-theoretic look at Priestley duality

In this section we provide a topos-theoretic interpretation of Priestley duality
for distributive lattices; this interpretation will pave the way for the general
setup for building ‘Priestley-type dualities’ described in section 4 below.

Before reviewing the classical duality, we shall embark in a general anal-
ysis of the concept of preordered topological space, which plays a crucial role
in the duality.
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3.1 Preordered topological spaces

We define a preordered topological space as a triple (X,τ,≤), where X is a set,
τ is a topology onX and ≤ is a preorder relation onX. Preordered topological
spaces form a category, which we denote PTop, whose arrows (X,τ,≤) →
(X ′, τ ′,≤′) are the maps f ∶ X → Y which are preorder-preserving (i.e., such
that for any x, y ∈ X, x ≤ y implies f(x) ≤′ f(y)) and continuous (i.e., such
that for any open set V ∈ τ ′, f−1(V ) ∈ τ); composition and identities in PTop

are defined by composing the underlying functions set-theoretically.
We have a functor iP ∶ Top → PTop, sending a topological space (X,τ)

to the triple (X,τ,≤X), where ≤X is the specialization preorder on X, that
is the preorder relation on X defined by: for any x, y ∈ X, x ≤X y if and
only if for every U ∈ τ , x ∈ U implies y ∈ U . Indeed, any continuous map
f ∶ (X,τ) → (X ′, τ ′) is preorder-preserving with respect to the specialization
preorders on X and X ′. We can define a functor rP ∶ PTop → Top which
is left adjoint to iP , as follows. For any object (X,τ,≤) of PTop, we set
rP ((X,τ,≤)) equal to the pair (X,τ≤), where τ≤ is the topology on X whose
open sets are exactly the open sets of τ which are ≤-upper sets, and for any
arrow f ∶ (X,τ,≤) → (X ′, τ ′,≤′) in PTop, we set rP (f) equal to f ∶ (X,τ≤) →
(X ′, τ ′≤′). Notice that this is indeed a continuous map of topological spaces
since the fact that f is order-preserving ensures that for every open set U ′ of
τ ′, if U ′ is a ≤′-upper set then f−1(U) is a ≤-upper set.

Note that this definition also makes sense more generally for an arbitrary
binary relations in place of preorders, but in fact there is no loss of generality
in supposing ≤ to be preorder since for any binary relation symbol R on X,
rP ((X,τ,R)) = rP ((X,τ, Ṙ)), where Ṙ is the reflexive and transitive closure
of R.

Proposition 3.1. With the notation above, the functor iP ∶ Top → PTop is
right adjoint to the functor rP ∶ PTop → Top, and identifies Top with a full
reflective subcategory of PTop.

Proof We need to show that we have a bijective correspondence between the
arrows rP ((X,τ,≤)) → (Y, τ ′) in Top and the arrows (X,τ,≤) → (Y, τ ′,≤Y )
in PTop, naturally in any object (X,τ,≤) of PTop and any object (Y, τ ′)
of Top. Given an arrow f ∶ rP ((X,τ,≤)) = (X,τ≤) → (Y, τ ′) in Top, we
associate to it the arrow f̃ ∶ (X,τ,≤) → (Y, τ ′,≤Y ) of PTop whose underlying
function is f . Conversely, given an arrow g ∶ (X,τ,≤) → (Y, τ ′,≤Y ) in PTop,
we associate to it the arrow ĝ ∶ rP ((X,τ,≤)) = (X,τ≤) → (Y, τ ′) in Top whose
underlying function is g.

In order to show that these assignments are well-defined, it suffices to
check that the following conditions on a function f ∶ X → Y are equivalent:
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(i) for any x,x′ ∈X, if x ≤ x′ then f(x) ≤Y f(x′);

(ii) for any open set V ∈ τ ′, f−1(V ) is a ≤-upper set in X.

To show that (i)⇒ (ii), we suppose that V is an open set in τ ′ and prove
that, for any x,x′ ∈ X such that x ≤ x′, if x ∈ f−1(V ) then x′ ∈ f−1(V ).
If x ≤ x′ then f(x) ≤Y f(x′) and therefore f(x) ∈ V implies f(x′) ∈ V by
definition of specialization preorder ≤Y , as required.

To show that (ii)⇒(i), suppose that x ≤ x′ in X. To prove that f(x) ≤Y
f(x′) we have to verify that for every V ∈ τ ′, f(x) ∈ V (equivalently, x ∈

f−1(V )) implies that f(x′) ∈ V (equivalently, x′ ∈ f−1(V )); but this follows
immediately from the fact that f−1(V ) is a ≤-upper set.

Clearly, the assignments f → f̃ and g → ĝ are inverse to each other and
natural in (X,τ,≤) ∈ PTop and (Y, τ ′) ∈ Top.

Moreover, the facts that iP is full and that rP ○ iP is isomorphic to the
identity functor on Top are clear. The proof of the proposition is therefore
complete. ◻

Let Pro be the category of preorders and monotone maps between them.
We have a functor LPro ∶ Pro → PTop sending a preorder (P,≤) to the
triple (P, τP ,≤), where τP is the Alexandrov topology on P , and sending a
monotone map f ∶ (P,≤)→ (Q,≤′) to the arrow f ∶ (P, τP ,≤)→ (Q,τQ,≤′) of
PTop. We can define a functor RPro ∶ PTop→ Pro which is right adjoint to
LPro, as follows. RPro sends an object (X,τ,≤) of PTop to (X, ≤̇), where ≤̇ is
the preorder on X given by the intersection between ≤ and the specialization
preorder on X induced by the topology τ , and an arrow f ∶ (X,τ,≤) →
(Y, τ ′,≤′) to the monotone map f ∶ (X, ≤̇)→ (Y, ≤̇′).

Proposition 3.2. With the notation above, the functor LPro ∶ Pro → PTop

is left adjoint to the functor RPro ∶ PTop → Top, and identifies Pro with a
full coreflective subcategory of PTop.

Proof We have to prove that there is a bijective correspondence between
the arrows

LPro(P,≤) = (P, τP ,≤) → (X,τ,≤)

in PTop and the arrows
(P,≤)→ (X, ≤̇)

in Pro, naturally in any object (P,≤) of Pro and any object (X,τ,≤) of
PTop.

Given an arrow f ∶ (P, τP ,≤) → (X,τ,≤) in PTop, we associate to it
the arrow f̃ ∶ (P,≤) → (X, ≤̇) whose underlying function is f ; conversely,
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given an arrow g ∶ (P,≤) → (X, ≤̇) in Pro, we associate to it the arrow
ĝ ∶ (P, τP ,≤) → (X,τ,≤) in PTop whose underlying function is g. In order
to show that these assignments are well-defined, it suffices to verify that for
any monotone map f ∶ (P,≤) → (X,≤), f is a monotone map (P,≤)→ (X, ≤̇)
if and only if it is a continuous map (P, τP )→ (X,τ). This follows by similar
arguments as those in the proof of Proposition 3.1.

It is also immediate to see that the functor LPro is full and that the
composite functor RPro ○LPro is isomorphic to the identity functor on Pro.
This completes the proof of the proposition. ◻

By composing the adjunctions obtained in the propositions above, we
recover the well-known adjunction between the category of preorders and
the category of topological spaces. We can represents the results obtained in
this section by means of the following diagram.

PTop

rPzz✈✈
✈✈
✈✈
✈✈
✈

RPro

$$❍
❍❍

❍❍
❍❍

❍❍

Top

iP

ß

::✈✈✈✈✈✈✈✈✈

⊤
//
Prooo

LPro

Þ
dd❍❍❍❍❍❍❍❍❍

3.2 Review of Priestley duality

Priestley duality for distributive lattices is a categorical duality between the
category of distributive lattices and the category of Priestley spaces. Via
this duality, a distributive lattice D corresponds to the ordered topological
space PD obtained by equipping the set FD of prime filters on D with the
patch topology (i.e., the topology having as a sub-basis the collection of the
sets of the form {P ∈ FD | d ∈ P} for d ∈ D and their complements) and
with the specialization order ≤ on FD induced by the coherent topology on
FD (i.e., the topology having as a basis the collection of sets of the form
{P ∈ FD | d ∈ P}). The assignment D → PD can be made functorial as
follows: any morphism D → D′ of distributive lattices induces an order-
preserving continuous map PD′ → PD; therefore, if we denote by PTop the
category of ordered topological spaces we have a functor P ∶ DLat→ PTop,
to which we shall refer as the Priestley functor.

Any distributive lattice D can be recovered from the associated Priestley
space as the poset of clopen ≤-upper sets in it; in fact, this assignment defines
a functor from the category of Priestley spaces to the opposite of the category
of distributive lattices which yields the other half of Priestley duality.

The ordered topological spaces which are, up to isomorphism, in the
image of the Priestley functor are called Priestley spaces; notably, these
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spaces admit natural intrinsic topological characterizations (for instance, as
the compact ordered topological spaces satisfying the Priestley separation
axiom or, alternatively, as the ordered topological spaces having a sub-basis
of clopen up-sets and clopen down-sets).

Priestley duality admits a purely topological interpretation as a categor-
ical equivalence between the category of coherent spaces and the category of
Priestley spaces (cf. [9]); in fact, this equivalence can be obtained by com-
posing Stone duality between coherent spaces and distributive lattices and
Priestley duality between distributive lattices and Priestley spaces. Specif-
ically, a coherent space (X,τ) corresponds to the Priestley space (X,τ ′,≤),
where τ ′ is the topology on X having as a sub-basis the set of compact open
sets of (X,τ) and their complements, while a Priestley space U corresponds
to the coherent space on the set X whose open sets are exactly the open
upper sets of U .

We can also naturally look at Priestley duality from an algebraic view-
point. As remarked in [13] (cf. the Exercise at p. 73), the algebra of clopen
subsets of the Priestley space associated to a distributive lattice D via Priest-
ley duality can be characterized as the free Boolean algebra on D. In fact,
this characterization can be obtained as an immediate consequence of our
Theorem 2.7 in light of the fact that the free Boolean algebra on any dis-
tributive lattice exists (for example, by our syntactic method for constructing
structures presented by generators and relations, cf. section 8 of [6]).

In the following section, we introduce a general abstract framework for
interpreting Priestley duality, leading to ‘Priestley-type’ dualities for various
classes of partially ordered structures other than distributive lattices. Our
framework can be equivalently presented in the language of Locale Theory
or in that of Topos Theory; we shall choose the latter since it is more general
and represents the natural environment for investigating the relationships
between the ‘generalized spaces’ and their presentations, as well as for in-
terpreting the topological and algebraic perspectives on the dualities in a
unified way, that is in terms of topological and algebraic sites of definition
for the same topos according to the philosophy ‘toposes as bridges’ of [5].

3.3 The topos-theoretic interpretation

Our topos-theoretic interpretation of Priestley duality stems from the obser-
vation that the essential part of the duality, namely the fact that the open
sets of a coherent space can be recovered from the associated Priestley space
as the open upper sets, can be naturally expressed in diagrammatic form, as
follows.
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The diagram
τ

��

// τpr

��

Upp≤X(X)
// P(X)

in the category of frames, where Xτ ∶= (X,τ) is a coherent space, Xτpr ∶=

(X,τpr) is the associated Priestley space, ≤X is the specialization order on
X induced by the topology τ , Upp≤X(X) is the frame of ≤X-upper sets on
X and all the arrows are canonical inclusions, is a pullback. Indeed, by
Priestley’s duality (in the formulation given by Cornish in [9]), the open sets
in τ are precisely the sets lying in the intersection of τpr and Upp≤X(X)
inside P(X). In fact, this diagram is the image, under the canonical functor
Topop

→ Frm, of a pushout diagram in the category of topological spaces,
obtained by regarding the frames appearing in the diagram as the frame of
open sets of topological spaces whose underlying set is X.

The diagram above corresponds, via the equivalence of the category of
locales with the category Loc of localic toposes and geometric morphisms
between them, to the following pushout in Loc:

[X,Set]

u

��

χ // Sh(Xτpr)

f

��

[X≤X ,Set]
ξ // Sh(Xτ)

where

(i) Xτ is the topological space whose underlying set is X and whose frame
of open sets is τ ,

(ii) Xτpr is the topological space whose underlying set is X and whose frame
of open sets is τpr,

(iii) X≤X is the specialization order on X induced by the topology τ ,

(iv) f ∶ Sh(Xτpr) → Sh(Xτ) is the geometric morphism induced by the
continuous map of topological spaces Xτpr → Xτ whose underlying map
is the identity on X,

(v) ξ ∶ [X≤X ,Set] → Sh(Xτ) is the canonical geometric morphism induced
by the specialization preorder on Xτ ,

(vi) χ ∶ [X,Set] → Sh(Xτpr) is the geometric morphism induced by the
indexing of the set of points of the topos Sh(Xτpr) by the set X, and
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(vii) u ∶ [X,Set] → [X≤X ,Set] is the geometric morphism induced by the
obvious functor X → X≤X (where X is considered a discrete category
and X≤X is considered as a preorder category in the obvious way).

In the above diagram, the spaces Xτpr and Sh(Xτ) being sober, the set X
can be identified both with the set of points of the topos Sh(Xτpr) and with
the set of points of the topos Sh(Xτ). In fact, this identification can be seen
as being induced by composition of the points of the toposes Sh(Xτpr) and
Sh(Xτ) with the geometric morphism f ; specifically, the following diagram
in Set commutes.

X

≅
��

1X // X

≅
��

Pts(Sh(Xτ))
h // Pts(Sh(Xτpr)),

where Pts(Sh(Xτ)) (resp. Pts(Sh(Xτpr))) denotes the set of points of the
topos Sh(Xτ) (resp. of the topos Sh(Xτpr)), the map h is the function
between the points of the two toposes induced by composition with the mor-
phism f , and the two isomorphisms are the canonical bijections identifying
the points of a sober space with the points of the topos of sheaves on it.

4 A general framework for Priestley-type du-

alities

The following definition represents a natural ‘invariant’ generalization of the
above setup.

Definition 4.1. A Priestley context consists of a geometric morphism f ∶

E → F of localic toposes and two sets of points XE and XF respectively
of the topos E and of the topos F such that composition with f induces a
bijection Xf ∶ XE →XF with the property that the diagram

[XE ,Set]

u

��

χ // E

f

��
[XE≤F ,Set]

ξ // F ,

where

(i) XE≤F is the preorder on XE corresponding to the specialization preorder
XF≤F on XE under the bijection Xf ,
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(ii) the geometric morphism ξ is given by the composite of the equivalence
[XE≤F ,Set] → [XF≤F ,Set] induced by the isomorphism Xf ∶ XE≤F ≃

XF≤F with the canonical morphism [XF≤F ,Set]→ F ,

(iii) χ ∶ [XE ,Set] → E is the geometric morphism corresponding to the set
of points XE of the topos E and

(iv) u ∶ [XE ,Set] → [XE≤F ,Set] is the geometric morphism induced by the
canonical functor XE → XE≤F ,

is a pushout in the category Loc.

We remarked in section 3.3 that the classical Priestley duality gives rise
to a Priestley context for each distributive lattice. In this section, we show
that one can easily generate other instances of Priestley contexts involving
structures other than distributive lattices, and that in fact there is a uniform
way for building them.

4.1 Generalized patch topologies

Our general method for building Priestley contexts is based on a generaliza-
tion of the concept of patch topology.

Definition 4.2. Let A be a subset of a powerset P(X). The A-subbasic
topology on X is the topology on X having A as a subbasis. The A-patch
topology on X is the topology on X having as a sub-basis the set consisting
of the elements in A and their complements in P(X).

We shall denote the topological space obtained by endowing X with the
A-subbasic topology (resp. with the A-patch topology) by XA (resp. by Xp

A).
Notice that

Remarks 4.3. (a) The subsets of X which can be expressed as finite unions
of intersections of elements of P(X) which either belong to A or are a
complement of a subset belonging to A form a basis of clopen subsets for
the topology X

p
A. We shall refer to this collection of subsets, endowed

with the natural subset-inclusion ordering, as the Priestley Boolean al-
gebra generated by (A,X).

(b) The construction of the patch topology can be made functorial. Suppose
that A is a subset of P(X), B is a subset of P(Y ), and f ∶ X → Y is
a function such that f−1 ∶ P(Y ) →P(X) restricts to a map O(YB) →
O(XA). Then f−1 restricts to a map O(Y p

B) → O(X
p
A). In particular,

every continuous map of subbasic topologies extends to a continuous map
of the associated patch topologies.
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(c) Let C ⊆ P(X) and L be the category Bool whose objects are the Boolean
algebras and whose arrows are the Boolean algebra homomorphisms be-
tween them. Then the L-substructure GX

(C,L) of P(X) generated by C

coincides with the Priestley Boolean algebra generated by (C,X).

Lemma 4.4. Let A be a subset of a powerset P(X). If the space Xp

A is
compact then the open sets of the space XA are exactly the open sets of the
space Xp

A which are upper-sets with respect to the specialization preorder on
X corresponding to the topological space XA.

Proof We can show our thesis by generalizing the well-known argument for
the classical Priestley duality (cf. for example Proposition II4.6 [13]). Clearly,
every open set of XA is both an open set of Xp

A and an upper-set with respect
to the specialization preorder ≤A on X induced by XA, so it remains to prove
the converse direction. Let U be an open set of Xp

A which is a ≤A-upper set;
we will show that U is an open set of XA by providing, for every fixed point
x of U , an open set of XA containing x and contained in U . Let x be an
element of U ; then for each y ∈X∖U , we have that x ≰ y, from which it follows
that there exists an open set Vy of XA belonging to A (notice that, by our
hypotheses, A is a subbasis for XA) such that x ∈ Vy and y ∉ Vy (equivalently,
y ∈ X ∖ Vy). The sets {X ∖ Vy | y ∈ X ∖ U} are thus open sets of Xp

A which
jointly cover X ∖ U ; from the compactness of Xp

A it thus follows that this
covering family admits a finite subcover {X ∖ Vyi | i = 1, . . . , n}, equivalently
the intersection of the Vyi is an open neighborhood of x contained in U . ◻

Under natural hypotheses, we can characterize the topological spaces aris-
ing by putting the A-patch topology on a set X in a natural way, using the
specialization order ≤A induced by the topology XA. Specifically, we have
the following result.

Theorem 4.5. Let A be a subset a powerset P(X), and (X,τ,≤) be a pre-
ordered compact topological space. Then τ is the A-patch topology on X and
≤ coincides with the specialization preorder ≤A induced by the topology XA if
and only if every set in A is a ≤-upper set and τ satisfies the following sep-
aration axiom: for any x, y ∈ X such that x ≰A y, there is a clopen ≤-upper
set U of τ belonging to A such that x ∈ U and y ∉ U .

Proof The ‘only if’ direction is obvious from the definition of A-patch
topology on X, so it remains to prove the converse one. Suppose that τ
satisfies the separation axiom in the statement of the theorem. Given an
open set U of (X,τ) and a point x of U , for each y ∈ X ∖ U , either y ≰ x or
x ≰ y. Then there exists a clopen set of τ in A which contains x and misses y
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or a clopen set of τ given by the complement of a set in A which contains x
and misses y. Obviously the intersection of these clopen neighborhoods of x
(for y varying inX∖U) does not meet X∖U . Therefore, as (X,τ) is compact,
there exists a finite intersection of these clopen neighborhoods of x missing
X ∖ U . This finite intersection is a clopen neighborhood C of x contained
in U which is a finite intersection of sets in A and their complements. This
proves that τ is the A-patch topology on X.

To show that ≤ coincides with the specialization preorder ≤A we observe
that, by our hypotheses, (X,τ,≤) is compact and satisfies the Priestley sep-
aration axiom, and hence it is a Priestley space. Therefore, in view of the
classical Priestley duality, it suffices to prove that the ≤-upper open sets in
τ coincide precisely with the open sets in XA. Given a ≤-upper open set U
of (X,τ) and a point x of U , for each y ∈X ∖U , we have y ≰ x (since U is a
≤-upper set); then, by the separation axiom in the statement of the theorem,
there exists a clopen ≤-upper set of τ in A which contains x and misses y
and hence, as (X,τ) is compact, there exists a finite intersection of these
clopen neighborhoods of x missing X ∖U . This finite intersection is a clopen
neighborhood C of x contained in U which is a finite intersection of sets in
A and hence an open set of XA; thus U is an open set of XA, since for any
point x of U there exists a neighborhood of x contained in U and belonging
to XA. This argument shows that any ≤-upper open set in τ belongs to XA;
notice in passing that if U is a (≤-upper) clopen then U is a finite union
of finite intersections of sets in A. The fact that every open set in XA is a
≤-upper set in τ follows from the fact that, by our hypothesis, every set in A
is a ≤-upper set. ◻

Corollary 4.6. Let A be a subset a powerset P(X). Then, provided that
it is compact, the preordered topological space (Xp

A,≤A) is a Priestley space,
whose corresponding distributive lattice is the sublattice of P(X) consisting
of the subsets which are finite unions of finite intersections of subsets in A

and whose corresponding coherent space is XA.

Proof The corollary follows immediately from the arguments in the proof
of Theorem 4.5. ◻

4.2 Free structures and Priestley contexts

In this section we shall see that free structures provide a very natural way
for building Priestley contexts.

Theorem 4.7. Let C, M, L = Bool, m ∶ C → L, XC JC, YL be a set of
data satisfying the hypotheses of Theorem 2.7. Then, if we regard C as a
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subset of P(XC) via the composite map C ↣ IdJC(C) ≅ O(XC) ⊆ P(XC),
there is a set of points ZL of the topos Sh(Xp

C) such that the geometric
morphism Sh(Xp

C) → Sh(XC) induced by the continuous function X
p
C → XC

whose underlying map is the identity on X, together with the set of points
XC of the topos Sh(XC) and the set of points ZL of the topos Sh(Xp

C) is a
Priestley context. In particular, if the class M is axiomatized by the theory
of JC-prime filters on C then ZL can be taken to be the set of all the points
of the topos Sh(Xp

C).

Proof Below we shall employ the notions and definitions used in Theorem
2.7 and its proof.

Clearly, the topological space obtained by equipping the given set of
points of the topos Sh(C, JC) with the subterminal topology coincides with
the space obtained by equipping XC with the C-subbasic topology, where C
is regarded as a subset of P(XC) via the composite map C ↣ IdJC(C) ≅
O(XC) ⊆ P(XC); in particular, since the topos Sh(C, JC) has enough points,
we have an equivalence Sh(C, JC) ≃ Sh(XC).

On the other hand, from the proof of Theorem 2.7 we know that there is
a commutative diagram

GXC
(C,L)

≅

��

// P(XC)

P(u)

��

L
k // P(YL),

where the arrows u and k are those defined in the proof of the theorem. From
this it follows that the space Z obtained by endowing the set of points YL of
the topos Sh(L,KL) with the subterminal topology is homeomorphic to the
space Xp

C , since the bijection u ∶ XC ≅ YL between the points of Xp
C and the

points of the space Z maps basic open sets of Xp
C (that is, subsets in GXC

(C,L),

cf. Remark 4.3(c)) to basic open sets of Z (that is, subsets of the form k(l)
for an element l ∈ L); in particular, since the topos Sh(L,KL) has enough
points, we have an equivalence Sh(L,KL) ≃ Sh(Xp

C). Let us set ZL equal to
the set of points of the topos Sh(Xp

C) corresponding to the set of points YL
of the topos Sh(L,KL) under this equivalence. The fact that the geometric
morphism Sh(Xp

C) → Sh(XC) induced by the continuous function X
p
C → XC

whose underlying map is the identity on X is, together with the set of points
XC and ZL respectively of the topos Sh(XC) and of the topos Sh(Xp

C) is a
Priestley context thus follows from Lemma 4.4 by arguing as in section 3.3.
The last part of the theorem follows from the obvious remark that if XC is
the set of all the points of the topos Sh(C, JC) then, L being the free Boolean
algebra on C, YL is the set of all the points of the topos Sh(L,KL). ◻
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We notice that if KL is equal to the coherent topology on L and YL is
equal to the set of all the points of the topos Sh(L,KL) then the space
X
p
C is a Stone space (since it is homeomorphic to the space of points of the

topos Sh(L,KL)). In fact, in order to build real analogues of Priestley-
type dualities involving Stone spaces, we shall take KL equal to the coherent
topology on L, and XC to consist of all the points of the topos Sh(C, JC).

4.3 The general method

Let K be a category of posets, each of which equipped with a subcanoni-
cal Grothendieck topology such that the morphisms of the category K co-
incide with the morphisms of the associated sites. We denote by JC the
Grothendieck topology associated to a poset C in K.

Let us moreover suppose that all the theories of JC-prime filters on C
introduced in [6] are coherent (notice that this is always the case if C is
a meet-semilattice), so that all the toposes Sh(C, JC) have enough points;
then we have, by the results of [6], a functor A ∶ Kop

→ Top, assigning to
any structure C in K the space of points of the topos Sh(C, JC). By Remark
4.3(b), the generalized patch topology construction allows us to lift this func-
tor to one with values in the category PTop of preordered topological spaces.
Specifically, for any C in K, denoted by XC the space of points of the topos
Sh(C, JC), and regarded C as a subset of P(XC) via the embedding given by
the composite map C ↣ IdJC(C) ≅ O(XC) ⊆ P(XC), we set Ap(C) equal to
the set XC, equipped with C-patch topology and the specialization preorder
≤C corresponding to the space XC, and for any arrow f in K we set Ap(f)
equal to the map A(f), regarded as a morphism of preordered topological
spaces.

Recall from section 3.1 that we have a functor rP ∶ PTop→ Top which is
left adjoint to the canonical inclusion functor iP ∶ Top → PTop and is such
that the composite rP ○ iP is isomorphic to the identity functor on Top. In
fact, the assignments above give rise to a functor Ap ∶ Kop

→ PTop such that
rP ○Ap ≅ A:

PTop

rP

��
Kop

Ap

77♥♥♥♥♥♥♥♥♥♥♥♥♥ A // Top

Recall from [6] that if F ∶ U → V is a functor which creates isomorphisms
then there exists a smallest subcategory W of V closed under isomorphisms
in V such that F factors through the canonical inclusion functor W ↪ V.
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Such category is called the extended image of the functor F and denoted by
ExtIm(F ).

Notice that if A is faithful then Ap is faithful as well. Also, since the
functor rP is injective on arrows, if A creates isomorphisms then Ap creates
isomorphisms as well; in particular, if A is part of an equivalence with its
extended image then Ap is also part of an equivalence with its extended
image; indeed, the commutativity of the above triangle forces rP to send the
extended image of Ap to the extended image of A and hence a categorical
left (and hence right as well, by Proposition 3.4 [6]) inverse for Ap, defined
on its extended image is given by the composite of the categorical inverse of
A with rP .

Suppose that for any C in K we have a set of mapsMC from C to Boolean
algebras satisfying the property that for any function from C to a Boolean
algebra if the composition of it with each of the maps belonging to a jointly
injective family of Boolean algebra homomorphisms belongs to MC then the
function itself belongs to MC , and that for any C in K the arrows C → {0,1}
in MC coincide precisely with the JC-continuous flat functors C → {0,1}.
Then, if for each C in K the free (Bool,MC)-structure LC on C exists, the
hypotheses of Theorem 4.7 are satisfied, with L being the category Bool of
Boolean algebras and KL being the coherent topology on L for each Boolean
algebra L. In particular, under these assumptions it follows from the proof of
theorem 4.7 that there is an equivalence of toposes Sh(Xp

C) ≃ Sh(LC ,KLC),
from which it follows that the space Xp

C is compact. Since from the proof of
Theorem 4.5 we know that the spaces (Xp

C ,≤C) satisfy the Priestley separation
axiom, we can conclude that under the assumptions specified above all the
preordered topological spaces in the image of the functor Ap are Priestley
spaces.

If the Grothendieck topologies are C-induced for a topos-theoretic in-
variant C satisfying the hypotheses of Theorem 3.25 [6] then the functor
A ∶ Kop

→ Top yields a ‘Stone-type’ duality between K and a subcate-
gory ExtIm(A) of Top, and hence the functor Ap ∶ Kop

→ PTop yields a
‘Priestley-type’ duality between K and a category of Priestley spaces, given
by ExtIm(Ap).

Let us now consider the problem of characterizing the subcategories of
PTop arising as the extended images of the functorsAp. Notice that, if all the
spaces in ExtIm(A) are coherent then, by the classical Priestley duality, the
Priestley spaces in ExtIm(Ap) can be characterized as the Priestley spaces
(X,τ,≤) such that rP (X,τ,≤) belongs to ExtIm(A), while the arrows in
ExtIm(Ap) can be characterized as the arrows whose image under rP lies
in the extended image ExtIm(A). More explicitly, by Theorem 4.5, if the
spaces in ExtIm(A) can be characterized as the sober topological spaces
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with a basis of C-compact open sets satisfying some property P , the spaces in
ExtIm(Ap) can be characterized as the compact ordered topological spaces
which satisfy the following separation axiom: for any x, y ∈ X such that
x ≰ y, there is a clopen ≤-upper set U of τ which is C-compact among the ≤-
upper open sets of τ such that x ∈ U and y ∉ U and which moreover satisfy the
property that the collection of their ≤-upper clopen sets which are C-compact
among the ≤-upper clopen sets satisfy property P . Alternatively, they can
be characterized as the sober ordered topological spaces such the subsets of
their underlying sets which are ≤-upper clopen and C-compact among the
≤-upper open sets form, together with their complements, a subbasis of the
space satisfying property P . The arrows in ExtIm(Ap) can be characterized
as the arrows in PTop such that the inverse image of any set which is ≤-
upper clopen and C-compact among the ≤-upper open sets is C-compact in
such a way that the restriction of the inverse image function to such subsets
can be identified with an arrow in K (notice that this latter condition can be
dropped in the case the morphisms C → D in K coincide with the morphisms
(C, JC)→ (D, JD) of the associated sites).

We shall see concrete examples of ‘Priestley-type’ dualities generated
through the method described above in section 5.

4.3.1 The algebraic interpretation

If we identify ordered Stone spaces with Boolean algebras equipped with an
order on the points of their spectra according to Stone duality for Boolean
algebras, we can define the functor Ap, and characterize its extended image,
in algebraic terms.

Specifically, we can think of a Priestley-type space (X,τ,≤) as a pair
(B,≤), where ≤ is an ordering on the Stone spectrum Spec(B) of B satisfying
the Priestley separation axiom. Notice that if X = Spec(B) then the points x
of X can be identified with the prime filters F on P and hence the condition
that for any x,x′ ∈ X such that x ≰ x′ there should exist a clopen ≤-upper
set U such that x ∈ U and x′ ∉ U rewrites as follows: for any F,F ′ ∈ Spec(B)
such that F ≰ F ′ there exists an element b ∈ B such that b ∈ F , b ∉ F ′ and
for any prime filters G,G′ ∈ Spec(B) with the property that G ≤ G′, b ∈ G
implies b ∈ G′. We shall say that an element b ∈ B is ≤-upper if it satisfies the
condition that for any prime filters G,G′ ∈ Spec(B) with the property that
G ≤ G′, b ∈ G implies b ∈ G′.

This remark, combined with the algebraic construction of Priestley spaces
through free structures, paves the way for an entirely algebraic reformulation
of the Priestley-type dualities obtained through the method of section 4.3
above.
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Let K be a category of posets C satisfying the hypotheses of the method
of section 4.3. For C in K, let us denote by BC the free (MC ,Bool)-structure
on C. Let us denote by iC ∶ C → BC the universal map from C to the free
Boolean algebra BC. Clearly, by the universal property of the algebras BC,
any morphism of sites (C, JC) → (C′, JC′) (that is, any morphism f ∶ C → C′

in K) induces a Boolean algebra homomorphism Bf ∶ BC → BC′ , which in
fact is the unique Boolean algebra homomorphism s ∶ BC → BC′ such that
s ○ iC = iC′ ○ f .

We thus have a functor

B ∶ K →Bool≤,

where Bool≤ is the category whose objects are the pairs (B,≤), where B is
a Boolean algebra and ≤ is a order on the set Spec(B) of prime filters of B
with the property that for any F,F ′ ∈ Spec(B) such that F ≰ F ′ there exists
a ≤-upper element b ∈ B such that b ∈ F and b ∉ F ′, and whose arrows (B,≤
) → (B′,≤′) are the Boolean algebra homomorphisms f ∶ B → B′ such that
f−1 ∶ Spec(B′) → Spec(B) is order-preserving (i.e., for any F,F ′ ∈ Spec(B),
F ≤ F ′ in Spec(B) implies f−1(F ) ≤′ f−1(F ′) in Spec(B′)).

The functor B is defined as follows: for any C in K, B(C) = (BC ,≤C),
where ≤C is the order on Spec(B) given by: for any F,F ′ ∈ Spec(B), F ≤C F ′

if and only if F ∩ C ⊆ F ′ ∩ C, while for any arrow f ∶ C → C′ in K, B(f) = Bf .
Recall from [6] (specifically, Definition 3.15) that, given a frame-theoretic

invariant property C of families of elements of a frame, an element of a
frame L is said to be C-compact if every covering family of l in L has a

refinement satisfying C; that is, whenever a =∨
i∈I
ai in L there exists a family

{bj ≤ a | j ∈ J} of elements of L satisfying C such that for every j ∈ J there

exists i ∈ I such that bj ≤ ai, and the join∨
i∈I
ai in L is equal to the join∨

j∈J
bj

in L. We shall apply this notion to the frame of open sets of the coherent
spaces associated to the Priestley spaces under consideration.

Notice that, given a Priestley space (X,τ,≤), an ≤-upper open set U in
τ is C-compact among the ≤-upper open sets (that is, it is C-compact in
the coherent space associated to the Priestley space) if and only if every
covering in U by clopen ≤-upper sets has refinement satisfying C (since the
clopen ≤-upper sets form a basis for the coherent space associated to the
Priestley space); in fact, we can equivalently require the refinement to consist
of clopen ≤-upper sets, since the topologies JC satisfy by our the hypotheses
the condition that if a covering family consisting of principal JC-ideals on C
admits a refinement satisfying C then it also admits a refinement satisfying
C and consisting of principal JC-ideals on C, and these ideals are sent by
the embedding IdJC(C) ↣ O(XC) ↪ Spec(BC) to clopen ≤-upper sets of
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Spec(BC), where B(C) = (BC,≤). Therefore, an element b ∈ B is ≤-upper in
Spec(B) and C-compact among the ≤-upper sets of Spec(B) if and only if
for any prime filters G,G′ ∈ Spec(B) with the property that G ≤ G′, b ∈ G
implies b ∈ G′ and for any finite set of ≤-upper elements {b1, . . . , bn} such
that b = b1 ∨⋯ ∨ bn in B there exists a refinement of the family {b1, . . . , bn}
satisfying the invariant C. Indeed, by the compactness of b in Spec(B), any
covering of b in Spec(B) admits a finite subcovering by elements of B, and
a family {b1 ≤ b, . . . , bn ≤ b} covers b in Spec(B) if and only if b = b1 ∨⋯ ∨ bn
in B. For this reason, we shall call the elements b ∈ B which are ≤-upper in
Spec(B) and C-compact the finitely C-compact elements among the ≤-upper
elements of B.

As we observed in section 4.3 above, if the Grothendieck topologies are
C-induced for a topos-theoretic invariant C satisfying the hypotheses of The-
orem 3.25 [6] then the functor B defined above yields an equivalence of cate-
gories onto its extended image. In fact, any C in K can be recovered from the
Boolean algebra B(C) as the set of its elements which are ≤-upper and finitely
C-compact among the ≤-upper elements of B, while any arrow f ∶ C → C′ in
K can be recovered as the restriction of the corresponding arrow B(f) along
the canonical inclusions iC and iC′ .

Let us now turn to the problem of characterizing the extended image of
the functor B. The arrows in ExtIm(B) can be characterized as the arrows
in Bool≤ between objects in ExtIm(B) which send any ≤-upper element
b ∈ B with the property that every finite covering of it by ≤-upper elements
admits a refinement by a family which satisfies C to a ≤-upper element of B′

with the property that every finite covering of it by ≤-upper elements admits
a refinement by a family which satisfies C. The following theorem takes care
of characterizing the objects in ExtIm(B).

Theorem 4.8. Under the hypotheses above, the following conditions are
equivalent.

(i) (B,≤) is an object of ExtIm(B);

(ii) For any F,F ′ ∈ Spec(B) such that F ≰ F ′ there exists a ≤-upper element
b ∈ B with the property that b ∈ F and b ∉ F ′ and every finite covering
of it in B by ≤-upper elements admits a refinement by a family which
satisfies C, and the set of ≤-upper elements of B, with the induced order,
can be identified with a structure in K;

(iii) The inclusion B∗ ⊆ B where B∗ is the subset of B consisting of the
≤-upper elements b of B which satisfy the property that every finite
covering of it by ≤-upper elements admits a refinement by a family sat-
isfying C realizes B as the free (M,Bool)-algebra on B∗ and satisfies
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the property that for any F,F ′ ∈ Spec(B) such that F ≰ F ′ there exists
an element b ∈ B∗ with the property that b ∈ F and b ∉ F ′.

Proof The equivalence (i)⇔ (ii) represents the algebraic formulation of
the topological characterization obtained in section 4.3 above.

The implication (i)⇒(iii) follows from the characterization of the algebra
BC as the free (M,Bool)-algebra on C and from the isomorphism BC

∗ ≅ C.
To show that (iii) implies (i), we observe that if the inclusion B∗ ⊆ B realizes
B as the free (M,Bool)-algebra on B∗ then (B,≤) = B(BC

∗). Indeed, since
B is the free (M,Bool)-algebra on B∗ then BBC

∗ = B, while the order ≤
coincides with the order ≤BC∗ since for any prime filters F,F ′ ∈ Spec(B),
F ≤ F ′ if and only if there is not an element b ∈ B∗ such that b ∈ F and
b ∉ F ′, equivalently if F ∩B∗ ⊆ F ′ ∩B∗, i.e. if and only if F ≤B∗ F ′. ◻

The following corollary provides, given a structure C and a class of maps
M from C to Boolean algebras as above, a criterion for an inclusion i ∶ C ↪ B

of C into a Boolean algebra B to realize B as the free (M,Bool)-algebra on
C.

Corollary 4.9. Under the hypotheses above, let i ∶ C ↪ B be an inclusion,
and ≤C be the order on Spec(B) defined above. Then i realizes B as the free
(M,Bool)-algebra on C if and only if C can be identified, via i, with the subset
of B consisting of the ≤C-upper elements b of B which satisfy the property
that every finite covering of it by ≤C-upper elements admits a refinement by
a family which satisfies C.

Proof If i realizes B as the free (M,Bool)-algebra on C then, by the alge-
braic version of our method for building Priestley-type dualities established
above, C can be identified with B∗. Conversely, if the condition in the corol-
lary holds then condition (ii) of Theorem 4.8 holds for the space (B,≤C),
whence we conclude, by condition (iii) in the theorem, that i realizes B as
the free (M,Bool)-algebra on C. ◻

4.4 Free structures and dualities

In view of Theorem 2.7, free structures provide a natural way for building
Priestley-type dualities. In fact, the idea of (functorially) recovering a given
poset structure in a category K from a free structure on it (possibly equipped
with some additional information such as for example an ordering on the set
of points of its spectrum), and to characterize in intrinsic terms the structures
which are free on the structures in K is very general and has applications well
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beyond the context specifically addressed in this paper. Also, it is natural
to expect such dualities to admit extensions to reflections or coreflections to
larger categories on which it is possible to define an assignment with values
in the source category which naturally extends the operation of recovering a
structure from the corresponding free structure on it. For example, in the
classical Priestley duality one recovers a distributive lattice from the free
Boolean algebra on it equipped with a partial order on its spectrum (as the
set of its upper elements), while in the classical Stone duality one recovers
a distributive lattice from the free frame on it (as the set of its compact
elements). In fact, all the Priestley-type dualities established above in this
paper arise, if viewed algebraically, from the construction of free Boolean
algebras on particular kinds of posets, while the Stone-type dualities estab-
lished in [6] arise from the construction of free frames or posets on given
preordered structures.

In this section we give further illustrations of this general phenomenon,
by establishing new categorical equivalences defined by free functors. With
time, new examples of dualities arising from free structures will likely arise
and further enrich the picture.

Let us work under the hypotheses of the last part of Theorem 2.7. In
such a context, we have an equivalence of toposes

Sh(L,KL) ≃ Sh(C, JC),

induced by the canonical map m ∶ C → L, regarded as a morphism of sites
(C, JC) → (L,KL). Notice that, both JC and KL being subcanonical, JC can
be identified with the Grothendieck topology induced by KL on C under the
canonical embedding C ↪ L. So, by the results of [6], if the topology JC
is C-induced (in the sense of [6]), C can be recovered from L as the set of
C-compact subterminals of the topos Sh(L,KL), and for any structure L
in L such that the set of its C-compact elements (i.e. the set of the C-
compact subterminals on the topos Sh(L,KL) which are of the form y(l) for
an element l ∈ L, where y is the Yoneda embedding L → Sh(L,KL)) can be
identified with a structure C in K, the induced topologyKL∣C can be identified
with JC, the inclusion C ↪ L is a morphism of sites (C, JC)→ (L,KL) and we
have a geometric morphism

Sh(L,KL)→ Sh(C, JC);

we can thus expect to be able to use the technique for generating reflections
of [7] to obtain a reflection or a coreflection from K to the resulting category
of L-structures which extends our duality.

As in the case of Stone and Priestley dualities, these categorical equiva-
lences also admit purely topological formulations, arising from the fact that,
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by Theorem 2.7, the free structures under consideration admit topological
representations as the L-structures generated by the structures in K inside
the powerset on the set of points of the associated toposes. Specifically, the
free functors can be described topologically as the functors which assign to
any structure C in K the L-structure generated by inside the powerset on the
set of points of the topos Sh(C, JC), acting on the arrows accordingly.

Concerning the problem of characterizing the extended images of these
duality functors, we have the following result, which represents an analogue
of Corollary 4.9 in the context of the structures satisfying the hypotheses
of the last part of Theorem 2.7. In order to state the theorem, we intro-
duce some definitions. Given an invariant C of families of subterminals in
a topos satisfying the hypotheses of Theorem 3.25 [6], an element l ∈ L is
said to be C-compact if and only if it is C-compact as an open set of the
space YL of points of the topos Sh(L,KL) (via the canonical embedding
L ↣ IdKL

(L) ≅ O(YL) ⊆ P(YL)), equivalently if every KL-covering sieve on
l admits a refinement in L by a family satisfying C.

Theorem 4.10. Let C be a preordered structure, L be a category of preordered
structures and M be a class of functions from C to structures in L. Let
assume that all the powersets can be made into structures in L and that for
any function f ∶ X → Y the induced function P(f) = f−1 ∶ P(Y ) →P(X)
is an arrow in L. Let us moreover assume that, given a function from C to a
structure in L, if the composition of it with each of the arrows belonging to a
jointly injective family of arrows in L belongs to M then the function itself
belongs to M. Suppose that there exists a subcanonical Grothendieck topology
JC on C which is C-induced for an invariant C satisfying the hypotheses of
Theorem 3.25 [6] and is such that the morphisms C → {0,1} in M coincide
precisely with a designated set XC of jointly conservative flat JC-continuous
functors C → {0,1}. Suppose moreover that the free (M,L)-structure on C
exists and that the L-substructure of P(XC) generated by C (regarded as a
subset of P(XC) via the composite map C ↣ IdJC(C) ≅ O(XC) ⊆ P(XC)) is
contained in O(XC).

Let i ∶ C ↪ L be an inclusion of C into a structure L in L. Suppose that
KL is a subcanonical topology on L such that the topos Sh(L,KL) has enough
points. Then the following conditions are equivalent.

(i) i realizes L as the free (M,L)-structure on C;

(ii) i identifies C with the subset of elements of L which are C-compact,
C is KL-dense in L, JC = KL∣C and L can be identified with the L-
structure generated by C inside P(YL), where YL is the space of points
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of the topos Sh(L,KL) and C is regarded as a subset of P(YL) via the
composite of i with the canonical inclusion L ↣ O(YL) ⊆ P(YL).

Proof (i) ⇒ (ii). This follows from Theorem 2.7, specifically from the
equivalence of toposes

Sh(C, JC) ≃ Sh(L,KL) .

(ii)⇒ (i). Under the hypotheses of condition (ii), the Comparison Lemma
ensures that the geometric morphism

Sh(L,KL)→ Sh(C, JC)

induced by the morphism of sites i ∶ (C, JC) → (L,KL) is an equivalence
of toposes. From this it follows that the morphisms L → {0,1} in L which
extend the morphisms C → {0,1} inM via i coincide with a designated set YL
of jointly conservative flat KL-continuous functors L → {0,1}. Therefore the
hypotheses of Theorem 2.7 are satisfied and hence the L-structure generated
by C, that is L, coincides with the free (M,L)-structure on C. ◻

Before turning our attention to the examples, we remark that the con-
struction of the free (L,MC)-structure L on a structure C, where L is a
category of structures and MC is a class of maps from C to structures in
L can, under appropriate conditions, be made functorial and give rise to a
functor which is left adjoint to a forgetful one. Specifically, suppose that we
have a category K of structures C, and a forgetful functor U ∶ L → K such
that for any L in L and any C in K the arrows C → U(L) in K coincide exactly
with the arrows C → L in MC . Then one can define a functor F ∶ K → L
which is left adjoint to U ∶ L → K, as follows. For any C in K we set F (C)
equal to the free (L,MC)-structure on C, while for any arrow f ∶ C → C′ in
K, we consider its composite with the canonical map C′ → U(LC′) and set
F (f) equal to the unique arrow g ∶ LC → LC′ in L such that, denoted by
iC ∶ C → U(LC) the canonical map, U(g)○ iC = iC′ ○f (note that such an arrow
exists and is unique by the universal property of the free (L,MC)-structure
on C). It is immediate to see that F is left adjoint to U . Indeed, for any C
in K and any L in K the bijective correspondence between arrows C → U(L)
in K and arrows F (C) = LC → L in L given by the universal property of the
free L-structures LC is clearly natural in C ∈ K (by definition of the functor
F ) and in L ∈ L by the universal property of the structures LC. Thus, under
these hypotheses, we have a right adjoint to the free functor F defined on an
appropriate subcategory of L, which yields an inverse to F when restricted
to the extended image ExtIm(F ) of F .
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5 Examples

5.1 A Priestley-type duality for coherent posets

Let us recall the following notion from [6].

Definition 5.1. Let C and D be preorders. A monotone map f ∶ C → D is
said to be flat if the following two conditions hold:

(i) For any d ∈ D there exists c ∈ C such that d ≤ f(c);

(ii) For any element d ∈ D and any elements c, c′ ∈ C such that d ≤ f(c) and
d ≤ f(c′) there exists c′′ ∈ C such that c′′ ≤ c, c′′ ≤ c′ and d ≤ f(c′′).

Let Posf denote the category of posets and flat maps between them.
By the results in [6], we have a duality between Posf and a category V of
topological spaces, namely the subcategory SSComp of Top whose objects
are the sober spaces which a basis of supercompact open sets and whose
arrows are the continuous maps between them such that the inverse image
of any supercompact open set is supercompact.

This duality sends a poset P in Posf to the soberification of the Alexan-
drov space associated to its opposite, that is to the topological space A(P)
whose underlying set if the set Fdir

Pop of all the non-empty directed ideals on
Pop and as open sets the subsets of the form

FU = {F ∈ Fdir
P | F ∩U ≠ ∅},

where U ranges among the lower sets in P, and it sends a monotone map
f ∶ P → Q in Posf to the map A(Q) = Fdir

Q → A(P) = Fdir
P sending a ideal set

I in Fdir
Pop to the ideal in Fdir

Qop given by the inverse image f−1(I) of I under f .
Note that under this duality, finite posets correspond precisely to the finite
and sober (equivalently, finite and T0) topological spaces.

Let P be a poset. It is shown in [3] that the theory of flat functors on
P (equivalently, the theory TP of non-empty directed ideals on Pop defined
in [6]) is coherent if and only if P has all fc finite limits (i.e., for any finite
diagram D in Pop there exists a finite family of cones on D such that any
other cone on D factors through one in that family). We define a poset P to
be coherent if this condition is satisfied. Clearly, any finite poset is coherent.
We denote by Poscoh the full subcategory of Posf on the coherent posets.

Recall from [6] that the theory TP is defined over a signature consisting
of one atomic proposition Fa for each element a ∈ P and has the following
axioms:

(⊺ ⊢∨
c∈C
Fc);
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(Fa ⊢ Fb)

for any a ≤ b in P;

(Fa ∧Fb ⊢ ∨
c∈Ka,b

Fc)

for any a, b ∈ P, where Ka,b is the collection of all the elements c ∈ P such
that c ≤ a and c ≤ b in P.

The fact that P is coherent means that all the sequents of the form

(⊺ ⊢∨
c∈C
Fc);

or of the form
(Fa ∧Fb ⊢ ∨

c∈Ka,b

Fc)

can be replaced by finitary (in fact, coherent) sequents over the same signa-
ture which are logically equivalent (in geometric logic) to them. Indeed, one
can easily see that a poset P is coherent if and only if there exists a finite
set {c1, . . . , cn} of elements of P such that for any c ∈ P, c ≤ ci in P for some
i ∈ {1, . . . , n}, and for any c, c′ ∈ P there exists a finite set {d1, . . . , dm} of
elements of P such that for any element d ∈ P such that d ≤ c and d ≤ c′,
d ≤ dj in P for some j ∈ {1, . . . ,m}.

For any coherent category D the models of the theory TP in D can be
identified with the monotone maps f ∶ P → D such that

(i) for any (equivalently, every) finite set {c1, . . . , cn} in P such that for
any c ∈ P, c ≤ ci in P for some i ∈ {1, . . . , n}, 1 = f(c1)∨⋯∨ f(cn) in D,
and

(ii) for any c, c′ ∈ P and any finite set {d1, . . . , dm} of elements of P such
that for any element d ∈ P such that d ≤ c and d ≤ c′, d ≤ dj in P for
some j ∈ {1, . . . ,m}, f(c) ∧ f(c′) = f(d1) ∨⋯∨ f(dn).

If we define L to be the category of distributive lattices (resp. the category
of Boolean algebras) and MP to be the class of morphisms from a given
coherent poset P to structures of L which are models of TP then the coherent
syntactic categoryDP of the theory TP (resp. the coherent syntactic category
BP of the Morleyization of the theory TP) can be identified, together with
the canonical map jP ∶ P → DP (resp. iP ∶ P → BP), with the free (L,MP)-
structure on P. In other words, DP satisfies the universal property that for
any map f ∶ P → D in MP to a distributive lattice D there exists a unique
distributive lattice homomorphism f ∶ DP → D such that f ○jP = f ; similarly,
BP satisfies the universal property that for any map f ∶ P → B in MP to a
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Boolean algebra B there exists a unique homomorphism of Boolean algebras
f ∶ BP → B such that f ○ iP = f .

The duality between Posf and SSComp clearly restricts to a duality
between Poscoh and the full subcategory U of SSComp on the topological
spaces such that their collection of supercompact open sets forms, with the
natural inclusion order, a coherent poset.

By using the method of section 4.3, we can lift this duality

A ∶ Poscoh
op ≃ U

to an duality
B ∶ Poscoh

op ≃ V

between Poscoh and a category of preordered topological spaces V.
Specifically, for any P in Poscoh we define B(P) as the preordered topo-

logical space whose underlying set is the set Fdir
Pop , endowed with the RP -

patch topology, where RP is the subset of P(Fdir
Pop) given by the composite

P ↣ Id(P) ≅ O(A(P)) ⊆ P(Fdir
Pop), and with the specialization preorder

corresponding to the space A(P).
Given a Priestley space, we call a clopen upper set which cannot be

decomposed as a proper union of clopen upper sets weakly indecomposable.
Since by Priestley duality the clopen upper sets form a basis for the coherent
topology associated to the Priestley space, whose open sets are precisely the
upper open sets, the upper (cl)open sets which are supercompact among the
upper open sets coincide with the weakly indecomposable clopen upper sets.

By the method of section 4.3, the assignment P → B(P) can be made
functorial and yields an equivalence between Poscoh

op and the subcategory
of PTop whose objects are the Priestley spaces (X,τ,≤) such that for any
x, y ∈ X with x ≰ y, there is a clopen weakly indecomposable ≤-upper set
U of τ with the property that x ∈ U and y ∉ U and whose arrows are the
continuous order-preserving maps between them such that the inverse image
of any weakly indecomposable upper clopen set is weakly indecomposable.

Notice that under this equivalence, the finite posets correspond precisely
to the finite sober ordered topological spaces (X,τ,≤) such that for any
x, y ∈ X such that x ≰ y, there is a weakly indecomposable clopen ≤-upper
set U of τ with the property that x ∈ U and y ∉ U .

5.2 A Priestley-type duality for meet-semilattices

We can obtain a Priestley-type duality for meet-semilattices by restricting the
duality for coherent posets established above. Indeed, the category MsLat

of meet-semilattices and meet-semilattice homomorphisms between them can
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be identified as the full subcategory of the category Poscoh on the meet-
semilattices. We thus obtain a duality

B ∶ MsLatop
→ PTop

between MsLat and a category of Priestley spaces, given by the extended
image of the functor B.

Given a meet-semilattice M, the Priestley space B(M) is the ordered
topological space whose underlying set is the collection XM of all the filters
on M, endowed with the topology generated by the sets of the form {F ∈

XM | m ∈ F} and their complements in P(XM), and with the order ≤M
defined as follows: for any F,F ′ ∈XM, F ≤M F ′ if and only if F ⊆ F ′. Given
a meet-semilattice homomorphism f ∶M→N , B(f) ∶ XN →XM is the map
sending any filter F in XN to the filter in M given by the inverse image
f−1(F ).

The extended image of the functor B can be characterized as the category
of ordered topological spaces whose objects are the Priestley spaces (X,τ,≤)
such that for any x, y ∈ X with x ≰ y, there is a weakly indecomposable
clopen ≤-upper set U of τ with the property that x ∈ U and y ∉ U , and the
intersection of any two weakly indecomposable clopen ≤-upper set is weakly
indecomposable, and whose arrows are the continuous order-preserving maps
between them such that the inverse image of any weakly indecomposable
upper clopen set is weakly indecomposable.

The duality admits the following algebraic interpretation (cf. section 4.3.1
above).

We have a functor
B̃ ∶ MsLat →Bool≤

defined as follows: for any M in MsLat, B̃(M) = (BM,≤M), where BM
is the free Boolean algebra on M and ≤M is the order on Spec(B) given
by: for any F,F ′ ∈ Spec(B), F ≤M F ′ if and only if F ∩M ⊆ F ′ ∩M,
while for any arrow f ∶ M → M′ in MsLat, B̃(f) is equal to the unique
Boolean algebra homomorphism Bf ∶ BM → BN which makes the following
diagram commutes (where iM ∶M → BM and iN ∶ N → BN are the canonical
inclusions from the relevant meet-semilattice to the free Boolean algebra on
it):

M
f //

iM
��

N

iN
��

BM
Bf // BV
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AnyM in MsLat can be recovered (up to isomorphism) from the Boolean
algebra BM as the set of its elements which are ≤M-upper and cannot be
written as a proper finite join of ≤M-upper elements, while any arrow f ∶

M → N in MsLat can be recovered as the restriction of the corresponding
arrow B(f) to the subsets consisting of the upper elements which cannot
be written as a proper finite join of upper elements. Given an object (B,≤)
of Bool≤, we shall say that an element b ∈ B is an indecomposable ≤-upper
element if cannot be written as a proper finite join of upper elements in B.

By Theorem 4.8, the extended image ExtIm(B̃) of the functor B̃ can be
characterized as follows. The objects of ExtIm(B̃) are the objects (B,≤) of
Bool≤ with the property that for any F,F ′ ∈ Spec(B) such that F ≰ F ′ there
exists an indecomposable ≤-upper element b ∈ B such that b ∈ F and b ∉ F ′,
and the meet of any two indecomposable ≤-upper elements is indecomposable;
equivalently, the subset B∗ of B consisting of the indecomposable ≤-upper
elements b of B, endowed with the induced order, is a meet-semilattice,
the inclusion B∗ ⊆ B realizes B as the free Boolean algebra on the meet-
semilattice B∗ and for any F,F ′ ∈ Spec(B) such that F ≰ F ′ there exists an
indecomposable ≤-upper element b ∈ B such that b ∈ F and b ∉ F ′. The arrows
(B,≤) → (B′,≤′) in ExtIm(B̃) are the Boolean algebra homomorphisms
f ∶ B → B′ such that f−1 ∶ Spec(B′) → Spec(B) is order-preserving and
f sends indecomposable ≤-upper elements of B to indecomposable ≤′-upper
elements of B′.

From Corollary 4.9 we get the following criterion for a meet-semilattice
inclusion i ∶M→ B into a Boolean algebra B to realize B as the free Boolean
algebra on the meet-semilattice M: i realizes B as the free Boolean algebra
onM if and only ifM can be identified, via i, with the subset of B consisting
of the indecomposable ≤M-upper elements of B.

5.3 A Priestley-type duality for disjunctively distribu-

tive lattices

Recall that a disjunctively distributive lattice is a meet-semilattice in which
finite joins of pairwise disjoint elements exist and distribute over finite meets.

In section 4 of [6] we established a duality between the category DJLat

of disjunctively distributive lattices and meet-semilattice homomorphisms
between them which send pairwise disjoint elements to pairwise disjoint ele-
ments and the category Topdj whose objects are the sober topological spaces
with a basis of disjunctively compact open sets which is closed under finite
intersections and satisfies the property that any covering of a basic open set
has a disjunctively compact refinement by basic open sets, and whose arrows
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are the continuous maps between such spaces such that the inverse image of
any disjunctively compact open set is a disjunctively compact open set. This
duality sends a disjunctively distributive lattice D to the space of points of
the topos Sh(D, JdjD ), where JdjD is the disjunctive topology on D, and acts
on the arrows in the natural way.

We can lift this duality to a duality between DJLat and a subcategory
of PTop by using the method of section 4.3. Specifically, the Priestley space
associated to a disjunctively distributive lattice D is the ordered topological
space whose underlying set is the collection XD of disjunctive filters on D,
endowed with the topology generated by the sets of the form {F ∈XD | d ∈ F}
and their complements in P(XD) and with subset-inclusion ordering, while
the map of Priestley spaces associated to a given homomorphism f ∶ D → D′

of disjunctively distributive lattices, is the map XD′ →XD sending any filter
F in XD′ to the filter in XD given by the inverse image f−1(F ).

A disjunctively distributive lattice can be recovered (up to isomorphism)
from the associated Priestley space as the set of clopen uppper sets which
satisfy the property that any covering of them by clopen upper sets admits
a disjunctive refinement by clopen upper sets. Algebraically, a disjunctively
distributive lattice D can be recovered from the free Boolean algebra BD on
it as the set of its ≤-upper elements (where ≤ is the order on the Priestley
space associated to D under this duality) having the property that any finite
covering of them by ≤-upper elements in BD admits a disjunctive refinement
by ≤-upper elements.

From Corollary 4.9, we get the following criterion for a disjunctively dis-
tributive inclusion homomorphism i ∶ D → B into a Boolean algebra B to
realize B as the free Boolean algebra on the disjunctively distributive lattice
D: i realizes B as the free Boolean algebra on D if and only if D can be
identified, via i, with the subset of B consisting of the ≤M-upper elements of
B with the property that any finite covering of them by ≤-upper elements in
BD admits a disjunctive refinement by ≤-upper elements.

5.4 Other dualities

1. Free distributive lattices on meet-semilattices.

By Theorem 2.7, for any meet-semilattice M, denoted by DM the free
distributive lattice on M, we have an equivalence of toposes

Sh(DM, JDM) ≃ [M
op,Set],

where JDM is the coherent topology on DM.
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The meet-semilattice M can thus be recovered from DM as the set of
its elements which cannot be written as a proper finite join of elements
of DM. Given a distributive lattice D, we shall say that an element of
D is indecomposable if it cannot be written as a proper finite join in D
of elements of D.

The free functor F ∶ MSLat → DLat thus has an inverse defined on
its extended image, which sends a distributive lattice D in ExtIm(F )
to the set of its indecomposable elements. This equivalence can be
extended to a coreflection from MSLat to the subcategory of DLat

whose objects are the distributive lattices whose set of indecompos-
able elements forms, with the induced order, a meet-semilattice, and
whose arrows are the distributive lattice homomorphisms which send
indecomposable elements to indecomposable elements.

By Theorem 4.10, the extended image ExtIm(F ) of the functor F can
be characterized as the subcategory of DLat whose objects are the dis-
tributive lattices D such that any element can be written as a finite join
of indecomposable elements and the meet of any two indecomposable
elements is indecomposable and whose arrows are the distributive lat-
tice homomorphisms between such lattices which send indecomposable
elements to indecomposable elements. In fact, we have the following
criterion for an meet-semilattice homomorphic inclusion i ∶M ↪ D of
a meet-semilattice M into a distributive lattice to realize D as the free
distributive lattice on M: i realizes M as the set of indecomposable
elements of D and every element of D can be written as a finite join of
indecomposable elements.

2. Free distributive lattices on disjunctively distributive lattices.

By Theorem 2.7, for any disjunctively distributive lattice D, denoted
by DD the free distributive lattice on D, we have an equivalence of
toposes

Sh(DD, JDD) ≃ Sh(D, JdjD ),

where JDM is the coherent topology on DM and J
dj
D is the disjunctive

topology on D.

The disjunctively distributive lattice D can thus be recovered from DD
as the set of its elements which are disjunctively compact, that is the
elements d of DD such that for any finite family of elements {d1, . . . , dn}
such that d1 ∨ ⋯ ∨ dn = d there exists a finite family {a1, . . . , am} of
pairwise disjoint elements of DD with the property that a1 ∨⋯∨am = d
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and for any i ∈ {1, . . . ,m} there exists an element j ∈ {1, . . . , n} such
that ai ≤ dj .

The free functor F ∶ DJLat → DLat thus has an inverse defined on
its extended image, which sends a distributive lattice D in ExtIm(F )
to the set of its disjunctively compact elements. This equivalence can
be extended to a coreflection from DJLat to the subcategory of DLat

whose objects are the distributive lattices whose set of disjunctively
compact elements is closed under finite meets and whose arrows are the
distributive lattice homomorphisms which send disjunctively compact
elements to disjunctively compact elements.

By Theorem 4.10 and the results in [6], the extended image of the
functor F can be characterized as the subcategory of DLat whose
objects are the distributive lattices D such that there exists a set of
elements B of D closed under finite meets with the property that every
finite covering in D of element in B admits a disjunctive refinement
by a family of elements of B (i.e., for any finite family {e1, . . . , em} of
elements of D such that e1 ∨ ⋯ ∨ em ∈ B there exists a subset of B
formed by pairwise disjoint elements each of which is less than or equal
to ej for some j ∈ {1, . . . ,m} and whose join is equal to e1 ∨ ⋯ ∨ em),
and whose arrows are the distributive lattice homomorphisms between
such lattices which send disjunctively compact elements to disjunctively
compact elements.

3. Free frames on posets.

For any poset P, we have an equivalence of toposes

[Pop,Set] ≃ Sh(AP)

where AP is the frame of lower sets in P (cf. [6]). From which it follows
that AP is the free M-frame on P where M is the class of monotone
maps from P to frames F such that

(i) ∨
p∈P
f(p) = 1F ;

(ii) for any a, b ∈ P, f(a) ∧ f(b) = ∨
p∈Ka,b

f(p), where Ka,b is the col-

lection of all the elements c ∈ P such that c ≤ a and c ≤ b in
P.

One can recover (up to isomorphism) any poset P from the associated
frame AP as the subsep of its supercompact elements, endowed with
the induced order.
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In order to make this into a duality between posets and frames, one
can proceed in two different ways. One possibility is to rely on the
fact that any monotone map f ∶ P → Q of posets P and Q induces a
complete frame homomorphism (i.e., a frame homomorphism preserv-
ing arbitrary infima, that is having a right adjoint) f−1 ∶ AQ → AP and
can be recovered from it as the restriction of its right adjoint to the
principal ideals. This gives rise to a duality between the category of
posets and monotone maps between them and the category whose ob-
jects are the frames with a basis of supercompact elements and whose
arrows are the complete homomorphisms between them (cf. section 4.1
of [6] for the details). An alternative, covariant, way of functorializing
the assignment P → AP consists in considering the flat maps between
posets and the frame homomorphisms which they induce. Specifically,
any flat map f ∶ P → Q between posets induces a frame homomor-
phism AP → AQ, sending any lower set I in AP to the lower set in AQ
generated by the image f(I) of I under f in Q, from which the map
f can be recovered as its restriction to the subsets of principal ideals.
This gives rise to an equivalence between the category of posets and
flat maps between them and the category whose objects are the frames
with a basis of supercompact elements and whose arrows are the frame
homomorphisms between them which send supercompact elements to
supercompact elements.
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