
Axiomatizations of Team Logics
Martin Lück

Leibniz Universität Hannover, Institut für Theoretische Informatik,
Appelstraße 4, 30167 Hannover, Germany

lueck@thi.uni-hannover.de

Abstract. In a modular approach, we lift Hilbert-style proof systems
for propositional, modal and first-order logic to generalized systems for
their respective team-based extensions. We obtain sound and complete
axiomatizations for the dependence-free fragment FO(∼) of Väänänen’s first-
order team logic TL, for propositional team logic PTL, quantified propositional
team logic QPTL, modal team logic MTL, and for the corresponding logics
of dependence, independence, inclusion and exclusion.

As a crucial step in the completeness proof, we show that the above logics
admit, in a particular sense, a semantics-preserving elimination of modalities
and quantifiers from formulas.

Keywords and phrases: axiomatization, dependence logic, propositional team logic, modal
team logic, team logic
1998 ACM Subject Classification: F.4.1 Mathematical Logic

1. Introduction
While their history goes back to ancient philosophers, propositional and modal logics
have assumed an outstanding role in the age of modern computer science, with plentiful
applications in software verification, modeling, artificial intelligence, and protocol design.
An important property of a logical framework is completeness, i.e., that the act of me-
chanical reasoning can effectively be done by an algorithm. The question of completeness
of first-order logic, which is the foundation of today’s mathematics, was not settled until
the famous result of Gödel in 1929. Until today, the area of proof theory has achieved
tremendous progress and is still a growing field, especially with regard to many variants
of propositional and modal logics as well as non-classical logics (see e.g. Fitting [4]).
A recent extension of classical logics is so-called team logic. It originated from the

concept of quantifier dependence and independence. The following question has been
long-known in linguistics: how can the statement

For every x there is y, and for every u there is v such that P(x,y,u,v).

1

ar
X

iv
:1

60
2.

05
04

0v
2

 [
cs

.L
O

]
 2

6
M

ar
 2

01
8

be formalized in first-order logic such that y and v are chosen independently? Some
suggestions were Henkin’s branching quantifiers [15] as well as independence-friendly
logic IF by Hintikka and Sandu [16]. The idea of the latter is to assert dependence and
independence between quantifiers syntactically, implemented semantically by a game of
imperfect information. Hodges [17] proved that IF also admits a compositional semantics
if formulas were evaluated on teams, which are sets of assignments, instead of single
assignments. In this vein, Väänänen [26] introduced dependence logic D. Here, the
fundamental idea is that dependencies are not stated alongside the quantifiers, but
instead are expressed as logical dependence atoms, written =(x, y), which means “x
functionally determines y.”

Beside Väänänen’s dependence atom, a variety of atomic formulas solely for reasoning
in teams were introduced. Galliani [5] as well as Grädel and Väänänen [8] pointed out
connections to database theory; they formalized common constraints like independence
⊥, inclusion ⊆ and exclusion | as atoms in the framework of team semantics. Beside
first-order logic, all these atoms have also been adapted for modal logic ML [27], and
(quantified) propositional logic PL resp. QPL [11, 25, 31].

As for any logic, the question of axiomatizability arises for these logics with team
semantics, in particular for the extensions of first-order logic. However, dependence
logic D is as expressive as existential second-order logic SO(∃) [26], while its extension
TL, obtained from D by adding a semantical negation ∼, is equivalent to full second-
order logic SO [20]. Accordingly, both are non-axiomatizable. Later, Kontinen and
Väänänen [21] gave a partial axiomatization in the sense that FO-consequences of D-
formulas are derivable, and recently a system that can derive all so-called negatable
D-formulas was presented by Yang [29].
For certain fragments of propositional and modal team logic, axiomatizations exist.

Hannula [10] presented natural deduction systems for propositional dependence logic PDL,
quantified propositional dependence logic QPDL and extended modal dependence logic
EMDL. By contrast, Sano and Virtema [25] gave Hilbert-style axiomatizations and labeled
tableau calculi for propositional dependence logic PDL and (extended) modal dependence
logic (E)MDL. Independently, Yang [28] presented both Hilbert-style axiomatizations
and natural deduction systems for a family of so-called downward-closed modal logics
with team semantics, which includes EMDL as well.

However, a fundamental restriction of these solutions is that they all rely on the
absence of Boolean negation. As a consequence, team logics with negation, most notably
propositional team logic (PTL), modal team logic (MTL) and FO(∼), require a different
approach.

Contribution

In this paper, we present complete axiomatizations for several team logics including the
=(·, ·)-free fragment of TL, coined FO(∼) by Gallani [6]. Here, we consider it under lax
semantics [5].

By showing that FO(∼) is axiomatizable, we identify the dependence atom =(·, ·), and

2

PTL
H0LS

B(PL)
H0L

PL
H0

(eliminate (,�,4,∀, !)

(add propositional logic)

MTL
H�LSM

B(ML)
H�L

ML
H�

FO(∼)
HULSQ

B(FO)
HUL

FO
H

Figure 1: Lower arrow: Axiomatization of B(·) by adding the propositional axioms L to
H0,H� and H (Section 3 and 6). Upper arrow: Axiomatization of (Q)PTL,MTL
and FO(∼) by reduction to the B(·) fragment (Section 4, 5 and 7).

not team semantics itself, as the source of incompleteness of D and TL. One interpretation
is that reasoning about teams can be axiomatized; but only if we cannot talk about the
internal dependencies between the elements of the team.

A crucial step in the completeness proof is the perhaps surprising fact that TL without
=(·, ·) collapses to B(FO), the Boolean closure of classical first-order logic FO under team
semantics. The latter has the so-called flatness property, which implies that any classical
proof system of FO is also adequate for team semantics. From there, an axiomatization
of B(FO) is easily found in a similar way as for propositional logic.
Whether logics not collapsing to B(FO) have axiomatizations is beyond the scope of

this paper. Our approach, however, also yields results for (quantified) propositional
and modal team logics. They can define their atoms of dependence, independence and
inclusion in terms of other connectives, whereas this is not possible in the first-order
setting. For this reason, the logics QPTL, PTL and MTL collapse to B(QPL), B(PL) and
B(ML) in a similar fashion as FO(∼) to B(FO), and we obtain complete axiomatizations
as a byproduct. Figure 1 illustrates this.

The article is organized as follows. Let us remark that the axiomatizations as a whole
can be found in Figure 13. In each section of the paper, one subsystem is introduced.
First, the system L is presented in Section 3 as a complete proof system for the Boolean
closure B(L) under team semantics, where L ∈ {PL,QPL,ML,FO}. In Section 4, the
system S is added which permits to eliminate the splitting disjunction � in a semantics-
preserving manner. By means of this elimination, PTL collapses to B(PL) in the proof
system. Likewise, in Section 5 it is shown that modalities can be eliminated in a system
we call M, and that the problem of the axiomatization of MTL is thereby reduced to
that of B(ML) as well. The results on PTL and MTL were presented earlier [22], and are
now extended to logics containing quantifiers, namely quantified Boolean formulas and
first-order logic. Section 7 introduces the system Q which allows to axiomatize and hence
eliminate quantifiers in a similar fashion as the modalities.
However, a crucial difference between between first-order logic and propositional or

modal logic is the existence of sentences. They complicate the task of finding a complete
proof system for B(FO). In Section 6 this obstacle is overcome by adding the so-called

3

unanimity axiom U.
Another corollary of the operator elimination is a purely syntactical proof of Galliani’s

theorem [6] that (on non-empty teams) every FO(∼)-sentence is equivalent to an FO-
sentence. Finally, in Section 8, we consider axiomatizable sublogics in the propositional
and modal settings, in particular, logics of dependence, independence, inclusion, and
exclusion.

2. Preliminaries
We associate with every logic L a triple (ΦL,AL,�L), where ΦL is the set of formulas of
L, AL is the class of valuations, and �L is the satisfaction relation between AL and ΦL.
In what follows, we often omit L in the components if the meaning is clear.
Let Ψ,Θ ⊆ Φ be sets of formulas, ϕ,ψ ∈ Φ formulas and A ∈ A a valuation. A � Ψ

means A � ψ for all ψ ∈ Ψ. We say that Ψ entails Θ, in symbols Ψ � Θ, if A � Ψ implies
A � Θ for all A ∈ A.
We usually omit the set braces and simply write, e.g., ϕ � ψ instead of {ϕ} � {ψ}.

Moreover, we write � ϕ and � Ψ instead of ∅ � ϕ and ∅ � Ψ. Finally, Ψ ≡ Θ means
Ψ � Θ and Θ � Ψ. The class of valuations satisfying a formula ϕ, called models of ϕ, is
Mod(ϕ) := {A ∈ A | A � ϕ }. The models Mod(Ψ) of a set Ψ are defined similarly. A
formula ϕ that has a model, i.e., Mod(ϕ) 6= ∅, is called satisfiable. Dually, if Mod(ϕ) = A,
then ϕ is called valid or tautology.
A logic L is compact if for all Ψ ⊆ Φ it holds that Ψ has a model if and only if every

finite subset of Ψ has a model.
For brevity, we will also write ϕ ∈ L instead of ϕ ∈ ΦL and Ψ ⊆ L instead of Ψ ⊆ ΦL.

If two logics L,L′ share the same valuations, then L ≤ L′ means that for every ϕ ∈ L
there is a ϕ′ ∈ L′ such that Mod(ϕ) = Mod(ϕ′). L ≡ L′ means L ≤ L′ and L′ ≤ L. By
contrast, L ⊆ L′ means that ΦL ⊆ ΦL′ , but the valuations and truth on the common
formulas are identical. Then L is a fragment of L′.

2.1. Propositional team logic
Classical propositional logic PL is built upon a countably infinite set Prop of atomic
propositions, denoted by Latin letters {a, b, c, . . .}. The syntax of quantified propositional
logic QPL is given as

α ::= ¬α | (α→ α) | ∀xα | x (x ∈ Prop).

Propositional logic PL is then the quantifier-free fragment of QPL. The valuations of QPL
are Boolean assignments s : Prop→ {1, 0} with the usual semantics.

We extend QPL to quantified propositional team logic QPTL [11, 12] and PL to propo-
sitional team logic PTL [32] as follows. For clarity, in the following we reserve the letters
α, β, γ, . . . for classical formulas; and we use ϕ,ψ, ϑ, . . . for general formulas.
In team semantics, the valuations of QPL are sets T , called teams, of propositional

assignments. For QPL-formulas α, a team T satisfies α if and only if all its members

4

satisfy it, i.e., T � α if ∀s ∈ T : s � α. In particular, the empty team satisfies every
classical formula by definition. QPTL now extends the syntax of QPL by

ϕ ::= α | ∼ϕ | (ϕ_ ϕ) | (ϕ(ϕ) | ∀xϕ | !xϕ (x ∈ Prop, α ∈ QPL).

PTL is then simply the quantifier-free fragment of QPTL.
Note that, while QPL offers Boolean operators such as → and ¬ on the level of single

assignments, their meaning changes when switching to team semantics. In particular, they
do not longer correspond to the Boolean implication and negation. For this reason, the
strong negation ∼ and the material implication _ are introduced as Boolean operators
on the level of teams.

On the other hand, the binary operator(is another team-semantical generalization
of the implication. Unlike _, it is not a truth-functional connective, but quantifies over
all possible divisions of a team into two subteams.

For the semantics of team-wide quantifiers, we need the concept of supplementing func-
tions. Given a team T , a supplementing function is a function f : T → {{0}, {1}, {0, 1}}.
The team T xf := { sxa | s ∈ T, a ∈ f(s) } is called supplementing team, where sxa(x) := a
and sxa(y) := s(y) for y ∈ Prop \ {x}. If f(s) = A is constant, then we simply write T xA
instead of T xf . The semantics of QPTL is then

T � α ⇔ ∀s ∈ T : s �QPL α,

for formulas α ∈ QPL, and otherwise

T � ∼ϕ ⇔ T 2 ϕ,
T � ϕ_ ψ ⇔ T � ψ or T 2 ϕ,
T � ϕ(ψ ⇔ for all S,U ⊆ T : if S ∪ U = T and S � ϕ, then U � ψ,
T � ∀xϕ ⇔ T x{0,1} � ϕ,
T � !xϕ ⇔ T xf � ϕ for all f : T → {{0}, {1}, {0, 1}}.

2.2. Modal team logic
Classical modal logic ML extends the formulas of PL by the �-modality:

α ::= ¬α | (α→ α) | �α | x (x ∈ Prop)

Valuations of modal formulas are Kripke structures, which are essentially labeled
transition systems. A frame is a directed graph (W,R) where W is the set of worlds or
points and R ⊆W ×W is a binary edge relation. A Kripke structure K = (W,R, V) then
consists of a frame (W,R) together with a labeling function V : Prop → P(W), where
P(·) denotes the power set operation. A pointed Kripke structure is a pair (K,w) where
K is a Kripke structure (W,R, V) and w ∈ W is its initial world or initial state. ML
then has the class of all pointed Kripke structures as evaluations and the usual Kripke
semantics.

5

Modal team logic MTL extends modal logic and was introduced by Müller [24] and
studied, e.g., by Kontinen et al. [18]. It is evaluated on pairs (K,T), where K = (W,R, V)
is a Kripke structure, but with T ⊆W being a set of worlds, called team (in K). MTL
extends ML by

ϕ ::= α | ∼ϕ | (ϕ_ ϕ) | (ϕ(ϕ) | �ϕ | 4ϕ (α ∈ ML).

Let us turn to its semantics. If (W,R, V) is a Kripke structure and T ⊆ W a team,
then we define its image RT := { w ∈W | ∃v ∈ T : Rvw } and pre-image R−1T :=
{ w ∈W | ∃v ∈ T : Rwv }. A successor team T ′ of T is a team such that T ′ ⊆ RT and
T ⊆ R−1T . Intuitively, a successor team of T can be obtained by picking at least one
successor of every element in T . If α ∈ ML, K = (W,R, V) and T ⊆W , then

(K,T) � α ⇔ ∀w ∈ T : (K,w) �ML α,

for formulas α ∈ ML, and otherwise

(K,T) � ∼ϕ ⇔ (K,T) 2 ϕ,
(K,T) � ϕ_ ψ ⇔ (K,T) � ψ or (K,T) 2 ϕ,
(K,T) � ϕ(ψ ⇔ for all S,U ⊆ T : if S ∪ U = T and (K,S) � ϕ,

then (K,U) � ψ,
(K,T) � �ϕ ⇔ (K,RT) � ϕ,
(K,T) � 4ϕ ⇔ (K,S) � ϕ for all successor teams S of T .

2.3. First-order team logic
Classical first-order logic FO consists of terms and formulas over some vocabulary τ of
relation symbols Ri and function symbols fi, each with their respective arity ar(Ri) ≥ 0,
ar(fi) ≥ 0. A function symbol of arity zero is a constant symbol and usually denoted by
c.
Let Var := {x1, x2, . . .} be a countably infinite set of first-order variables. We define

the syntax of FO by

α ::= ¬α | (α→ α) | ∀xα | t = t | R(t1, . . . , tar(R)) (for x ∈ Var, τ -terms ti)

A formula without free variables is called closed.
Formulas are evaluated in the classical Tarski semantics. We require first-order

structures A = (A, τA), consisting of a non-empty domain A (also denoted by |A|) and
interpretations τA for the vocabulary. A first-order interpretation is then a pair (A, s) of
a structure A = (A, τA) and an assignment s : Var→ A. Given a term t, it evaluates to
an element of A, denoted by t(A,s).

A first-order formula without free variables is called sentence. The set of all sentences
is FO0. If α ∈ FO0, then we sometimes write A � α instead of (A, s) � α.

6

First-order team logic TL was introduced by Väänänen [26]. We define it via the
following syntax, where α ∈ FO, t1, . . . , tn are terms, n ≥ 1, and x ∈ Var.

ϕ ::= α | ∼ϕ | (ϕ_ ϕ) | (ϕ(ϕ) | ∀xϕ | !xϕ | =(t1, . . . , tn).

A TL-valuation is a pair (A, T), where A is a first-order structure, and T a team, i.e.,
a set of assignments s : Var→ |A|. Note that =(t1, . . . , tn) is an atomic formula, called
dependence atom [26]. Intuitively it states that in the team tn is functionally determined
by t1, . . . , tn−1.

For the semantics of the quantifiers, we require the first-order analog of supplementing
functions f for a team T , formally f : T → P(|A|) \ {∅}. Then the supplementing team
T xf and the duplicating team T x|A| are defined as in the propositional case. The semantics
of TL, where α ∈ FO, x ∈ Var and t1, . . . , tn are terms, are

(A, T) � α ⇔ ∀s ∈ T : (A, s) �FO α,

for α ∈ FO, and otherwise

(A, T) � =(t1, . . . , tn)⇔ ∀s, s′ ∈ T : if t(A,s)i = t
(A,s′)
i for all 1 ≤ i < n,

then also t(A,s)n = t(A,s
′)

n ,
(A, T) � ∼ϕ ⇔ (A, T) 2 ϕ,
(A, T) � ϕ_ ψ ⇔ (A, T) � ψ or (A, T) 2 ϕ,
(A, T) � ϕ(ψ ⇔ for all S,U ⊆ T : if S ∪ U = T

and (A, S) � ϕ, then (A, U) � ψ,
(A, T) � ∀xϕ ⇔ T x|A| � ϕ,
(A, T) � !xϕ ⇔ T xf � ϕ for all f : T → P(|A|) \ {∅}.

If ϕ is a formula and σ, σ′ are formulas or terms, then ϕ[σ/σ′] denotes the formula
obtained from ϕ by substituting in parallel every occurrence of σ by σ′.

We require some abbreviations. For the truth-functional constants in propositional,
modal logic, and first-order logic, we use the abbreviations > := (x → x) resp. > :=
∃xx = x and ⊥ := ¬>, where x is a fixed proposition resp. variable. Moreover, we write
α ∨ β := ¬α → β for the disjunction, α ∧ β := ¬(α → ¬β) for the conjunction, and
α↔ β := (α→ β) ∧ (β → α) for the equivalence.
Note that the above connectives are not truth-functional under team-semantics: for

example, p ∨ ¬p does not imply that either p or ¬p holds in the team. Moreover, ⊥ is
true in the empty team.
For this reason, we define the strong falsum ⊥⊥ := ∼> which is false in all teams.

Likewise, we define proper Boolean connectives based on ∼ and _, i.e., (ϕ 6 ψ) :=
(∼ϕ _ ψ) (disjunction), (ϕ 7 ψ) := ∼(ϕ _ ∼ψ) (conjunction) and (ϕ] ψ) := (ϕ _
ψ) 7 (ψ _ ϕ) (equivalence). Dually to the team-semantical interpretation of classical
formulas, Eα := ∼¬α expresses that at least one element of the team satisfies α.

7

Moreover, we abbreviate ϕ � ψ := ∼(ϕ (∼ψ). The meaning of ϕ � ψ is that the
current team permits some division into subteams S satisfying ϕ and U satisfying ψ (cf.
[26, 32]).
We assume →, _ and(as right-associative and ∧,7,∨,6,� as left-associative.
Furthermore, the dual of the 4-modality is defined as ♦ϕ := ∼4∼ϕ, which is true if

some successor team satisfies ϕ. Likewise, the dual of ! is ∃, i.e., ∃xϕ := ∼ !x∼ϕ, which
is true if there is some supplementing function f such that T xf satisfies ϕ.

Väänänen’s dependence logic D can then be defined as the fragment of TL that is the
closure of FO and =(·, ·) under only �,7, ∃ and ∀ [26]. The logic FO(∼) is then simply
the =(·, ·)-free fragment of TL.
Note that propositional and modal team logic possess a dependence atom as well,

written =(α1, . . . , αn) for formulas α1, . . . , αn instead of terms [2, 27, 31]. It has the
meaning that every subteam uniform in the truth of α1, . . . , αn is also uniform in the
truth of β, in other words, that the truth of β is a function of that of α1, . . . , αn. However,
as this atom can expressed as

>(
[

n

7
i=1

(αi 6 ¬αi) _ (β 6 ¬β)
]
,

we do not regard it as part of the syntax of (Q)PTL or MTL (see also Section 8).
In the first-order setting, the dependence atom cannot be defined by the other operators.

As D and TL are not axiomatizable [26], we will focus on the =(·, ·)-free fragment FO(∼).
Note that propositional and modal team logics are often defined in the literature using

only literals p,¬p as atoms. The classical operators ∨,∧,�,♦, ∀ and ∃ are then the
primitive connectives (see e.g. Väänänen, Sano, and Virtema [25, 26, 27]).

The rationale behind deviating from this convention is twofold. First, embedding the
classical logics, not necessarily in negation normal form, as a “layer” in team logic allows
to comfortably build onto existing proof systems. Second, we make extensive use of
introduction rules such as ϕ ` �ϕ. Such rules would be unsound for ♦,� and ∃. For
these reasons, we prefer 4,(and ! as primitive connectives.

2.4. Proof systems
A proof system is a tuple Ω = (Ξ,Ψ, I) where Ξ is a set of judgments (usually L-
formulas), Ψ ⊆ Ξ is a set of axioms, and I ⊆ P(Ξ) × Ξ is a set of inference rules.
Throughout this paper, Ξ, Ψ and I are all assumed countable and efficiently decidable.
The component-wise union of two systems Ω, Ω′ is written ΩΩ′.

An Ω-proof P of ϕ ∈ Ξ from Φ ⊆ Ξ is a finite sequence P = (P0, . . . , Pn) of finite sets
Pi ⊆ Ξ such that ϕ ∈ Pn, and ξ ∈ Pi implies that either ξ ∈ Pi−1∪Ψ∪Φ, or (P ′i−1, ξ) ∈ I
for some P ′i−1 ⊆ Pi−1. We write Φ `Ω ϕ if there is some Ω-proof of ϕ from Φ, and usually
omit Ω if it is clear.
If two formulas ϕ and ϕ′ prove each other, i.e., {ϕ} ` ϕ′ and {ϕ′} ` ϕ, then we write

ϕ a` ϕ′. For sets we write Φ a` Φ′ if for every ϕ ∈ Φ it holds Φ′ ` ϕ, and for every
ϕ ∈ Φ′ it holds Φ ` ϕ. Instead of ∅ ` ϕ, we also write ` ϕ.

8

(A1) α→ (β → α)
(A2) (α→ (β → γ))→ (α→ β)→ (α→ γ)
(A3) (¬α→ ¬β)→ (β → α)
(A4) ∀xα↔ (α[x/>] ∧ α[x/⊥])
(A5) ∀xα→ α[x/t], t term
(A6) ∀x (α→ β)→ (α→ ∀xβ), x not free in α
(A7) x = x
(A8) x = y → (α→ α[x/y])
(K) �(α→ β)→ (�α→ �β)

(E→) α α→ β

β

(Nec) α (α theorem)
�α

(UG∀) α (α theorem, t term)
∀xα[t/x]

Figure 2: Hilbert-style axiomatizations of (Q)PL, ML and FO

A system Ω is sound for a logic L if for all Φ ⊆ L and ϕ ∈ L it holds that Φ `Ω ϕ
implies Φ �L ϕ. It is complete if Φ �L ϕ implies Φ `Ω ϕ. Note that every logic L with a
sound and complete proof system is compact.

The proof systems in this paper are based on the common Hilbert-style axiomatizations
of propositional, modal and first-order logic (Figure 2). We use the system H0 ((A1)–(A3)
and (E→) for PL, the system H1 (H0 and (A4)) for QPL, the system H� (H0, (K) and
(Nec)) for ML, and the system H (H0, (A5)–(A8) and (UG∀)) for FO. More precisely, (A1)
stands for all substitution instances of the schema (A1), and so on.

Let us explain the inference rules (Nec) and (UG∀). In contrast to (E→), they cannot
be applied to arbitrary derived formulas. Instead, they can only be applied to theorems α,
meaning that α was derived from the axioms of the system only, not using any premises.
This ensures that the deduction theorem holds.1

Proposition 2.1. H0 is sound and complete for PL. H1 is sound and complete for QPL.
H� is sound and complete for ML. H is sound and complete for FO.

We defined classical logics to have the flatness property, i.e., a classical formula is
satisfied by a team T under team semantics exactly when all of T ’s members satisfy it in
classical semantics. In the following, we emphasize this by referring to flat logics as F .

Flatness has one particularly useful consequence regarding proof systems:

1For instance, if α is a tautology, then so is �α, however, α 2 �α. This phenomenon is discussed by
Fitting and Hakli and Negri [3, 9] as the “failure of the deduction theorem” in modal logic, and one
way to remedy it is exactly the restriction of α to be a theorem.

9

Proposition 2.2. Let F ∈ {PL,QPL,ML,FO}, Γ ⊆ F , α ∈ F . Then Γ � α holds in
classical semantics if and only if it holds under team semantics.

Proof. We prove only the FO case. The other cases are proven similarly. For “⇒”, let
Γ � α in classical semantics. Suppose that an arbitrary valuation (A, T) satisfies Γ.
Then (A, s) � Γ for all s ∈ T . By assumption, (A, s) � α in for all s ∈ T . Consequently,
(A, T) � α.

Next, we prove “⇐” by contraposition. If Γ 2 α in classical semantics, then there is
a valuation (A, s) such that (A, s) � Γ and (A, s) 2 α. But then also (A, {s}) � Γ and
(A, {s}) 2 α. Consequently, Γ 2 α under team semantics.

Corollary 2.3. Under team semantics, the systems H0, H1, H� and H are sound and
complete for PL, QPL, ML and FO, respectively.

Accordingly, we will not distinguish between the two entailment relations for the rest
of the paper. Other immediate consequences of flatness are the following:

Proposition 2.4. The logics QPL, ML and FO are downward closed:
If α ∈ QPL and T � α, then T ′ � α for all T ′ ⊆ T .
If α ∈ ML and (K,T) � α, then (K,T ′) � α for all T ′ ⊆ T .
If α ∈ FO and (A, T) � α, then (A, T ′) � α for all T ′ ⊆ T .

Proposition 2.5. The logics QPL, ML and FO are union closed:
Let T be a set of teams.
If α ∈ QPL and T � α for all T ∈ T , then ⋃ T � α.
If α ∈ ML and (K,T) � α for all T ∈ T , then (K,⋃ T) � α.
If α ∈ FO and (A, T) � α for all T ∈ T , then (A,⋃ T) � α.

Proposition 2.6. Let F ∈ {QPL,ML,FO} and α, β ∈ F . Then α ∨ β ≡ α� β.

3. Axioms of the Boolean closure
We begin the development of a proof system for team logic with the operators _ and ∼,
i.e., for the Boolean closure of classical logic under team semantics.

Definition 3.1. If F is a logic, then B(F) is the Boolean closure of F , defined by the
grammar ϕ ::= α | ∼ϕ | ϕ_ ϕ, where α ∈ F , and with the semantics

A � α ⇔ A �F α for α ∈ F ,
A � ∼ϕ ⇔ A 2 ϕ,
A � ϕ_ ψ ⇔ A � ψ or A 2 ϕ.

In this section, we develop a “template” proof system for B(·), viz. the system L
(lifted propositional axioms) depicted in Figure 3. The axioms of L mostly resemble their
classical counterparts in H0. One exception is (L4), which relates the propositional and
the team-semantical implication. We demonstrate that a complete proof system for a

10

(L1) ϕ_ (ψ _ ϕ)
(L2) (ϕ_ (ψ _ ϑ)) _ (ϕ_ ψ) _ (ϕ_ ϑ)
(L3) (∼ϕ_ ∼ψ) _ (ψ _ ϕ)
(L4) (α→ β) _ (α_ β) α, β ∈ F

(E_) ϕ ϕ_ ψ

ψ

Figure 3: The system L

logic F can be augmented with L to obtain a complete system for B(F). This procedure,
however, can only be a first step to full axiomatizations of QPTL, MTL and FO(∼), since
clearly B(QPL) (QPTL, B(ML) (MTL, and B(FO) (FO(∼).

While the systems H0, H1, H� and H can only be applied to classical formulas α, β, γ, . . .,
the axioms and rules in L are permitted for general team-logical formulas ϕ,ψ, ϑ,

Derivations are written down as in the example below (Figure 4). The premises have
the special line numbers A, B, . . . , whereas . marks the conclusion. The right column of
each proof shows the applied rules with the line numbers of the arguments. The format is

(rule1), . . . , (rulen), argument1, . . . , argumentn

where the line numbers of the arguments are omitted if only the preceding lines are
used. The “rule” L means that several axioms and rules of the system L are used without
stating the exact steps (L proves all Boolean tautologies, as shown later in Theorem 3.17).
For the sake of readability, we omit most applications of modus ponens (E_) in L.

3.1. The deduction theorem for team logics
The first step to prove L complete is to establish a variant of the deduction theorem,
i.e., that Φ ` (ϕ _ ψ) if and only if Φ ∪ {ϕ} ` ψ. The crucial point is that the
deduction theorem implies Lindenbaum’s lemma, which permits the construction of
maximal consistent sets required for the completeness proof. We begin by identifying a
family of proof systems that guarantee a deduction theorem, based on the ideas of Hakli
and Negri [9].

A ξ _ α
B ξ _ (α→ β)

1 (α→ β) _ (α_ β) (L4)
2 ξ _ ((α→ β) _ (α_ β)) (L1)
3 ξ _ (α_ β) (L2), B, 2
. ξ _ β (L2), A, 3

Figure 4: Example derivation in L

11

Definition 3.2. Let Ω = (Ξ,Ψ, I) be a proof system. A rule ({ξ1, . . . , ξk}, ψ) ∈ I has
conditionalization if { (ϕ_ ξi) | 1 ≤ i ≤ k } ` (ϕ_ ψ) for all ϕ ∈ Ξ.

In other words, the rule can also be applied under arbitrary premises ϕ. We say that a
system Ω has conditionalization if all inference rules have it.

Lemma 3.3. If Ω is a proof system and ΩL has conditionalization, then the deduction
theorem holds for ΩL, i.e., Φ `ΩL (ϕ_ ψ) if and only if Φ ∪ {ϕ} `ΩL ψ.

Proof. “⇒” is clear, as L has (E_). We prove “⇐” by induction on the length n of a
shortest proof of ψ. If ψ ∈ Φ, ψ = ϕ, or if ψ is an axiom, then Φ ` (ϕ_ ψ) by (L1) and
(E_). For n = 1 these are the only cases. If n > 1, then ψ could also be obtained by
application of some inference rule ({ξ1, . . . , ξk}, ψ). But then ξ1, . . . , ξk each have a proof
of length ≤ n− 1 from Φ ∪ {ϕ}, so by induction hypothesis, Φ ` ϕ_ ξi for 1 ≤ i ≤ k.
As ΩL has conditionalization by assumption, Φ ` ϕ_ ψ.

Definition 3.4. Let Ω and Ω′ be proof systems. Ω′ is a conservative extension of Ω, in
symbols Ω′ � Ω, if Ω′ contains all judgments, rules, and axioms of Ω, but all rules of Ω′
that are not in Ω produce only theorems.

For instance, H � H0 and H� � H0, as the only rule possibly producing non-theorems,
(E→), is already present in H0. Note that � is a partial ordering.

Theorem 3.5. Every conservative extension Ω of L or H0L has the deduction theorem.

Proof. By Lemma 3.3, it suffices to show that all inference rules of Ω have conditional-
ization. There are three cases to distinguish: the rule (E→) in H0 (if Ω � H0L), the rule
(E_) in L, and an arbitrary rule that produces only theorems. The latter case is clear,
as for every theorem ψ, by (L1) and (E_) we can prove ξ _ ψ for arbitrary ξ.

Next, consider the rule (E_) = ({ϕ,ϕ_ ψ}, ψ). To demonstrate that it has condition-
alization, we assume the premises ξ _ (ϕ_ ψ) and ξ _ ϕ, where ξ is arbitrary. By (L2)
and (E_), it is straightforward to derive ξ _ ψ. Finally, for (E→), conditionalization is
proven in Figure 4.

3.2. Completeness of the Boolean closure
As standard completeness proofs often use Lindenbaum’s lemma to construct a maximal
consistent set, let us introduce the notion of consistency.

Definition 3.6. Let Ω = (Ξ,Ψ, I) be a proof system. A set Φ is Ω-inconsistent if Φ ` Ξ.
Φ is Ω-consistent if it is not Ω-inconsistent. Moreover, Φ ⊆ Ξ is maximal Ω-consistent if
it is Ω-consistent and contains ξ or ∼ξ for every ξ ∈ Ξ.

As before, we usually omit Ω. The following lemmas are standard, with their proofs
also found in the appendix.

Lemma 3.7. Let Ω � L and let Φ be consistent. Then Φ 0 ϕ implies that Φ ∪ {∼ϕ} is
consistent, and Φ ` ϕ implies that Φ ∪ {ϕ} is consistent.

12

Lemma 3.8 (Lindenbaum’s Lemma). If Ω � L, then every Ω-consistent set has a
maximal Ω-consistent superset.

The next step in standard completeness proofs is to construct an explicit model for any
maximal consistent set. The application of Lindenbaum’s lemma is usually as follows: if
Φ is maximal consistent, then there is a model M fulfilling all its atomic formulas. By
the maximality of Φ, then also all Boolean combinations of atomic formulas, if they are
in Φ, are true in M . The latter “inductive step” works as well for _,∼. However, more
work is required for the induction basis—to construct the model M that satisfies the
atomic formulas. The reason is that in our context an “atom” is, in fact, any formula
of the underlying classical logic, such as QPL, ML or FO. Due to this complication, we
require the next property.

Definition 3.9. A logic F admits counter-model merging if, for arbitrary sets Γ,∆ ⊆ F
the following holds: Suppose that for every δ ∈ ∆ there is a model M of Γ such that
M 2 δ. Then Γ also has a model M that falsifies every formula in ∆.

Proposition 3.10. PL, QPL and ML, under team semantics, admit counter-model
merging.

Proof. We prove the ML case. Let Γ,∆ ⊆ ML, and for each δ ∈ ∆, let (Kδ, Tδ) be a
model of Γ ∪ {∼δ}. W.l.o.g. the structures Kδ are pairwise disjoint; let K denote their
union. The truth of ML-formulas is invariant under disjoint union of structures [7]; hence
(Kδ, w) � α if and only if (K, w) � α for all formulas α ∈ ML and w ∈ Tδ. From the
flatness property of ML it follows (K, Tδ) � Γ and (K, Tδ) 2 δ. Finally, consider the team
T := ⋃

δ∈∆ Tδ. As ML is union closed (Proposition 2.5), (K, T) satisfies Γ, and as it is
downwards closed (Proposition 2.4), (K, T) falsifies each δ ∈ ∆.

Let ∼F denote the fragment of B(F) that is restricted to the formulas in { ∼α | α ∈ F }.
Likewise, F ∪ ∼F denotes the fragment restricted to formulas in { α,∼α | α ∈ F }.
Intuitively, F ∪ ∼F is the set of “literals.”

Definition 3.11. A proof system Ω is refutation complete for L if for every unsatisfiable
Φ ⊆ L there is a formula ϕ such that Φ ` {ϕ,∼ϕ}.

Lemma 3.12. If F admits counter-model merging and Ω is complete for F , then Ω is
refutation complete for F ∪ ∼F .

Proof. Let Φ ⊆ F ∪∼F be unsatisfiable. Let Γ := Φ∩F and ∆ := Φ∩∼F . There exists
∼δ ∈ ∆ such that Γ ∪ {∼δ} is unsatisfiable, since otherwise Φ would be satisfiable by
counter-model merging. But then Γ � δ, which implies Γ ` δ by completeness of Ω for F .
Consequently, Φ ` {δ,∼δ}.

Note that FO does not admit counter-model merging. In Section 6, we give a counter-
example. However, it is still possible to construct a proof system that is refutation
complete for FO ∪ ∼FO by introducing an additional axiom.

13

Let us emphasize again the difference to classical logics such as PL. The atoms of PL
are the set Prop; the analogously defined fragment Prop∪¬Prop of literals is immediately
refutation complete, as a set Γ ⊆ { p,¬p | p ∈ Prop } is inconsistent only if contains p,¬p
for some proposition p. Since team logic constitutes another “layer” on top of classical
logic, the issue of refutation completeness becomes non-trivial.

With the atoms handled correctly by the proof system (by refutation completeness of
F ∪ ∼F), the induction step goes through as for classical logic:

Theorem 3.13 (Completeness of L). If Ω � L is refutation complete for F ∪ ∼F , then
it is complete for B(F).

Proof. Let Φ′ ⊆ B(F) and ϕ ∈ B(F). For completeness, we have to show that Φ′ 0 ϕ
implies Φ′ 2 ϕ, or in other words, that Φ := Φ′ ∪ {∼ϕ} has a model. First note that, if
Φ′ 0 ϕ, then Φ′ is consistent, and by Lemma 3.7, Φ is consistent, too.

Any consistent set Φ has a maximal consistent superset Φ∗ by Lemma 3.8. Clearly,
Φ∗ ∩ (F ∪∼F) is then consistent as well. By refutation completeness of Ω for F ∪∼F , it
has a model A. We show that ψ ∈ Φ∗ ⇔ A � ψ for all ψ ∈ B(F). In particular, Φ is then
satisfiable, which proves the theorem. That ψ ∈ Φ∗ ⇔ A � ψ holds for ψ /∈ (F ∪ ∼F)
can be proven by induction on the length of ψ (see the appendix).

Conversely, we show that L also preserves the soundness of existing systems:

Lemma 3.14. Suppose that F does not use ∼ or _. If Ω and (E→) are sound for F ,
then ΩL is sound for B(F).

Proof. We show that all axioms and inference rules of ΩL are sound. Then the soundness
of ΩL is easily shown by induction on the length of proofs. The axioms and rules of
Ω apply only to F , and for this reason are sound by assumption. As (E→) is sound,
{α, α→ β} � β for all α, β ∈ F . Equivalently, {α→ β} � (α_ β), hence (L4) is sound.

The other axioms and the rules of L are sound by definition of ∼ and _.

Corollary 3.15. H0L is sound and complete for B(PL). H1L is sound and complete for
B(QPL). H�L is sound and complete for B(ML).

Proof. The soundness follows from the previous lemma and Corollary 2.3. The complete-
ness follows from Proposition 3.10, Lemma 3.12 and Theorem 3.13.

Next, we show that all Boolean tautologies over ∼,_ are provable in L. As a conse-
quence, we can derive distributive laws, De Morgan’s laws, double negation elimination
and so on.
A logic F is called free if the set ∼Φ ∪ (F \ Φ) of B(F)-formulas is satisfiable for all

Φ ⊆ F . An example of a free logic is the fragment Prop of B(PL) that contains only
propositions and no connectives.

Theorem 3.16. Let F be free. Then L is complete for B(F).

Proof. We apply Theorem 3.13, since L is trivially refutation complete for F ∪ ∼F : if a
set Φ ⊆ F ∪∼F is unsatisfiable, then α,∼α ∈ Φ for some α ∈ F , as F is free.

14

Let ϕ ∈ B(Prop). A formula ϕ′ is a substitution instance of ϕ if there are ψ1, . . . , ψn
such that ϕ′ = ϕ[p1/ψ1] · · · [pn/ψn] for propositions p1, . . . , pn.

Theorem 3.17. If �B(Prop) ϕ, then `L ϕ
′ for any substitution instance ϕ′ of ϕ.

Example 3.18. The distributive law a7 (b6 c)] (a7 b) 6 (a7 c) is a tautology in
B(Prop). Therefore it gives rise to the instances ϕ7 (ψ 6 ϑ)] (ϕ7 ψ) 6 (ϕ7 ψ) being
provable in L for all ϕ,ψ, ϑ.

Proof of Theorem 3.17. Let ϕ ∈ B(Prop) such that �B(Prop) ϕ. Suppose that ϕ′ is a
substitution instance of ϕ, i.e., ϕ′ = ϕ[p1/ψ1] · · · [pn/ψn]. For arbitrary formulas ϑ, let
ϑ′ := ϑ[p1/ψ1] · · · [pn/ψn] denote the same substitution applied to ϑ.
As Prop is free, `L ϕ by Theorem 3.16. We proceed with showing `L ϕ

′ by induction
on the length of a shortest proof of ϕ in L. If ϕ is an instance of (L1), (L2), or (L3), then
the same in the case for ϕ′. (Being a B(Prop) formula, ϕ cannot be an instance of (L4).)

If ϕ was derived from ψ _ ϕ and ψ via (E_), then `L (ψ _ ϕ)′ and `L ψ
′ by induction

hypothesis. As (ψ _ ϕ)′ = ψ′ _ ϕ′, we can apply (E_) to obtain ϕ′.

3.3. A remark on (para-)consistency in team logics
Due to the two-layered nature of team logics, proof-theoretical subtleties can arise. We
use the term inconsistent to describe that a set Φ ⊆ B(F) can derive all B(F) formulas,
including ⊥⊥ . The ability to derive all formulas in a given system was coined absolute
inconsistency by Hilbert.

Mossakowski and Schröder [23] discussed the difference between absolute inconsistency
and so-called ⊥-inconsistency, meaning that ⊥ can be derived. Furthermore, they call a
set Aristotle inconsistent for a given negation symbol ¬ if α and ¬α can be derived. ¬ is
called proof-theoretic negation if ¬α is derivable from α ` ⊥. Likewise, ⊥ is called proof-
theoretic falsum if any formula can be proven from it. They have to be distinguished from
a semantic falsum and negation. Here, ∼ and ⊥⊥ are both a semantic and proof-theoretic
falsum resp. negation.
In classical logic using ⊥ and ¬, all above notions of inconsistency coincide with

unsatisfiability. Under team semantics, all above notions of inconsistency still coincide;
however, every set of formulas is true in the empty team. Consequently, classical logics
with team semantics have falsum and negation in the proof-theoretic sense, but not in
the semantical sense.
A possible workaround is to exclude the empty team from the class of valuations. If
F+ is the restriction of the logic F (under team semantics) to valuations with non-empty
team, then clearly Γ �F α implies Γ �F+ α for all Γ ⊆ F and α ∈ F . Since valuations
with empty team trivially satisfy α, the converse is also true. As a consequence, the
consistent sets are then again exactly the satisfiable sets:

Proposition 3.19. Let F ∈ {QPL,ML,FO} and Γ ⊆ F . The following are equivalent:

• Γ ` F

15

• Γ ` ⊥

• Γ ` α,¬α for some α ∈ F

• Γ is unsatisfiable is classical semantics.

• Γ has no team-semantical model with a non-empty team.

However, while ⊥ is a semantical falsum when excluding the empty team, clearly ¬ is
still no semantical negation. In particular, the law of excluded middle fails, i.e., there
are formulas α and valuations satisfying neither α nor ¬α under team semantics. As an
example, consider the propositional team T = {p 7→ 0, p 7→ 1} and the formulas p and
¬p.

Corollary 3.20. A proof system is sound and complete for F ∈ {QPL,ML,FO} if and
only if it is sound and complete for F+.

The above corollary is explained by the fact that there simply is no formula of QPL,ML
or FO expressing non-emptiness of teams (cf. Proposition 2.4).

With the Boolean closure B(F) however, the picture changes: The operators ∼ and ⊥⊥
assume the role of semantic and proof-theoretic negation and falsum.

Proposition 3.21. Let F ∈ {QPL,ML} and Φ ⊆ B(F). The following are equivalent:

• Φ ` B(F)

• Φ ` ⊥⊥

• Φ ` ϕ,∼ϕ for some ϕ ∈ B(F)

• Φ is unsatisfiable under team semantics.

Here, the empty team is again permitted as a valuation. The connectives ¬ and
⊥ behave interestingly: Despite clearly being Aristotle inconsistent, {α,¬α} is not
absolutely inconsistent anymore, i.e., {α,¬α} ` F , but {α,¬α} 0 B(F). Mossakowski
and Schröder call such an operator ¬ paraconsistent negation. Similarly, ⊥ 0 B(F).
The term “paraconsistent” is a little inappropriate for team semantics, as any model

of {α,¬α} or ⊥ can only have an empty team and thus is not very meaningful. In fact,
removing the empty team as a valuation establishes ⊥ � B(F) and avoids paraconsistency,
with the formula ne := ∼⊥ (which expresses non-emptiness of teams) added as an axiom.
On the other hand, the empty team cannot be easily excluded from, say, MTL, unless
the successor relation is total and provides all teams in all Kripke structures with a
non-empty image. Likewise, the semantics of the splitting operator (would have to
be changed in order to avoid empty teams. This also implies unwanted side-effects such
as ⊥ � > being equivalent to ⊥⊥ � >, and hence being contradictory instead of valid,
thereby violating Proposition 2.6.
As a consequence, for the rest of this paper, we permit the empty team and tolerate

proof systems that are paraconsistent in the above sense.

16

4. Axioms of splitting
In the previous section, we added team-semantical Boolean connectives to classical
logics. Hodges [17] and Väänänen [26] introduced the splitting disjunction �, also called
splitjunction or tensor. Formally, T � ϕ�ψ if T can be divided into (possibly overlapping)
subteams S,U such that S � ϕ and U � ψ. Intuitively, � is a “member-wise disjunction”:
each element in T chooses ϕ or ψ or both (cf. Proposition 2.6). Galliani [5] referred to
this semantics of � as lax semantics. By contrast, in the so-called strict semantics the
division must form a partition; hence the strict � rather is a member-wise “exclusive or”.

This section is devoted to axiomatizing(and hence �, as ϕ� ψ := ∼(ϕ(∼ψ). In
our approach, we interpret(as countably many unary modalities of the form “ψ(”
instead of a disjunction-like operator. This permits a natural axiomatization by the
system S (see Figure 5).

With a model-theoretic argument, Yang [30, Theorem 4.6.4.] showed that every PTL
formula can be brought into a normal form over Boolean conjunctions (7), disjunctions
(6), splitting (�), and non-emptiness atoms (ne := ∼⊥). She argued that the axiomati-
zation of this fragment is easier than for full PTL, as it avoids arbitrary negation. On
the other hand, this fragment demands a rather complicated set of rules for many special
cases, in particular to handle ne.

Theorem 4.1. The proof system H0LS is sound for PTL.

Proof. The proof is straightforward and can be found in the appendix.

The idea for proving completeness is to reduce the problem to the completeness for
better-behaved fragment. More precisely, every PTL-formula will be broken down into
a B(PL)-formula (cf. Figure 1). This is formally stated in the next theorem, and the
remaining parts of this section will culminate in a proof.

Theorem 4.2. Let ϕ ∈ PTL. Then there is ψ ∈ B(PL) such that ϕ a`H0LS ψ.

The following lemma shows that such a translation in principle is sufficient for showing
completeness, provided the system is also sound.

(F�) (α� β)] (α ∨ β) Flatness of �
(F() α_ (ϕ(α) Downwards closure
(Lax) ϕ_ (ϕ(ψ) _ (ϑ(ψ) Lax semantics
(Ex() (ϕ(ψ(ϑ) _ (ψ(ϕ(ϑ) Exchange of hypotheses
(C() (ϕ(∼ψ) _ (ψ(∼ϕ) Contraposition
(Dis() (ϕ((ψ _ ϑ)) _ (ϕ(ψ) _ (ϕ(ϑ) Distribution axiom

(Nec()
ϕ (ϕ theorem)

ψ(ϕ
Necessitation

Figure 5: The system S

17

Lemma 4.3. Let L,L′ be logics such that L′ ⊆ L. Let Ω be a proof system that is sound
for L and complete for L′, and such that every L-formula is provably equivalent to an
L′-formula in Ω. Then Ω is also complete for L.

Proof. Assume Φ ⊆ L and ϕ ∈ L. For completeness we have to show that Φ � ϕ
implies Φ ` ϕ. By assumption, every L-formula is provably equivalent to an L′-formula,
hence Φ a` Φ′ for some set Φ′ ⊆ L′. Likewise, ϕ a` ϕ′ for some ϕ′ ∈ L′. Since these
equivalences are proven between (sets of) L-formulas, soundness for L implies Φ ≡ Φ′
and ϕ ≡ ϕ′. Consequently, Φ′ � ϕ′. By completeness of Ω for L′, we obtain Φ′ ` ϕ′.
Altogether, then Φ ` Φ′ ` ϕ′ ` ϕ. As ` is transitive, the lemma follows.

Due to the above lemma, Theorem 4.1 and 4.2, and Corollary 3.15, we obtain an
axiomatization of PTL:

Corollary 4.4. The proof system H0LS is sound and complete for PTL. As a consequence,
PTL is axiomatizable and compact.

The remainder of this section is devoted to proving the required Theorem 4.2.
However, we will restrict ourselves to lax semantics instead of strict semantics. One

reason is that the former enjoys several natural properties such as the locality property: If
two teams agree on their assignments w. r. t. some variables p1, . . . , pn, then they satisfy
the same formulas over these variables (see also Yang and Väänänen [32]).
For any propositional team T and propositions p1, . . . , pn ∈ Prop, we define

rel(T, (p1, . . . , pn)) := {(s(p1), . . . , s(pn)) | s ∈ T}.

Then we can state the locality property as follows:

Proposition 4.5 (Locality). Let T, T ′ be propositional teams and ϕ ∈ PTL such that
ϕ contains the propositions p1, . . . , pn. Then rel(T, (p1, . . . , pn)) = rel(T ′, (p1, . . . , pn))
implies T � ϕ⇔ T ′ � ϕ in lax semantics.

A proof is found in the appendix. Under strict semantics, locality is not true in general:

Example 4.6. Under strict semantics, ψ := ∼p�∼p states that the team contains at
least two assignments s, s′ with s(p) = s′(p) = 0.
Now, for an assignment s with s(p) = 0, consider the teams {s} and {sq0, s

q
1}, where

q 6= p. Clearly, rel({s}, (p)) = {(0)} = rel({sq0, s
q
1}, (p)). However, {s} 2 ψ and {sq0, s

q
1} �

ψ, violating locality.

Note that lax and strict semantics coincide for B(PL).

Corollary 4.7. In strict semantics, ∼p�∼p is not equivalent to any B(PL)-formula.

Observe that the axiom (Lax) is not provable from the remaining axioms: The system
H0LS except (Lax) is easily proven sound for strict semantics, and consequently cannot
prove (Lax), as the latter is not a theorem in strict semantics. For this reason, an explicit
axiom for lax semantics must necessarily be added.

18

4.1. Splitting elimination
As a specific instance of Lemma 4.3, we introduce f-elimination:

Definition 4.8. Let L be a logic and Ω a proof system. Let f be an n-ary connective.
We say that L has f-elimination in Ω if for all formulas ξ1, . . . , ξn ∈ L there exists some
ϕ ∈ L such that f(ξ1, . . . , ξn) a`Ω ϕ.

In other words, if ξ1, . . . , ξn are L-formulas, then f(ξ1, . . . , ξn) is as well equivalent to
an L-formula.

In this subsection, we aim at proving that B(PL) has(-elimination in order to prove
Theorem 4.2.

As we let the elimination start at the innermost subformulas, we additionally require
the next definition.

Definition 4.9. Let g be an n-ary connective. Say that a proof system Ω has sub-
stitution in g if for all ϕ1, ψ1, . . . , ϕn, ψn it holds that ϕ1 a` ψ1, . . . , ϕn a` ψn implies
g(ϕ1, . . . , ϕn) a` g(ψ1, . . . , ψn).

In order to prove (-elimination and substitution, we require several auxiliary results,
such as in the following lemma. Note that the deduction theorem is available for any
system Ω � LS. By means of the latter and the system S, the proof of the following
meta-rules is straightforward and can be found in the appendix.

Lemma 4.10. Let Ω � LS be a proof system. Them Ω has substitution in ∼, _ and (.
Furthermore, Ω admits the following meta-rules:

• Reductio ad absurdum (RAA): If Φ ∪ {ϕ} ` {ψ,∼ψ}, then Φ ` ∼ϕ. If Φ ∪ {∼ϕ} `
{ψ,∼ψ}, then Φ ` ϕ.

• Modus ponens in ((MP(): If ` ϕ_ ψ and Φ ` ϑ(ϕ, then Φ ` ϑ(ψ.

• Modus ponens in � (MP�): If ` ϕ_ ψ and Φ ` ϑ� ϕ, then Φ ` ϑ� ψ.

Moreover, the axioms S allow to derive basic laws regarding(, its dual �, and the
remaining connectives, with the derivations again found in the appendix:

(Com�) (ϕ� ψ)] (ψ � ϕ) Commutative law for �
(Ass�) ((ϕ� ψ)� ϑ)] (ϕ� (ψ � ϑ)) Associative law for �
(D7�) α7 (ϕ� ψ)] (α7 ϕ)� (α7 ψ) Distr. law for � and 7
(D6�) ϕ� (ψ 6 ϑ)] (ϕ� ψ) 6 (ϕ� ϑ) Distr. law for � and 6
(Aug�) (ϕ� ψ) 7 (ϕ(ϑ) _ (ϕ� (ψ 7 ϑ)) Augment splitting
(Abs�) (Eα� ϕ) _ Eα Absorption law of �
(JoinE) (α7 Eβ) _ E(α ∧ β)
(IsolateE) (ϕ� (α7 Eβ))] (ϕ� α) 7 E(α ∧ β)

Figure 6: Provable laws S′ of (and �

19

Lemma 4.11. Let Ω � H0LS. Then all instances of the axioms in S′ are theorems of Ω.

In the rest of the section, we prove that the system admits(-elimination. The proof
spans over several lemmas. We implicitly apply Lemma 4.10 when using substitution
in _,∼ and (and make use of the laws in Lemma 4.10 and the system S′. Roughly
speaking, we pull � inside any Boolean connectives. The first step is the and/or lemma.

Lemma 4.12 (And/Or lemma). If Ω � H0LS, then
n

7
i=1

Eβi]
n⊗
i=1

Eβi

is a theorem of Ω for all β1, . . . , βn ∈ F .

Proof. Using the deduction theorem, we show 7n
i=1 Eβi a`

⊗n
i=1 Eβi. We begin with

the direction “`”, and proceed by induction on n, where n = 1 is trivial. For n > 1,
by induction hypothesis and substitution in 7, it suffices to prove (⊗n−1

i=1 Eβi)7 Eβn `⊗n
i=1 Eβi.
In L, we can decompose the conjunction. Then, assuming ⊗n−1

i=1 Eβi and Eβn as
premises, we prove ⊗n

i=1 Eβi by (RAA). From its negation, viz. ⊗n−1
i=1 Eβi(∼Eβn, we

derive > (∼Eβn with (Lax). By (C(), then Eβn (∼> follows. Finally, again by
(Lax), we obtain > (∼>. However, > ∨ >, and hence > � > = ∼(> (∼>), is a
theorem of H0S as well. By (RAA), we conclude ⊗n

i=1 Eβi.
The other direction “^” is shown by a separate derivation of each conjunct with

(Abs�), (Ass�) and (Com�), which in L then yields the conjunction.

Lemma 4.13 (Generalized distributive law). If Ω � H0LS, then

α7

(
n

7
i=1

Eβi
)
]

n⊗
i=1

(α7 Eβi)

is a theorem of Ω for all α, β1, . . . , βn ∈ F .

Proof. First we apply the previous lemma to replace the large conjunction by a large
splitting disjunction. Then we distribute α with repeated application of (D7�), (Ass�)
and (Com�).

Lemma 4.14 (E isolation). If Ω � H0LS, then
n⊗
i=1

(αi 7 Eβi)]
(

n⊗
i=1

αi

)
7

n

7
i=1

E(αi ∧ βi)

is a theorem of Ω for all α1, . . . , αn, β1, . . . , βn ∈ F .

Proof. For “`”, we obtain ⊗n
i=1 αi from

⊗n
i=1 (αi 7 Eβi) by the application of (Ass�),

(Com�) and (MP�), as (αi 7 Eβi) ` αi for all i ∈ {1, . . . , n}.
Next, we apply (JoinE) to similarly derive ⊗n

i=1 E(αi ∧ βi), which by Lemma 4.12
yields 7n

i=1 E(αi ∧ βi). For “a”, we repeatedly apply the theorem (IsolateE) of S′,

20

(ϕ�α)7E(α∧β) _ ϕ� (α7Eβ), as follows: Assume that the formula has the following
form after k applications. k⊗

i=1
(αi 7 Eβi) �

n⊗
i=k+1

αi

7
n

7
i=k+1

E(αi ∧ βi).

For k = 0, this is obvious. With commutative and associative laws we isolate a single
subformula on each side: k⊗

i=1
(αi 7 Eβi) �

n⊗
i=k+2

αi

� αk+1

7 E(αk+1 ∧ βk+1) 7
n

7
i=k+2

E(αi ∧ βi)

Then we apply (IsolateE), resulting in k⊗
i=1

(αi 7 Eβi) �
n⊗

i=k+2
αi

� (αk+1 7 Eβk+1)

7 n

7
i=k+2

E(αi ∧ βi),

and again with commutative and associative laws ink+1⊗
i=1

(αi 7 Eβi)�
n⊗

i=k+2
αi

7
n

7
i=k+2

E(αi ∧ βi),

where we can repeat the above steps until k = n.

Lemma 4.15 (Flatness of �). If Ω � H0LS, then
n⊗
i=1

αi]
n∨
i=1

αi

is a theorem of Ω for all α1, . . . , αn ∈ F .

Proof. By induction on n, where n = 1 is trivial. For n > 1, first let ϕ := ⊗n−1
i=1 αi

and γ := ∨n−1
i=1 αi. Then, by induction hypothesis, ϕ a` γ. By (Com�) and (MP�),

ϕ� αn a` γ � αn follows. Finally, by (F�) we obtain ϕ� αn a` γ � αn a` γ ∨ αn.

Lemma 4.16 (Flatness of 7). If Ω � H0LS, then
n

7
i=1

αi]
n∧
i=1

αi

is a theorem of Ω for all α1, . . . , αn ∈ F .

Proof. The proof is again by induction on n. Analogously as before, let ϕ := 7n−1
i=1 αi

and γ := ∧n−1
i=1 αi, where ϕ a` γ. Then ϕ7 αn a` γ 7 αn in L by substitution. Next, to

prove the lemma, we show γ ∧ αn a` γ 7 αn.

21

Clearly from γ ∧ αn we can derive γ and αn in H0, and then γ 7 αn in L. For the
other direction, i.e., to prove γ ∧αn from γ 7αn, we use (RAA) and assume the premises
γ 7 αn and ∼(γ ∧ αn) = ∼¬(γ → ¬αn) = E(γ → ¬αn).

By L, we have γ 7 αn ` γ and γ 7 αn ` αn. Two applications of (JoinE) then produce
E(γ ∧ αn ∧ (γ → ¬αn)). Clearly, this yields E⊥ = ∼¬⊥ in H0L. At the same time, >
and consequently ¬⊥ is derivable in H0. By (RAA), we conclude γ ∧ αn from ¬⊥ and
∼¬⊥.

With the above lemmas, we are finally ready to prove the(-elimination.

Lemma 4.17 ((-elimination). Let F be a logic closed under ¬,∨,∧. Let Ω � H0LS.
Then B(F) has (-elimination in Ω.

Proof. To prove(-elimination, suppose that ϕ = ψ(ϑ is a formula where ψ, ϑ ∈ B(F).
By substitution, ϕ a` ψ(∼∼ϑ, and by Theorem 3.17, we can apply De Morgan’s laws
and distributive laws on both ψ and ∼ϑ. This allows to replace ψ and ∼ϑ by formulas
ψ′, ϑ′ in disjunctive normal form (DNF) over 7,6.
We arrive at the following provably equivalent form of ϕ,

∼

 n

6
i=1

 oi7
j=1

αi,j 7
mi7
j=1

Eβi,j

 �
n′

6
i=1

 o′
i7

j=1
α′i,j 7

m′
i7

j=1
Eβ′i,j

 ,
with the negative literals represented with E, since H0 can introduce ¬¬ if necessary. For
suitable αi and α′i in F , we derive in H0LS:

(Lemma 4.16) a` ∼

 n

6
i=1

αi 7 mi7
j=1

Eβi,j

 �
n′

6
i=1

α′i 7 m′
i7

j=1
Eβ′i,j


(D6�) a` ∼6

1≤i≤n
1≤i′≤n′


αi 7 mi7

j=1
Eβi,j

�

α′i′ 7 m′
i′7

j=1
Eβ′i′,j




(Lemma 4.13) a` ∼6
1≤i≤n

1≤i′≤n′

mi⊗
j=1

(
αi 7 Eβi,j

)
�

m′
i′⊗

j=1

(
α′i′ 7 Eβ′i′,j

)
(Renaming) = ∼

`

6
i=1

ki⊗
j=1

(γi,j 7 Eδi,j)

(Lemma 4.14) a` ∼
`

6
i=1

 ki⊗
j=1

γi,j 7
ki7
j=1

E (γi,j ∧ δi,j)


(Lemma 4.15) a` ∼

`

6
i=1

 ki∨
j=1

γi,j 7
ki7
j=1

E (γi,j ∧ δi,j)

 =: ϕ′ ∈ B(F).

22

We are now ready to prove the main theorem of this section:

Theorem 4.2. Let ϕ ∈ PTL. Then there is ψ ∈ B(PL) such that ϕ a`H0LS ψ.

Proof. Given ϕ ∈ PTL, we construct ψ ∈ B(PL) by induction on ϕ. If ϕ = ϕ1 _ ϕ2 or
ϕ = ∼ϕ1, then by induction hypothesis, ϕ1 and/or ϕ2 are provably equivalent to B(PL)
formulas ψ1 and ψ2. By Lemma 4.10, we obtain a provably equivalent formula ψ ∈ B(PL)
by substitution in _ and ∼.

The remaining case is ϕ = ϕ1 (ϕ2. By induction hypothesis, ϕ1 a` ψ1 and ϕ2 a` ψ2
for some ψ1, ψ2 ∈ B(F). Here, the theorem follows by(-elimination (Lemma 4.17).

4.2. Examples in propositional team logic
Constraints such as dependence, independence or inclusion on teams are definable in
PTL. As a consequence, laws such as Armstrong’s axioms for functional dependence can
be proved in our system.

Example 4.18. The dependency atom =(x, y) (“y is a function of x”) can be written
as > ((=(x) _ =(y)), where =(α) := α 6 ¬α. Figure 7 depicts a proof of one of
Armstrong’s axioms of dependence [1] in the system, namely the axiom of transitivity. It
states that from =(x, y) and =(y, z) we can infer =(x, z).

Example 4.19. For α, β ∈ PL, the formula (α (β) _ β is a theorem of PTL. It is
easy to see that it is valid: α is satisfied by the empty team, and as every team T has
the trivial division into ∅ and T , having T � α(β implies T � β.

A =(x, y)
B =(y, z)

1 >((=(x) _ =(y)) Def., A
2 >((=(y) _ =(z)) Def., B

3 (=(x) _ =(y))
_ ((=(y) _ =(z)) _ (=(x) _ =(z))) L

4 >(
(
((=(x) _ =(y))

_ ((=(y) _ =(z)) _ (=(x) _ =(z)))
) (Nec()

5
(
>((=(x) _ =(y))

)
_
(
>(((=(y) _ =(z)) _ (=(x) _ =(z)))

) (Dis()

6 >(
(
(=(y) _ =(z)) _ (=(x) _ =(z))

)
(E_), 1, 5

7
(
>((=(y) _ =(z))

)
_
(
>((=(x) _ =(z))

)
(Dis()

8 >((=(x) _ =(z))) (E_), 2, 7
. =(x, z) Def.

Figure 7: Example derivation of the transitivity of dependence

23

We sketch a proof in the system H0LS. First, clearly `H0 ⊥ → α. This implies
`H0L ∼α_ ∼⊥ by contraposition. As this formula is a theorem, (MP() is applicable.
Moreover, α(∼∼β follows form α(β by substitution in(, which by (C() yields
∼β(∼α. By (MP(), we obtain ∼β(∼⊥.

Finally, β is proved with (RAA) by assuming ∼β. From ∼β and ∼β(∼⊥ we obtain
>(∼⊥ by (Lax). However, this contradicts >�⊥ := ∼(>(∼⊥), which itself follows
from `H0 > ∨⊥ and (F�).

5. Modal team logic
Modal team logic generalizes the modal operators ♦ (here defined via 4) and � to act
on teams. Analogously to(in Theorem 4.2, we axiomatize the modalities 4 and � in
order to eliminate them from formulas.
By a model-theoretic argument, Kontinen, Müller, Schnoor and Vollmer [18] showed

MTL ≡ B(ML), i.e., that every MTL-formula is equivalent to a B(ML)-formula. Their
idea is that every MTL-formula ϕ can be written as a Boolean combination (over ∼,_)
of finitely many so-called Hintikka formulas of the bisimulation types of the models of ϕ.
These formulas essentially characterize a Kripke structure up to bounded bisimulation
(see also Goranko and Otto [7]). As Hintikka formulas are ML-formulas, Kontinen et al.
conclude that every MTL-formula has an equivalent B(ML)-formula.
Analogously as for PTL, we give a purely syntactical proof of MTL ≡ B(ML). This

translation utilizes the system M, depicted in Figure 8.

Theorem 5.1. The proof system H�LSM is sound for MTL.

Proof. As for PTL, a soundness proof is not difficult and can be found in the appendix.

Let us state the main theorem of this section. As before, its proof then extends over
several lemmas.

Theorem 5.2. Let ϕ ∈ MTL. Then there is ψ ∈ B(ML) such that ϕ a`H�LSM ψ.

Analogously as for PTL, with Corollary 3.15 and Lemma 4.3 this then yields a complete
axiomatization for MTL, settling an open question of Kontinen et al. [18].

Corollary 5.3. The proof system H�LSM is sound and complete for MTL. As a conse-
quence, MTL is axiomatizable and compact.

5.1. Proving the modality elimination
Note that the term �-elimination resp. 4-elimination should not be taken literally; the
idea rather is to “push inside” modal operators into classical ML-subformulas. In fact, it
is not hard to prove that the total nesting depth of modalities cannot in general decrease
in any semantics preserving translation from MTL to B(ML).

Like(, the modal operators of MTL admit several provable meta-rules. The proof of
the following lemma can be found in the appendix.

24

(Lin�) �∼ϕ] ∼�ϕ The image team is unique.
(F♦) ♦α] ¬�¬α Flatness of ♦
(D♦�) ♦(ϕ� ψ)] ♦ϕ� ♦ψ ♦ distributes over splitting.
(E�) �α_ 4α Successor teams are subteams

of the image.
(I�) ♦ϕ_ (4ψ _ �ψ) If there is some successor team,

then the image is a successor team.
(Dis�) �(ϕ_ ψ) _ (�ϕ_ �ψ) Distribution axiom
(Dis4) 4(ϕ_ ψ) _ (4ϕ_ 4ψ) Distribution axiom

(Nec�)
ϕ (ϕ theorem)
�ϕ

Necessitation

(Nec4)
ϕ (ϕ theorem)4ϕ Necessitation

Figure 8: The system M

Lemma 5.4. Let Ω � LSM be a proof system. Then Ω has substitution in _,∼,(,�
and 4. Furthermore, Ω admits the following meta-rules:

• Modus ponens in � (MP�): If ` ϕ_ ψ and Φ ` �ϕ, then Φ ` �ψ.

• Modus ponens in 4 (MP4): If ` ϕ_ ψ and Φ ` 4ϕ, then Φ ` 4ψ.

• Modus ponens in ♦ (MP♦): If ` ϕ_ ψ and Φ ` ♦ϕ, then Φ ` ♦ψ.

We proceed with proving that every MTL-formula can be translated to a B(ML)-formula.
Note that the(-elimination shown in Lemma 4.17 also applies to MTL, since H�LSM is
a conservative extension of H0LS. It remains to establish the corresponding elimination
lemmas for � and 4.

The axioms of the system M, depicted in Figure 8, characterize the modal operators �
and 4 and their relationship with the other team-logical connectives. As in the previous
section, we require several auxiliary laws. They are gathered in the system M′ which is
depicted in Figure 9.

Lemma 5.5. Let Ω � H�LSM. Then all instances of the axioms in M′ are theorems of
Ω.

Proof. The “_” part of (D�_) is (Dis�). See the appendix for the other derivations.

Lemma 5.6. Let Ω � LSM. Then B(ML) has �-elimination in Ω.

Proof. Suppose ϕ ∈ B(ML). To prove the lemma, we have to show that �ϕ a` ψ for
some B(ML). We repeatedly apply (D�_) and (Lin�) to �ψ in order to push � inside
any _ and ∼ operators. By Lemma 5.4, this is also possible inside subformulas. Since
afterwards � only occurs in classical subformulas, and since the above laws are symmetric,
we conclude that �ϕ is provably equivalent to a B(ML)-formula.

25

(D�_) �(ϕ_ ψ)] (�ϕ_ �ψ) Distributive law for � and _
(D♦6) ♦(ϕ6 ψ)] (♦ϕ6 ♦ψ) Distributive law for ♦ and 6
(♦IsolateE) ♦(α7 Eβ)] ♦α7 E¬�¬(α ∧ β)

Figure 9: Provable laws M′ of �, 4 and ♦

Lemma 5.7. Let Ω � H�LSM. Then B(ML) has 4-elimination in Ω.

Proof. Suppose ϕ ∈ B(ML). We prove that4ϕ a` ψ for some ψ ∈ B(ML). By Lemma 5.4,
we can again perform substitution.

With L and (MP4), we can show 4ϕ a` ∼∼4∼∼ϕ = ∼♦∼ϕ. By Theorem 3.17, we
can prove ∼ϕ equivalent to a formula in disjunctive normal form, analogously to the
proof of Lemma 4.17:

n

6
i=1

 oi7
j=1

αi,j 7
ki7
j=1

Eβi,j


Then 4ϕ itself is provably equivalent to:

∼♦
n

6
i=1

 oi7
j=1

αi,j 7
ki7
j=1

Eβi,j


For suitable αi, µi,j , νi,j ∈ ML:

(Lemma 4.16) a` ∼♦
n

6
i=1

αi 7 ki7
j=1

Eβi,j


(Lemma 4.13) a` ∼♦

n

6
i=1

ki⊗
j=1

(
αi 7 Eβi,j

)

(D♦6) a` ∼
n

6
i=1
♦

ki⊗
j=1

(αi 7 Eβi,j)

(D♦�) a` ∼
n

6
i=1

ki⊗
j=1
♦ (αi 7 Eβi,j)

(Lemma 5.5) a` ∼
n

6
i=1

ki⊗
j=1

(♦αi 7 E¬�¬(αi ∧ βi,j))

(F♦) a` ∼
n

6
i=1

ki⊗
j=1

(¬�¬αi 7 E¬�¬(αi ∧ βi,j))

(Renaming) = ∼
n

6
i=1

ki⊗
j=1

(µi,j 7 Eνi,j)

26

(Lemma 4.14) a` ∼
`

6
i=1

 ki⊗
j=1

µi,j 7
ki7
j=1

E (µi,j ∧ νi,j)


(Lemma 4.15) a` ∼

`

6
i=1

 ki∨
j=1

µi,j 7
ki7
j=1

E (µi,j ∧ νi,j)

 ∈ B(ML).

We are now ready to prove the main theorem of this section:

Theorem 5.2. Let ϕ ∈ MTL. Then there is ψ ∈ B(ML) such that ϕ a`H�LSM ψ.

Proof. By induction on ϕ. Suppose ϕ /∈ B(ML). If ϕ is of the form ϕ1 _ ϕ2 resp. ∼ϕ1,
then by induction hypothesis, ϕ1 a` ψ1 for some ψ1 ∈ B(ML) (and likewise ϕ2 a` ψ2 for
some ψ2 ∈ B(ML)). By substitution, then ϕ a` ψ1 _ ψ2 resp. ϕ a` ∼ψ1.
If ϕ is of the form �ϕ1, 4ϕ1 or ϕ1 (ϕ2, then again we can assume ψ1 (resp. ψ1

and ψ2) as above. By substitution, ϕ is then again provably equivalent to �ψ1, 4ψ1,
or ψ1 (ψ2, respectively. By Lemma 4.17, 5.6 and 5.7, B(ML) has elimination of(, �
and 4. Consequently, ϕ has a provably equivalent B(ML)-formula.

6. First-order logic
First-order logic FO does not enjoy the counter-model merging property (cf. Proposi-
tion 3.10). Consider, for instance, the sentences R(c) and ¬R(c), where c is a constant.
Clearly, either of them can be falsified by an appropriate interpretation in team semantics,
but to falsify both in the same structure is impossible regardless of the assigned teams.
The crucial point is that R(c) and ¬R(c) are contradicting sentences.

In this section, we show that sentences are in fact the only obstacle for axiomatizing
B(FO) in the spirit of Section 3. The problem can be remedied by the introduction of
an additional axiom, the unanimity axiom. Then, we can prove a contradiction from
formulas which, roughly speaking, already contradict on the level of sentences.

(U) ∼α_ ¬α (α sentence)

We will refer to the above system simply as U. Similar to classical first-order logic,
the truth of a sentence depends only on the underlying structure itself and not on the
assignments in a given team:

Lemma 6.1. For any α ∈ FO0 and structure A, the following are equivalent:

1. (A, T) � α for some non-empty team T .

2. (A, T) � α for all teams T .

3. (A, s) � α for some s : Var→ |A|.

4. (A, s) � α for all s : Var→ |A|.

27

Proof. By definition of team semantics on classical formulas, 2. is equivalent to 4., and 1.
is equivalent to 3. Furthermore, 4. implies 3. For this reason, it remains to show that 3.
implies 4. Suppose that A is a structure, α is a sentence, and s is as assignment such
that (A, s) � α. In classical semantics, it is well-known that (A, s) and (A, s′) satisfy the
same sentences for arbitrary assignments s, s′. Consequently, 4. follows.

The above lemma allows to prove U sound.

Lemma 6.2 (Soundness of U). Let α ∈ FO0, and let A be a structure. Then (A, T) � ∼α
implies (A, T) � ¬α for all teams T . Moreover, for all non-empty teams T , we have
(A, T) � ∼α if and only if (A, T) � ¬α.

Proof. Assume α ∈ FO0 and A as above. For the first part of the lemma, suppose
(A, T) � ∼α. By definition, then (A, s) � ¬α for some s ∈ T . Since α is a sentence, so is
¬α, and by Lemma 6.1 and the non-emptiness of T , (A, T) � ¬α.

For the second part of the lemma, we also prove the reverse direction. For this reason,
assume T 6= ∅ due to some s ∈ T , and let (A, T) � ¬α. Then in particular (A, s) � ¬α,
which implies (A, T) � ∼α.

We proceed by investigating the fragment ∼FO = {∼α | α ∈ FO}. The next proposition
and the subsequent lemma show that the system HU is not only sound, but also “complete”
for FO-entailments from sets of ∼FO-formulas:

Proposition 6.3. Let ∆ ⊆ ∼FO be non-empty, and let ∆ � α for some α ∈ FO. Then
there is a sentence ε such that ∆ � ∼ε, ∼ε � ¬ε and ¬ε � α.

Proof. Define ε := ∃x1 · · · ∃xn¬α, where x1, . . . , xn are the free variables of α. Clearly,
¬ε ≡ ∀x1 · · · ∀xnα. In particular, ¬ε � α. Moreover, ∼ε � ¬ε by the previous lemma.
It remains to prove ∆ � ∼ε. Suppose (A, T) � ∆ for some team T and first-order

structure A. Let V = { s | s : Var→ |A| } be the team of all assignments. Then T ⊆ V ,
and (A, V) � ∆ by Proposition 2.4. By assumption, also (A, V) � α.

The next step is to show that A � ¬ε: Since V contains all assignments, it also contains
a non-empty duplicating team, i.e., a team of the form Ux1

|A| . . .
xn
|A| for non-empty U , that

then satisfies α as well by downward closure. By definition of ∀ in team semantics,
(A, U) � ∀x1 · · · ∀xn α, implying (A, U) � ¬ε. Note that T 6= ∅, as T satisfies at least one
∼FO-formula. By Lemma 6.1, (A, U) � ¬ε implies (A, T) � ¬ε, and by Lemma 6.2, we
conclude (A, T) � ∼ε.

The above proposition exhibits an important property of ∼FO: If a subset ∆ ⊆ ∼FO
is not satisfiable, then it already entails contradicting sentences. This fact is exploited in
the next lemma. It is the first step to prove the refutation completeness of the fragment
FO ∪ ∼FO, which is required in order to utilize Theorem 3.13 for completeness of B(FO).

Lemma 6.4. HUL is refutation complete for ∼FO.

28

Proof. Let ∆ ⊆ ∼FO be unsatisfiable. Note that ∼δ `HL ∼⊥ for all δ ∈ FO. As ∆
necessarily contains at least one formula, which is of the form ∼δ, demonstrating ∆ ` ⊥
then shows its inconsistency.

For the rest of the proof, we write δ(x1, . . . , xn) to indicate that δ has the free variables
x1, . . . , xn. Then we define a set Γ ⊆ FO0 by

Γ := { ∃x1 · · · ∃xn¬δ(x1, . . . , xn) | ∼δ(x1, . . . , xn) ∈ ∆ } .

The remaining proof of ∆ ` ⊥ is split into showing ∆ `HUL Γ and Γ `H ⊥. For the first
part, note that ∀x1 . . . ∀xn δ(x1, . . . , xn) `H δ(x1, . . . , xn) for all δ(x1, . . . , xn) ∈ FO by
Proposition 2.1. Consequently, for all ∃x1 · · · ∃xn¬δ(x1, . . . , xn) ∈ Γ,

∆ ` ∼δ(x1, . . . , xn)
`HL ∼∀x1 · · · ∀xn δ(x1, . . . , xn)
`U ¬∀x1 · · · ∀xn δ(x1, . . . , xn)
`H ∃x1 · · · ∃xn¬δ(x1, . . . , xn).

It remains to prove Γ ` ⊥, i.e., that Γ is unsatisfiable under classical semantics.
For the sake of contradiction, assume that Γ has a model (A, s). For every formula
∃x1 · · · ∃xn¬δ(x1, . . . , xn) ∈ Γ, let Sδ := { s : Var→ |A| | (A, s) � ¬δ(x1, . . . , xn) }. By
assumption, each such Sδ is non-empty, which implies (A, Sδ) � ∼δ(x1, . . . , xn). By
Proposition 2.4, (A,⋃∼δ∈∆ Sδ) � ∆, which contradicts the assumption that ∆ is unsatis-
fiable.

6.1. From compactness to completeness
In our approach to establish refutation completeness for FO ∪ ∼FO instead of only ∼FO,
we require that FO ∪ ∼FO is compact. This is achieved by translating this fragment to
classical first-order logic in a specific way. The idea is to replace free variables in the
formulas by fresh constants. Since Φ may contain all constants in the vocabulary, we
first show that an infinite set of constants can be excluded from Φ.
If the vocabulary contains constants c0, c1, c2, . . ., and ϕ is a formula, then we define

ϕeven as the formula where every occurrence of a constant ci is replaced by c2i. Analogously,
Φeven := {ϕeven | ϕ ∈ Φ} for sets Φ ⊆ FO ∪ ∼FO.

Lemma 6.5. If Φeven has a finite unsatisfiable subset, then Φ has a finite unsatisfiable
subset of the same size.

Proof. Let Φ′ ⊆ Φeven be finite and unsatisfiable. Then Φ′ is of the form (Φ′′)even for some
Φ′′ ⊆ Φ, since every constant in Φ′ is of the form c2i. Moreover, |Φ′| = |Φ′′|. For this
reason, it suffices to prove for arbitrary finite sets Φ ⊆ FO∪∼FO that Φ is unsatisfiable if
Φeven is unsatisfiable. But this is straightforward by contraposition, since any model A of
Φeven can be transformed into a model of Φ by reassigning the constants accordingly.

Let now Φ ⊆ FO ∪ ∼FO. In order to prove that Φ is either satisfiable or has a finite
unsatisfiable subset, we perform a translation of Φ to a set Φf ⊆ FO0. The idea is

29

to encode the assignments of a given team directly into the model using new constant
symbols cxδ as explained below. By the above lemma, we can assume that Φ excludes an
infinite set of constants. Furthermore, w.l.o.g. no variable occurs both bound and free in
a formula of Φ. Then

Φf := {γ(cx1
δ , . . . , c

xn
δ) | γ(x1, . . . , xn) ∈ Φ ∩ FO,∼δ ∈ Φ ∩ ∼FO}

∪ {¬δ(cx1
δ , . . . , c

xn
δ) | ∼δ(x1, . . . , xn) ∈ Φ ∩ ∼FO},

where the cxδ are pairwise distinct constant symbols not occurring in Φ, and where
α(t1, . . . , tn) := α[x1/t1] · · · [xn/tn].

Lemma 6.6. Let Φ ⊆ FO ∪∼FO. Then Φ is satisfiable in team semantics if and only if
Φf is satisfiable in classical semantics.

Proof. Let Γ := Φ ∩ FO and ∆ := Φ ∩ ∼FO. W.l.o.g. for all γ ∈ Γ and ∼δ ∈ ∆ the
formulas γ and δ are distinct.

“⇒”: Suppose (A, T) � Φ for some first-order structure A and team T . Extend A to a
structure A′ by interpreting the new constants as follows. For each ∼δ ∈ ∆, there is a
non-empty set Sδ := { s ∈ T | (A, s) 2 δ }. Using the axiom of choice, we let sδ ∈ Sδ be
fixed and assign (cyδ)A

′ := sδ(y) for all y ∈ Var. Then A′ � Φf by the following argument:

γ(cx1
δ , . . . , c

xn
δ) ∈ Φf

⇒ γ(x1, . . . , xn) ∈ Γ
⇒ ∀s ∈ T : (A, s) � γ(x1, . . . , xn)
⇒ (A, sδ) � γ(x1, . . . , xn)
⇒ A′ � γ(cx1

δ , . . . , c
xn
δ)

and

¬δ(cx1
δ , . . . , c

xn
δ) ∈ Φf

⇒ ∼δ(x1, . . . , xn) ∈ ∆
⇒ (A, sδ) 2 δ(x1, . . . , xn)
⇒ (A, sδ) � ¬δ(x1, . . . , xn)
⇒ A′ � ¬δ(cx1

δ , . . . , c
xn
δ).

“⇐”: Suppose A � Φf for a first-order structure A. For every ∼δ ∈ ∆, we define an
assignments sδ by sδ(x) := (cxδ)A. Then

γ(x1, . . . , xn) ∈ Γ
⇒ ∀∼δ ∈ ∆ : γ(cx1

δ , . . . , c
xn
δ) ∈ Φf

⇒ ∀∼δ ∈ ∆ : A � γ(cx1
δ , . . . , c

xn
δ)

⇒ ∀∼δ ∈ ∆ : (A, {sδ}) � γ(x1, . . . , xn)

30

and

∼δ(x1, . . . , xn) ∈ ∆
⇒ ¬δ(cx1

δ , . . . , c
xn
δ) ∈ Φf

⇒ A � ¬δ(cx1
δ , . . . , c

xn
δ)

⇒ (A, sδ) � ¬δ(x1, . . . , xn)
⇒ (A, {sδ}) � ∼δ(x1, . . . , xn).

Define T := { sδ | ∼δ ∈ ∆ }. By contraposition of Proposition 2.4 (downward closure),
(A, T) � ∼δ(x1, . . . , xn) for all ∼δ ∈ ∆. By Proposition 2.5 (union closure), (A, T) �
γ(x1, . . . , xn) for all γ ∈ Γ. Consequently, Φ = Γ ∪∆ is satisfiable.

From the above construction we also obtain a generalization of the empty team property
(which itself states that every Φ ⊆ FO is satisfied by the empty team).

Corollary 6.7. Every satisfiable set Φ ⊆ FO ∪ ∼FO is satisfied in a structure with a
team of cardinality |Φ ∩ ∼FO|.

In particular the team can always be chosen countable.

Lemma 6.8 (Compactness of FO ∪ ∼FO). If a set Φ ⊆ FO ∪ ∼FO is unsatisfiable, then
it has a finite unsatisfiable subset.

Proof. Let Φ be unsatisfiable and infinite. By the previous lemma, Φf is unsatisfiable
as well. By the compactness property of classical first-order logic, there exists a finite
unsatisfiable subset Φ′ ⊆ Φf . It is now easy to show that there exists a finite set Φ∗ ⊆ Φ
such that Φ′ ⊆ (Φ∗)f . As Φ∗ is then unsatisfiable, this proves the lemma.

We are now ready to prove that B(FO) has a sound and complete proof system.

Lemma 6.9. The system HUL is refutation complete for FO ∪ ∼FO.

Proof. We have to show that any unsatisfiable Φ ⊆ FO ∪ ∼FO is inconsistent. However,
if such Φ is unsatisfiable, then by the previous lemma, already some finite Φ′ ⊆ Φ is
unsatisfiable. Let Γ := Φ′ ∩ FO and ∆ := Φ′ ∩ ∼FO. As Γ is finite, by completeness of H,
w.l.o.g. Γ = {γ}. The following set ∆γ ⊆ ∼FO “adjoins” γ to all formulas in ∆:

∆γ := { ∼(¬γ ∨ δ) | ∼δ ∈ ∆ } ≡ { E(γ ∧ ¬δ) | ∼δ ∈ ∆ }

The remainder of the proof shows that {γ} ∪∆ ` ∆γ and that ∆γ is unsatisfiable.
As HUL is refutation complete for ∼FO by Lemma 6.4, then ∆γ and consequently Φ is
inconsistent.
As {γ,¬γ ∨ δ} `H δ, we have Φ ` {γ,∼δ} `HL ∼(¬γ ∨ δ) for all ∼(δ ∨ ¬γ) ∈ ∆γ .
Next, assume for the sake of contradiction that ∆γ is satisfiable, say, in (A, T) for

a first-order structure A and team T . For each ∼δ ∈ ∆, there is s ∈ T such that
(A, s) 2 ¬γ ∨ δ, i.e., (A, s) � γ ∧ ¬δ. However, if T ′ := { s ∈ T | (A, s) � γ }, then
(A, T ′) � γ by Proposition 2.5 and (A, T ′) � ∆ by Proposition 2.4, which contradicts the
unsatisfiability of {γ} ∪∆.

31

Theorem 6.10. HUL is sound and complete for B(FO).

Proof. U is sound by Lemma 6.2. The systems H and L are easily checked sound. By
Theorem 3.13 and the above lemma, HUL is complete.

7. Quantifier elimination
As shown in Figure 10, quantifiers (both propositional and first-order) are axiomatizable
in a similar fashion as the modalities. ∀ behaves like �, and ∃ behaves like ♦. For this
reason, all proofs in the spirit of Lemma 5.4 and 5.5 go through for Q as well. The
axioms (I�) and (I∀) differ slightly due to the fact that a duplicating team is always a
supplementing team, whereas an image team is not always a successor team.

Theorem 7.1. H1LSQ is sound for QPTL and HULSQ is sound for FO(∼).

Proof. The proof is straightforward and can be found in the appendix.

In this section, we regard ∀x and !x as infinitely many unary connectives and prove
elimination in the spirit of Definition 4.8. Moreover, we refer to both propositional and
first-order variables simply as “variables”.

As for the other logics, we require a substitution lemma for the new logical connectives:

Lemma 7.2. Let Ω � LSQ. Then Ω has substitution in _, ∼, (, ∀x and !x. Further-
more, Ω admits the following meta-rules:

• Modus ponens in ∀ (MP∀): If ` ϕ_ ψ and Φ ` ∀xϕ, then Φ ` ∀xψ.

• Modus ponens in ! (MP!): If ` ϕ_ ψ and Φ ` !xϕ, then Φ ` !xψ.

• Modus ponens in ∃ (MP∃): If ` ϕ_ ψ and Φ ` ∃xϕ, then Φ ` ∃xψ.

Proof. Proven similarly to Lemma 5.4.

(Lin∀) ∀x∼ϕ] ∼∀xϕ The duplicating team is unique.
(F∃) ∃xα] ¬∀¬α Flatness of ∃.

(D∃�) ∃x(ϕ� ψ)] ∃xϕ� ∃xψ ∃ distributes over splitting.
(E∀) ∀xα_ !xα Supplementing teams are subteams

of the duplicating team.
(I∀) !xψ _ ∀xψ The duplicating team is a

supplementing team.
(Dis∀) ∀x(ϕ_ ψ) _ (∀xϕ_ ∀xψ) Distribution axiom
(Dis!) !x(ϕ_ ψ) _ (!xϕ_ !xψ) Distribution axiom

(UG!) ϕ (ϕ theorem)!xϕ Universal generalization

Figure 10: The system Q

32

A logic F is closed under ∀ if for every ϕ ∈ F and variable x we have ∀xϕ ∈ F .

Lemma 7.3 (∀x-elimination). Let F be a logic closed under ∀. Let Ω � LSQ. Then
B(F) has ∀x-elimination in Ω.

Proof. Proven as for � in Lemma 5.6 with the axioms Q instead of M; we simply “push”
∀x inside F-subformulas through the enclosing ∼ and _.

Likewise, !x-elimination is essentially proven similarly as 4-elimination using Q instead
of M and H resp. H1 instead of H�.

Lemma 7.4 (!x-elimination). Let F be a logic closed under ¬,∨,∧ and ∀. If Ω � H1LSQ
or Ω � HLSQ, then B(F) has !x-elimination in Ω.

Proof. Proven similarly to Lemma 5.7.

Theorem 7.5. If ϕ ∈ FO(∼), then there is ψ ∈ B(FO) such that ϕ a`HLSQ ψ. If
ϕ ∈ QPTL, then there is ψ ∈ B(QPL) such that ϕ a`H1LSQ ψ.

Proof. Proven analogously to Theorem 5.2 by using Lemma 7.3 and 7.4.

Similarly as for PTL and MTL, we lift the completeness results for B(FO) and B(QPL)
up to the full logic.

Theorem 7.6. HULSQ is sound and complete for FO(∼). H1LSQ is sound and complete
for QPTL. As a consequence, FO(∼) and QPTL are axiomatizable and compact.

Proof. We have completeness for B(QPL) resp. B(FO) by Corollary 3.15 and Theo-
rem 6.10, and soundness by Theorem 7.1. Combining Theorem 7.5 and Lemma 4.3 proves
completeness for FO(∼) and QPTL.

Corollary 7.7. Both the validity problem and the entailment problem of FO(∼) are
complete for Σ0

1, the class of recursively enumerable sets.

We also obtain a proof of Galliani’s theorem [6], which states that closed FO(∼)-formulas
are only as expressive as FO-sentences (on non-empty teams).

Theorem 7.8. If ϕ ∈ FO(∼) is closed, then ` ne _ (ϕ] α) for some α ∈ FO0.

Proof. First note that the presented proofs of(-, ∀x- and !x-elimination of B(FO) do
not introduce new free variables. Consequently, by Theorem 7.5, w.l.o.g. ϕ ∈ B(FO0).
Next, we obtain α from ϕ by replacing every occurrence of ∼ with ¬ and _ with →. By
completeness, it suffices to show that ϕ and α are equivalent on non-empty teams. This
is by induction: on non-empty teams, ∼α′ ≡ ¬α′ for all α′ ∈ FO0 by Lemma 6.2, and
similarly, α′ _ α′′ ≡ ∼(α′ 7∼α′′) ≡ ¬(α′ ∧ ¬α′′) ≡ α′ → α′′.

33

8. Dependence, independence, inclusion and exclusion logic
In (quantified) propositional and modal team logic, we can express atoms of dependence,
independence, inclusion and exclusion in terms of other operators. For this reason, QPTL
and MTL in fact subsume a whole family of logics of dependence and independence, each
obtained by adding one or more logical atoms to modal logic with team semantics. In
what follows, let F denote PL, ML, or QPL, respectively.

The first one is the propositional/modal dependence atom =(~α, β) [2, 27, 31], where
~α = (α1, . . . , αn), n ≥ 0, and α1, . . . , αn, β ∈ F . Next, Kontinen et al. [19] introduced the
atom ~α⊥~β ~γ as an equivalent to the first-order independence atom [8]. Here, ~α, ~β,~γ are
finite sequences of F-formulas with ~α,~γ non-empty. Finally, analogously to Galliani [5],
the inclusion atom and exclusion atom are ~α ⊆ ~β and ~α | ~β [14], where |~α| = |~β| > 0.

The semantics of these atoms is defined in terms of truth vectors. If ~α = (α1, . . . , αn)
and s is an element of a team, then let s(~α) := (s(α1), . . . , s(αn)), where s(αi) := 1 if
s � αi, and s(αi) := 0 otherwise. For a team T of propositional assignments, then

T � =(~α, β) ⇔ ∀s, s′ ∈ T : s(~α) = s′(~α)⇒ s(β) = s′(β),
T � ~α ⊥~β ~γ ⇔ ∀s, s′ ∈ T : s(~β) = s′(~β)⇒

∃s′′ ∈ T s(~α~β) = s′′(~α~β) and s′(~β~γ) = s′′(~β~γ),
T � ~α ⊆ ~β ⇔ ∀s ∈ T ∃s′ ∈ T : s(~α) = s′(~β),
T � ~α | ~β ⇔ ∀s, s′ ∈ T : s(~α) 6= s′(~β).

For teams in a Kripke structure, the definitions are analogous.

Based on the dependence atom, the modal dependence logic MDL [27] has the syntax

ϕ ::= α | ϕ� ϕ | ϕ7 ϕ | ♦ϕ | �ϕ | =(p1, . . . , pn, q),

where n ≥ 1, p1, . . . , pn, q ∈ Prop, and where α is an ML-formula in negation normal
form, i.e., with ¬ only occurring in front of propositional symbols p ∈ Prop.
If we allow arbitrary ML-formulas in =(·, ·) [2], then the above grammar generates

extended modal dependence logic EMDL [2], and =(α1, . . . , αn, β) is then called extended
dependence atom.

By analogously adding the independence atom ~α⊥~β ~γ, we obtain modal independence
logic MIL [19], and with the inclusion atom ~α ⊆ ~β, we have modal inclusion logic MInc [14].
Adding both the inclusion and exclusion atom results in modal inclusion/exclusion logic
MIncEx, the modal analogon to Galliani’s I/E-logic [5].

The modality-free fragments of EMDL, MIL, MInc and MIncEx are propositional depen-
dence logic PDL [31], propositional independence logic PIL [12], propositional inclusion
logic PInc [12], and propositional inclusion/exclusion logic PIncEx, respectively. Adding
propositional quantifiers ∃p and ∀p to these fragments yields quantified propositional de-
pendence logic QPDL [11], quantified propositional independence logic QPIL [11], quantified

34

=(~α, β)] >(
(
(
|~α|
7
i=1

=(αi)) _ =(β)
)

(D1)

=(β)] β 6 ¬β (D2)

~α⊥~β ~γ]
⊗

~s∈2|~β|
(~β = ~s7 ~α⊥~γ) (Ind1)

~α⊥ ~β] 7
~s∈2|~α|

~t∈2|~β|

E (~α = ~s) _ E
(
~β = ~t

)
_ E

(
~α = ~s ∧ ~β = ~t

)
(Ind2)

~α ⊆ ~β] 7
~s∈2|~α|

E (~α = ~s) _ E
(
~β = ~s

)
(Inc)

~α | ~β] 7
~s∈2|~α|

E (~α = ~s) _ ¬
(
~β = ~s

)
(Exc)

Figure 11: The system D

propositional inclusion logic QPInc [11] and quantified propositional inclusion/exclusion
logic QPIncEx.

Figure 11 depicts the axiom system D that defines the above atoms in terms of
propositional/modal team logic. Let us abbreviate 2n := {0, 1}n, i.e., the set of all n-ary
truth vectors. If ~s ∈ {0, 1}n, then the formula ~α = ~s is shorthand for

n∧
i=1
si= 1

αi ∧
n∧
i=1
si= 0

¬αi.

Theorem 8.1. Let L ∈ {PTL,QPTL,MTL}. Let L′ be the extension of L by =(·, ·), ⊥,⊆
and |. Then L′ has a sound and complete proof system.

Proof. We show that there is a proof system Ω that is sound for L′, complete for L, and in
which every L′-formula is provably equivalent to a L-formula. This implies completeness
by Lemma 4.3.

Let Ω be the system H0LSD, H1LSQD or H�LSMD, respectively. Ω is sound for L′, and
as it is a conservative extension, it admits substitution and has the deduction theorem.
As Ω can eliminate =(·, ·),⊥,⊆ and | in D, the theorem follows.

Corollary 8.2. The logics PDL, PIL, PInc, PIncEx, QPDL, QPIL, QPInc, QPIncEx, MDL,
EMDL, MIL, MInc and MIncEx are axiomatizable and compact.

9. Conclusion
Figure 12 visualizes the landscape of fragments of Väänänen’s team logic TL and de-
pendence logic D [26]. We showed that FO(∼), i.e., TL with lax semantics and without
dependence atom, collapses to B(FO) and tremendously loses expressive power.

35

Galliani [6] called FO(∼) a natural “stopping point” of well-behaved first-order logic with
team semantics, and argued that together with nothing more than a unary dependence
atom, it is already as strong as full second-order logic SO. The result that FO(∼) is
axiomatizable, recursively enumerable and compact confirms that it is well-behaved.
The team-semantical extensions of propositional logic PL, quantified propositional

logic QPL and modal logic ML, i.e., PTL, QPTL and MTL, have been studied as well.
They have been shown axiomatizable using the fact that they collapse to the Boolean
closures of their classical base logics in a similar fashion as FO(∼), i.e., to B(PL) and
B(ML). Figure 13 depicts an overview on the involved axioms.

For our results, using lax semantics was crucial. In strict semantics, team divisions are
defined via partitions [5]; successor teams pick exactly one successor per world [13]; and
supplementing functions have range A instead of P(A) \ {∅} [5, 26]. The semantics of �
would then allow to count certain elements in the team (cf. p. 18). Since this cannot be
finitely expressed in B(·) (see Corollary 4.7), no completeness proof based on a similar
collapse result can exist for strict semantics.

If we permit both the lax and the strict variants of the above operators simultaneously,
then FO(∼) lies strictly between B(FO) and TL in terms of its expressive power. For this
reason, in future work it would be interesting to either confirm or refute whether this
logic still has the above “nice properties.” One possible approach could be a proof system
for B(·) that permits counting, and to extend it towards the full logic.

FO

FO(∼) D

TL

Σ0
1-complete

axiomatizable
compact

Σ0
1-complete

axiomatizable
compact

non-arithmetic
not axiomatizable

compact

non-arithmetic
not axiomatizable

not compact

∼
=(·,
·)

do
wn
wa
rd
clo
sed

=(·,
·)

neg
ati
on
clo
sed

∼

Figure 12: Fragments of Väänänen’s team logic TL. The arrows indicate that ∼ resp.
=(·, ·) is added to the syntax.

36

L (L1) ϕ_ (ψ _ ϕ)
(L2) (ϕ_ (ψ _ ϑ)) _ (ϕ_ ψ) _ (ϕ_ ϑ)
(L3) (∼ϕ_ ∼ψ) _ (ψ _ ϕ)
(L4) (α→ β) _ (α_ β)

(E_) ϕ ϕ_ ψ

ψ

S (F�) (α� β)] (α ∨ β)
(F() α_ (ϕ(α)
(Lax) ϕ_ (ϕ(ψ) _ (ϑ(ψ)
(Ex() (ϕ(ψ(ϑ) _ (ψ(ϕ(ϑ)
(C() (ϕ(∼ψ) _ (ψ(∼ϕ)
(Dis() (ϕ((ψ _ ϑ)) _ (ϕ(ψ) _ (ϕ(ϑ)

(Nec()
ϕ (ϕ theorem)

ψ(ϕ

M (Lin�) �∼ϕ] ∼�ϕ
(F♦) ♦α] ¬�¬α
(D♦�) ♦(ϕ� ψ)] ♦ϕ� ♦ψ
(E�) �α_ 4α
(I�) ♦ϕ_ (4ψ _ �ψ)
(Dis�) �(ϕ_ ψ) _ (�ϕ_ �ψ)
(Dis4) 4(ϕ_ ψ) _ (4ϕ_ 4ψ)

(Nec�)
ϕ (ϕ theorem)
�ϕ

(Nec4)
ϕ (ϕ theorem)4ϕ

U (U) ∼α_ ¬α (α sentence)

Q (Lin∀) ∀x∼ϕ] ∼∀xϕ
(F∃) ∃xα] ¬∀¬α
(D∃�) ∃x(ϕ� ψ)] ∃xϕ� ∃xψ
(E∀) ∀xα_ !xα
(I∀) !xψ _ ∀xψ
(Dis∀) ∀x(ϕ_ ψ) _ (∀xϕ_ ∀xψ)
(Dis!) !x(ϕ_ ψ) _ (!xϕ_ !xψ)

(UG!) ϕ (ϕ theorem)!xϕ

Figure 13: The systems L, S, M, U and Q

37

Acknowledgements
The author wishes to thank Anselm Haak and Juha Kontinen, as well as the anonymous
referees, for numerous comments and hints and for pointing out helpful references.

References
[1] William Ward Armstrong. Dependency Structures of Data Base Relationships. IFIP

Congress. 1974, pp. 580–583.
[2] Johannes Ebbing, Lauri Hella, Arne Meier, Julian-Steffen Müller, Jonni Virtema

and Heribert Vollmer. Extended Modal Dependence Logic. Logic, Language, Informa-
tion, and Computation - 20th International Workshop, WoLLIC 2013, Darmstadt,
Germany, August 20-23, 2013. Proceedings. 2013, pp. 126–137.

[3] Melvin Fitting. Modal proof theory. Handbook of Modal Logic. Ed. by Johan Van
Benthem Patrick Blackburn and Frank Wolter. 3. Studies in Logic and Practical
Reasoning. Elsevier, 2007, pp. 85–138.

[4] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. Dordrecht:
Springer Netherlands, 1983.

[5] Pietro Galliani. Inclusion and exclusion dependencies in team semantics — On
some logics of imperfect information. Annals of Pure and Applied Logic 163 (Jan.
2012), no. 1, pp. 68–84. issn: 01680072. doi: 10.1016/j.apal.2011.08.005.

[6] Pietro Galliani. “On Strongly First-Order Dependencies”. Dependence Logic: Theory
and Applications. Ed. by Samson Abramsky, Juha Kontinen, Jouko Väänänen and
Heribert Vollmer. Cham: Springer International Publishing, 2016, pp. 53–71. isbn:
978-3-319-31803-5. doi: 10.1007/978-3-319-31803-5_4.

[7] Valentin Goranko and Martin Otto. Model theory of modal logic. Handbook of
Modal Logic. Ed. by Johan Van Benthem Patrick Blackburn and Frank Wolter. 3.
Studies in Logic and Practical Reasoning. Elsevier, 2007, pp. 249–329.

[8] Erich Grädel and Jouko Väänänen. Dependence and independence. Studia Logica
101 (2013), no. 2, pp. 399–410.

[9] Raul Hakli and Sara Negri. Does the deduction theorem fail for modal logic?
Synthese 187 (2012), no. 3, pp. 849–867. issn: 0039-7857. doi: 10.1007/s11229-
011-9905-9.

[10] Miika Hannula. Validity and Entailment in Modal and Propositional Dependence
Logics. 26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Ed. by Valentin Goranko and Mads Dam. 82. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017, 28:1–28:17. isbn: 978-3-95977-045-3. doi: 10.4230/LIPIcs.CSL.
2017.28.

38

http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1007/978-3-319-31803-5_4
http://dx.doi.org/10.1007/s11229-011-9905-9
http://dx.doi.org/10.1007/s11229-011-9905-9
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.28
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.28

[11] Miika Hannula, Juha Kontinen, Martin Lück and Jonni Virtema. On Quanti-
fied Propositional Logics and the Exponential Time Hierarchy. Proceedings of the
Seventh International Symposium on Games, Automata, Logics and Formal Verifi-
cation, GandALF 2016, Catania, Italy, 14-16 September 2016. 2016, pp. 198–212.
doi: 10.4204/EPTCS.226.14.

[12] Miika Hannula, Juha Kontinen, Jonni Virtema and Heribert Vollmer. Complexity
of Propositional Independence and Inclusion Logic. Mathematical Foundations of
Computer Science 2015. Ed. by Giuseppe F Italiano, Giovanni Pighizzini and
Donald T. Sannella. 9234. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 269–280.

[13] Lauri Hella, Antti Kuusisto, Arne Meier and Heribert Vollmer. Modal Inclusion
Logic: Being Lax is Simpler than Being Strict. Mathematical Foundations of Com-
puter Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy,
August 24-28, 2015, Proceedings, Part I. 2015, pp. 281–292.

[14] Lauri Hella and Johanna Stumpf. The expressive power of modal logic with inclusion
atoms. Proceedings Sixth International Symposium on Games, Automata, Logics
and Formal Verification, GandALF 2015, Genoa, Italy, 21-22nd September 2015.
2015, pp. 129–143.

[15] Leon Henkin. Some Remarks on Infinitely Long Formulas. Journal of Symbolic
Logic. 30. Pergamon Press, 1961, pp. 167–183.

[16] Jaakko Hintikka and Gabriel Sandu. Informational Independence as a Semantical
Phenomenon. Studies in Logic and the Foundations of Mathematics. 126. Elsevier,
1989, pp. 571–589. isbn: 978-0-444-70520-4.

[17] Wilfrid Hodges. Compositional Semantics for a Language of Imperfect Information.
Logic Journal of the IGPL 5 (1997), no. 4, pp. 539–563.

[18] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor and Heribert Vollmer. A
Van Benthem Theorem for Modal Team Semantics. 24th EACSL Annual Conference
on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany.
2015, pp. 277–291. doi: 10.4230/LIPIcs.CSL.2015.277.

[19] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor and Heribert Vollmer.
Modal Independence Logic. Advances in Modal Logic 10. 2014, pp. 353–372.

[20] Juha Kontinen and Ville Nurmi. Team Logic and Second-Order Logic. Logic, Lan-
guage, Information and Computation. 5514. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 230–241. isbn: 978-3-642-02260-9 978-3-642-02261-6.

[21] Juha Kontinen and Jouko Väänänen. Axiomatizing first-order consequences in
dependence logic. Annals of Pure and Applied Logic 164 (Nov. 2013), no. 11,
pp. 1101–1117. issn: 01680072. doi: 10.1016/j.apal.2013.05.006.

[22] Martin Lück. Axiomatizations for Propositional and Modal Team Logic. 25th EACSL
Annual Conference on Computer Science Logic, CSL 2016, August 29 - September
1, 2016, Marseille, France. 2016, 33:1–33:18. doi: 10.4230/LIPIcs.CSL.2016.33.

39

http://dx.doi.org/10.4204/EPTCS.226.14
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.277
http://dx.doi.org/10.1016/j.apal.2013.05.006
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.33

[23] Till Mossakowski and Lutz Schröder. On Inconsistency and Unsatisfiability. Int. J.
Software and Informatics 9 (2015), no. 2, pp. 141–152.

[24] Julian-Steffen Müller. Satisfiability and model checking in team based logics. PhD
thesis. University of Hanover, 2014. isbn: 978-3-95404-759-8.

[25] Katsuhiko Sano and Jonni Virtema. Axiomatizing Propositional Dependence Logics.
24th EACSL Annual Conference on Computer Science Logic (CSL 2015). Ed. by
Stephan Kreutzer. 41. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015,
pp. 292–307. isbn: 978-3-939897-90-3.

[26] Jouko Väänänen. Dependence logic: a new approach to independence friendly logic.
London Mathematical Society student texts 70. Cambridge ; New York: Cambridge
University Press, 2007.

[27] Jouko Väänänen. Modal dependence logic. New perspectives on games and interac-
tion 4 (2008), pp. 237–254.

[28] Fan Yang. Modal dependence logics: axiomatizations and model-theoretic properties.
Logic Journal of the IGPL 25 (2017), no. 5, pp. 773–805.

[29] Fan Yang. “Negation and Partial Axiomatizations of Dependence and Indepen-
dence Logic Revisited”. Logic, Language, Information, and Computation: 23rd
International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016.
Proceedings. Ed. by Jouko Väänänen, Åsa Hirvonen and Ruy de Queiroz. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 410–431. isbn: 978-3-662-52921-8.
doi: 10.1007/978-3-662-52921-8_25.

[30] Fan Yang. On extensions and variants of dependence logic. PhD thesis. University
of Helsinki, 2014.

[31] Fan Yang and Jouko Väänänen. Propositional logics of dependence. Annals of Pure
and Applied Logic 167 (July 2016), no. 7, pp. 557–589. issn: 01680072.

[32] Fan Yang and Jouko Väänänen. Propositional team logics. Annals of Pure and
Applied Logic 168 (July 2017), no. 7, pp. 1406–1441. issn: 01680072. doi: 10.
1016/j.apal.2017.01.007.

40

http://dx.doi.org/10.1007/978-3-662-52921-8_25
http://dx.doi.org/10.1016/j.apal.2017.01.007
http://dx.doi.org/10.1016/j.apal.2017.01.007

Appendix
The appendix contains several technical or standard proofs omitted from the previous
sections of this paper. Moreover, several derivations in the introduced proof systems are
listed. Consider the following example, viz. the derivation of (MP�) in the system LS.

A ϕ_ ψ (thm)
B ϑ� ϕ

1 ∼ψ _ ∼ϕ (thm) L, A
2 (ϑ(∼ψ) _ (ϑ(∼ϕ) (thm) (Nec(), (Dis(), 1
3 ∼(ϑ(∼ϕ) Def., B
4 ∼(ϑ(∼ψ) L
. ϑ� ψ Def.

Recall that in this paper the premises of the proof have the special line numbers A, B,
. . . , and that . marks the conclusion. Here, “Def.” means that a non-primitive logical
connective such as � or 6 is replaced by its definition. A judgment that is a theorem
(i.e., derived without using premises) is marked with “(thm)”.

A. Proof details for Section 3
Lemma A.1. Let Ω � L. The following statements are equivalent:

1. Φ ` ϕ and Φ ` ∼ϕ for some ϕ,

2. Φ is inconsistent,

3. Φ ` ⊥⊥ .

Proof. For 1. ⇒ 2., we show Φ ` ξ for arbitrary ξ. As a first step, Φ ` (∼ξ _ ∼ϕ)
follows from Φ ` ∼ϕ and (L1). Next, Φ ` (ϕ _ ξ) follows by (L3), and by (E_) then
Φ ` ξ. 2. ⇒ 3. is obvious. For 3. ⇒ 1., we derive > by a standard proof, as ⊥⊥ = ∼>.

Lemma 3.7. Let Ω � L and let Φ be consistent. Then Φ 0 ϕ implies that Φ ∪ {∼ϕ} is
consistent, and Φ ` ϕ implies that Φ ∪ {ϕ} is consistent.

Proof. For the first part, suppose for the sake of contradiction that Φ 0 ϕ, but Φ∪ {∼ϕ}
is inconsistent. Then Φ ∪ {∼ϕ} ` ∼ψ for any axiom ψ. Consequently, by Theorem 3.5,
Φ ` (∼ϕ_ ∼ψ). But by (L3), Φ ` ψ _ ϕ, and ultimately Φ ` ϕ, since ψ is an axiom.
Contradiction to Φ 0 ϕ. As a result, Φ ∪ {∼ϕ} is consistent.
The second statement is proven similarly: Suppose that Φ ` ϕ, but Φ ∪ {ϕ} is

inconsistent. Then Φ ∪ {ϕ} ` ⊥⊥ by Lemma A.1, and again by Theorem 3.5, Φ ` ϕ_ ⊥⊥ .
As a result, Φ ` ⊥⊥ , contradicting Lemma A.1, since Φ is consistent.

Lemma 3.8 (Lindenbaum’s Lemma). If Ω � L, then every Ω-consistent set has a
maximal Ω-consistent superset.

41

Proof. Let Φ be Ω-consistent, Ω = (Ξ,Ψ, I), and Ξ = {ξ1, ξ2, . . .}. Define Φ0 := Φ, and
for each i ≥ 1,

Φi :=
{

Φi−1 ∪ {ξi} if Φi−1 ` ξi,
Φi−1 ∪ {∼ξi} otherwise.

By Lemma 3.7, the Ω-consistency of Φi−1 implies that of Φi. Consequently, Φi is
Ω-consistent for all i, and hence Φ∗ := ⋃

n≥0 Φn is Ω-consistent as well. By construction,
Φ∗ is maximal Ω-consistent.

Theorem 3.13. If Ω � L is refutation complete for F ∪ ∼F , then it is complete for
B(F).

Proof. Let Φ′ ⊆ B(F) and ϕ ∈ B(F). For completeness, we have to show that Φ′ 0 ϕ
implies Φ′ 2 ϕ, i.e., that Φ := Φ′ ∪ {∼ϕ} has a model. First note that, if Φ′ 0 ϕ, then Φ′
is consistent, and by Lemma 3.7, Φ as well.

Φ has a maximal consistent superset Φ∗ by Lemma 3.8. Clearly, Φ∗ ∩ (F ∪ ∼F) is
consistent as well, and by refutation completeness for F ∪ ∼F , it has a model A. In
what follows, we show that ψ ∈ Φ∗ ⇔ A � ψ for all ψ ∈ B(F). In particular, Φ is then
satisfiable, which proves the theorem.
The proof is by induction on ψ. Suppose ψ ∈ F . If ψ ∈ Φ∗, then A � ψ by definition

of A. If ψ /∈ Φ∗, then ∼ψ ∈ Φ∗ by maximality of Φ∗, and A 2 ψ by definition of A.
For the induction step, let ψ /∈ F . The case ψ = ∼ϑ is clear as Φ∗ is maximal consistent.

Next, let ψ = ψ1 _ ψ2. If ψ ∈ Φ∗, then either ψ1 /∈ Φ∗ or ∼ψ2 /∈ Φ∗, as otherwise Φ∗ is
inconsistent. But then A � ψ1 _ ψ2 by induction hypothesis.
If ψ /∈ Φ∗, then ∼ψ ∈ Φ∗. By consistency, Φ∗ 0 ψ. For the sake of contradiction,

suppose that A � ψ, i.e., A � ψ2 or A 2 ψ1. If A � ψ2, then ψ2 ∈ Φ∗ by induction
hypothesis. By (L1), we can then derive ψ, contradiction. If A 2 ψ1, then ∼ψ1 ∈ Φ∗
by induction hypothesis. Again with (L1), we can then infer ∼ψ2 _ ∼ψ1, and by (L3)
obtain ψ, contradicting Φ∗ 0 ψ.

B. Proof details for Section 4
Theorem 4.1. The proof system H0LS is sound for PTL.

Proof. We show that all axioms are valid, and that the inference rules preserve truth.
Then the soundness follows by induction. All instances of axioms of H0 are PL-tautologies
by Proposition 2.1, and similarly (E→) is sound by Proposition 2.2. By definition of →,
∼ and _, the axioms of L and (E_) are sound for all PTL-formulas. The rules (F()
and (F�) of S are valid by Proposition 2.4) and Proposition 2.6.
For (Lax), assume T � {ϕ,ϕ(ψ}. Then every subteam S ⊆ T satisfies ψ, as T and

S always form a division of T itself. This, in turn, implies T � ϑ(ψ for arbitrary ϑ.
For (Ex(), assume for the sake of contradiction that T has a division into S,U, U ′

such that S � ψ, U � ϕ, but U ′ 2 ϑ. Then S ∪ U ′ � ψ � ∼ϑ, i.e., S ∪ U ′ � ∼(ψ (ϑ).
However, U � ϕ. For this reason, T 2 ϕ(ψ(ϑ.

42

For (C(), again assume for the sake of contradiction that T has a division into S and
U such that S � ψ, but U 2 ∼ϕ, i.e., U � ϕ. Then, by T = S ∪ U , we obtain T � ϕ� ψ,
i.e., T 2 ϕ(∼ψ.

The soundness of (Nec() and (Dis() are straightforward.

Recall that, if T is a propositional team and p1, . . . , pn ∈ Prop, then

rel(T, (p1, . . . , pn)) := {(s(p1), . . . , s(pn)) | s ∈ T}.

In other words, if (b1, . . . , bn) ∈ {0, 1}n, then (b1, . . . , bn) ∈ rel(T, (p1, . . . , pn)) if and only
if there exists s ∈ T such that s(p1) = b1, . . . , s(pn) = bn. Let [n] := {1, . . . , n}.

We begin with the following lemmas in order to prove the locality property.

Lemma B.1. The following statements are equivalent for all teams T, T ′ and propositions
p1, . . . , pn:

1. rel(T, (p1, . . . , pn)) ⊆ rel(T ′, (p1, . . . , pn))

2. for all s ∈ T there exists s′ ∈ T ′ such that s(pi) = s′(pi) for all i ∈ [n].

Proof. 1.⇒ 2.: Suppose s ∈ T . Then (s(p1), . . . , s(pn)) ∈ rel(T, (p1, . . . , pn)) by definition
of rel. Since also (s(p1), . . . , s(pn)) ∈ rel(T ′, (p1, . . . , pn)), there exists some s′ ∈ T ′ such
that s(pi) = s′(pi) for all i ∈ [n].

2.⇒ 1.: Suppose (b1, . . . , bn) ∈ rel(T, (p1, . . . , pn)). Then there is some s ∈ T such that
bi = s(pi) for all i ∈ [n]. By assumption, there also exists s′ ∈ T ′ such that s(pi) = s′(pi)
for all i ∈ [n]. But then (b1, . . . , bn) ∈ rel(T ′, (p1, . . . , pn)).

Lemma B.2. Let rel(T, (p1, . . . , pn)) = rel(T ′, (p1, . . . , pn)). Then for all {i1, . . . , im} ⊆
[n] we have rel(T, (pi1 , . . . , pim)) = rel(T ′, (pi1 , . . . , pim)).

Proof. Let {i1, . . . , im} ⊆ [n]; we show only rel(T, (pi1 , . . . , pim)) ⊆ rel(T ′, (pi1 , . . . , pim))
due to symmetry. By the previous lemma, it suffices to show that for every s ∈ T there
exists s′ ∈ T ′ such that s(pij) = s′(pij) for all j ∈ [m].
Accordingly, suppose s ∈ T . By assumption, there is s′ ∈ T ′ such that s(pi) = s′(pi)

for all i ∈ [n]. In particular, s(pij) = s′(pij) for j ∈ [m].

Proposition 4.5 (Locality). Let T, T ′ be propositional teams and ϕ ∈ PTL such that the
propositions occurring in ϕ are p1, . . . , pn. Then rel(T, (p1, . . . , pn)) = rel(T ′, (p1, . . . , pn))
implies T � ϕ⇔ T ′ � ϕ in lax semantics.

Proof. By induction on ϕ. If ϕ = p for a proposition p ∈ Prop, clearly T � p ⇔ (0) /∈
rel(T, (p))⇔ (0) /∈ rel(T ′, (p))⇔ T ′ � p.
For the inductive step, assume ϕ = ψ _ ψ′. Suppose pi1 , . . . , pim appear as proposi-

tions in ψ, and pj1 , . . . , pjk appear as propositions in ψ′, where {i1, . . . , im, j1, . . . , jk} ⊆
[n]. Then rel(T, (pi1 , . . . , pim)) = rel(T ′(pi1 , . . . , pim)) by the above lemma. Likewise,
rel(T, (pj1 , . . . , pjk)) = rel(T ′, (pj1 , . . . , pjk)). By induction hypothesis, T � ϕ ⇔ T ′ � ϕ.
The case ϕ = ∼ψ is shown similarly.

43

Next, suppose ϕ = ψ(ψ′. Let rel(T, (p1, . . . , pn)) = rel(T ′, (p1, . . . , pn)) and T � ψ(
ψ′. For the sake of contradiction, let ψ(ψ′ be true in T but false in T ′. Then T ′ = S′∪U ′
such that S′ � ψ and U ′ 2 ψ′. We construct subteams S,U of T such that S ∪ U = T ,
rel(S, (p1, . . . , pn)) = rel(S′, (p1, . . . , pn)) and rel(U, (p1, . . . , pn)) = rel(U ′, (p1, . . . , pn)).
By a similar argument as for _, then T 2 ψ(ψ′, contradicting the assumption. Let

S := {s ∈ T | ∃s′ ∈ S′ : ∀i ∈ [n] : s(pi) = s′(pi)},
U := {s ∈ T | ∃s′ ∈ U ′ : ∀i ∈ [n] : s(pi) = s′(pi)}.

We show that rel(S, (p1, . . . , pn)) = rel(S′, (p1, . . . , pn)) (and analogously for U). We
apply Lemma B.1 and show that for all s ∈ S there exists s′ ∈ S′ such that s(pi) = s′(pi)
for all i ∈ [n], and vice versa. As the first direction is clear, instead suppose s′ ∈ S′.
Since S′ ⊆ T ′, by the assumption of the lemma we can apply Lemma B.1 and obtain
that there is s ∈ T such that s(pi) = s′(pi) for all i ∈ [n]. Then s ∈ S by definition of S.
It remains to prove T ⊆ S ∪ U . Let s ∈ T . As before, there exists s′ ∈ T ′ such that

s(pi) = s′(pi) for all i ∈ [n]. As s′ ∈ S′ ∪ U ′, s satisfies at least one of (∃s′ ∈ S′ : ∀i ∈
[n] : s(pi) = s′(pi)) and (∃s′ ∈ U ′ : ∀i ∈ [n] : s(pi) = s′(pi)), and hence is in S ∪ U .

Lemma 4.10. Let Ω � LS be a proof system. Them Ω has substitution in ∼, _ and
(. Furthermore, Ω admits the following meta-rules:

• Reductio ad absurdum (RAA): If Φ ∪ {ϕ} ` {ψ,∼ψ}, then Φ ` ∼ϕ.
If Φ ∪ {∼ϕ} ` {ψ,∼ψ}, then Φ ` ϕ.

• Modus ponens in((MP(): If ` ϕ_ ψ and Φ ` ϑ(ϕ, then Φ ` ϑ(ψ.

• Modus ponens in � (MP�): If ` ϕ_ ψ and Φ ` ϑ� ϕ, then Φ ` ϑ� ψ.

Proof. First, we derive the meta-rules in Ω. For (RAA), suppose Φ ∪ {ϕ} ` {ψ,∼ψ}.
By Theorem 3.5, Φ ` {ϕ _ ∼ψ,ϕ _ ψ}. Moreover, `L (ϕ _ ∼ψ) _ (ψ _ ∼ϕ) and
`L (ϕ _ ∼ϕ) _ ∼ϕ due to Theorem 3.17. But as Φ ` {ϕ _ ψ,ψ _ ∼ϕ}, we have
Φ ` ∼ϕ. The other case is proven analogously, using the theorem ∼∼ϕ_ ϕ of L.

The rule (MP() easily follows by (Nec(), (Dis() and (E_). A derivation of (MP�)
can be found at the beginning of the appendix.
Next, we prove substitution in ∼, _ and (. For ∼, suppose ϕ = ∼ξ and ξ a` ψ.

Obviously, {ϕ,ψ} ` ξ,∼ξ. By (RAA), ϕ ` ∼ψ.
For _, suppose ϕ = ξ1 _ ξ2, ξ1 a` ψ1 and ξ2 a` ψ2. Then {ψ1, ϕ} ` ξ2 ` ψ2. By the

deduction theorem, ϕ ` ψ1 _ ψ2.
The final case is (. Since we demonstrated that (MP() is available, the following

derivation proves substitution in(.

44

A ψ1 _ ϕ1 (thm)
B ϕ2 _ ψ2 (thm)
C ϕ1 (ϕ2

1 ϕ2 _ ∼∼ψ2 (thm) L, B
2 ∼ϕ1 _ ∼ψ1 (thm) L, A
3 ∼∼ψ2 _ ψ2 (thm) L
4 ϕ1 (∼∼ψ2 (MP(), C, 1
5 ∼ψ2 (∼ϕ1 (C()
6 ∼ψ2 (∼ψ1 (MP(), 2, 5
7 ψ1 (∼∼ψ2 (C()
. ψ1 (ψ2 (MP(), 3, 7

C. Proof details for Section 5
Lemma C.1. (D♦�), i.e., ♦(ϕ� ψ)] ♦ϕ� ♦ψ, is sound for MTL.

Proof. Let K = (W,R, V) be a Kripke structure and T a team in K.
“_”: Suppose (K,T) � ♦(ϕ�ψ). Then T has a successor team T ′ that satisfies ϕ�ψ,

i.e., there are S′ and U ′ such that T ′ = S′ ∪ U ′, (K,S′) � ϕ and (K,U ′) � ψ. We define
subteams S and U such that T = S ∪ U , (K,S) � ♦ϕ and (K,U) � ♦ψ:

S :=
{
v ∈ T

∣∣ ∃v′ ∈ S′ : (v, v′) ∈ R
}
,

U :=
{
v ∈ T

∣∣ ∃v′ ∈ U ′ : (v, v′) ∈ R
}
.

Every world v ∈ T has at least one successor v′ ∈ T ′. Since S′ ∪ U ′ = T ′, either v′ ∈ S′,
or v′ ∈ U ′, or both. By definition, v is in then in S or U . Consequently, T = S ∪ U .

To prove (K,S) � ♦ϕ, we demonstrate that S′ is a successor team of S. (K,U) � ♦ψ
is then analogous. First, by definition of S, every v ∈ S has at least one successor in
S′. Likewise, every v′ ∈ S′ has at least one predecessor in S: Since S′ ⊆ T ′ and T ′ is a
successor team of T , v′ has some predecessor v in T . By definition of S, v ∈ S.

“^”: Suppose (K,T) � ♦ϕ� ♦ψ due to subteams S and U of T such that T = S ∪U ,
(K,S) � ♦ϕ and (K,U) � ♦ψ. Then there is a successor team S′ of S satisfying ϕ, and a
successor team U ′ of U satisfying ψ.
We show that T ′ := S′ ∪ U ′, which satisfies ϕ� ψ, itself is a successor team of T . If

v ∈ T , then v ∈ S or v ∈ U , and v has a successor in S′ or U ′, and consequently in T ′.
On the other hand, v′ ∈ T ′ implies v′ ∈ S′ or v′ ∈ U ′. But then v′ has a predecessor in S
or U , and hence in T .

Theorem 5.1. The proof system H�LSM is sound for MTL.

Proof. As H� applies only to ML-formulas, it is sound by Corollary 2.3. The system L is
easily proved sound; and the soundness of S is shown as in Theorem 4.1. It remains to
consider M.
For (Lin�), clearly (K,T) � �∼ϕ ⇔ (K,RT) � ∼ϕ ⇔ (K,RT) 2 ϕ ⇔ (K,T) 2 �ϕ.

Next, the flatness axiom (F♦) follows from the definition of successor teams. (D♦∨) is

45

proved sound in Lemma C.1. The remaining axioms (E�), (I�), (Dis�) and (Dis4) and
rules (Nec�) and (Nec4) are straightforward.

Lemma 5.4. Let Ω � LSM. Then Ω has substitution in_,∼,(,� and4. Furthermore,
Ω admits the following meta-rules:

• Modus ponens in � (MP�): If ` ϕ_ ψ and Φ ` �ϕ, then Φ ` �ψ.

• Modus ponens in 4 (MP4): If ` ϕ_ ψ and Φ ` 4ϕ, then Φ ` 4ψ.

• Modus ponens in ♦ (MP♦): If ` ϕ_ ψ and Φ ` ♦ϕ, then Φ ` ♦ψ.

Proof. It is straightforward to prove (MP�) and (MP4) from (Nec�), (Dis�) resp.
(Nec4), (Dis4) and (E_). Next, since Ω � LS, (RAA) is available by Lemma 4.10.
Consequently, the derivation for (MP♦) can be implemented as follows.

A ♦ϕ
B ϕ_ ψ (thm)

1 ∼ψ _ ∼ϕ (thm) L, B
2 4∼ψ

3 4∼ϕ (MP4), 1, 2
4 ∼4∼ϕ Def., A

5 ∼4∼ψ (RAA), 3, 4
. ♦ψ Def.

It remains to prove that Ω admits substitution. The cases _, ∼ and(follow from
Lemma 4.10, as Ω � LS. Finally, the cases 4 and � immediately follow from (MP4)
and (MP�).

D. Proof details for Section 7
Recall that (D∃�) is the axiom ∃x(ϕ� ψ)] ∃xϕ� ∃xψ of Q.

Lemma D.1. D∃� is sound for FO(∼) and QPTL.

Proof. We prove only the first-order case; the proof works analogously for QPTL.
“_”: Suppose (A, T) � ∃x(ϕ� ψ), where A = (A, τA) is a first-order structure, T is

a team, and x ∈ Var. Then there exists f : T → P(A) \ {∅} such that (A, T xf) � ϕ� ψ.
Consequently, there are S,U ⊆ T xf such that (A, S) � ϕ, (A, U) � ψ and T xf = S ∪ U .
For the proof, we construct a division of T into subteams S′, U ′ of T that satisfy ∃xϕ
and ∃xψ, respectively:

S′ :=
{
s ∈ T

∣∣ ∃s′ ∈ S : ∀y ∈ Var \ {x} : s(y) = s′(y)
}
,

U ′ :=
{
s ∈ T

∣∣ ∃s′ ∈ U : ∀y ∈ Var \ {x} : s(y) = s′(y)
}
.

In other words, S′ contains exactly the assignments s ∈ T such that sxa is in S for some
a (and likewise U ′). S′ and U ′ form a division of T : Suppose s ∈ T . Then sxa ∈ T xf for at

46

least one a, and consequently sxa ∈ S or sxa ∈ U . This implies s ∈ S′ or s ∈ U ′. Next, we
will prove that S is a supplementing team of S′ (the proof for U is analogous). As then
(A, S′) � ∃xϕ and (A, U ′) � ∃xψ, ultimately (A, T) � (∃xϕ) � (∃xψ).

We show that S = (S′)xg for g(s) := { a ∈ A | sxa ∈ S }. g(s) is always non-empty, since
s ∈ S′ implies sxa ∈ S for some a by definition of S′, and g is a supplementing function.

In order to prove S ⊆ (S′)xg , suppose s′ ∈ S. As S ⊆ T xf , then s′ = sxa for some a ∈ f(s)
and s ∈ T . By definition of S′, then s ∈ S′, and since a ∈ g(s), we have sxa ∈ (S′)xg .

For (S′)xg ⊆ S, let s′ ∈ (S′)xg . Then s′ = sxa for some s ∈ S′ and a ∈ g(s). By definition
of g, then s′ = sxa ∈ S.

“^”: Suppose (A, T) � (∃xϕ) � (∃xψ), i.e., that (A, S) � ∃xϕ and (A, U) � ∃xψ for
T = S ∪ U . Let Sxf and Uxg be supplementing teams of S and U such that (A, Sxf) � ϕ
and (A, Uxg) � ψ. We prove that Sxf ∪ Uxg is a supplementing team of T , which implies
(A, T) � ∃x (ϕ� ψ). Consider the function h on T = S ∪ U given by

h(s) :=


f(s) if s ∈ S \ U ,
g(s) if s ∈ U \ S,
f(s) ∪ g(s) if s ∈ S ∩ U .

Clearly h : T → P(A) \ {∅}. We demonstrate Sxf ∪ Uxg = T xh . For Sxf ⊆ T xh (Uxg is
analogous), suppose s′ ∈ Sxf . Then s′ = sxa for some s ∈ S ⊆ T and a ∈ f(s) ⊆ h(s).
Consequently, s′ ∈ T xh .

Conversely, for T xh ⊆ Sxf ∪ Uxg , let s′ ∈ T xh , i.e., s′ = sxa for some s ∈ T and a ∈ h(s). If
s ∈ S \ U , then necessarily a ∈ f(s), and sxa ∈ Sxf . Likewise, if s ∈ U \ S, then a ∈ g(s)
and sxa ∈ Uxg . Finally, if s ∈ S∩U , then a ∈ f(s)∪g(s), so sxa is either in Sxf or in Uxg .

Lemma D.2. The system Q is sound for FO(∼) and QPTL.

Proof. For the soundness of D∃�, see the previous lemma. (Lin∀) is similar to (Lin�).
The soundness of (F∃) is by definition of supplementing functions. (E∀) follows from
Proposition 2.4, since any supplementing team is contained in the duplicating team.
Likewise, (I∀) follows as the duplicating team is a supplementing team. The rule (UG!)
and the axioms (Dis∀) and (Dis!) are straightforward.

Theorem 7.1. H1LSQ is sound for QPTL and HULSQ is sound for FO(∼).

Proof. The soundness of H and H1 is shown in Corollary 2.3, that of Q in the above
lemma, that of U in Lemma 6.2, and the remaining axioms and rules are proved sound
as in Theorem 4.1 on p. 42.

E. Proof details for Lemma 4.11 (system S′)
In the proofs below, we sometimes omit applications of (MP�) and (MP().

47

(Com�):

A ϕ� ψ

1 ∼(ψ � ϕ)
2 ∼∼(ψ(∼ϕ) Def.
3 ψ(∼ϕ L
4 ϕ(∼ψ (C()
5 ∼∼(ϕ(∼ψ) L
6 ∼(ϕ� ψ) Def.

. ψ � ϕ (RAA), A, 6

(Aug�):

A ϕ� ψ
B ϕ(ϑ

1 ∼(ϕ� (ψ 7 ϑ))
2 ∼∼(ϕ(∼(ψ 7 ϑ)) Def.
3 ϕ(∼(ψ 7 ϑ) L
4 ϕ((ϑ_ ∼ψ) L
6 (ϕ(ϑ) _ (ϕ(∼ψ) (Dis()
7 ϕ(∼ψ (E_), B, 6
8 ∼(ϕ(∼ψ) Def., A

. ϕ� (ψ 7 ϑ) (RAA), 7, 8

(Ass�)1:

A (ϕ� ψ) � ϑ)
1 ϑ� (ϕ� ψ) (Com�)
2 ϑ� (ψ � ϕ) (Com�)
3 (ϑ� ψ) � ϕ (Ass�)2

4 ϕ� (ϑ� ψ) (Com�)
. ϕ� (ψ � ϑ) (Com�)

(Ass�)2:

A ϕ� (ψ � ϑ)

1 ϑ(∼∼(ϕ(∼ψ)
2 ϑ((ϕ(∼ψ) L
3 ϕ((ϑ(∼ψ) (Ex()
4 ϕ((ψ(∼ϑ) (C()
5 ϕ(∼∼(ψ(∼ϑ) L
6 ∼(ϕ(∼∼(ψ(∼ϑ)) Def., A

7 ∼(ϑ(∼∼(ϕ(∼ψ)) (RAA), 5, 6
8 ϑ� (ϕ� ψ) Def.
. (ϕ� ψ)� ϑ (Com�)

(Abs�):

A Eα� ϕ

1 ¬α_ ∼∼¬α L
2 ¬α_ ∼Eα Def.

3 ¬α
4 ϕ(¬α (I()
5 ϕ(∼Eα (MP(), 2, 4
6 ∼∼(ϕ(∼Eα) L
7 ∼(ϕ� Eα) Def.
8 ϕ� Eα (Com�), A

9 ∼¬α (RAA), 7, 8
. Eα Def.

(E():

A >((¬α_ α)
1 >(∼∼(¬α_ α) L
2 ∼(¬α_ α)(∼> (C()
3 ∼(¬α_ α)(∼α L
4 α(∼∼(¬α_ α) (C()
5 α((¬α_ α) L
6 α� ¬α (thm) H0

7 α� (¬α7 (¬α_ α)) (Aug�), 5, 6
8 α� (α7 ¬α) L
9 α�⊥ H0, L
. α H0, (F�)

(D7�)1:

A
(α7 ϕ) � (α7 ψ)

1 (α7 ϕ) � α L
2 α� (α7 ϕ) (Com�)
3 α� α L
4 α (F�), H0

5 (α7 ϕ) � ψ L, A
6 ψ � (α7 ϕ) (Com�)
7 ψ � ϕ L
. α7 (ϕ� ψ) (Com�), L, 4, 7

(D7�)2:

A α7 (ϕ� ψ)
1 α L
2 (α7 ϕ)(α (F()
3
(α7 ϕ)((∼(α7 ψ) _ ∼ψ)

L

4 ψ(α (F(), 1
5 ψ((∼(α7 ϕ) _ ∼ϕ) L

6 ∼((α7 ϕ)� (α7 ψ))
7 (α7 ϕ)(∼(α7 ψ) Def., L
8 (α7 ϕ)(∼ψ (Dis(), 3, 7
9 ψ(∼(α7 ϕ) (C()
10 ψ(∼ϕ (Dis(), 5, 9
11 ψ � ϕ L, (Com�), A
12 ∼(ψ(∼ϕ) Def.

. (α7 ϕ)� (α7 ψ) (RAA), 10, 12

48

(D6�)1:

A
(ϕ� ψ) 6 (ϕ� ϑ)

1
∼(ϕ� (ψ 6 ϑ))

2 ϕ(∼(ψ 6 ϑ) Def., L
3 ϕ(∼ψ L
4 ∼(ϕ� ψ) Def., L
5 ϕ(∼ϑ L, 2
6 ∼(ϕ� ϑ) Def., L

7 ∼((ϕ� ψ)
6(ϕ� ϑ)) L, 4, 6

. ϕ� (ψ 6 ϑ) (RAA), A, 7

(D6�)2:

A ϕ� (ψ 6 ϑ)
1 ϕ�∼(∼ψ 7∼ϑ) L
2 ∼(ϕ(∼∼(∼ψ 7∼ϑ)) Def.

3 ∼((ϕ� ψ)6 (ϕ� ϑ))
4 ∼(ϕ� ψ)7∼(ϕ� ϑ) L
5 ϕ(∼ψ Def., L, 4
6 ϕ(∼ϑ Def., L, 4

7
ϕ(

(
∼ψ _ (∼ϑ

_ ∼(ψ 6 ϑ))
)

(thm)
L, (Nec()

8 ϕ(∼(ψ 6 ϑ) (Dis(), 5, 6, 7
9 ϕ(∼∼(∼ψ 7∼ϑ) L

. (ϕ� ψ)6 (ϕ� ϑ)) (RAA), 2, 9

(Lax�):

A ϕ� ψ
B ϑ

1 ϕ(∼ϑ
2 ϑ(∼ϕ (C()
3 ψ(∼ϕ (Lax(), B, 2
4 ψ � ϕ (Com�), A
5 ∼(ψ(∼ϕ) Def.

4 ∼(ϕ(∼ϑ) (RAA), 3, 5
. ϕ� ϑ Def.

(JoinE):

A α7 Eβ
1 ¬(α ∧ β) _ (α→ ¬β) H0, (L4)
2 ∼(α→ ¬β) _ ∼¬(α ∧ β) L
3 ∼(α→ ¬β) _ E(α ∧ β) Def.

4 α→ ¬β
5 α L, A
6 ¬β H0

7 Eβ L, A
8 ∼¬β Def.

9 ∼(α→ ¬β) (RAA), 6, 8
. E(α ∧ β) (E_), 3, 9

(SubE):

A α→ β
B Eα

1 ¬β
2 ¬α H0, A, 1
3 ∼¬α Def., B

4 ∼¬β (RAA), 2, 3
. Eβ Def.

(IsolateE)1:

A ϕ� (α7 Eβ)
1 ϕ� E(α ∧ β) (JoinE)
2 E(α ∧ β) (Com�), (Abs�)
3 ϕ� α L, A
. (ϕ� α)7 E(α ∧ β) L, 2, 3

(I�):

A Eα

1
∼(>� (α7 Eα))

2 >(∼(α7 Eα) Def., L
3
>(∼(α7∼¬α)

Def.

4 >((α_ ¬α) L
5
>((¬¬α_ ¬α)

H0, L

6 ¬α (E()
7 ∼¬α Def., A

. >� (α7 Eα) (RAA), 6, 7

(IsolateE)2:

A (ϕ� α)7 E(α ∧ β)
1 ϕ� α L, A
2 E(α ∧ β) L, A
3 >� ((α ∧ β)7 E(α ∧ β) (I�)
4 >� (α7 Eβ) H0, L
5 (α7 Eβ) �> (Com�)
6 (α7 Eβ) � (ϕ� α) (Lax�), 1, 5
7 (ϕ� α)� (α7 Eβ) (Com�)
8 ϕ� (α� (α7 Eβ)) (Ass�)
9 ϕ� ((α7 α)� (α7 Eβ)) L, (Com�)
10 ϕ� (α7 (α� Eβ)) (D7�)
. ϕ� (α7 Eβ) (Com�), (Abs�)

49

F. Proof details for Lemma 5.5 (system M′)
As for (MP�) and (MP(), we mostly omit applications of (MP♦), (MP�) and (MP4)
in the derivations.

(D♦6)1:

A ♦(ϕ6 ψ)

1 ∼♦ϕ6 ♦ψ)
2 ∼(∼4∼ϕ6∼4∼ψ)Def.
3 4∼ϕ L, 2
4 4∼ψ L, 2
5 4∼(ϕ6 ψ) (Dis4), L
6 ∼∼4∼(ϕ6 ψ) L
7 ∼♦(ϕ6 ψ) Def.

. ♦ϕ6 ♦ψ (RAA), A, 7

(D♦6)2:

A ♦ϕ6 ♦ψ

1 ∼♦(ϕ6 ψ)
2 4∼(ϕ6 ψ) Def., L
3 4∼ϕ L, 2
4 4∼ψ L, 2
5
(∼∼4∼ϕ)7 (∼∼4∼ψ)

L

6 (∼♦ϕ)7 (∼♦ψ) Def.
7 ∼(♦ϕ6 ♦ψ) L

. ♦(ϕ6 ψ) (RAA), A, 7

(Com♦E)1:

A ♦Eβ
1 ∼4∼∼¬β Def.

2 ∼E¬�¬β
3 ∼∼¬¬�¬β Def.
4 �¬β L, H0

5 4¬β (E�)
6 4∼∼¬β L

. E¬�¬β (RAA), 1, 6

(Com♦E)2:

A ♦ϕ
B E¬�¬β
1 ∼¬¬�¬β Def., B

2 ∼♦Eβ
3 ∼∼4∼∼¬β Def.
4 4¬β L
5 �¬β (I�)
6 ¬¬�¬β H0

. ♦Eβ (RAA), 1, 6

(Aug♦):

A ♦ϕ
B 4ψ

1 ∼♦(ϕ7 ψ)
2 4∼(ϕ7 ψ) Def., L
3 4∼ϕ (Dis4), L, B, 2
4 ∼∼4∼ϕ L
5 ∼♦ϕ Def.

. ♦(ϕ7 ψ) (RAA), A, 5

(Join♦):

A ♦α
B ♦Eα

1 ∼♦(α7 Eα)
2 4∼(α7 Eα) Def., L
3 4(α_ ¬α) Def., L
4 ♦(α7 (α_ ¬α)) (Aug♦), A, 3
5 ♦(α7 ¬α) L
6 ♦⊥ L, H0

7 ⊥ (F♦), H�

8 �¬α H�

9 4¬α (E�), A, 8
10 4∼∼¬α L
11 ∼4∼∼¬α Def., B

. ♦(α7 Eα) (RAA), 10, 11

50

(D�_):

A �ϕ_ �ψ

1 ∼�(ϕ_ ψ)
2 �∼(ϕ_ ψ) (Lin�)
3 �ϕ L, 2
4 �∼ψ L, 2
5 ∼�ψ (Lin�)
6 �ϕ7∼�ψ L, 3, 5
7 ∼(�ϕ_ �ψ) L

. �(ϕ_ ψ) (RAA), A, 7

(♦IsolateE)1:

A ♦(α7 Eβ)
1 ♦α L
2 ♦E(α ∧ β) (JoinE), A
3 E¬�¬(α ∧ β) (Com♦E)
. ♦α7 E¬�¬(α ∧ β) L, 1, 3

(♦IsolateE)2:

A ♦α7 E¬�¬(α ∧ β)

1 ¬�¬(α ∧ β) 7 E¬�¬(α ∧ β)
2 ♦(α ∧ β) (F♦), L, 1
3 E¬�¬(α ∧ β) L, 1
4 ♦E(α ∧ β) (Com♦E)
5 ♦
(
(α ∧ β) 7 E(α ∧ β)

)
(Join♦), 2, 4

6 ♦(α7 Eβ) (SubE), H0, L
7
(
¬�¬(α ∧ β) 7 E¬�¬(α ∧ β)

)
_ ♦(α7 Eβ) (thm) Ded. Thm.

8 E¬�¬(α ∧ β) L, A
9 >� (¬�¬(α ∧ β) 7 E¬�¬(α ∧ β)) (I�)
10 >� ♦(α7 Eβ) (MP�), 7, 9
11 ♦(α7 Eβ) �> (Com�)
12 ♦α L, A
13 ♦(α7 α) L
14 ♦(α7 Eβ) � ♦(α7 α) (Lax�), 11, 13
15 ♦

(
(α7 Eβ) � (α7 α)

)
(D♦�)

16 ♦(α7 (Eβ � α)) (D7�)
. ♦(α7 Eβ) (Abs�), L

51

	1 Introduction
	2 Preliminaries
	2.1 Propositional team logic
	2.2 Modal team logic
	2.3 First-order team logic
	2.4 Proof systems

	3 Axioms of the Boolean closure
	3.1 The deduction theorem for team logics
	3.2 Completeness of the Boolean closure
	3.3 A remark on (para-)consistency in team logics

	4 Axioms of splitting
	4.1 Splitting elimination
	4.2 Examples in propositional team logic

	5 Modal team logic
	5.1 Proving the modality elimination

	6 First-order logic
	6.1 From compactness to completeness

	7 Quantifier elimination
	8 Dependence, independence, inclusion and exclusion logic
	9 Conclusion
	A Proof details for Section 3
	B Proof details for Section 4
	C Proof details for Section 5
	D Proof details for Section 7
	E Proof details for Lemma 4.11 (system S')
	F Proof details for Lemma 5.5 (system M')

