Sets in Prikry and Magidor Generic Extensions

Tom Benhamou and Moti Gitik*

Abstract

We continue [5] and study sets in generic extensions by the Magidor forcing and by the Prikry forcing with non-normal ultrafilters.

Keywords - Prikry Forcing, Magidor Forcing, Intermediate Models .
Mathematical Subject Classification- 03E40, 03E55, 03E35,03E99 .

Introduction

In the paper [5] by V. Kanovei, P. Koepke and the second author, subforcings of the Prikry forcing were characterized. Here we extend the analyzes to the Magidor forcing, introduced by M. Magidor in [8] (more recent account can be found in [3] or in a very recent nice and detailed paper by G. Fuchs [2]).
The following is shown:
Theorem 3.3 Let \vec{U} be a coherent sequence in $V,\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle$ be a sequence such that $o^{\vec{U}}\left(\kappa_{i}\right)<$ $\min \left(\nu \mid 0<o^{\vec{U}}(\nu)\right)$, let G be $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$-generic ${ }^{1}$ and let $A \in V[G]$ be a set of ordinals. Then there exists $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$, where C_{G} is the Magidor sequence of G.

One of the main methods used in the proof was the construction of a forcing $\mathbb{M}_{I}[\vec{U}] \in V$, which is a projection of Magidor forcing $\mathbb{M}[\vec{U}]$. This forcing is a Magidor type forcing which uses only measures from \vec{U} with index $i \in I$. Moreover, $\mathbb{M}_{I}[\vec{U}]$ adds a prescribed subsequence $C_{I}:=\left(C_{G}\right) \upharpoonright I$

[^0]as a generic object, where $I \subseteq \lambda_{0}$ is a set of indexes in $\lambda_{0}=\operatorname{otp}\left(C_{G}\right)$. Hence, we may examine the intermediate extensions $V \subseteq V\left[C_{I}\right] \subseteq V\left[C_{G}\right]$ as an iteration of two forcings, which resemble $\mathbb{M}[\vec{U}]$. A consequence of this theorem is the classification of all complete subforcings of $\mathbb{M}[\vec{U}]$, this result is stated in theorem 5.3.

Another direction addressed in this paper, is an attempt to extend the results of [5] to Prikry forcings with non-normal ultrafilters. The full generalization is not possible. Thus, for example, once κ is a κ-compact cardinal, then the Prikry forcing with a non-normal ultrafilter over κ can add a generic for any κ-distributive forcing of size κ, see [4] for more on this. Here we show that even from a single measurable, one can produce counter examples to generalizations of [5] to non-normal ultrafilters.
Namely the following is proved:
Theorem 7.1 Suppose that V satisfies $G C H$ and κ is a measurable cardinal. Then in a generic cofinality preserving extension there is a κ-complete ultrafilter U over κ such that the Prikry forcing with U adds a Cohen subset to κ over V. In particular, this forcing has a non-trivial subforcing which preserves regularity of κ.

However, if one restricts to the Prikry forcing with P-point ultrafilters, then the following holds:
Theorem 6.7 Let $\mathbb{U}=\left\langle U_{a} \mid a \in[\kappa]^{<\omega}\right\rangle$ consists of P-point ultrafilters over κ. Then for every new set of ordinals A in $V^{P(\mathbb{U})}$, κ has cofinality ω in $V[A]$, where $P(\mathbb{U})$ denotes the tree Prikry forcing with \mathbb{U}.

The paper is organized as follows:

- Sections $1-5$ present the results for Magidor forcing.
- Section 6 presents the generalization of [5] to the tree Prikry forcings with P-points.
- Section 7 presents the proof for Theorem 7.1.

Notations

- V denotes the ground model.
- For any set $A, V[A]$ denote the minimal model of ZFC containing V and $\{A\}$.
- $\prod_{j=1}^{n} A_{j}$ increasing sequences $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ where $a_{i} \in A_{i}$.
- $\prod_{i=1}^{m} \prod_{j=1}^{n} A_{i, j}$ left-lexicographically increasing sequences (which is denoted by $\leq_{L E X}$).
- $[\kappa]^{\alpha}$ increasing sequences of length α.
- $[k]^{<\omega}=\bigcup_{n<\omega}[\kappa]^{n}$.
- ${ }^{\alpha}[\kappa]$ not necessarily increasing sequences, i.e functions with domain α and range κ.
- ${ }^{\omega>}[\kappa]=\bigcup_{n<\omega}{ }^{n}[\kappa]$.
- $\langle\alpha, \beta\rangle$ an ordered pair of ordinals. (α, β) the interval between α and β.
- $\vec{\alpha}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle,|\vec{\alpha}|=n, \vec{\alpha} \backslash\left\langle\alpha_{i}\right\rangle=\left\langle\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{n}\right\rangle$.
- For every $\alpha<\beta$, The Cantor normal form (abbreviated C.N.F) equation is $\alpha+\omega^{\nu_{1}}+\ldots+\omega^{\nu_{m}}=$ $\beta, \nu_{1} \geq \ldots \geq \nu_{m}$ are unique. If $\alpha=0$ this is the C.N.F of β, otherwise, this is the C.N.F difference of α, β.
- The limit otder if α, denoted by $o_{L}(\alpha)=\gamma$, where $\alpha=\omega^{\gamma_{1}}+\ldots+\omega^{\gamma_{n}}+\omega^{\gamma}$ (C.N.F).
- $\operatorname{Lim}(A)=\{\alpha \in A \mid \sup (A \cap \alpha)=\alpha\}$.
- $\operatorname{Succ}(A)=\{\alpha \in A \mid \sup (A \cap \alpha)<\alpha\}$.
- $\biguplus_{i \in I} A_{i}$ is the union of $\left\{A_{i} \mid i \in I\right\}$ with the requirement that A_{i} 's are pairwise disjoint.
- If $f: A \rightarrow B$ is a function then for every $A^{\prime} \subseteq A, B^{\prime} \subseteq B$

$$
f^{\prime \prime} A^{\prime}=\left\{f(x) \mid x \in A^{\prime}\right\}, f^{-1^{\prime \prime}} B^{\prime}=\left\{x \in A \mid f(x) \in B^{\prime}\right\} .
$$

- Let $B \subseteq\left\langle\alpha_{\xi} \mid \xi<\delta\right\rangle=A$ be sequences of ordinals,

$$
\operatorname{Index}(B, A)=\left\{\xi<\delta \mid \exists b \in B \alpha_{\xi}=b\right\}
$$

- Let \mathbb{P} be a forcing notion, σ a formula in the forcing language and $p \in \mathbb{P}$. If $\underset{\sim}{A}$ is a \mathbb{P}-name, then

$$
p \| \underset{\sim}{A} \text { means "there is } a \in V \text { such that } p \Vdash \stackrel{\vee}{\vee}=\underset{\sim}{A} \text { ". }
$$

- Let $p, q \in \mathbb{P}$ then $" p, q$ are compatible in $\mathbb{P} "$ if there exists $r \in \mathbb{P}$ such that $p, q \leq_{\mathbb{P}} r$. Otherwise, if they are incompatible denote it by $p \perp q$.
- In any forcing notion, $p \leq q$ means $" q$ extends $p "$.
- The notion of complete subforcing, complete embedding and projection is used as defined in [11].

1 Magidor forcing

Definition 1.1 A coherent sequence is a sequence $\vec{U}=\left\langle U(\alpha, \beta) \mid \beta<o^{\vec{U}}(\alpha), \alpha \leq \kappa\right\rangle$ such that:

1. $U(\alpha, \beta)$ is a normal ultrafilter over α.
2. Let $j: V \rightarrow U l t(U(\alpha, \beta), V)$ be the corresponding elementary embedding, then

$$
j(\vec{U}) \upharpoonright \alpha=\vec{U} \upharpoonright\langle\alpha, \beta\rangle
$$

Where

$$
\begin{gathered}
\vec{U} \upharpoonright \alpha=\left\langle U(\gamma, \delta) \mid \delta<o^{\vec{U}}(\gamma), \gamma \leq \alpha\right\rangle \\
\vec{U} \upharpoonright\langle\alpha, \beta\rangle=\left\langle U(\gamma, \delta) \mid\left(\delta<o^{\vec{U}}(\gamma), \gamma<\alpha\right) \vee(\delta<\beta, \gamma=\alpha)\right\rangle
\end{gathered}
$$

Fix a coherent sequence of ultrafilters \vec{U} with maximal measurable κ. Assume that $o^{\vec{U}}(\kappa)<\min (\nu \mid$ $\left.o^{\vec{U}}(\nu)>0\right):=\delta_{0}$. Let $\alpha \leq \kappa$ with $o^{\vec{U}}(\alpha)>0$, define

$$
\bigcap U(\alpha, i)=\bigcap_{i<o^{\vec{U}}(\alpha)} U(\alpha, i)
$$

We will follow the description of Magidor forcing as presented in [3].

Definition 1.2 The Magidor forcing, denoted by $\mathbb{M}[\vec{U}]$, consist of conditions p of the form $p=$ $\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$. For every $1 \leq i \leq n, t_{i}$ is either an ordinal κ_{i} if $o^{\vec{U}}\left(\kappa_{i}\right)=0$ or a pair $\left\langle\kappa_{i}, B_{i}\right\rangle$ if $o^{\vec{U}}\left(\kappa_{i}\right)>0$ such that:

1. $B \in \bigcap_{\xi<o^{\vec{U}}(\kappa)} U(\kappa, \xi), \quad \min (B)>\kappa_{n}$.
2. for every $1 \leq i \leq n$:
(a) $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle \in[\kappa]^{<\omega}$.
(b) $B_{i} \in \bigcap_{\xi<o^{\vec{U}}\left(\kappa_{i}\right)} U\left(\kappa_{i}, \xi\right)$.
(c) $\min \left(B_{i}\right)>\kappa_{i-1} \quad(i>1)$.

We shall adopt the following notations:

1. $t_{0}=0, t_{n+1}=\langle\kappa, B\rangle$.
2. $o^{\vec{U}}\left(t_{i}\right)=o^{\vec{U}}\left(\kappa\left(t_{i}\right)\right)$.
3. $o^{\vec{U}}\left(t_{i}\right)>0$ then $t_{i}=\left\langle\kappa_{i}, B_{i}\right\rangle=\left\langle\kappa\left(t_{i}\right), B\left(t_{i}\right)\right\rangle$.
4. $o^{\vec{U}}\left(t_{i}\right)=0$ then $t_{i}=\kappa_{i}=\kappa\left(t_{i}\right)$.
5. $\kappa(p)=\left\{\kappa\left(t_{1}\right), \ldots, \kappa\left(t_{n}\right)\right\}$.
6. $B(p)=\stackrel{n+1}{\biguplus_{i=1}} B\left(t_{i}\right)$.

The ordinals κ_{i} are designated to form the eventual Magidor sequence and candidates for the sequence's missing elements in the interval $\left(\kappa\left(t_{i-1}\right), \kappa\left(t_{i}\right)\right.$) (where $t_{0}=0, \kappa\left(t_{n+1}\right)=\kappa$) are provided by the sets $B\left(t_{i}\right)$.

Definition 1.3 Let $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle, q=\left\langle s_{1}, \ldots, s_{m},\langle\kappa, C\rangle\right\rangle \in \mathbb{M}[\vec{U}]$, define the Magidor forcing order by $p \leq q$ (" q extends $\mathrm{p} ")$ iff:

1. $n \leq m$.
2. $B \supseteq C$.
3. $\exists 1 \leq i_{1}<\ldots<i_{n} \leq m$ such that for every $1 \leq j \leq m$:
(a) If $\exists 1 \leq r \leq n$ such that $i_{r}=j$ then $\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$ and $C\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$.
(b) Otherwise $\exists 1 \leq r \leq n+1$ such that $i_{r-1}<j<i_{r}$ then
i. $\kappa\left(s_{j}\right) \in B\left(t_{r}\right)$.
ii. $o^{\vec{U}}\left(s_{j}\right)<o^{\vec{U}}\left(t_{r}\right)$.
iii. $B\left(s_{j}\right) \subseteq B\left(t_{r}\right) \cap \kappa\left(s_{j}\right)$.

The direct extension order is defined by $p \leq^{*} q$ iff:

1. $p \leq q$.
2. $n=m$.

Remarks:

1. Let $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$. Assume we would like to add an element s_{j} to p between t_{r-1} and t_{r}. It is possible only if $o^{\vec{U}}\left(t_{r}\right)>0$. Moreover, let $\xi=o^{\vec{U}}\left(s_{j}\right)$, then

$$
s_{j} \in\left\{\alpha \in B\left(t_{r}\right) \mid o^{\vec{U}}(\alpha)=\xi\right\}
$$

If $s_{j}=\kappa\left(s_{j}\right)$ (i.e. $\xi=0$), then any s_{j} satisfying this requirement can be added. If $s_{j}=$ $\left\langle\kappa\left(s_{j}\right), B\left(s_{j}\right)\right\rangle$ (i.e. $\xi>0$), Then according to definition 1.3 (3.b.iii) s_{j} can be added iff

$$
B\left(t_{r}\right) \cap \kappa\left(s_{j}\right) \in \bigcap_{\xi^{\prime}<\xi} U\left(\kappa\left(s_{j}\right), \xi^{\prime}\right)
$$

2. If $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in \mathbb{M}[\vec{U}]$. Fix some $1 \leq j \leq n$ with $o^{\vec{U}}\left(t_{j}\right)>0$. Then t_{j} yields a Magidor forcing in the interval $\left(\kappa\left(t_{j-1}\right), \kappa\left(t_{j}\right)\right)$ with the coherent sequence $\vec{U} \upharpoonright \kappa\left(t_{j}\right)$. t_{j} acts autonomously in the sense that the sequence produced by it is independent of how the sequence develops in other parts. This observation becomes handy when manipulating p, since we can make local changes at t_{j} with no impact on other t_{i} 's.

Let $Y=\left\{\alpha \leq \kappa \mid o^{\vec{U}}(\alpha)<\delta_{0}\right\}$. From the coherency of \vec{U}, it follows that $Y \in \bigcap U(\kappa, i)$. For every $\beta \in Y$ with ${ }_{o}(\beta)>0$, and $i<\delta_{0}$ define

$$
Y(i)=\left\{\alpha<\kappa \mid o^{\vec{U}}(\alpha)=i\right\} \text { and } Y[\beta]=\biguplus_{i<o^{\vec{U}}(\beta)} Y(i)
$$

It follows that for every $\beta \in Y$ and $i<o^{\vec{U}}(\beta), Y(i) \cap \beta \in U(\beta, i)$. To see this take $\beta \leq \kappa$ in Y and $j_{\beta, i}: V \rightarrow U l t(U(\beta, i), V)$.

$$
Y(i) \cap \beta \in U(\beta, i) \Leftrightarrow \beta \in j_{\beta, i}(Y(i) \cap \beta)
$$

By coherency, $o^{j_{\beta, i}(\vec{U})}(\beta)=i$ and therefore

$$
\beta \in j_{\beta, i}(Y(i) \cap \beta)=\left\{\alpha<j_{\beta, i}(\beta) \mid o^{j_{\beta, i}(\vec{U})}(\alpha)=j_{\beta, i}(i)=i\right\} .
$$

Consequently, $Y[\beta] \cap \beta \in \bigcap_{i<o^{\vec{U}}(\beta)} U(\beta, i)$.
For $B \in \bigcap_{i<o^{U}(\beta)} U(\beta, i)$ define recursively, $B^{(0)}=B$,

$$
B^{(n+1)}=\left\{\alpha \in B^{(n)} \mid\left(\overrightarrow{O^{U}}(\alpha)=0\right) \vee\left(B^{(n)} \cap \alpha \in \cap U(\alpha, i)\right)\right\}
$$

Let $B^{\star}=\bigcap_{n<\omega} B^{(n)}$ it follows by induction that for all $n<\omega$,

$$
B^{(n)} \in \bigcap_{i<o^{\vec{U}}(\beta)} U(\beta, i)
$$

By β-completeness $B^{\star} \in \bigcap_{i<\sigma^{U}(\beta)} U(\beta, i) . B^{\star}$ has the feature that,

$$
\forall \alpha \in B^{\star} \alpha \cap B^{\star} \in \bigcap_{i<o^{\vec{U}}(\alpha)} U(\alpha, i)
$$

The previous paragraph indicates that by restricting to a dense subset of $\mathbb{M}[\vec{U}]$ we can assume that given $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in \mathbb{M}[\vec{U}]$, every choice of ordinal in $B\left(t_{r}\right)$ automatically satisfies the requirement that we discussed in remark (2). Formally, we work above $\langle\rangle,\langle\kappa, Y\rangle\rangle$ and we directly-extend any $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$ as follows:
For every $1 \leq r \leq n+1$ and $i<o^{\vec{U}}\left(t_{r}\right)$ define

$$
B\left(t_{r}, i\right):=Y(i) \cap B\left(t_{r}\right)^{\star} \in U\left(\kappa\left(t_{r}\right), i\right)
$$

It follows that

$$
B^{\star}\left(t_{r}\right):=\biguplus_{i<o^{\vec{U}}\left(t_{r}\right)}^{\biguplus} B\left(t_{r}, i\right) \in \bigcap_{i<o^{\vec{U}}\left(t_{r}\right)} U\left(\kappa\left(t_{r}\right), i\right) .
$$

Shrink $B\left(t_{r}\right)$ to $B^{\star}\left(t_{r}\right)$ to obtain

$$
\begin{gathered}
p \leq^{*} p^{*}=\left\langle t_{1}^{\prime}, \ldots, t_{n}^{\prime},\left\langle\kappa, B^{\star}\right\rangle\right\rangle \\
t_{r}^{\prime}= \begin{cases}t_{r} & o^{\vec{U}}\left(t_{r}\right)=0 \\
\left\langle\kappa\left(t_{r}\right), B^{\star}\left(t_{r}\right)\right\rangle & \text { otherwise }\end{cases}
\end{gathered}
$$

This dense subset also simplifies \leq to

$$
p \leq q \text { iff } \kappa(p) \subseteq \kappa(q), B(p) \subseteq B(q)
$$

When applying the revised approach regarding the large sets, it is apparent that $B\left(t_{r}, i\right)$ provide candidates, precisely, for the i-limit indices in the final sequence C_{G} i.e. of indices γ such that $o_{L}(\gamma)=i$ (for the definition of $o_{L}(\gamma)$ see Notations). This is stated formally in proposition 1.5. Recall that:

- $\mathbb{M}[\vec{U}]$ satisfies $\kappa^{+}-$c.c.
- Let $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in \mathbb{M}[\vec{U}]$ and denote $\nu=\kappa\left(t_{j}\right)$ where j is the minimal such that $o^{\vec{U}}\left(t_{j}\right)>0$. Then above p there is $\nu-\leq *$ closure.
- $\mathbb{M}[\vec{U}]$ satisfies the Prikry condition.

Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic, define

$$
C_{G}=\bigcup\{\kappa(p) \mid p \in G\}
$$

We will abuse notation by considering C_{G} as a the canonical enumeration of the set $C_{G} . C_{G}$ is closed and unbounded in κ. Therefore, the order type of C_{G} determines the cofinality of κ in $V[G]$. The next propositions can be found in [3].

Proposition 1.4 Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic. Then G can be reconstructed from C_{G} as follows

$$
G=\left\{p \in \mathbb{M}[\vec{U}] \mid\left(\kappa(p) \subseteq C_{G}\right) \wedge\left(C_{G} \backslash \kappa(p) \subseteq B(p)\right)\right\}
$$

Therefore $V[G]=V\left[C_{G}\right]$.

Proposition 1.5 Let G be $\mathbb{M}[\vec{U}]$-generic and C_{G} the corresponding Magidor sequence. Let $\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in$ G, then

$$
\operatorname{otp}\left(\left(\kappa\left(t_{i}\right), \kappa\left(t_{i+1}\right)\right) \cap C_{G}\right)=\omega^{o^{\vec{U}}\left(\kappa\left(t_{i+1}\right)\right)}
$$

Thus if $\kappa\left(t_{i+1}\right)=C_{G}(\gamma)$ then $o_{L}(\gamma)=o^{\vec{U}}\left(t_{i+1}\right)$.

Corollary 1.6 If $o^{\vec{U}}(\kappa)<\delta_{0}$, then $c f^{V}\left(o^{\vec{U}}(\kappa)\right)=c f^{V[G]}\left(o^{\vec{U}}(\kappa)\right)$ and $c f^{V[G]}(\kappa)=c f\left(\omega^{o^{\vec{U}}(\kappa)}\right)$.

Let $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in G$. By proposition 1.5, for each $i \leq n$ one can determine the position of $\kappa\left(t_{i}\right)$ in C_{G}. Namely, $C_{G}\left(\gamma\left(t_{i}, p\right)\right)=\kappa\left(t_{i}\right)$ where

$$
\begin{equation*}
\gamma\left(t_{i}, p\right):=\sum_{j \leq i} \omega^{o^{\vec{U}}\left(t_{j}\right)}<\omega^{o^{\vec{U}}(\kappa)} \tag{*}
\end{equation*}
$$

Addition and power are of ordinals. The equation $\left({ }^{*}\right)$ induces a C.N.F equation

$$
\gamma=\sum_{r=1}^{m} \omega^{o^{\vec{U}}\left(t_{j_{r}}\right)} \quad \text { (C.N.F) }
$$

This indicates the close connection between Cantor normal form of the index $\gamma \operatorname{in} \operatorname{otp}\left(C_{G}\right)$ and the elements $t_{j_{1}}, \ldots, t_{j_{m}}$ in p which determines that $\gamma\left(t_{i}, p\right)=\gamma$. Let $q=\left\langle s_{1}, \ldots, s_{m},\left\langle\kappa, B^{\prime}\right\rangle\right\rangle$ be another condition, by definition 1.3 (3.b.ii), if s_{j} is an element of q which was added to p in the interval $\left(\kappa\left(t_{r}\right), \kappa\left(t_{r+1}\right)\right)$ then $o^{\vec{U}}\left(s_{j}\right)<o^{\vec{U}}\left(t_{r+1}\right)$. Consequently, adding it to p, does not impact the Cantor normal form and $\gamma\left(t_{r+1}, p\right)=\gamma\left(t_{r+1}, q\right)$.

2 Combinatorial properties

The combinatorial nature of $\mathbb{M}[\vec{U}]$ is most clearly depicted through the language of step-extensions as presented below.
To perform a one step extension of $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$:

1. Choose $1 \leq r \leq n+1$ with $0<o^{\vec{U}}\left(t_{r}\right)$.
2. Choose $i<o^{\vec{U}}\left(t_{r}\right)$.
3. Choose an ordinal $\alpha \in B\left(t_{r}, i\right)$.
4. Shrink the sets $B\left(t_{s}, j\right)$ to $C\left(t_{s}, j\right) \in U\left(t_{s}, j\right)$ for every $1 \leq s \leq n+1$ and set

$$
C\left(t_{s}\right)=\biguplus_{j<o \vec{U}\left(t_{i}\right)} C_{s}(j)
$$

5. For $j<o^{\vec{U}}(\alpha)$ pick $C(\alpha, j) \in U(\alpha, j), C(\alpha, j) \subseteq B\left(t_{r}, j\right) \cap \alpha$ and set

$$
C(\alpha)=\biguplus_{j<o \vec{U}(\alpha)} C(\alpha, j)
$$

6. Cut $C\left(t_{r}\right)$ above α.

Extend p to

$$
\begin{gathered}
p^{\ulcorner }\left\langle\alpha,\left(C\left(t_{s}\right)\right)_{s=1}^{n+1}, C(\alpha)\right\rangle=\left\langle t_{1}^{\prime}, \ldots, t_{i-1}^{\prime},\langle\alpha, C(\alpha)\rangle, t_{i}^{\prime}, \ldots, t_{n}^{\prime},\left\langle\kappa, C\left(t_{n+1}\right)\right\rangle\right\rangle \\
t_{r}^{\prime}= \begin{cases}t_{r} & o^{\vec{U}}\left(t_{r}\right)=0 \\
\left\langle\kappa\left(t_{r}\right), C\left(t_{r}\right)\right\rangle & \text { o.w. }\end{cases}
\end{gathered}
$$

It is clear that every extension of p with only one ordinal added is a one step extension. Next we introduce some notations which will describe a general step extension. The idea is simply to classify extensions according to the order of the measures the new elements of the sequence are chosen from.

Definition 2.1 Let $p=\langle t_{1}, t_{2}, \ldots, t_{n}, \underbrace{\langle\kappa, B\rangle}_{t_{n+1}}\rangle \in \mathbb{M}[\vec{U}]$

1. For $1 \leq i \leq n+1$ define the tree or order types $T_{i}(p)={ }^{\omega>}\left[o^{\vec{U}}\left(t_{i}\right)\right]$, with the order

$$
\left\langle x_{1}, \ldots, x_{m}\right\rangle \preceq\left\langle x_{1}^{\prime}, \ldots, x_{m^{\prime}}^{\prime}\right\rangle
$$

iff there are $1 \leq i_{1}<\ldots<i_{m} \leq m^{\prime}$ such that for every $1 \leq j \leq m^{\prime}$:
(a) If $\exists 1 \leq r \leq m$ such that $i_{r}=j$ then $x_{r}=x_{j}^{\prime}$.
(b) Otherwise $\exists 1 \leq r \leq n+1$ such that if $i_{r-1}<j<i_{r}$ then $x_{j}^{\prime}<x_{r}$.

We think of x_{r} 's as placeholders of ordinals from $B\left(t_{i}, x_{r}\right)$ and the ordering is induced by definition 1.3 (3).
2. $T(p)=\prod_{i=1}^{n+1} T_{i}(p)$ with \preceq is the product order.
3. Let $X_{i} \in T_{i}(p) \quad 1 \leq i \leq n+1,\left|X_{i}\right|=l_{i}, X=\left\langle X_{1}, \ldots, X_{n+1}\right\rangle \in T(p)$.
(a) Define

$$
\vec{\alpha}_{i}=\left\langle\alpha_{1}, \ldots, \alpha_{l_{i}}\right\rangle \in B\left(p, X_{i}\right):=\prod_{j=1}^{l_{i}} B\left(t_{i}, X_{i}(j)\right)
$$

X_{i} is called an extension-type below t_{i} and $\left\langle\alpha_{1}, \ldots, \alpha_{l_{i}}\right\rangle$ is of type X_{i}.
(b) Define

$$
\vec{\alpha}=\left\langle\overrightarrow{\alpha_{1}}, \ldots, \overrightarrow{\alpha_{n+1}}\right\rangle \in B(p, X):=\prod_{i=1}^{n+1} \prod_{j=1}^{l_{i}} B\left(t_{i}, X_{i}(j)\right)
$$

X is called an extension-type of p and $\vec{\alpha}$ is of type X. Notice that X is uniquely determined by $\vec{\alpha}$ and the $o^{\vec{U}}()$ function.

Notice that by our assumption $|T(p)|<\min \left(\nu \mid 0<o^{\vec{U}}(\nu)\right)=\delta_{0}$. We also use:

- $\left|X_{i}\right|=l_{i}$.
- $l_{x}=\max \left(i \mid X_{i} \neq \emptyset\right)$.
- $x_{i, j}=X_{i}(j) \alpha_{i, j}=\vec{\alpha}_{i}(j)$.
- $x_{i, l_{i}+1}=o^{\vec{U}}\left(t_{i}\right)$ and $\alpha_{i, n+1}=\kappa\left(t_{i}\right)$.
- $x_{m c}=x_{l_{X}, l_{l_{X}}}$ (i.e. the last element of X).
- $o^{\vec{U}}(\vec{\alpha})=\left\langle o^{\vec{U}}\left(\alpha_{i, j}\right) \mid x_{i, j} \in X\right\rangle$ is the type of $\vec{\alpha}$.

A general extension of \mathbf{p} of type \mathbf{X} is of the form:

$$
p \frown\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{x_{i, j} \in X},\left(C\left(t_{r}\right)\right)_{r=1}^{n+1}\right\rangle=p \smile\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}\right\rangle
$$

where

$$
p^{\frown}\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}\right\rangle=\left\langle\overrightarrow{s_{1}}, t_{1}^{\prime}, \ldots, \overrightarrow{s_{n}}, t_{n}^{\prime}, \overrightarrow{s_{n+1}},\langle\kappa, C\rangle\right\rangle
$$

1. $\vec{\alpha} \in B(p, X)$.
2. $t_{s}^{\prime}= \begin{cases}t_{s} & o^{\vec{U}}\left(t_{s}\right)=0 \\ \left\langle\kappa\left(t_{s}\right), C\left(t_{s}\right)\right\rangle & \text { o.w. }\end{cases}$

For some pre chosen sets $C\left(t_{s}\right) \in \bigcap_{\xi<o^{\vec{U}}\left(t_{s}\right)} U\left(\kappa\left(t_{s}\right), \xi\right), C\left(t_{s}\right) \subseteq B\left(t_{s}\right)$.
3. $\vec{s}_{i}(j)= \begin{cases}\alpha_{i, j} & x_{i, j}=0 \\ \left\langle\alpha_{i, j}, C\left(x_{i, j}\right)\right\rangle & \text { o.w. }\end{cases}$

For some pre chosen sets $C\left(x_{i, j}\right) \in \bigcap_{\xi<x_{i, j}} U\left(\alpha_{i, j}, \xi\right), C\left(x_{i, j}\right) \subseteq B\left(t_{i}\right) \cap \alpha_{i, j}$.
4. $C \in \bigcap_{\xi<o^{\vec{U}}(\kappa)} U(\kappa, \xi)$ and $\min (C)>\max \left(\vec{s}_{n+1}\right)$.

By the discussion succeeding definition 1.3, we conclude that

$$
p^{\smile}\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}\right\rangle \in \mathbb{M}[\vec{U}]
$$

We will more frequently use $p^{\ulcorner }\langle\vec{\alpha}\rangle$ with the same definition as above except we do not shrink any sets and simply take $\alpha_{i, j} \cap B\left(t_{i}\right)=C\left(x_{i, j}\right)$. Define

$$
p^{\curvearrowleft} X=\{p \frown\langle\vec{\alpha}\rangle \mid \vec{\alpha} \in B(p, X)\}
$$

The set $p^{\wedge} X^{\prime}$'s induce a partition of $\mathbb{M}[\vec{U}]$ above p as stated in the next proposition which is well known and follows directly from definition 1.3.

Proposition 2.2 Let $p \in \mathbb{M}[\vec{U}]$ be any condition and $p \leq q \in \mathbb{M}[\vec{U}]$. Then there exists a unique $\vec{\alpha} \in B(p, X)$ such that $p \subset\langle\vec{\alpha}\rangle \leq^{*} q$.

Example: Let

$$
\begin{aligned}
& p=\langle\underbrace{\left\langle\left\langle\left(t_{1}\right), B\left(t_{1}\right)\right\rangle\right.}_{t_{1}}, \underbrace{\kappa\left(t_{2}\right)}_{t_{2}}, \underbrace{\left\langle\kappa\left(t_{3}\right), B\left(t_{3}\right)\right\rangle}_{t_{3}}, \underbrace{\left\langle\kappa\left(t_{4}\right), B\left(t_{4}\right)\right\rangle}_{t_{4}}, \underbrace{\langle\kappa, B\rangle\rangle}_{t_{5}}\rangle \\
& o^{\vec{U}}\left(t_{1}\right)=1, o^{\vec{U}}\left(t_{2}\right)=0, o^{\vec{U}}\left(t_{3}\right)=2, o^{\vec{U}}\left(t_{4}\right)=1, o^{\vec{U}}(\kappa)=3
\end{aligned}
$$

Extend p to q as follows:

$$
q=p^{\curvearrowleft}\langle\underbrace{\left\langle\left\langle\alpha_{1,1}, \alpha_{1,2}\right\rangle\right.}_{\alpha_{1}}, \underbrace{\langle \rangle}_{\alpha_{2}}, \underbrace{\left\langle\alpha_{3,1}, \alpha_{3,2}, \alpha_{3,3}\right\rangle}_{\alpha_{3}}, \underbrace{\left\langle\alpha_{4,1}\right\rangle}_{\alpha_{4}}, \underbrace{\left.\left\langle\alpha_{5,1}, \alpha_{5,2}, \alpha_{5,3}\right\rangle\right\rangle}_{\alpha_{5}}
$$

$$
o^{\vec{U}}\left(\alpha_{i, j}\right)= \begin{cases}0 & \langle i, j\rangle=\langle 1,1\rangle,\langle 1,2\rangle \\ & \langle 3,2\rangle,\langle 4,1\rangle,\langle 5,1\rangle \\ 1 & \langle i, j\rangle=\langle 3,1\rangle,\langle 3,3\rangle \\ & \langle 5,2\rangle \\ 2 & \langle i, j\rangle=\langle 5,3\rangle\end{cases}
$$

Then the extension-type of $\left\langle\overrightarrow{\alpha_{1}}, \overrightarrow{\alpha_{2}}, \overrightarrow{\alpha_{3}}, \overrightarrow{\alpha_{4}}, \overrightarrow{\alpha_{5}}\right\rangle$ is

$$
X=\langle\underbrace{\langle 0,0\rangle}_{X_{1}}, \underbrace{\langle \rangle}_{X_{2}}, \underbrace{\langle 1,0,1\rangle}_{X_{3}}, \underbrace{\langle 0\rangle}_{X_{4}}, \underbrace{\langle 0,1,2\rangle}_{X_{5}}\rangle
$$

This can be illustrated as follows:

As presented in proposition 2.2 , a choice from the set $p^{\frown} X$ is essentially a choice from $B(p, X)$, which is of the form $\prod_{i=1}^{n} A_{i}$ where for every $1 \leq i \leq n, A_{i} \in U_{i}$ and U_{i} 's are normal measures on a non decreasing sequence of measurable $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$. For the rest of this section, we prove some combinatorical properties of such sets.

Lemma 2.3 Let $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$ be any collection of measurable cardinals with normal
measures U_{1}, \ldots, U_{n} respectively. Assume $F: \prod_{i=1}^{n} A_{i} \longrightarrow \nu$ where $\nu<\kappa_{1}$ and $A_{i} \in U_{i}$. Then there exists $H_{i} \subseteq A_{i} \quad H_{i} \in U_{i}$ such that $\prod_{i=1}^{n} H_{i}$ is homogeneous for F i.e. $F \upharpoonright \prod_{i=1}^{n} H_{i}$ is constant.

Proof. By induction on n. The case $n=1$ is a well known property of normal measures. Assume that the lemma holds for $n-1$, and fix $\vec{\eta}=\left\langle\eta_{1}, \ldots, \eta_{n-1}\right\rangle \in \prod_{i=1}^{n-1} A_{i}$. Define

$$
F_{\vec{\eta}}: A_{n} \backslash\left(\eta_{n-1}+1\right) \longrightarrow \nu, \quad F_{\vec{\eta}}(\xi)=F\left(\eta_{1}, \ldots, \eta_{n-1}, \xi\right)
$$

By the case $\mathrm{n}=1$ there exists an homogeneous $A_{n} \supseteq H(\vec{\eta}) \in U_{n}$ with color $C(\vec{\eta})<\nu$. Define

$$
{\vec{\eta} \in \prod_{i=1}^{n-1} A_{i}}_{\Delta} H(\vec{\eta})=: H_{n}
$$

By the induction hypotheses applied to $C: \prod_{i=1}^{n-1} A_{i} \rightarrow \nu$, there is an homogeneous set of the form $\prod_{i=1}^{n-1} H_{i}$ where $A_{i} \supseteq H_{i} \in U_{i}$. To see that $\prod_{i=1}^{n} H_{i}$ is homogeneous for F, let $\overrightarrow{\eta^{\prime}}, \vec{\eta} \in \prod_{i=1}^{n} H_{i}$, and denote by $\eta_{n}, \eta_{n}^{\prime}$, the ordinals $\max (\vec{\eta}), \max \left(\vec{\eta}^{\prime}\right)$ respectively. It follows that:

$$
F(\vec{\eta})=F_{\vec{\eta} \backslash\left\langle\eta_{n}\right\rangle}\left(\eta_{n}\right) \underset{\substack{\uparrow \\ \eta_{n} \in H\left(\vec{\eta} \backslash\left\langle\eta_{n}\right\rangle\right)}}{=} C\left(\vec{\eta} \backslash\left\langle\eta_{n}\right\rangle\right) \underset{\substack{\uparrow}}{\underset{\eta}{\rightleftharpoons}\left\langle\eta_{n}\right\rangle, \overrightarrow{\eta^{\prime} \backslash\left\langle\eta_{n}^{\prime}\right\rangle \in \prod_{i=1}^{n-1} H_{i}}}
$$

Lemma 2.4 Let $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$ be a non descending finite sequence of measurable cardinals with normal measures U_{1}, \ldots, U_{n} respectively. Assume $F: \prod_{i=1}^{n} A_{i} \longrightarrow B$ where B is any set, and $A_{i} \in U_{i}$. Then there exists $H_{i} \subseteq A_{i} H_{i} \in U_{i}$ and set of coordinates $I \subseteq\{1, \ldots, n\}$ such that for every $\vec{\eta}, \vec{\xi} \in \prod_{i=1}^{n} H_{i}$,

$$
F(\vec{\eta})=F(\vec{\xi}) \leftrightarrow \vec{\eta} \upharpoonright I=\vec{\xi} \upharpoonright I
$$

In other words, the function $F \upharpoonright \prod_{i=1}^{n} H_{i}$ is well defined modulo the equivalence relation:

$$
\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \sim\left\langle\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right\rangle \quad \text { iff } \forall i \in I \alpha_{i}=\alpha_{i}^{\prime}
$$

and the induced function, \bar{F}, is injective. We call the set I, a set of important coordinates.

Proof. By induction on n, if $n=1$ then it is immediate since for any $f: A \rightarrow B$ such that $A \in U$ where U is a normal measure on a measurable cardinal κ, B is any set, then there exists $A \supseteq A^{\prime} \in U$ for which $F \upharpoonright A^{\prime}$ is either constant or injective. Assume that the lemma holds for $n-1, n>1$ and let $F: \prod_{i=1}^{n} A_{i} \longrightarrow B$ be a function satisfying the conditions of the lemma. Define for every $x_{1} \in A_{1}$, $F_{x_{1}}: \prod_{i=2}^{n=1} A_{i} \backslash\left(x_{1}+1\right) \longrightarrow B$

$$
F_{x_{1}}\left(x_{2}, \ldots, x_{n}\right)=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

By the induction hypothesis, for every $x_{1} \in A_{1}$ there are $A_{i} \supseteq A_{i}\left(x_{1}\right) \in U_{i}$ and set of important coordinates $I\left(x_{1}\right) \subseteq\{2, \ldots, n\}$. Therer is $A_{1} \supseteq A_{1}^{\prime} \in U_{1}$ such that function $I: A_{1} \rightarrow P(\{2, \ldots, n\})$ is constant on A_{1}^{\prime} with value I^{\prime}. For every $i=2, \ldots, n$ define $A_{i}^{\prime}={\underset{x}{1}}^{\Delta} A_{1} A_{i}\left(x_{1}\right)$. So far, $\prod_{i=1}^{n} A_{i}^{\prime}$ has the property:

$$
\begin{gathered}
\text { (1) } \forall\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle,\left\langle x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle \in \prod_{i=1}^{n} A_{i}^{\prime} \text { with the same first coordinate } \\
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \text { iff } \forall i \in I^{\prime} . x_{i}=x_{i}^{\prime}
\end{gathered}
$$

In particular, \bar{F} is a well defined function modulo $I^{\prime} \cup\{1\}$. Next we determine if 1 is important. For every $\left\langle\alpha, \alpha^{\prime}\right\rangle \in A_{1}^{\prime} \times A_{1}^{\prime}$, define $t_{\left\langle\alpha, \alpha^{\prime}\right\rangle}: \prod_{i=2}^{n} A_{i}^{\prime} \backslash\left(\alpha^{\prime}+1\right) \rightarrow 2$

$$
t_{\left\langle\alpha, \alpha^{\prime}\right\rangle}\left(x_{2}, \ldots, x_{n}\right)=1 \longleftrightarrow F\left(\alpha, x_{2}, \ldots, x_{n}\right)=F\left(\alpha^{\prime}, x_{2}, \ldots, x_{n}\right)
$$

By lemma 2.3, for $i=2, \ldots, n$ there are $A_{i}^{\prime} \supseteq A_{i}\left(\alpha, \alpha^{\prime}\right) \in U_{i}$ such that $\prod_{i=2}^{n} A_{i}\left(\alpha, \alpha^{\prime}\right)$ is homogeneous for $t_{\left\langle\alpha, \alpha^{\prime}\right\rangle}$ with color $C\left(\alpha, \alpha^{\prime}\right)$. Taking the diagonal intersection over $A_{1}^{\prime} \times A_{1}^{\prime}$ of the sets $A_{i}\left(\alpha, \alpha^{\prime}\right)$, at each coordinate $i=2, \ldots, n$, we obtain $H_{i} \in U_{i}$ such that $\prod_{i=2}^{n} H_{i}$ is homogeneous for every $t_{\left\langle\alpha, \alpha^{\prime}\right\rangle}$. Finally, the function $C: A_{1}^{\prime} \times A_{1}^{\prime} \rightarrow 2$ yield an homogeneous $A_{1}^{\prime} \supseteq H_{1} \in U_{1}$ with color C^{\prime}.

Case 1: $C^{\prime}=1$. Let us show that the important coordinates are I^{\prime}.
Let $\left\langle x_{1}, \ldots, x_{n}\right\rangle,\left\langle x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle \in \prod_{i=1}^{n} H_{i}$, then,

$$
F\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \underset{F\left(x_{1}^{\prime}, x_{2}^{\prime} \ldots, x_{n}^{\prime}\right)=F\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)}{\longleftrightarrow} F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \underset{\uparrow}{\longleftrightarrow} \forall i . \in I^{\prime} x_{i}=x_{i}^{\prime}
$$

$\underline{\text { Case 2: }} C^{\prime}=0$. Then we have a second property:
(2) $\forall x_{1}, x_{1}^{\prime} \in H_{1}$ and $\left\langle x_{2}, \ldots, x_{n}\right\rangle \in \prod_{i=2}^{n} H_{i} . x_{1}=x_{1}^{\prime} \leftrightarrow F\left(x_{1}, x_{2} \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)$

We would like to claim that in this case the important coordinates are $I=I^{\prime} \cup\{1\}$ but we still have to shrink H_{i} 's, to eliminate all remaining counter examples for \bar{F} not being injective i.e. $\left\langle x_{1}, \ldots, x_{n}\right\rangle,\left\langle x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle \in \prod_{i=1}^{n} H_{i}$ such that

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle \neq\left\langle x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle \bmod I \text { and } F\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Take Any counter example and set

$$
\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}=\left\{y_{1}, \ldots, y_{k}\right\} \text { (increasing enumeration) }
$$

To reconstruct $\left\{x_{1}, \ldots, x_{n}\right\},\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ from $\left\{y_{1}, \ldots, y_{k}\right\}$ is suffices to know for example how $\left\{x_{1}, \ldots, x_{n}\right\}$ are arranged between $\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$. There are finitely many ways ${ }^{2}$ for Such an arrangement. Therefore, if we succeed with eliminating examples of a fixed arrangement, then by σ-completeness of the measures we will be able to eliminate all counter example.

Fix such an arrangement, the increasing sequence $\left\langle y_{1}, \ldots, y_{k}\right\rangle$ is in the product of some k large sets $\prod_{i=1}^{k} H_{n_{i}}$. We have to be careful since the sequence of measurables induced by n_{1}, \ldots, n_{k} is not necessarily non descending. To fix this we can cut the sets H_{i} such that in the sequence $\left\langle\kappa_{i} \mid i=1, \ldots, n\right\rangle$, wherever $\kappa_{i}<\kappa_{i+1}$ then $\min \left(H_{i+1}\right)>\kappa_{i}=\sup \left(H_{i}\right)$. Therefore, assume that $\left\langle\kappa_{n_{i}} \mid i=1, \ldots, k\right\rangle$ is non descending. Define $G: \prod_{i=1}^{k} H_{n_{i}} \rightarrow 2$

$$
G\left(y_{1}, \ldots, y_{k}\right)=1 \Leftrightarrow F\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

By lemma 2.3 there must be $U_{i} \ni H_{i}^{\prime} \subseteq H_{i}$ homogeneous for G with value D. If $D=0$ we have eliminated from H_{i} 's all counter examples of that fixed ordering. Toward a contradiction, assume that $D=1$, then every y_{1}, \ldots, y_{k} yield a counter example $\left\langle x_{1}, \ldots, x_{n}\right\rangle,\left\langle x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle$. By propety (1), $x_{1}=x_{1}^{\prime}$, hence assume without loss of generality that $x_{1}<x_{1}^{\prime}$, fix $x<w<y_{2}<\ldots<y_{n}$, where $x, w \in H_{1}^{\prime}$ and $y_{i} \in H_{n_{i}}^{\prime}$ for $i=2, \ldots, k$. Since $D=1$, it follows that $G\left(x, y_{2}, \ldots, y_{k}\right)=$ $G\left(w, y_{2}, \ldots, y_{k}\right)=1$, thus,

$$
F\left(x, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)=F\left(w, x_{2}, \ldots, x_{n}\right)
$$

which is a contradiction to property (2).

[^1]
3 The Main Result Up to κ

As stated in corollary 1.6, Magidor forcing adds a closed unbounded sequence of length $\omega^{o^{\vec{U}}(\kappa)}$ to κ. It is possible to obtain a family of forcings that adds a sequence of any limit length to some measurable cardinal, using a variation of Magidor forcing as we defined it ${ }^{3}$. Namely, let \vec{U} be a coherent sequence and $\lambda_{0}<\min \left(\nu \mid o^{\vec{U}}(\nu)>0\right)$ a limit ordinal

$$
\text { (not necessarily C.N.F) } \lambda_{0}=\omega^{\gamma_{1}}+\ldots+\omega^{\gamma_{n}} \quad, \gamma_{n}>0
$$

Let $\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle$ be an increasing sequence such that $o^{\vec{U}}\left(\kappa_{i}\right)=\gamma_{i}$. Define the forcing $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ as follows:
The root condition will be

$$
0_{\mathbb{M}\left[\kappa_{1}, \ldots \kappa_{n}\right\rangle}\langle\vec{U}]=\left\langle\left\langle\kappa_{1}, B_{1}\right\rangle, \ldots,\left\langle\kappa_{n}, B_{n}\right\rangle\right\rangle
$$

where B_{1}, \ldots, B_{n} are as in the discussion following definition 1.3. The conditions of this forcing are any finite sequence that extends $0_{\left.\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle} \backslash \vec{U}\right]}$ in the sense of definition 1.3. Since each $\left\langle\kappa_{i}, B_{i}\right\rangle$ acts autonomously, this forcing is essentially the same as $\mathbb{M}[\vec{U}]$. In fact, $\mathbb{M}[\vec{U}]$ is just $\mathbb{M}_{\langle\kappa\rangle}[\vec{U}]$. The notation we used for $\mathbb{M}[\vec{U}]$ can be extended to $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ since the conditions are also of the form $\left\langle t_{1}, \ldots, t_{r},\langle\kappa, B\rangle\right\rangle$. Let

$$
\left\langle\left\langle\nu_{1}, C_{1}\right\rangle, \ldots,\left\langle\nu_{m}, C_{m}\right\rangle\right\rangle \in \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]
$$

then $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$ is an open subset of $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ (i.e. \leq-upwards closed). Moreover, if $G \subseteq$ $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ is any generic set with $\left\langle\left\langle\nu_{1}, C_{1}\right\rangle, \ldots,\left\langle\nu_{m}, C_{m}\right\rangle\right\rangle \in G$ then,

$$
(G)_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}:=G \cap \mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]=\left\{p \in G \mid p \geq\left\langle\left\langle\nu_{1}, C_{1}\right\rangle, \ldots,\left\langle\nu_{m}, C_{m}\right\rangle\right\rangle\right\}
$$

is generic for $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$. The filter $(G)_{\vec{\nu}}$ is essentially the same generic as G since it yield the same Magidor sequence and in particular $V\left[(G)_{\vec{\nu}}\right]=V[G]$.

From now on the set B in $\left\langle t_{1}, \ldots, t_{r},\langle\kappa, B\rangle\right\rangle$ will be suppressed and replaced by $t_{r+1}=\langle\kappa, B\rangle$. An alternative way to describe $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ is through the following product

$$
\begin{aligned}
& \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}] \simeq \mathbb{M}[\vec{U}]_{\left\langle\kappa_{1}\right\rangle} \times\left(\mathbb{M}[\vec{U}]_{\left\langle\kappa_{2}\right\rangle}\right)_{>\kappa_{1}} \times \ldots \times\left(\mathbb{M}[\vec{U}]_{\left\langle\kappa_{n}\right\rangle}\right)_{>\kappa_{n-1}} \\
& \left.\left.\left(\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}\right\rangle[\vec{U}]\right)_{>\alpha}=\left\{\left\langle t_{1}, \ldots, t_{r+1}\right\rangle \in \mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}\right\rangle[\vec{U}] \mid \kappa\left(t_{1}\right)>\alpha\right\}
\end{aligned}
$$

[^2]This isomorphism is induced by the embeddings

$$
\begin{gathered}
i_{r}:\left(\left(\mathbb{M}[\vec{U}]_{\left\langle\kappa_{r}\right\rangle}\right)_{>\kappa_{r-1}} \rightarrow \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}] \quad, r=1, \ldots, n\right. \\
i_{r}\left(\left\langle s_{1}, \ldots, s_{k+1}\right\rangle\right)=\langle\left\langle\kappa_{1}, B_{1}\right\rangle, \ldots,\left\langle\kappa_{r-1}, B_{r-1}\right\rangle, s_{1}, \ldots, s_{k}, \underbrace{\left.\left.\kappa_{r}, B\left(s_{k+1}\right)\right\rangle, \ldots,\left\langle\kappa_{n}, B_{n}\right\rangle\right\rangle}_{s_{k+1}}
\end{gathered}
$$

From this embeddings, it is clear that the generic sequence produced by $\left(\mathbb{M}[\vec{U}]_{\left\langle\kappa_{r}\right\rangle}\right)_{>\kappa_{r-1}}$ is just $C_{G} \cap\left(\kappa_{r-1}, \kappa_{r}\right)$.

The formula to compute coordinates still holds:
Let $p=\left\langle t_{1}, \ldots, t_{m}, t_{m+1}\right\rangle \in \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}\langle\vec{U}]$. For each $1 \leq i \leq m$, the coordinate of $\kappa\left(t_{i}\right)$ in any Magidor sequence extending p is $C_{G}(\gamma)=\kappa\left(t_{i}\right)$, where

$$
\gamma=\sum_{j \leq i} \omega^{o^{\vec{U}}}\left(t_{j}\right)=: \gamma\left(t_{i}, p\right)<\lambda_{0}
$$

Lemma 3.1 Let G be generic for $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ and the sequence derived

$$
C_{G}=\bigcup\left\{\left\{\kappa\left(t_{1}\right), \ldots, \kappa\left(t_{l}\right)\right\} \mid\left\langle t_{1}, \ldots, t_{l}, t_{l+1}\right\rangle \in G\right\}
$$

1. $\operatorname{otp}\left(C_{G}\right)=\lambda_{0}$.
2. If $\kappa_{i}<C_{G}(\gamma)<\kappa_{i+1}$ where γ is limit, then there exists $\vec{\nu}=\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle$ such that $(G)_{\vec{\nu} \cdot\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}$ is generic for $\mathbb{M}_{\vec{\nu} \backslash\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}], C_{G}=C_{(G)_{\vec{\nu}} \backslash\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}$ and the sequences obtained by the split

$$
\mathbb{M}_{\vec{\nu}}[\vec{U}] \times\left(\mathbb{M}_{\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]\right)_{>\nu_{m}} \simeq \mathbb{M}_{\vec{\nu} \sim\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]
$$

are $C_{G} \cap C_{G}(\gamma), C_{G} \backslash C_{G}(\gamma)$. More accurately, if

$$
\gamma=\underbrace{\omega^{\gamma_{1}}+\ldots+\omega^{\gamma_{i}}}_{\xi}+\omega^{\gamma_{i+1}^{\prime}}+\ldots+\omega^{\gamma_{m}^{\prime}} \quad \text { (C.N.F) }
$$

then

$$
\vec{\nu}=\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle=\left\langle\kappa_{1}, \ldots, \kappa_{i}, C_{G}\left(\xi+\omega^{\gamma_{i+1}^{\prime}}\right), \ldots, C_{G}(\gamma)\right\rangle
$$

Proof. For (1), the same reasoning as in lemmas 1.5-1.6 should work. For (2), notice that by proposition 1.4, $0_{\mathbb{M}_{\vec{\nu}} \backslash\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle} \in G$. Thus $(G)_{\vec{\nu} \checkmark\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}$ is generic for $\left.\mathbb{M}_{\vec{\nu} \sim\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle} \backslash \vec{U}\right]$. The embeddings

$$
\begin{gathered}
i_{1}: \mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}] \rightarrow \mathbb{M}_{\overrightarrow{\vec{V}} \sim\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}] \\
i_{1}\left(\left\langle t_{1}, \ldots, t_{r+1}\right\rangle\right)=\left\langle\left\langle t_{1}, \ldots, t_{r+1},\left\langle\kappa_{i+1}, B_{i+1}\right\rangle, \ldots,\left\langle\kappa_{n}, B_{n}\right\rangle\right\rangle\right.
\end{gathered}
$$

and

$$
\begin{gathered}
i_{2}:\left(\mathbb{M}_{\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}\langle\vec{U}]\right)_{>\nu_{m}} \rightarrow \mathbb{M}_{\vec{\rightharpoonup} \sim\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}] \\
i_{2}\left(\left\langle s_{1}, \ldots, s_{k+1}\right\rangle\right)=\left\langle\left\langle\left\langle\kappa_{1}, B_{1}\right\rangle, \ldots,\left\langle\kappa_{i}, B_{i}\right\rangle, s_{1}, \ldots, s_{k+1}\right\rangle\right.
\end{gathered}
$$

induces the isomorphism of $\mathbb{M}_{\vec{\nu} \prec\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]$ with the product. Therefore, $i_{1}^{-1}(G), i_{2}^{-1}(G)$ are generic for $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}],\left(\mathbb{M}_{\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]\right)_{>\nu_{m}}$ respectively. By the definition of i_{1}, i_{2} this generics obviously yield the sequences $C_{G} \cap C_{G}(\gamma)$ and $C_{G} \backslash C_{G}(\gamma)$.

In general we will identify G with $(G)_{\vec{\nu}}$ when using lemma 3.1.
Notice that, the information used in order to compute $\gamma\left(t_{i}, p\right)$ is just $o^{\vec{U}}\left(t_{i}\right)$ which is provided by the suitable extension type. Let X be an extension type of p, one can compute the coordinates of any extension $\vec{\alpha}$ of type X. In particular, for any $\alpha_{i, r}$ substituting $x_{i, r} \in X$ the coordinate of $\alpha_{i, r}$ is

$$
\gamma=\gamma\left(t_{i-1}, p\right)+\omega^{x_{i, 1}}+\ldots+\omega^{x_{i, r}}=: \gamma\left(x_{i, r}, p^{\frown} X\right)
$$

In this situation we say that X unveils the γ-th coordinate. If $x_{i, r}=x_{m c}$, we say that X unveils γ as maximal coordinate.

Proposition 3.2 Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ and γ such that for some $0 \leq i \leq n$, $\gamma\left(t_{i}, p\right)<\gamma<\gamma\left(t_{i+1}, p\right)$. Then there exists an extension-type X unveiling γ as maximal coordinate. Moreover, if

$$
\gamma\left(t_{i}, p\right)+\sum_{j \leq m} \omega^{\gamma_{j}}=\gamma(C . N . F)
$$

then the extension type is $X=\left\langle X_{i}\right\rangle$ where $X_{i}=\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle$.

Example: Assume $\lambda_{0}=\omega_{1}+\omega^{2} \cdot 2+\omega$, let $\kappa_{1}<\kappa_{2}<\kappa_{3}<\kappa_{4}=\kappa$ be such that

$$
o^{\vec{U}}\left(\kappa_{1}\right)=\omega_{1}, o^{\vec{U}}\left(\kappa_{2}\right)=o^{\vec{U}}\left(\kappa_{3}\right)=2 \text { and } o^{\vec{U}}(\kappa)=1
$$

Let

$$
p=\langle\underbrace{\left\langle\nu_{1}, B\left(\nu_{1}\right)\right\rangle}_{t_{1}}, \underbrace{\nu_{2}}_{t_{2}}, \underbrace{\left\langle\kappa_{1}, B\left(k_{1}\right)\right\rangle}_{t_{3}}, \underbrace{\left\langle\nu_{4}, B\left(\nu_{3}\right)\right\rangle}_{t_{4}}, \underbrace{\left\langle\kappa_{2}, B\left(\kappa_{2}\right)\right\rangle}_{t_{5}}, \underbrace{\left\langle\kappa_{3}, B\left(\kappa_{3}\right)\right\rangle}_{t_{6}}, \underbrace{\langle\kappa, B\rangle}_{t_{7}}\rangle
$$

$$
o^{\vec{U}}\left(t_{1}\right)=\omega, o^{\vec{U}}\left(t_{2}\right)=0, o^{\vec{U}}\left(t_{4}\right)=1
$$

Let G be any generic with $p \in G$. Calculating $\gamma\left(t_{i}, p\right)$ for $i=1, \ldots, 7$:

1. $\gamma\left(t_{1}, p\right)=\omega^{o^{\vec{U}}\left(t_{1}\right)}=\omega^{\omega} \Rightarrow C_{G}\left(\omega^{\omega}\right)=\nu_{1}$.
2. $\gamma\left(t_{2}, p\right)=\omega^{\omega}+\omega^{o^{\vec{U}}\left(t_{2}\right)}=\omega^{\omega}+1 \Rightarrow C_{G}\left(\omega^{\omega}+1\right)=\nu_{2}$.
3. $\gamma\left(t_{3}, p\right)=\omega^{\omega}+1+\omega^{\omega_{1}}=\omega^{\omega_{1}}=\omega_{1}$.
4. $\gamma\left(t_{4}, p\right)=\omega_{1}+\omega \Rightarrow C_{G}\left(\omega_{1}+\omega\right)=\nu_{3}$.
5. $\gamma\left(t_{5}, p\right)=\omega_{1}+\omega+\omega^{2}=\omega_{1}+\omega^{2}$.

To demonstrate proposition 3.2 let $\gamma=\omega^{\omega}+\omega^{5} \cdot 3+5$, then,

$$
\begin{gathered}
\gamma\left(t_{2}, p\right)=\omega^{\omega}+1<\gamma<\omega_{1}=\gamma\left(t_{3}, p\right) \\
\left(\omega^{\omega}+1\right)+\omega^{5} \cdot 3+5=\gamma
\end{gathered}
$$

The extension type unveiling γ as maximal coordinate is then

$$
X=\left\langle\langle \rangle,\langle \rangle, X_{3}\right\rangle, X_{3}=\langle 5,5,5,0,0,0,0,0\rangle
$$

i.e. every extension $\vec{\alpha}=\left\langle\alpha_{3,1}, \ldots \alpha_{3,8}\right\rangle \in B(p, X)$ will satisfy that

$$
\gamma\left(\alpha_{m c}, p^{\frown} \vec{\alpha}\right)=\gamma\left(\alpha_{3,8}, p^{\complement} \alpha\right)=\gamma\left(x_{3,8}, p^{\frown} X\right)=\gamma
$$

Let us state the main theorem of this paper.
Theorem 3.3 Let \vec{U} be a coherent sequence in $V,\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle$ be a sequence such that $o^{\vec{U}}\left(\kappa_{i}\right)<$ $\min \left(\nu \mid 0<o^{\vec{U}}(\nu)\right)=: \delta_{0}$, let G be $\left.\left.\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle} \backslash \vec{U}\right]\right]$-generic and let $A \in V[G]$ be a set of ordinals. Then there exists $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

We will prove Theorem 3.3 by induction on $\operatorname{otp}\left(C_{G}\right)$. For otp $\left(C_{G}\right)=\omega$ it is just the Prikry forcing which is know by [5]. Let $\operatorname{otp}\left(C_{G}\right)=\lambda_{0}$ be a limit ordinal,

$$
\lambda_{0}=\omega^{\gamma_{n}}+\ldots+\omega^{\gamma_{1}} \quad \text { (C.N.F) }
$$

If $\sup (A)<\kappa$, then by lemma 5.3 in [8], $A \in V\left[C_{G} \cap \sup (A)\right]$. By lemma 3.1, $V\left[C_{G} \cap \sup (A)\right]$ is a generic extension of some $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$ with order type smaller the λ_{0}, thus by induction we are done. In fact, if there exists $\alpha<\kappa$ such that $A \in V\left[C_{G} \cap \alpha\right]$ then the induction hypothesis works. Let us assume that $A \notin V\left[C_{G} \cap \alpha\right]$ for every $\alpha<\kappa$ this kind of set will be called recent set. Since $\kappa_{1}, \ldots, \kappa_{n}$ will be fixed through the rest of this chapter we shall abuse notation and denote $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]=\mathbb{M}[\vec{U}]$.

3.1 The Main Results for Sets of Cardinality Less Than κ

First let us show that for A with small enough cardinality the theorem holds regardless of the induction.

Lemma 3.4 Let $\underset{\sim}{x}$ be a $\mathbb{M}[\vec{U}]$-name and $p \in \mathbb{M}[\vec{U}]$ such that $p \Vdash \underset{\sim}{x}$ is an ordinal. Then there exists $p \leq^{*} p^{*} \in \mathbb{M}[\vec{U}]$ and an extension-type $X \in T(p)$ such that

$$
\begin{equation*}
\forall p^{*} \frown\langle\vec{\alpha}\rangle \in p^{*} \subset \quad p^{*} \leftharpoonup\langle\vec{\alpha}\rangle \| \underset{\sim}{x} \tag{*}
\end{equation*}
$$

Proof. Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}]$.
Claim 1 There exists $p \leq^{*} p^{\prime}$ such that for some extension type X

$$
\forall \vec{\alpha} \in B\left(p^{\prime}, X\right) \exists C\left(x_{i, j}\right) \text { s.t. } p^{\prime}\left\langle\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{i, j}\right\rangle \| \underset{\sim}{x}\right.
$$

Proof of Claim: Define sets $B_{X}\left(t_{i}, j\right)$, for any fixed $X \in T(p)$ as follows: Recall the notation $l_{X}, x_{m c}$ and let $\vec{\alpha} \in B\left(p, X \backslash\left\langle x_{m c}\right\rangle\right)$. Define

$$
B_{X}^{(0)}(\vec{\alpha})=\left\{\theta \in B\left(t_{l_{X}}, x_{m c}\right) \mid \exists\left(C\left(x_{i, j}\right)\right)_{i, j} \quad p^{\smile}\left\langle\vec{\alpha}, \theta,\left(C\left(x_{i, j}\right)\right)_{i, j}\right\rangle \| \underset{\sim}{x}\right\}
$$

and $B_{X}^{(1)}(\vec{\alpha})=B\left(t_{l_{X}}, x_{m c}\right) \backslash B_{X}^{(0)}(\vec{\alpha})$. One and only one of $B_{X}^{(0)}(\vec{\alpha}), B_{X}^{(1)}(\vec{\alpha})$ is in $U\left(\kappa\left(t_{l_{X}}\right), x_{m c}\right)$. Set $B_{X}(\vec{\alpha})$ and $F_{X}(\vec{\alpha}) \in\{0,1\}$ such that

$$
B_{X}(\vec{\alpha})=B_{X}^{\left(F_{X}(\vec{\alpha})\right)}(\vec{\alpha}) \in U\left(\kappa\left(t_{l_{X}}\right), x_{m c}\right)
$$

Define

$$
B_{X}^{\prime}\left(t_{l_{X}}, x_{m c}\right)=\underset{\vec{\alpha} \in B\left(p, X \backslash\left\langle x_{m c}\right\rangle\right)}{\Delta} B_{X}(\vec{\alpha})
$$

Consider the function $F: B\left(p, X \backslash\left\langle x_{m c}\right\rangle\right) \rightarrow\{0,1\}$. Applying lemma 2.3 to F, we get an homogeneous $\prod_{x_{i, j} \in X \backslash\left\langle x_{m c}\right\rangle} B_{X}^{\prime}\left(t_{i}, x_{i, j}\right)$ where

$$
B_{X}^{\prime}\left(t_{i}, x_{i j}\right) \subseteq B\left(t_{i}, x_{i j}\right), B_{X}^{\prime}\left(t_{i}, x_{i j}\right) \in U\left(t_{i}, x_{i, j}\right), x_{i j} \in X \backslash\left\langle x_{m c}\right\rangle
$$

For $\xi \notin X_{i}$, Set

$$
B_{X}^{\prime}\left(t_{i}, \xi\right)=B\left(t_{i}, \xi\right)
$$

Since $|T(p)|<\kappa\left(t_{1}\right)$, for each $1 \leq i \leq n+1$ and $\xi<o^{\vec{U}}\left(t_{i}\right)$

$$
B^{\prime}\left(t_{i}, \xi\right):=\bigcap_{X \in T(p)} B_{X}^{\prime}\left(t_{i}, \xi\right) \in U\left(\kappa\left(t_{i}\right), \xi\right)
$$

Finally, let $p^{\prime}=\left\langle t_{1}^{\prime}, \ldots, t_{n}^{\prime}, t_{n+1}^{\prime}\right\rangle$ where

$$
t_{i}^{\prime}= \begin{cases}t_{i} & o^{\vec{U}}\left(t_{i}\right)=0 \\ \left\langle\kappa\left(t_{i}\right), B^{\prime}\left(t_{i}\right)\right\rangle & \text { otherwise }\end{cases}
$$

It follows that $p \leq^{*} p^{\prime} \in \mathbb{M}[\vec{U}]$.
Let H be $\mathbb{M}[\vec{U}]$-generic, $p^{\prime} \in H$. By the assumption on p, there exists $\delta<\kappa$ such that $V[H] \models(\underset{\sim}{x})_{H}=\delta$. Hence, there is $p^{\prime} \leq q \in M[\vec{U}]$ such that $q \Vdash \underset{\sim}{x}=\delta$. By proposition 2.2, there is a unique $p^{\prime} \subset\langle\vec{\alpha}, \theta\rangle \in p^{\prime} \subset X$ for some extension type X , such that $p^{\prime} \subset\langle\vec{\alpha}, \theta\rangle \leq^{*} q . \quad X, p^{\prime}$ are as wanted:
By the definition of p^{\prime} it follows that $\vec{\alpha} \in B\left(p^{\prime}, X \backslash\left\langle x_{m c}\right\rangle\right)$ and $\theta \in B_{X}(\vec{\alpha})$. Since $q \Vdash \underset{\sim}{x}=\stackrel{\vee}{\delta}$, we have that $F_{X}(\vec{\alpha})=0$. Fix $\left\langle\overrightarrow{\alpha^{\prime}}, \theta^{\prime}\right\rangle$ of type X. $\overrightarrow{\alpha^{\prime}}$ and $\vec{\alpha}$ belong to the same homogeneous set, thus $F\left(\overrightarrow{\alpha^{\prime}}\right)=F(\vec{\alpha})=0$ and

$$
\theta^{\prime} \in B_{X}^{(0)}\left(\overrightarrow{\alpha^{\prime}}\right) \Rightarrow \exists\left(C\left(x_{i, j}\right)\right)_{i, j} \text { s.t. } p^{\prime \frown}\left\langle\overrightarrow{\alpha^{\prime}}, \theta^{\prime},\left(C\left(x_{i, j}\right)\right)_{i, j}\right\rangle \| \underset{\sim}{x}
$$

For every $\vec{\alpha} \in B\left(p^{\prime}, X\right)$, fix some $\left(C_{i, j}(\vec{\alpha})\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}$ such that

$$
p^{\prime} \frown\left\langle\vec{\alpha},\left(C_{i, j}(\vec{\alpha})\right)_{\substack{i \leq n+1+1 \\ j \leq i_{i}+1}}\right\rangle \| \underset{\sim}{x}
$$

It suffices to show that we can find $p^{\prime} \leq^{*} p^{*}$ such that for every $\vec{\alpha} \in B\left(p^{*}, X\right)$

$$
B\left(t_{i}^{*}\right) \cap\left(\alpha_{s}, \alpha_{i, j}\right) \subseteq C_{i, j}(\vec{\alpha}), \quad 1 \leq i \leq n+1,1 \leq j \leq l_{i}+1
$$

Where α_{s} is the predecessor of $\alpha_{i, j}$ in $\vec{\alpha}$. In order to do that, define $p^{\prime} \leq^{*} p_{i, j} i \leq n+1, j \leq l_{i}+1$ then $p^{*} \geq^{*} p_{i, j}$ will be as wanted. Define $p_{i, j}$ as follows:
Fix $\vec{\beta} \in B\left(p^{\prime},\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right)$, by lemma 2.3, the function

$$
C_{i, j}(\vec{\beta}, *): B\left(p^{\prime}, X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right) \rightarrow P\left(\beta_{i, j}\right)
$$

has homogeneous sets $B^{*}\left(\vec{\beta}, x_{r, s}\right) \subseteq B\left(p^{\prime}, x_{r, s}\right)$ for $x_{r, s} \in X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle$. Denote the constant value by $C_{i, j}^{*}(\vec{\beta})$. Define

$$
B^{*}\left(t_{r}, x_{r, s}\right)=\underset{\vec{\beta} \in B\left(p^{\prime},\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right)}{\Delta} B^{*}\left(\vec{\beta}, x_{r, s}\right), x_{r, s} \in X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle
$$

Next, fix $\alpha \in B\left(t_{i}^{\prime}, x_{i, j}\right)$ and let

$$
C_{i, j}^{*}(\alpha)=\underset{\overrightarrow{\alpha^{\prime} \in B\left(p^{\prime},\left\langle x_{1,1}, \ldots, x_{i, j-1}\right\rangle\right)}}{\Delta} C_{i, j}^{*}\left(\overrightarrow{\alpha^{\prime}}, \alpha\right)
$$

Thus $C_{i, j}^{*}(\alpha) \subseteq \alpha$. Moreover, $\kappa\left(t_{i}\right)$ is in particular an ineffable cardinal and therefore there are $B^{*}\left(t_{i}, x_{i, j}\right) \subseteq B\left(t_{i}^{\prime}, x_{i, j}\right)$ and $C_{i, j}^{*}$ such that

$$
\forall \alpha \in B^{*}\left(t_{i}, x_{i, j}\right) \quad C_{i, j}^{*} \cap \alpha=C_{i, j}^{*}(\alpha)
$$

By coherency, $C_{i, j}^{*} \in \bigcap U\left(t_{i}, \xi\right)$. Finally, define $p_{i, j}=\left\langle t_{1}^{(i, j)}, \ldots, t_{n}^{(i, j)}, t_{n+1}^{(i, j)}\right\rangle$

$$
B\left(t_{i}^{(i, j)}\right)=B^{*}\left(t_{i}\right) \cap\left(\bigcap_{j} C_{i, j}^{*}\right) \quad 1 \leq i \leq n+1
$$

To see that p^{*} is as wanted, let $\vec{\alpha} \in B\left(p^{*}, X\right)$ and fix any i, j. Then $\vec{\alpha} \in B\left(p_{i, j}, X\right)$ and $\alpha_{i, j} \in$ $B^{*}\left(t_{i}, x_{i, j}\right)$. Thus

$$
B\left(t_{i}^{*}\right) \cap\left(\alpha_{s}, \alpha_{i, j}\right) \subseteq C_{i, j}^{*} \cap \alpha_{i, j} \backslash \alpha_{s}=C_{i, j}^{*}\left(\alpha_{i, j}\right) \backslash \alpha_{s} \subseteq C_{i, j}^{*}\left(\alpha_{1,1}, \ldots, \alpha_{i, j}\right)=C_{i, j}(\vec{\alpha})
$$

Lemma 3.5 Let $G \subseteq \mathbb{M}[\vec{U}]$ be V-generic filter and $A \in V[G]$ be any set of ordinals, such that $|A|<\delta_{0}$. Then there is $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

Proof. Let $A=\left\langle a_{\xi} \mid \xi<\delta\right\rangle \in V[G]$, where $\delta<\delta_{0}$ and $\underset{\sim}{A}=\langle\underset{\sim}{a} \mid \xi<\delta\rangle$ be a $\mathbb{M}[\vec{U}]$-name for $\left\langle a_{\xi} \mid \xi<\delta\right\rangle$. Let $q \in G$ such that $q \Vdash \underset{\sim}{A} \subseteq O n$. We proceed by a density argument, fix $q \leq p \in$ $\mathbb{M}[\vec{U}]$. By lemma 3.4, for each $\xi<\delta$ there exists $X(\xi)$ and $p \leq^{*} p_{\xi}^{*}$ satisfying (*). By $\delta^{+}{ }_{-\leq *}$ closure above p we have $p^{*} \in \mathbb{M}[\vec{U}]$ such that $\forall \xi<\delta p_{\xi}^{*} \leq p^{*}$. For each ξ, define $F_{\xi}: B\left(p^{*}, X(\xi)\right) \longrightarrow \kappa$

$$
F_{\xi}(\vec{\alpha})=\gamma \text { for the unique } \gamma \text { such that } p^{*}\left\langle\langle\vec{\alpha}\rangle \Vdash{\underset{\sim}{a}}_{\xi}=\stackrel{\vee}{\gamma}\right. \text {. }
$$

Using lemma 2.4 , we obtain for every $\xi<\delta$ a set of important coordinates

$$
I_{\xi} \subseteq\left\{\langle i, j\rangle \mid 1 \leq i \leq n+1,1 \leq j \leq l_{i}\right\}
$$

Example: Assume $o^{\vec{U}}(k)=3, C_{G}=\left\langle C_{G}(\alpha) \mid \alpha<\omega^{3}\right\rangle$.

$$
a_{0}=C_{G}(80), a_{1}=C_{G}(\omega+2)+C_{G}(3), a_{2}=C_{G}\left(\omega^{2} \cdot 2+\omega+1\right)
$$

and

$$
p=\langle\nu_{0},\left\langle\nu_{\omega}, B\left(\nu_{\omega}, 0\right)\right\rangle,\langle\kappa, \underbrace{B(\kappa, 0) \cup B(\kappa, 1) \cup B(\kappa, 2)}_{B(\kappa)}\rangle\rangle
$$

We use as index the coordinate in the final sequence to improve clarity. To determine a_{0}, unveil the first 80 elements of the Magidor sequence i.e. any element of the form

$$
p_{0}=\left\langle\nu_{0}, \nu_{1}, \ldots, \nu_{80},\left\langle\nu_{\omega}, B\left(\nu_{\omega}, 0\right) \backslash \nu_{80}+1\right\rangle,\langle\kappa, B(\kappa)\rangle\right\rangle
$$

will decide the value of a_{0}. Thus the extension type $\mathrm{X}(0)$ is

$$
X(0)=\langle\langle\underbrace{0, \ldots, 0}_{80 \text { times }}\rangle,\langle \rangle\rangle
$$

The important coordinates to decide the value of a_{0} is only the 80th coordinate. It is easily seen to be one to one modulo the irrelevant coordinates $1, \ldots, 79$. For a_{1}, the form is

$$
p_{1}=\left\langle\nu_{0}, \nu_{1}, \nu_{2}, \nu_{3},\left\langle\nu_{\omega}, B\left(\nu_{\omega}, 0\right) \backslash \nu_{3}+1\right\rangle, \nu_{\omega+1}, \nu_{\omega+2},\left\langle\kappa, B(\kappa) \backslash\left(\nu_{\omega+2}+1\right)\right\rangle\right\rangle
$$

The extension type is

$$
X(1)=\langle\langle 0,0,0\rangle,\langle 0,0\rangle\rangle
$$

The important coordinates are the 3 rd and the 5 th. For a_{2} we have

$$
p_{2}=\left\langle\nu_{0},\left\langle\nu_{\omega}, B\left(\nu_{\omega}, 0\right)\right\rangle,\left\langle\nu_{\omega^{2}}, B\left(\nu_{\omega^{2}}\right)\right\rangle,\left\langle\nu_{\omega^{2} \cdot 2}, B\left(\nu_{\omega^{2} \cdot 2}\right)\right\rangle,\left\langle\nu_{\omega^{2} \cdot 2+\omega}, B\left(\nu_{\omega^{2} \cdot 2+\omega}\right)\right\rangle,\left\langle\kappa, B(\kappa) \backslash \nu_{\omega^{2} \cdot 2+\omega}\right\rangle\right\rangle
$$

$$
X(2)=\langle\langle \rangle,\langle 2,2,1\rangle\rangle
$$

Back to the proof, since G was generic, there is $\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle=p^{\star} \in G$ with such functions. Find $D_{\xi} \subseteq C_{G}$ such that

$$
D_{\xi} \in B\left(p^{\star}, X_{\xi}\right)
$$

By proposition 1.4 and since $p^{\star} \in G, D_{\xi}$ exists. Since $V[G] \models(\underset{\sim}{a})_{G}=a_{\xi}$ we conclude that,

$$
p^{\star \frown}\left\langle D_{\xi}\right\rangle \Vdash{\underset{\sim}{a}}_{\xi}=\stackrel{\vee}{a_{\xi}}
$$

hence, $F_{\xi}\left(D_{\xi}\right)=a_{\xi}$. Set $C_{\xi}=D_{\xi} \upharpoonright I_{\xi}$ and $C^{\prime}=\bigcup_{\xi<\delta} C_{\xi}$. Let us show that $V\left[\left\langle a_{\xi} \mid \xi<\delta\right\rangle\right]=V\left[C^{\prime}\right]$:
In $V\left[C^{\prime}\right]$, fix some enumeration of $C^{\prime}=\left\{C_{i}^{\prime} \mid i<\operatorname{otp}\left(C^{\prime}\right)\right\}$. For each $\xi<\delta, C_{\xi}$ can be extracted from C^{\prime} and $\operatorname{Index}\left(C_{\xi}, C^{\prime}\right) \in V$ (See the notation section for the definition of $\operatorname{Index}(\mathrm{A}, \mathrm{B})$). Since $\delta<\delta_{0},\left\langle\operatorname{Index}\left(C_{\xi}, C^{\prime}\right) \mid \xi<\delta\right\rangle \in V$, which implies that $\left\langle C_{\xi} \mid \xi<\delta\right\rangle \in V\left[C^{\prime}\right]$. Still in $V\left[C^{\prime}\right]$, for every $\xi<\delta$ find

$$
D_{\xi}^{\prime} \in B\left(p^{\star}, X_{\xi}\right) \text { such that } D_{\xi}^{\prime} \upharpoonright I_{\xi}=C_{\xi}
$$

Such D_{ξ}^{\prime} exists as D_{ξ} witnesses (the sequence $\left\langle D_{\xi} \mid \xi<\delta\right\rangle$ may not be in $V\left[C^{\prime}\right]$). Since $D_{\xi}^{\prime} \sim_{I_{\xi}} D_{\xi}$, and by the property of I_{ξ},

$$
F_{\xi}\left(D_{\xi}^{\prime}\right)=F_{\xi}\left(D_{\xi}\right)=a_{\xi}
$$

hence $\left\langle a_{\xi} \mid \xi<\delta\right\rangle=\left\langle F_{\xi}\left(D_{\xi}^{\prime}\right) \mid \xi<\delta\right\rangle \in V\left[C^{\prime}\right]$.
In the other direction, Given $\left\langle a_{\xi} \mid \xi<\delta\right\rangle$, for each $\xi<\delta$ pick $D_{\xi}^{\prime} \in F_{\xi}^{-1}\left(a_{\xi}\right)$ (Note that $F_{\xi}^{-1}\left(a_{\xi}\right) \neq \emptyset$ follows from the fact that $D_{\xi} \in \operatorname{dom}\left(F_{\xi}\right)$ and $\left.F_{\xi}\left(D_{\xi}\right)=a_{\xi}\right)$. Since F_{ξ} is 1-1 modulo I_{ξ} and $F_{\xi}\left(D_{\xi}\right)=F_{\xi}\left(D_{\xi}^{\prime}\right)$ we have

$$
D_{\xi} \sim_{I_{\xi}} D_{\xi}^{\prime} \text { and } C_{\xi}=D_{\xi} \upharpoonright I_{\xi}=D_{\xi}^{\prime} \upharpoonright I_{\xi}
$$

Hence

$$
\left\langle C_{\xi} \mid \xi<\delta\right\rangle=\left\langle D_{\xi}^{\prime} \upharpoonright I_{\xi} \mid \xi<\delta\right\rangle \in V\left[\left\langle a_{\xi} \mid \xi<\delta\right\rangle\right] \text { and } C^{\prime} \in V\left[\left\langle a_{\xi} \mid \xi<\delta\right\rangle\right] .
$$

3.2 The Main Result for Subsets of κ

We shall proceed by induction on $\sup (A)$ for a recent set A. As we have seen in the discussion following Theorem 3.3, if $A \subseteq \kappa$ is recent then $\sup (A)=\kappa$. For such A, the next lemma gives a sufficient conditions.

Lemma 3.6 Let $A \in V[G], \sup (A)=\kappa$. Assume that $\exists C^{*} \subseteq C_{G}$ such that

1. $C^{*} \in V[A]$ and $\forall \alpha<\kappa A \cap \alpha \in V\left[C^{*}\right]$.
2. $c f^{V[A]}(\kappa)<\delta_{0}$.

Then $\exists C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

Proof. Let $c f^{V[A]}(\kappa)=\eta$ and $\left\langle\gamma_{\xi} \mid \xi<\eta\right\rangle \in V[A]$ be a cofinal sequence in κ. Work in $V[A]$, pick an enumerations of $P\left(\gamma_{\xi}\right)=\left\langle X_{\xi, i} \mid i<2^{\gamma_{\xi}}\right\rangle \in V\left[C^{*}\right]$. Since $A \cap \gamma_{\xi} \in V\left[C^{*}\right]$, there exists $i_{\xi}<2^{\gamma_{\xi}}$ such that $A \cap \gamma_{\xi}=X_{\xi, i_{\xi}}$. The sequences

$$
C^{*}, \quad\left\langle i_{\xi} \mid \xi<\eta\right\rangle, \quad\left\langle\gamma_{\xi} \mid \xi<\eta\right\rangle
$$

can be coded in $V[A]$ to a sequence $\left\langle x_{\alpha} \mid \alpha<\eta\right\rangle$. By lemma 3.5, $\exists C^{\prime} \subseteq C_{G}$ such that $V\left[\left\langle x_{\alpha}\right| \alpha<\right.$ $\eta\rangle]=V\left[C^{\prime}\right]$. Let us argue that $V[A]=V\left[\left\langle x_{\alpha} \mid \alpha<\delta\right\rangle\right]$, clearly $V[A] \supseteq V\left[\left\langle x_{\alpha} \mid \alpha<\eta\right\rangle\right]$. For the other direction, note that $A=\bigcup_{\xi<\eta} X_{\xi, i_{\xi}} \in V\left[\left\langle x_{\alpha} \mid \alpha<\eta\right\rangle\right]$.

Let us consider two kind of subsets of κ :

1. $\exists \alpha^{*}<\kappa$ such that $\forall \beta<\kappa \quad A \cap \beta \in V\left[A \cap \alpha^{*}\right]$ and we say that $A \cap \alpha$ stabilizes. An example of such A is a generic Prikry sequence $\left\{C_{G}(n) \mid n<\omega\right\}$, simply take $\alpha^{*}=0$.
2. For all $\alpha<\kappa$ there exists $\beta<\kappa$ such that $V[A \cap \alpha] \subsetneq V[A \cap \beta]$ as example we can take Magidor forcing with $o^{\vec{U}}(\kappa)=2$ and A the entire Magidor sequence C_{G}.

First we consider A 's such that $A \cap \alpha$ does not stabilize.
Lemma 3.7 Assume that $A \cap \alpha$ does not stabilize, then there exists $C^{\prime} \subseteq C_{G}$ such that $V[A]=$ $V\left[C^{\prime}\right]$.

Proof. Work in $V[A]$, define the sequence $\left\langle\alpha_{\xi} \mid \xi<\theta\right\rangle$:

$$
\alpha_{0}=\min (\alpha \mid V[A \cap \alpha] \supsetneq V)
$$

Assume that $\left\langle\alpha_{\xi} \mid \xi<\lambda\right\rangle$ has been defined and for every $\xi, \alpha_{\xi}<\kappa$. If $\lambda=\xi+1$ then set

$$
\alpha_{\lambda}=\min \left(\alpha \mid V[A \cap \alpha] \supsetneq V\left[A \cap \alpha_{\xi}\right]\right)
$$

If $\alpha_{\lambda}=\kappa$, then α_{λ} satisfies that

$$
\forall \alpha<\kappa \quad A \cap \alpha \in V\left[A \cap \alpha_{\lambda^{*}}\right]
$$

Thus $A \cap \alpha$ stabilizes which contradicts our assumption.
If λ is limit, define

$$
\alpha_{\lambda}=\sup \left(\alpha_{\xi} \mid \xi<\lambda\right)
$$

if $\alpha_{\lambda}=\kappa$ define $\theta=\lambda$ and stop. The sequence $\left\langle\alpha_{\xi} \mid \xi<\theta\right\rangle \in V[A]$ is a continues, increasing unbounded sequence in κ. Therefore, $c f^{V[A]}(\kappa)=c f^{V[A]}(\theta)$. Let us argue that $\theta<\delta_{0}$. Work in $V[G]$, for every $\xi<\theta$ pick $C_{\xi} \subseteq C_{G}$ such that $V\left[A \cap \alpha_{\xi}\right]=V\left[C_{\xi}\right]$. This is a 1-1 function from θ to $P\left(C_{G}\right)$. The cardinal δ_{0} is still a strong limit cardinal (since there are no new bounded subsets below this cardinal and it is measurable in V). Moreover, $\lambda_{0}:=\operatorname{otp}\left(C_{G}\right)<\delta_{0}$, thus

$$
\theta \leq\left|P\left(C_{G}\right)\right|=\left|P\left(\lambda_{0}\right)\right|<\delta_{0}
$$

The only thing left to prove, is that we can find C^{*} as in Lemma 3.6. Work in $V[A]$, for every $\xi<\theta, C_{\xi} \in V[A]$ (The sequence $\left\langle C_{\xi} \mid \xi<\theta\right\rangle$ may not be in $V[A]$). C_{ξ} witnesses that

$$
\exists d_{\xi} \subseteq \kappa\left(\left|d_{\xi}\right|<2^{\lambda_{0}} \text { and } V\left[A \cap \alpha_{\xi}\right]=V\left[d_{\xi}\right]\right)
$$

So $d=\bigcup\left\{d_{\xi} \mid \xi<\theta\right\} \in V[A]$ and $|d| \leq 2^{\lambda_{0}}$. Finally, by lemma 3.5 , there exists $C^{*} \subseteq C_{G}$ such that $V\left[C^{*}\right]=V[d] \subseteq V[A]$. Note that for every $\xi<\theta$, $\operatorname{Index}\left(d_{\xi}, d\right) \in V$ and also since $\theta<\delta_{0}$, the sequence $\left\langle\operatorname{Index}\left(d_{\xi}, x\right) \mid \xi<\theta\right\rangle \in V$. It follows that for every $\xi<\theta, d_{\xi} \in V\left[C^{*}\right]$, and in turn $A \cap \alpha_{\xi} \in V\left[C^{*}\right]$. Since α_{ξ} is unbounded in κ, for all $\alpha<\kappa A \cap \alpha \in V\left[C^{*}\right]$. Apply 3.6, to conclude the lemma.

For the rest of this section, we assume that the sequence $A \cap \alpha$ stabilizes on α^{*}. Let C^{*} be such that $V\left[A \cap \alpha^{*}\right]=V\left[C^{*}\right]$ and $\kappa^{*}=\sup \left(C^{*}\right)$ is limit in C_{G}. Notice that, $\kappa^{*}<\kappa$, since if $\kappa^{*}=\kappa$, then κ is singular in $V\left[C^{*}\right]$, but on the other hand $A \cap \alpha^{*} \in V\left[C_{G} \cap \alpha^{*}\right]$ which implies κ is regular in $V\left[A \cap \alpha^{*}\right]=V\left[C^{*}\right]$.

In order to apply lemma 3.6 , we only need to argue that for A which is recent, κ changes cofinality in $V[A]$. To do this, consider the initial segment $C_{G} \cap \kappa^{*}$ and assume that $\kappa_{j-1} \leq \kappa^{*}<\kappa_{j}$. Denote by

$$
\mathbb{M}_{\leq \kappa^{*}}:=\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{i}, \kappa^{*}\right\rangle}[\vec{U}], \mathbb{M}_{>\kappa^{*}}[\vec{U}]:=\left(\mathbb{M}_{\left\langle\kappa_{j}, \ldots, \kappa\right\rangle}[\vec{U}]\right)_{>\kappa^{*}}
$$

By lemma 3.1 we can split $\mathbb{M}[\vec{U}]$ to

$$
\mathbb{M}_{\leq \kappa^{*}}[\vec{U}] \times\left(\mathbb{M}_{\left\langle\kappa_{j}, \ldots, \kappa\right\rangle}[\vec{U}]\right)_{>\kappa^{*}}
$$

such that C_{G} is generic for $\mathbb{M}_{\leq \kappa^{*}}[\vec{U}] \times \mathbb{M}_{>\kappa^{*}}[\vec{U}]$ and $C_{G} \cap \kappa^{*}$ is generic for $\mathbb{M}_{\leq \kappa^{*}}[\vec{U}]$. By [7, Thm. 15.43], there is a forcing $\mathbb{P} \subseteq R O\left(\mathbb{M}[\vec{U}]_{£ \kappa^{*}}\right)^{4}$, such that $V\left[C^{*}\right]=V\left[G^{*}\right]$ for some generic G^{*} of \mathbb{P}. Also there is a projection of $\pi: \mathbb{M}_{\leq \kappa^{*}}[\vec{U}] \rightarrow \mathbb{P}$. Recall that if $\pi: \mathbb{M}_{\leq \kappa^{*}}[\vec{U}] \rightarrow \mathbb{P}$ is the projection, then the quotient forcing is define:

$$
\mathbb{M}_{\leq \kappa^{*}}[\vec{U}] / G^{*}=\pi^{-1^{\prime \prime}}\left[G^{*}\right]
$$

In $V\left[G^{*}\right]$ define $\mathbb{Q}=\mathbb{M}_{\leq \kappa^{*}}[\vec{U}] / G^{*} \subseteq \mathbb{M}_{\leq \kappa^{*}}[\vec{U}]$. It is well known that $G \upharpoonright \kappa^{*}$ is $V\left[C^{*}\right]$-generic filter for \mathbb{Q} and clearly $V\left[C^{*}\right]\left[C_{G} \cap \kappa^{*}\right]=V\left[\bar{C}_{G} \cap \kappa^{*}\right]$. In section 4, we give a more concrete description of π and \mathbb{Q}, however, in this section we will only need the existence of such a forcing and the fact that the projection if on the part below κ^{*} which implies that \mathbb{Q} is of small cardinality.

Forcing $\mathbb{M}_{>\kappa^{*}}[\vec{U}]$ above $V\left[G \upharpoonright \kappa^{*}\right]$ is essentially forcing a Magidor forcing adding a sequence to κ above κ^{*}. To see this, note that all the measures in \vec{U} above κ^{*} generates measures in $V\left[G \upharpoonright \kappa^{*}\right]$. In conclusion, we have managed to find a forcing $\mathbb{Q} \times \mathbb{M}_{>\kappa^{*}}[\vec{U}] \in V\left[C^{*}\right]$ such that $V[G]$ is one of its generic extensions and $\forall \alpha<\kappa A \cap \alpha \in V\left[C^{*}\right]$.

Work in $V\left[C^{*}\right]$, let $\underset{\sim}{A}$ be a $\mathbb{Q} \times \mathbb{M}_{>\kappa^{*}}[\vec{U}]$-name for A. Since A stabilizes, and by the definition of C^{*}, we can find $\langle q, p\rangle \in G$ such that

$$
\langle q, p\rangle \Vdash \forall \alpha<\kappa \underset{\sim}{A} \cap \alpha \text { is old (where old means in } V\left[C^{*}\right] \text {) }
$$

Formally, the next argument is a density argument above $\langle q, p\rangle$. Nevertheless, in order to simplify notation, assume that $\langle q, p\rangle=0_{Q \times \mathbb{M}[\vec{U}] \kappa^{*}}$. Lemmas 3.8-3.9 prove that a certain property holds densely often in $\mathbb{M}[\vec{U}]_{>\kappa^{*}}$. In order to Make these lemmas more clear, we consider an ongoing example.
Example: Let $\lambda_{0}=\operatorname{otp}\left(C_{G}\right)=\omega^{2}$,

$$
A=\left\{C_{G}(n) \mid n \leq \omega \text { is even }\right\} \cup\left\{C_{G}(\omega \cdot n)+C_{G}(n) \mid 0<n<\omega\right\}
$$

[^3]Therefore

$$
C^{*}=\left\{C_{G}(2 n) \mid n<\omega\right\}, \kappa^{*}=C_{G}(\omega)
$$

The forcing \mathbb{Q} can be thought of as adding the missing coordinates to $C_{G} \upharpoonright \omega$ i.e. the odd coordinates. For the sake of the example, let

$$
p=\langle\underbrace{\left\langle\nu_{\omega \cdot 2}, B_{\omega \cdot 2}\right\rangle}_{t_{1}}, \underbrace{\nu_{\omega \cdot 2+1}}_{t_{2}}, \underbrace{\langle\kappa, B(\kappa)\rangle}_{t_{3}}\rangle \in \mathbb{M}[\vec{U}]_{>\kappa^{*}}
$$

Lemma 3.8 For every $p \in \mathbb{M}[\vec{U}]_{>\kappa^{*}}$ there exists $p \leq^{*} p^{*}$ such that for every extension type X of p^{*} and $q \in \mathbb{Q}\left(\right.$ Recall $\max (\vec{\alpha}) \alpha_{m c}$, if there is $p^{*} \subset \vec{\alpha} \in p^{*} X$ and $p^{* *} \geq^{*} p^{*} \vec{\alpha}$ such that $\left\langle q, p^{* *}\right\rangle \| \mid A \cap$ $\left.\alpha_{m c}\right) \Rightarrow$, then

$$
\begin{equation*}
\left(\forall p^{*} \subset \vec{\alpha} \in p^{*} \mathcal{C}\left\langle q, p^{*} \subset \vec{\alpha}\right\rangle \| A \cap \alpha_{m c}=: a(q, \vec{\alpha})\right) \text { (a propery of } q, X \text {) } \tag{*}
\end{equation*}
$$

Example: Let

$$
q=\left\langle\nu_{1}, \nu_{3},\left\langle\kappa^{*}, B\left(\kappa^{*}\right)\right\rangle\right\rangle, X=\langle\underbrace{\langle 0,0\rangle}_{X_{1}}, \underbrace{\langle \rangle}_{X_{2}}, \underbrace{\langle 1,0\rangle}_{X_{3}}\rangle \text { - extension of } p
$$

and let

$$
\vec{\alpha}=\left\langle\left\langle\alpha_{\omega+1}, \alpha_{\omega+2}\right\rangle,\langle \rangle,\left\langle\alpha_{\omega \cdot 3}, \alpha_{\omega \cdot 3+1}\right\rangle\right\rangle \in B(p, X)
$$

If H is any generic with $\left\langle q, p^{\complement}\langle\vec{\alpha}\rangle\right\rangle \in H$ then all the elements in q and $p^{\complement}\langle\vec{\alpha}\rangle$ have there coordinates in C_{H} as specified above, thus,
$(\underset{\sim}{A})_{H} \cap \alpha_{m c}=(\underset{\sim}{A})_{H} \cap \alpha_{\omega \cdot 3+1}=\left\{C_{H}(n) \mid n \leq \omega\right.$ is even $\} \cup\left\{C_{H}(\omega \cdot n)+C_{H}(n) \mid n<\omega\right\} \cap C_{H}(\omega \cdot 3+1)$
If $\alpha_{\omega \cdot 3}+\nu_{3} \geq \alpha_{\omega \cdot 3+1}$ then

$$
a(q, \vec{\alpha})=(\underset{\sim}{A})_{H} \cap \alpha_{m c}=C_{H} \upharpoonright_{\text {even }} \cup\left\{C_{H}(\omega), C_{H}(\omega)+\nu_{1}, \nu_{\omega \cdot 2}+C_{H}(2)\right\}
$$

If $\alpha_{\omega \cdot 3}+\nu_{3}<\alpha_{\omega \cdot 3+1}$ then

$$
a(q, \vec{\alpha})=(\underset{\sim}{A})_{H} \cap \alpha_{m c}=C_{H} \prod_{\text {even }} \cup\left\{C_{H}(\omega), C_{H}(\omega)+\nu_{1}, \nu_{\omega \cdot 2}+C_{H}(2), \alpha_{\omega \cdot 3}+\nu_{3}\right\}
$$

Anyway, we have that $a(q, \vec{\alpha}) \in V\left[C^{*}\right]$ and therefore $\left\langle q, p^{\complement} \vec{\alpha}\right\rangle \| A \cap \alpha_{m c}$ for every extension $\vec{\alpha}$ of type X. Namely, q, X satisfy (*).

Proof of 3.8: Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$. For every

$$
X=\left\langle X_{1}, \ldots, X_{n+1}\right\rangle \text { - extension of } p \quad, q \in \mathbb{Q}, \vec{\alpha} \in B\left(p, X \backslash\left\langle x_{m c}\right\rangle\right)
$$

Recall that $l_{X}=\min \left(i \mid X_{i} \neq \emptyset\right)$ and define $B_{(0)}^{X}(q, \vec{\alpha})$ to be the set

$$
\left\{\theta \in B\left(t_{l_{X}}, x_{m c}\right) \mid \exists a \exists\left(C\left(x_{i, j}\right)\right)_{x_{i, j}}\left\langle q, p^{\smile}\left\langle\vec{\alpha}, \theta, C\left(x_{i, j}\right)\right\rangle \Vdash \underset{\sim}{A} \cap \theta=a\right\}\right.
$$

Also let $B_{(1)}^{X}(q, \vec{\alpha})=B\left(t_{l_{X}}, x_{m c}\right) \backslash B_{(0)}^{X}(q, \vec{\alpha})$. One and only one of $B_{(1)}^{X}(q, \vec{\alpha}), B_{(0)}^{X}(q, \vec{\alpha})$ is in $U\left(t_{l_{X}}, x_{m c}\right)$. Define $B^{X}(q, \vec{\alpha})$ and $F_{q}^{X}(\vec{\alpha}) \in\{0,1\}$ such that

$$
B^{X}(q, \vec{\alpha})=B_{\left(F_{q}^{X}(\vec{\alpha})\right)}^{X}(q, \vec{\alpha}) \in U\left(t_{l_{X}}, x_{m c}\right)
$$

Since $|\mathbb{Q}| \leq 2^{\kappa^{*}}<\kappa\left(t_{l_{X}}\right)$ we have $B^{X}(\vec{\alpha})=\bigcap_{q} B^{X}(q, \vec{\alpha}) \in U\left(t_{l_{X}}, x_{m c}\right)$. Define

$$
B^{X}\left(t_{l_{X}}, x_{m c}\right)=\underset{\vec{\alpha}}{\Delta} B^{X}(\vec{\alpha}) \in U\left(t_{l_{X}}, x_{m c}\right)
$$

Use lemma 2.3 to find $B^{X}\left(t_{i}, x_{i, j}\right) \subseteq B\left(t_{i}, x_{i, j}\right), B^{X}\left(t_{i}, x_{i, j}\right) \in U\left(t_{i}, x_{i, j}\right)$ homogeneous for every F_{q}^{X}. As before, if $\lambda \notin X_{i}$ set $B^{X}\left(t_{i}, \lambda\right)=B\left(t_{i}, \lambda\right)$. Let

$$
p^{*}=p^{\curvearrowleft}\left\langle\left(B^{*}\left(t_{i}\right)\right)_{i=1}^{n+1}\right\rangle, B^{*}\left(t_{i}, \lambda\right)=\bigcap_{X} B^{X}\left(t_{i}, \lambda\right)
$$

So far what we established the following property: if $q, \vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{i, j}, a$ are such that

$$
\left\langle q, p^{*}\left\langle\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{i, j}\right\rangle\right\rangle \Vdash \underset{\sim}{A} \cap \alpha_{m c}=a\right.
$$

since $\alpha_{m c} \in B^{X}\left(q, \vec{\alpha} \backslash\left\langle\alpha_{m c}\right\rangle\right)$ we conclude that $F_{q}^{X}\left(\vec{\alpha} \backslash\left\langle\alpha_{m c}\right\rangle\right)=0$. Let $\vec{\alpha}^{\prime}$ be another extension of type X, then $\vec{\alpha}^{\prime} \backslash\left\langle\alpha_{m c}^{\prime}\right\rangle$ and $\vec{\alpha} \backslash\left\langle\alpha_{m c}\right\rangle$ belong to the same homogeneous set, thus

$$
F_{q}^{X}\left(\vec{\alpha}^{\prime} \backslash\left\langle\alpha_{m c}^{\prime}\right\rangle\right)=F_{q}^{X}\left(\vec{\alpha} \backslash\left\langle\alpha_{m c}\right\rangle\right)=0
$$

By the definition of $F_{q}^{X}\left(\vec{\alpha}^{\prime} \backslash\left\langle\alpha_{m c}^{\prime}\right\rangle\right)$ it follows that $\alpha_{m c}^{\prime} \in B_{(0)}^{X}\left(q, \vec{\alpha}^{\prime} \backslash\left\langle\alpha_{m c}^{\prime}\right\rangle\right)$ as wanted. For every $\vec{\alpha} \in B\left(p^{\prime}, X\right)$ and $q \in \mathbb{Q}$ fix some $\left(C_{i, j}(q, \vec{\alpha})\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}$ such that

$$
\left\langle q, p^{* \curvearrowright}\left\langle\vec{\alpha},\left(C_{i, j}(q, \vec{\alpha})\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}\right\rangle\right\rangle \| \not \overbrace{\sim}^{A} \cap \alpha_{m c}
$$

Let us argue that we can extend p^{*} to $p^{* *}$ such that for all $1 \leq i \leq n+1,1 \leq j \leq l_{i}+1$ and $\vec{\alpha} \in B\left(p^{*}, X\right)$,

$$
B\left(t_{i}^{* *}\right) \cap\left(\alpha_{s}, \alpha_{i, j}\right) \subseteq C_{i, j}(\vec{\alpha})
$$

Where α_{s} is the predecessor of $\alpha_{i, j}$ in $\vec{\alpha}$. In order to do that, fix i, j and stabilize $C_{i, j}(\vec{\alpha})$ as follows:
Fix $\vec{\beta} \in B\left(p^{*},\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right)$ By lemma 2.3, the function

$$
C_{i, j}(q, \vec{\beta}, *): B\left(p^{*}, X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right) \rightarrow P\left(\beta_{i, j}\right)
$$

has homogeneous sets $B^{\prime}\left(\vec{\beta}, x_{r, s}, q\right) \subseteq B\left(t_{r}^{*}, x_{r, s}\right)$ for $x_{r, s} \in X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle$. Denote the constant value by $C_{i, j}^{*}(q, \vec{\beta})$. Define

$$
B^{\prime}\left(t_{r}^{*}, x_{r, s}\right)=\Delta_{\substack{\vec{\beta} \in B\left(p^{*},\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right) \\ q \in \mathbb{Q}}}^{\Delta} B^{\prime}\left(\vec{\beta}, x_{r, s}, q\right), \quad \text { for } x_{r, s} \in X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle
$$

Next, fix $\alpha \in B\left(t_{i}^{*}, x_{i, j}\right)$ and let

$$
C_{i, j}^{*}(\alpha)=\underset{\substack{\alpha^{\prime} \in B\left(p^{*},\left\langle x_{1,1, \ldots}, \ldots, x_{i, j-1}\right\rangle\right) \\ q \in \mathbb{Q}}}{\Delta} C_{i, j}^{*}\left(q, \overrightarrow{\alpha^{\prime}}, \alpha\right)
$$

Thus $C_{i, j}^{*}(\alpha) \subseteq \alpha$. Since $\kappa\left(t_{i}\right)$ is ineffable, there is $B^{\prime}\left(t_{i}^{*}, x_{i, j}\right) \subseteq B\left(t_{i}^{*}, x_{i, j}\right)$ and $C_{i, j}^{*}$ such that for every $\alpha \in B^{\prime}\left(t_{i}^{*}, x_{i, j}\right), C_{i, j}^{*} \cap \alpha=C_{i, j}^{*}(\alpha)$. By coherency, $C_{i, j}^{*} \in \bigcap U\left(t_{i}, \xi\right)$. Finally, define $p^{* *}=\left\langle t_{1}^{* *}, \ldots, t_{n}^{* *}, t_{n+1}^{* *}\right\rangle$, where

$$
B\left(t_{i}^{* *}\right)=B^{\prime}\left(t_{i}^{*}\right) \cap\left(\cap_{j}^{C_{i, j}^{*}}\right) \quad 1 \leq i \leq n+1
$$

To see that $p^{* *}$ is as wanted, let $\vec{\alpha} \in B\left(p^{* *}, X\right)$ and fix any i, j. Then $\vec{\alpha} \in B\left(p^{* *}, X\right)$ and $\alpha_{i, j} \in$ $B\left(t_{i}^{* *}, x_{i, j}\right)$, hence for any i, j

$$
B\left(t_{i}^{* *}\right) \cap\left(\alpha_{s}, \alpha_{i, j}\right) \subseteq C_{i, j}^{*} \cap \alpha_{i, j} \backslash \alpha_{s}=C_{i, j}^{*}\left(\alpha_{i, j}\right) \backslash \alpha_{s} \subseteq C_{i, j}^{*}\left(\alpha_{1,1}, \ldots, \alpha_{i, j}\right)=C_{i, j}(\alpha)
$$

Lemma 3.9 Let p^{*} be as in lemma 3.8 There exist $p^{*} \leq p^{* *}$ such that for every extension type X of $p^{* *}$ and $q \in \mathbb{Q}$ that satisfies (*) there exists sets $A(q, \vec{\alpha}) \subseteq \kappa$, for $\vec{\alpha} \in B\left(p^{* *}, X \backslash\left\langle x_{m c}\right\rangle\right)$, such that for all $\alpha \in B\left(p^{* *}, x_{m c}\right)$

$$
A(q, \vec{\alpha}) \cap \alpha=a(q, \vec{\alpha}, \alpha)
$$

Example: Recall that we have obtained the sets

$$
\begin{gathered}
a(q, \vec{\alpha})=C_{H} \upharpoonright_{\text {even }} \cup\left\{C_{H}(\omega), C_{H}(\omega)+\nu_{1}, \nu_{\omega \cdot 2}+C_{H}(2)\right\} \cup b(q, \vec{\alpha}) \\
b(q, \vec{\alpha})= \begin{cases}\emptyset & \alpha_{\omega \cdot 3}+\nu_{3} \geq \alpha_{m c} \\
\left\{\alpha_{\omega \cdot 3}+\nu_{3}\right\} & \alpha_{\omega \cdot 3}+\nu_{3}<\alpha_{m c}\end{cases}
\end{gathered}
$$

The element $\alpha_{m c}$ is chosen from the set $B\left(t_{3}, x_{m c}\right)=B\left(t_{3}, 0\right)$, by shrinking this set, we can directly extend p to p^{*} such that for every $\vec{\alpha} \in B\left(p^{*}, X\right), \alpha_{\omega \cdot 3}+\nu_{3}<\alpha_{m c}$. Therefore,

$$
A(q, \vec{\alpha})=C_{H} \upharpoonright_{\text {even }} \cup\left\{C_{H}(\omega), C_{H}(\omega)+\nu_{1}, \nu_{\omega \cdot 2}+C_{H}(2), \alpha_{\omega \cdot 3}+\nu_{3}\right\}
$$

Proof of 3.9: Fix q, X satisfying $\left(^{*}\right)$ and $\vec{\alpha} \in B\left(p^{*}, X \backslash\left\langle x_{m c}\right\rangle\right)$, since $\kappa\left(t_{i}\right)$ is ineffable we can shrink the set $B\left(t_{l_{X}}^{*}, x_{m c}\right)$ to $B^{\prime}(q, \vec{\alpha})$ to find sets $A(q) \subseteq t_{i}$ such that

$$
\forall \alpha \in B^{\prime}(q, \vec{\alpha}) \quad A(q, \vec{\alpha}) \cap \alpha=a(q, \vec{\alpha}, \alpha)
$$

define $B_{q}\left(t_{i}^{*}, x_{m c}\right)=\underset{\vec{\alpha} \in B\left(p^{*}, X \backslash\left\langle x_{m c}\right\rangle\right)}{\Delta} B^{* *}(q, \vec{\alpha})$. Intersect over all X, q and find $p^{*} \leq p^{* *}$ as before.

Thus there exists $p_{*} \in G_{>\kappa^{*}}$ with the properties described in Lemma's 3.8-3.9. Next we would like to claim that for some sufficiently large family of $q \in \mathbb{Q}$ and extension-type X we have q, X satisfy (*).

Lemma 3.10 Let $p_{*} \in G_{>\kappa^{*}}$ be as above and let X be any extension-type of p_{*}. Then there exists a maximal antichain $Z_{X} \subseteq \mathbb{Q}$ and extension-types $X \preceq X_{q}$ for $q \in Z_{X}$, unveiling the same maximal coordinate as X such that for every $q \in Z_{X}, q, X_{q}$ satisfy (*).

Example: The anti chain Z_{X} can be chosen as follows: For any possible ν_{1}, ν_{3} choose a condition $\left\langle\nu_{1}, \nu_{3},\left\langle\kappa^{*}, B^{*}\right\rangle\right\rangle \in \mathbb{Q}$. This set definitely form a maximal anti chain, and by the same method of the previous examples taking $X_{q}=X$ works. In general, if the maximal coordinate of X is some $\omega \cdot(2 n+1), Z_{X}$ will be the anti chain consisting of representative conditions for the $2 n+1$ first coordinates.

Proof. The existence of Z_{X} will follow from Zorn's Lemma and the method proving existence of X_{q} for some q. Fix any $\vec{\alpha} \in B\left(p_{*}, X\right)$, there exists a generic $H \subseteq \mathbb{Q} \times \mathbb{M}_{>\kappa^{*}}[\vec{U}]$ with $\left\langle 1_{\mathbb{Q}}, p_{*}^{\widetilde{ }} \vec{\alpha}\right\rangle \in$ $H=H_{\leq \kappa^{*}} \times H_{>\kappa^{*}}$. Consider the decomposition of $\mathbb{M}[\vec{U}]_{>\kappa^{*}}$ above $p_{*}^{-} \vec{\alpha}$ induced by $\alpha_{m c}$ and let $p_{*}^{\overparen{ }} \vec{\alpha}=\left\langle p_{1}, p_{2}\right\rangle$, i.e. $\left\langle p_{1}, p_{2}\right\rangle \in\left(\mathbb{M}[\vec{U}]_{>\kappa^{*}}\right)_{\leq \alpha_{m c}} \times\left(\mathbb{M}[\vec{U}]_{>\kappa^{*}}\right)_{>\alpha_{m c}} . H$ is generic for the forcing $\mathbb{Q} \times\left(\mathbb{M}[\vec{U}]_{>\kappa^{*}}\right)_{\leq \alpha_{m c}} \times\left(\mathbb{M}[\vec{U}]_{>\kappa^{*}}\right)_{>\alpha_{m c}}$. Define $H_{1}=H_{\leq \kappa^{*}} \times\left(H_{>\kappa^{*}}\right)_{\leq \alpha_{m c}}$ and $H_{2}=H_{>\alpha_{m c}}$. Denote by $(\underset{\sim}{A})_{H_{1}} \in V\left[H_{1}\right]$ to be the name obtained by filtering only the part of H_{1}. It is a name of A in the forcing $\mathbb{M}[\vec{U}]_{>\alpha_{m c}}$. Above p_{2} we have sufficient closure to determine $(\underset{\sim}{A})_{H_{1}} \cap \alpha_{m c}$

$$
\exists p_{2}^{*} \geq^{*} p_{2} \text { s.t. } p_{2}^{*} \Vdash_{\mathbb{M}[\vec{U}]>\alpha_{m c}}(\underset{\sim}{A})_{H_{1}} \cap \alpha_{m c}=a
$$

for some $a \in V\left[C^{*}\right]$. Hence there exists $\left\langle 1_{\mathbb{Q}_{\leq \kappa^{*}}}, p_{1}\right\rangle \leq\left\langle q, p_{1}^{*}\right\rangle$ such that

$$
\left\langle q, p_{1}^{*}\right\rangle \Vdash_{\left.\mathbb{Q} \times \mathbb{M}_{\leq \alpha_{m c}} \mid \vec{U}\right]} p_{2}^{\vee *} \Vdash_{\mathbb{M}[\vec{U}]>\alpha_{m c}} \underset{\sim}{A} \cap \alpha_{m c}=a
$$

It is clear that $\left\langle q, p_{1}^{*}, p_{2}^{*}\right\rangle \|_{\mathbb{Q} \times \mathbb{M}_{>\kappa^{*}}[\vec{U}]} \underset{\sim}{A} \cap \alpha_{m c}$. Finally, X_{q} is simply the extension type of p_{1}^{*}. Since $p_{1}^{*} \in \mathbb{M}_{\leq \alpha_{m c}}[\vec{U}], X_{q}$ unveils the same maximal coordinate as X. By lemma 3.8, X_{q}, q satisfies (*).

Lemma 3.11κ changes cofinality in $V[A]$.

Proof. Let $p_{*}=\left\langle t_{1}^{*}, \ldots, t_{n}^{*}, t_{n+1}^{*}\right\rangle \in G_{>\kappa^{*}}$ be as before, $\lambda_{0}=\operatorname{otp}\left(C_{G}\right)$ and $\left\langle C_{G}(\xi) \mid \xi<\lambda_{0}\right\rangle$ be the Magidor sequence corresponding to G. Work in $\mathrm{V}[\mathrm{A}]$, define a sequence $\left\langle\nu_{i} \mid \gamma\left(t_{n}^{*}, p_{*}\right) \leq i<\lambda_{0}\right\rangle \subset \kappa$:

$$
\nu_{\gamma\left(t_{n}^{*}, p_{*}\right)}=C_{G}\left(\gamma\left(t_{n}^{*}, p_{*}\right)\right)+1=\kappa\left(t_{n}^{*}\right)+1
$$

Assume that $\left\langle\nu_{\xi^{\prime}} \mid \xi^{\prime}<\xi<\lambda_{0}\right\rangle$ is defined such that it is increasing and $\nu_{\xi^{\prime}}<\kappa$. If ξ is limit define

$$
\nu_{\xi}=\sup \left(\nu_{\xi^{\prime}}\right)+1 .
$$

If $\sup \left(\nu_{\xi^{\prime}}\right)=\kappa$ we are done, since κ changes cofinality to $c f(\xi)<\lambda_{0}$ (which cannot hold for regular λ_{0}). Therefore, $\nu_{\xi}<\kappa$. If $\xi=\xi^{\prime}+1$, by proposition 3.2 , there exist an extension type X_{ξ} of p_{*} unveiling ξ as maximal coordinate. By lemma 3.10 we can find Z_{ξ} and $X_{\xi} \preceq X_{q}$ unveiling ξ as maximal coordinate such that q, X_{q} satisfies $\left(^{*}\right)$. By lemma 3.9 there exists

$$
A(q, \vec{\alpha}) \text { 's for } q \in Z_{\xi} \quad \vec{\alpha} \in B\left(p^{*}, X_{q} \backslash\left\langle x_{m c}\right\rangle\right) .
$$

Since $A \notin V\left[C^{*}\right], A \neq A(q, \vec{\alpha})$. Thus define $\eta(q, \vec{\alpha})=\min (A(q, \vec{\alpha}) \Delta A)+1$

$$
\beta_{\xi}=\sup \left(\eta(q, \vec{\alpha}) \mid \vec{\alpha} \in\left[\nu_{\xi^{\prime}}\right]^{<\omega} \cap B\left(p^{*}, X_{q} \backslash\left\langle x_{m c}\right\rangle\right), q \in Z_{\xi}\right)
$$

It follows that $\beta_{\xi} \leq \kappa$. Assume $\beta_{\xi}=\kappa$, then κ changes cofinality but it might be to some other cardinal larger than δ_{0}, this is not enough in order to apply 3.6^{5}. Toward a contradiction, fix an unbounded and increasing sequence $\left\langle\eta\left(q_{i}, \overrightarrow{\alpha_{i}}\right) \mid i<\theta<\kappa\right\rangle$ for some $q_{i} \in Z_{\xi}$ and $\vec{\alpha}_{i} \in\left[\nu_{\xi^{\prime}}\right]<\omega$. Notice that since $\eta\left(q_{i}, \vec{\alpha}_{i}\right)<\eta\left(q_{i+1}, \vec{\alpha}_{i+1}\right)$ it must be that $A\left(q_{i}, \vec{\alpha}_{i}\right) \neq A\left(q_{i+1}, \vec{\alpha}_{i+1}\right)$ and

$$
A\left(q_{i}, \vec{\alpha}_{i}\right) \cap \eta\left(q_{i}, \vec{\alpha}_{i}\right)=A \cap \eta\left(q_{i}, \vec{\alpha}_{i}\right)=A\left(q_{i+1}, \vec{\alpha}_{i+1}\right) \cap \eta\left(q_{i}, \vec{\alpha}_{i}\right)
$$

Define $\eta_{i}=\min \left(A\left(q_{i}, \overrightarrow{\alpha_{i}}\right) \Delta A\left(q_{i+1}, \vec{\alpha}_{i+1}\right)\right) \geq \eta\left(q_{i}, \vec{\alpha}_{i}\right)$. It follows that $\left\langle\eta_{i} \mid i<\theta\right\rangle$ is a short cofinal sequence in κ. This definition is independent of A an only involve $\left\langle\left\langle q_{i}, \overrightarrow{\alpha_{i}}\right\rangle \mid i<\theta<\kappa\right\rangle$, which can be coded as a bounded sequence of κ. By the induction hypothesis there is $C^{\prime \prime} \subseteq C$, bounded in κ such that

$$
V\left[C^{\prime \prime}\right]=V\left[\left\langle\left\langle q_{i}, \vec{\alpha}_{i}\right\rangle \mid i<\theta<\kappa\right\rangle\right]
$$

Define $C^{\prime}=C^{*} \cup C^{\prime \prime}$, the model $V\left[C^{\prime}\right]$ should keep κ measurable, since C^{\prime} is bounded, but also include the sequence $\left\langle\eta_{i} \mid i<\theta\right\rangle$, contradiction.

[^4]Therefore, $\beta_{\xi}<\kappa$, set $\nu_{\xi}=\beta_{\xi}+1$. This concludes the construction of the sequence ν_{ξ}. To see that the sequence is unbounded in κ, let us show that $C_{G}(\xi)<\nu_{\xi}$:

Clearly $C_{G}\left(\gamma\left(t_{n}^{*}, p_{*}\right)\right)<\nu_{\gamma\left(t_{n}^{*}, p_{*}\right)}$. Inductively sssume that $C_{G}(i)<\nu_{i}, \gamma\left(t_{n}^{*}, p_{*}\right) \leq i<\xi$. If ξ is limit, since Magidor generic sequences are closed,

$$
C_{G}(\xi)=\sup \left(C_{G}(i) \mid i<\xi\right) \leq \sup \left(\nu_{i} \mid \gamma\left(t_{n}^{*}, p_{*}\right) \leq i<\xi\right)<\nu_{\xi}
$$

If $\xi=\xi^{\prime}+1$ is successor, let $\left\{q_{\xi}\right\}=Z_{\xi} \cap G_{\leq \kappa^{*}}$

$$
p_{\xi}=p_{*}^{\widetilde{ }}\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right), C_{G}(\xi)\right\rangle \in p_{*}-X_{\xi} \cap G_{>\kappa^{*}}
$$

By induction $C_{G}\left(i_{r}\right)<\nu_{\xi^{\prime}}$, therefore, $\eta\left(q_{\xi},\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right)\right\rangle\right)<\nu_{\xi}$. Finally, $\left\langle q_{\xi}, p_{\xi}\right\rangle \in G$, $\left\langle q_{\xi}, p_{\xi}\right\rangle \Vdash \underset{\sim}{A} \cap C_{G}(\xi)=A\left(q_{\xi},\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right)\right\rangle\right) \cap C_{G}(\xi)$, thus

$$
A \cap C_{G}(\xi)=A\left(q_{\xi},\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right)\right\rangle\right) \cap C_{G}(\xi), \text { hence } C_{G}(\xi) \leq \eta\left(q_{\xi},\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right)\right\rangle\right)<\nu_{\xi}
$$

4 The Main Result Above κ

In order to push the induction to sets above κ we will need a projection of $\mathbb{M}[\vec{U}]$ onto some forcing that adds a subsequence of C_{G}. The majority of this chapter is the definition of this projection and some of its properties. The inductive argument will continue at lemma 4.17.

Let G be generic and C_{G} the corresponding Magidor sequence. Let $C^{*} \subseteq C_{G}$ be a subsequence and $I=\operatorname{Index}\left(C^{*}, C_{G}\right)$. Then I is a subset of $\operatorname{otp}\left(C_{G}\right):=\lambda_{0}$, hence $I \in V$. Assume that $\kappa^{*}=\sup \left(C^{*}\right)$ is a limit point in C_{G} and that C^{*} is closed i.e. containing all of its limit points below $\kappa^{* 6}$. As we will see in the next lemma, one can find a forcing of the form $\left.\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle} \mid \vec{U}\right]$, such that $G \subseteq \mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$ is V-generic, which will be easier to project.

Proposition 4.1 Let G be $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$-generic and $C^{*} \subseteq C_{G}$ such that C^{*} is closed and $\kappa^{*}=$ $\sup \left(C^{*}\right)$ is a limit point of C_{G}. Then there exists $\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle$ such that G is generic for $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$ and for all $1 \leq i \leq m, C^{*} \cap\left(\nu_{i-1}, \nu_{i}\right)$ is either empty or a club in ν_{i}. (as usual denote $\nu_{0}=0$)

Example: Assume that $\lambda_{0}=\omega_{1}+\omega^{2} \cdot 2+\omega, C^{*}$ is

$$
C_{G} \upharpoonright\left(\omega_{1}+1\right) \cup\left\{C_{G}\left(\omega_{1}+\omega+2\right), C_{G}\left(\omega_{1}+\omega+3\right)\right\} \cup\left\{C_{G}\left(\omega_{1}+\alpha\right) \mid \omega^{2} \cdot 2<\alpha<\lambda_{0}\right\}
$$

Let $\kappa_{1}<\kappa_{2}<\kappa_{3}<\kappa_{4}=\kappa$ be such that $o^{\vec{U}}\left(\kappa_{1}\right)=\omega_{1}, o^{\vec{U}}\left(\kappa_{2}\right)=o^{\vec{U}}\left(\kappa_{3}\right)=2$ and $o^{\vec{U}}(\kappa)=1$. We have

1. $\left(0, \kappa_{1}\right) \cap C^{*}=C_{G} \upharpoonright \omega_{1}$.
2. $\left(\kappa_{1}, \kappa_{2}\right) \cap C^{*}=\left\{C_{G}\left(\omega_{1}+\omega+2\right), C_{G}\left(\omega_{1}+\omega+3\right)\right\}$.
3. $\left(\kappa_{2}, \kappa_{3}\right) \cap C^{*}=\emptyset$.
4. $\left(\kappa_{3}, \kappa_{4}\right) \cap C^{*}=\left\{C_{G}\left(\omega_{1}+\alpha\right) \mid \omega^{2} \cdot 2<\alpha<\lambda_{0}\right\}$.

Then (1),(3),(4) are either empty or a club, but (2) is not. To fix this, we simply add $\left\{C_{G}\left(\omega_{1}+\right.\right.$ $\left.\omega+2), C_{G}\left(\omega_{1}+\omega+3\right)\right\}$ to $\kappa_{1}<\kappa_{2}<\kappa_{3}<\kappa_{4}$.

Proof of 4.1: By induction on m, let us define a sequence

$$
\vec{\nu}_{m}=\left\langle\nu_{1, m}, \ldots, \nu_{n_{m}, m}\right\rangle
$$

such that for every m, G is generic for $\mathbb{M}_{\vec{\nu}_{m}}[\vec{U}]$. Define $\vec{\nu}_{0}=\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle$. Assume that $\vec{\nu}_{m}$ is defined with G generic, if for every $1 \leq i \leq n_{m}+1$ we have $C^{*} \cap\left(\nu_{i-1, m}, \nu_{i, m}\right)$ is either empty or

[^5]unbounded (and therefore a club), stabilize the sequence at m. Otherwise, let i be maximal such that $C^{*} \cap\left(\nu_{i-1, m}, \nu_{i, m}\right)$ is nonempty and bounded. Thus,
$$
\nu_{i-1, m}<\sup \left(C^{*} \cap\left(\nu_{i-1, m}, \nu_{i, m}\right)\right)<\nu_{i, m}
$$

Since C^{*} is closed, $C_{G}(\gamma)=\sup \left(C^{*} \cap\left(\nu_{i-1, m}, \nu_{i, m}\right)\right) \in C^{*}$ for some γ. As in lemma 3.1 we can find

$$
\vec{\nu}_{m+1}=\left\langle\nu_{1, m}, \ldots, \nu_{i, m}, \xi_{1}, \ldots, \xi_{k}, \nu_{i+1, m}, \ldots, \nu_{n_{m}, m}\right\rangle \subseteq C_{G}
$$

such that $C_{G}(\gamma)=\xi_{k}$ is unveiled and the forcing $\mathbb{M}_{\vec{\nu}_{m+1}}[\vec{U}] \subseteq \mathbb{M}_{\vec{\nu}_{m}}[\vec{U}]$ is a subforcing of $\mathbb{M}_{\vec{\nu}_{m}}[\vec{U}]$ with G one of its generic sets. Note that the maximal ordinal in the sequence $\vec{\nu}_{m+1}$ such that $C^{*} \cap\left(\nu_{j-1, m+1}, \nu_{j, m+1}\right)$ is nonempty and bounded is strictly less than $\nu_{i, m}$. Therefore this iteration stabilizes at some $N<\omega$. Consider the forcing $\mathbb{M}_{\vec{\nu}_{N}}[\vec{U}]$, by the construction of the $\vec{\nu}_{r}$'s, for every $1 \leq i \leq n_{N}+1 C^{*} \cap\left(\nu_{i-1, N}, \nu_{i, N}\right)$ is either empty or unbounded (Since $\left.\vec{\nu}_{N+1}=\vec{\nu}_{N}\right)$.

Assume that $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ and C^{*} satisfy the property of 4.1. Let us define a projection of

$$
\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]=\prod_{i=1}^{n}\left(\mathbb{M}_{\kappa_{i}}\right)_{>\kappa_{i-1}}
$$

onto some forcing $\prod_{i=1}^{n} \mathbb{P}_{i}$. We can define such a projection, by projecting each factor

$$
\pi_{i}:\left(\mathbb{M}_{\kappa_{i}}\right)_{>\kappa_{i-1}} \rightarrow \mathbb{P}_{i} \quad(1 \leq i \leq n)
$$

and derive $\pi: \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}] \rightarrow \prod_{i=1}^{n} \mathbb{P}_{i}$. First, if $C^{*} \cap\left(\kappa_{i-1}, \kappa_{i}\right)$ is empty, the projection is going to be to the trivial forcing. Otherwise, $C^{*} \cap\left(\kappa_{i-1}, \kappa_{i}\right)$ is a club at κ_{i}. In order to simplify notation, we will assume that $\left(\mathbb{M}_{\kappa_{i}}\right)_{>\kappa_{i-1}}=\mathbb{M}[\vec{U}]_{\langle\kappa\rangle}=\mathbb{M}[\vec{U}]$ and $C^{*}=C^{*} \cap\left(\kappa_{i-1}, \kappa_{i}\right)$ is a club in κ. It seems natural that the projection will keep only the coordinates in $I=\operatorname{Index}\left(C^{*}, C_{G}\right)$, namely:

Definition 4.2 Let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}]$, define the projection to the I coordinates by,

$$
\pi_{I}(p)=\left\langle t_{i}^{\prime} \mid \gamma\left(t_{i}, p\right) \in I\right\rangle \prec\left\langle t_{n+1}\right\rangle, \text { where } t_{i}^{\prime}= \begin{cases}\kappa\left(t_{i}\right) & \gamma\left(t_{i}, p\right) \in \operatorname{Succ}(I) \\ t_{i} & \gamma\left(t_{i}, p\right) \in \operatorname{Lim}(I)\end{cases}
$$

Let us define a forcing notion $\mathbb{P}_{i}=\mathbb{M}_{I}[\vec{U}]$ (the range of the projection π_{I}) that will add the subsequence C^{*}, such that the forcing $\mathbb{M}[\vec{U}]$ (more precisely, a dense subset of $\mathbb{M}[\vec{U}]$) projects onto $\mathbb{M}_{I}[\vec{U}]$ via the projection π_{I} we have just defined in 4.2.

4.1 The forcing $\mathbb{M}_{I}[\vec{U}]$

Considering C^{*} as a function with domain I, we would like to have a function similar to $\gamma\left(t_{i}, p\right)$ that tells us which coordinate is currently unveiled. Given $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$, define recursively:

1. $I\left(t_{0}, p\right):=0$.
2. If $\left\{j \in I \backslash I\left(t_{i-1}, p\right)+1 \mid o_{L}(j)=o^{\vec{U}}\left(t_{i}\right)\right\}=\emptyset$, then $I\left(t_{i}, p\right)=N / A$ undefined.
3. If $\left\{j \in I \backslash I\left(t_{i-1}, p\right)+1 \mid o_{L}(j)=o^{\vec{U}}\left(t_{i}\right)\right\} \neq \emptyset$, define

$$
I\left(t_{i}, p\right):=\min \left(j \in I \backslash I\left(t_{i-1}, p\right)+1 \mid o_{L}(j)=o^{\vec{U}}\left(t_{i}\right)\right)
$$

If for every $0 \leq i \leq n, I\left(t_{i}, p\right) \neq N / A$, we say that I is defined on p.
Example: Consider Magidor forcing adding a sequence of length ω^{2} i.e. $o^{\vec{U}}(\kappa)=2$ and $C_{G}=\left\{C_{G}(\alpha) \mid \alpha<\omega^{2}\right\}$. Assume $C^{*}=\left\{C_{G}(0)\right\} \cup\left\{C_{G}(\alpha) \mid \omega \leq \alpha<\omega^{2}\right\}$, hence, $I=\{0\} \cup\left(\omega^{2} \backslash \omega\right)$. The ω-th element of C_{G} is no longer limit in C^{*}. Let

$$
p=\langle\underbrace{\left\langle\left\langle\left(t_{1}\right), B\left(t_{1}\right)\right\rangle\right.}_{t_{1}}, \underbrace{\left.\left\langle\kappa, B\left(t_{2}\right)\right\rangle\right\rangle}_{t_{2}}
$$

Where $o^{\vec{U}}\left(t_{1}\right)=1$. Computing $I\left(t_{1}, p\right)$,

$$
I\left(t_{1}, p\right)=\omega=\gamma\left(t_{1}, p\right)
$$

Therefore $\pi_{I}(p)=\left\langle\kappa\left(t_{1}\right), t_{2}\right\rangle$.

Definition 4.3 The Magidor forcing adding a sequence prescribed by I, denoted by $\mathbb{M}_{I}[\vec{U}]$, consist of conditions of the form $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle$ such that:

1. I is defined on p.
2. $\kappa\left(t_{1}\right)<\ldots<\kappa\left(t_{n}\right)<\kappa\left(t_{n+1}\right)=\kappa$.
3. For $i=1, \ldots, n+1$,
(a) If $I\left(t_{i}, p\right) \in \operatorname{Succ}(I)$,
i. $t_{i}=\kappa\left(t_{i}\right)$.
ii. $I\left(t_{i-1}, p\right)$ is the predecessor of $I\left(t_{i}, p\right)$ in I.
iii. If $I\left(t_{i-1}, p\right)+\sum_{i=1}^{m} \omega^{\gamma_{i}}=I\left(t_{i}, p\right)$ (C.N.F), then ${ }^{7}$,

$$
\left(Y\left(\gamma_{1}\right) \times \ldots \times Y\left(\gamma_{m-1}\right)\right) \cap\left[\left(\kappa\left(t_{i-1}\right), \kappa\left(t_{i}\right)\right)\right]^{<\omega} \neq \emptyset
$$

(b) If $I\left(t_{i}, p\right) \in \operatorname{Lim}(I)$, then,
i. $t_{i}=\left\langle\kappa\left(t_{i}\right), B\left(t_{i}\right)\right\rangle . \quad, B\left(t_{i}\right) \in \bigcap_{\xi<o^{\vec{U}}\left(t_{i}\right)} U\left(t_{i}, \xi\right)$
ii. $I\left(t_{i-1}, p\right)+\omega^{o^{\vec{U}}\left(t_{i}\right)}=I\left(t_{i}, p\right)$.
iii. $\min \left(B\left(t_{i}\right)\right)>\kappa\left(t_{i-1}\right)$.

Definition 4.4 Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle, q=\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$. Define the order of $\mathbb{M}_{I}[\vec{U}]$, $\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \leq_{I}\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle$ iff $\exists 1 \leq i_{1}<\ldots<i_{n} \leq m<i_{n+1}=m+1$ such that:

1. $\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$ and $B\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$.
2. If $i_{k}<j<i_{k+1}$, then
(a) $\kappa\left(s_{j}\right) \in B\left(t_{k+1}\right)$.
(b) If $I\left(s_{j}, q\right) \in \operatorname{Succ}(I)$, then,

$$
\left(B\left(t_{k+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{k+1}, \gamma_{k-1}\right)\right) \cap\left[\left(\kappa\left(s_{j-1}\right), \kappa\left(s_{j}\right)\right)\right]^{<\omega} \neq \emptyset
$$

where $I\left(s_{i-1}, q\right)+\sum_{i=1}^{k} \omega^{\gamma_{i}}=I\left(s_{i}, q\right)$ (C.N.F).
(c) If $I\left(s_{j}, q\right) \in \operatorname{Lim}(I)$ then $B\left(s_{j}\right) \subseteq B\left(t_{k+1}\right) \cap \kappa\left(s_{j}\right)$.

Definition 4.5 Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle, q=\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}], q$ is a direct extension of p, denoted $p \leq_{I}^{*} q$, iff:

1. $p \leq_{I} q$.
2. $n=m$.

Remarks:

1. In definition 4.3 (b.i), although it seems superfluous to take all the measures corresponding to t_{i} as well as those which do not take an active part in the development of C^{*}, the necessity is apparent when examining definition 4.4 (2.b)- the γ_{i} 's may not be the measures taking active part in C^{*}. In lemma 4.10 this condition will be crucial when completing C^{*} to C_{G}.

[^6]2. As we have seen in earlier chapters, the function $\gamma\left(t_{i}, p\right)$ returns the same value when extend$\operatorname{ing} p$. $I\left(t_{i}, p\right)$ have the same property, let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle, q=\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$, such that $p \leq_{I} q$, by 4.3 (2.b.ii), $I\left(t_{r}, p\right)=I\left(s_{i_{r}}, q\right)$.
3. In definition 4.5 , since $n=m$ we only have to check (1) of definition 4.4.
4. Let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$ be any condition. Assume we would like to unveil a new index $j \in I$ between $I\left(t_{i}, p\right)$ and $I\left(t_{i+1}, p\right)$. It is possible if for example j is the successor of $I\left(t_{i}, p\right)$ in I :
Assume $I\left(t_{i}, p\right)+\sum_{l=1}^{m} \omega^{\gamma_{l}}=j$ (C.N.F), then $\gamma_{l}<o^{\vec{U}}\left(t_{i+1}\right)$. Extend p by choosing $\alpha \in$ $B\left(t_{i+1}, \gamma_{m}\right)$ above some sequence
$$
\left\langle\beta_{1}, \ldots, \beta_{k}\right\rangle \in B\left(t_{i+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{i+1}, \gamma_{m-1}\right)
$$

Then

$$
I\left(\alpha, p^{\frown}\langle\alpha\rangle\right)=\min \left(r \in I \backslash I\left(t_{i}, p\right) \mid o_{L}(r)=o_{L}(j)\right)=j
$$

Another possible index is any $j \in \operatorname{Lim}(I)$ such that $I\left(t_{i}, p\right)+\omega^{o_{L}(j)}=j$. For such j, extend p by picking $\alpha \in B\left(t_{i+1}, o_{L}(j)\right)$ above some sequence $\left\langle\beta_{1}, \ldots, \beta_{k}\right\rangle$, to obtain

$$
p \leq_{I}\left\langle t_{1}, \ldots, t_{i},\left\langle\alpha, \bigcap_{\xi<o_{L}(j)} B\left(t_{i+1}, \xi\right) \cap \alpha\right\rangle,\left\langle\kappa\left(t_{i+1}\right), B\left(t_{i+1}\right) \backslash(\alpha+1)\right\rangle, \ldots, t_{n+1}\right\rangle
$$

A routine verification of definition 4.3 asserts that in both cases the extension of p is in $\mathbb{M}_{I}[\vec{U}]$.

The forcing $\mathbb{M}_{I}[\vec{U}]$ has lots of the properties of $\mathbb{M}[\vec{U}]$, however, they are irrelevant for the proof. Therefore, we will state only few of them.

Lemma $4.6 \mathbb{M}_{I}[\vec{U}]$ satisfy κ^{+}- c.c.

Proof. Let $\left\{\left\langle t_{\alpha, 1}, \ldots, t_{\alpha, n_{\alpha}}\right\rangle=p_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq \mathbb{M}_{I}[\vec{U}]$. Find $n<\omega$ and $E \subseteq \kappa^{+},|E|=\kappa^{+}$and $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle$ such that $\forall \alpha \in E$,

$$
n_{\alpha}=n, \text { and }\left\langle\kappa\left(t_{\alpha, 1}\right), \ldots, \kappa\left(t_{\alpha, n_{\alpha}}\right)\right\rangle=\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle
$$

Fix any $\alpha, \beta \in E$. Define $p^{*}=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$ where

$$
\begin{aligned}
B^{*}\left(t_{i}\right) & =B\left(t_{i, \alpha}\right) \cap B\left(t_{i, \beta}\right) \in \bigcap_{\xi<o^{\vec{U}}\left(\kappa_{i}\right)} U\left(\kappa_{i}, \xi\right) \\
t_{i} & = \begin{cases}\left\langle\kappa_{i}, B^{*}\left(t_{i}\right)\right\rangle & I\left(t_{i}, p\right) \in \operatorname{Lim}(I) \\
\kappa_{i} & \text { otherwise }\end{cases}
\end{aligned}
$$

Since $p_{\alpha}, p_{\beta} \in \mathbb{M}_{I}[\vec{U}]$, it is clear that $p^{*} \in \mathbb{M}_{I}[\vec{U}]$ and also $p_{\alpha}, p_{\beta} \leq_{I}^{*} p^{*}$.

Lemma 4.7 Let $G_{I} \subseteq \mathbb{M}_{I}[\vec{U}]$ be generic, define

$$
C_{I}=\bigcup\left\{\left\{\kappa\left(t_{i}\right) \mid i=1, \ldots, n\right\} \mid\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in G_{I}\right\}
$$

Then

1. $\operatorname{otp}\left(C_{I}\right)=\operatorname{otp}(I)$ (thus we may also think of C_{I} as a function with domain I).
2. G_{I} consist of all conditions $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$ such that
(a) $C_{I}\left(I\left(t_{i}, p\right)\right)=\kappa\left(t_{i}\right)$.
(b) $C_{I} \cap\left(\kappa\left(t_{i-1}\right), \kappa\left(t_{i}\right)\right) \subseteq B\left(t_{i}\right) \quad 1 \leq i \leq n+1$.
(c) $\forall i \in \operatorname{Succ}(I) \cap\left(I\left(t_{r}, p\right), I\left(t_{r+1}, p\right)\right)$ with predecessor $j \in I$ such that $j+\sum_{l=1}^{k} \omega^{\gamma_{l}}=i$ (C.N.F) we have

$$
\left[\left(C_{I}(j), C_{I}(i)\right)\right]^{<\omega} \cap B\left(t_{r+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{r+1}, \gamma_{k-1}\right) \neq \emptyset
$$

Proof. For (1), let us consider the system of ordered sets of ordinals $\left(\kappa(p), i_{p, q}\right)_{p, q}$ where

$$
\kappa(p)=\left\{\kappa\left(t_{1}\right), \ldots, \kappa\left(t_{n}\right)\right\} \text { for } p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in G_{I}
$$

$i_{p, q}: \kappa(p) \rightarrow \kappa(q)$ are defined for $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \leq_{I}\left\langle s_{1}, \ldots, s_{m+1}\right\rangle=q$ as the inclusion:

$$
i_{p, q}\left(\kappa\left(t_{r}\right)\right)=\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)\left(i_{r} \text { are as in the definition of } \leq_{I}\right)
$$

Since G_{I} is a filter, $\left(\kappa(p), i_{p, q}\right)_{p, q}$ form a directed system with a direct ordered limit

$$
\xrightarrow{\operatorname{Lim}} \kappa(p)=\bigcup_{p \in G_{I}} \kappa(p)=C_{I} \text { and inclusions } i_{p}: \kappa(p) \rightarrow C_{I}
$$

We already defined for $p, q \in G_{I}$ such that $p \leq_{I} q$, commuting functions

$$
I(*, p): \kappa(p) \rightarrow I, \quad(*, p)=I(*, q) \circ i_{p, q}
$$

Thus $(I(*, p))_{p \in G}$ form a compatible system of functions, and by the universal property of directed limits, we obtain

$$
I(*): C_{I} \rightarrow I, I(*) \circ i_{p}=I(*, p)
$$

Let us show that I is an isomorphism of ordered set: Since $I(*, p)$ are injective $I(*)$ is also injective. Assume $\kappa_{1}<\kappa_{2} \in C_{I}$, find $p \in G_{I}$ such that $\kappa_{1}, \kappa_{2} \in \kappa(p)$. Therefore, $I\left(\kappa_{i}, p\right)=I\left(\kappa_{i}\right)$ preserve the order of κ_{1}, κ_{2}. Fix $i \in I$, it suffices to show that there exists some condition $p \in G_{I}$ such that $i \in \operatorname{Im}(I(*, p))$. To do this, let us show that the set of all conditions $p \in \mathbb{M}_{I}[\vec{U}]$ with $i \in \operatorname{Im}(I(*, p))$ is a dense subset of $\mathbb{M}_{I}[\vec{U}]$. Let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$ be any condition, if $i \in \operatorname{Im}(I(*, p))$ then we are done. Otherwise, there exists $0 \leq k \leq n$ such that,

$$
I\left(t_{k}, p\right)<i<I\left(t_{k+1}, p\right)
$$

therefore $I\left(t_{k+1}, p\right) \in \operatorname{Lim}(I)$. By induction on i, let us argue that it is possible to extend p to a condition p^{\prime}, such that $i \in \operatorname{Im}\left(I\left(*, p^{\prime}\right)\right)$. If

$$
\sum_{l=1}^{k} \omega^{\gamma_{l}}=i=\min (I) \quad \text { (C.N.F) }
$$

it follows that $i<I\left(t_{1}, p\right)$. By definition 4.3 (2.b.ii), $I\left(t_{1}, p\right)=\omega^{o^{\vec{U}}\left(t_{1}\right)}$. To extend p just pick any α above some sequence

$$
\left\langle\beta_{1}, \ldots, \beta_{k}\right\rangle \in B\left(t_{1}, \gamma_{1}\right) \times \ldots \times B\left(t_{1}, \gamma_{k-1}\right)
$$

and

$$
p \leq_{I}\left\langle\alpha,\left\langle\kappa\left(t_{1}\right), B\left(t_{1}\right) \backslash(\alpha+1)\right\rangle, t_{2}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]
$$

If $i \in \operatorname{Succ}(I)$ with predecessor $j \in I$. By the induction hypothesis, we can assume that for some k, $j=I\left(t_{k}, p\right) \in \operatorname{Im}(I(*, p))$. Thus by the remarks following definition 4.5 we can extend p by some α such that $i \in \operatorname{Im}(I(*, p))$. Finally if $i \in \operatorname{Lim}(I)$, then

$$
i=\alpha+\omega^{o_{L}(i)} \text {, where } \alpha:=\sum_{i=1}^{m} \omega^{\gamma_{i}}(\text { C.N.F })
$$

therefore $\forall \beta \in(\alpha, i), \beta+\omega^{o_{L}(i)}=i$. Take any $i^{\prime} \in I \cap(\alpha, i)$. Just as before, it can be assumed that $i^{\prime}=I\left(t_{k}, p\right)$, thus $I\left(t_{k}, p\right)+\omega^{o_{L}(i)}=i$. By the same remark, we can extend p to some $p^{\prime} \in \mathbb{M}_{I}[\vec{U}]$ with $j \in \operatorname{Im}\left(I\left(*, p^{\prime}\right)\right)$.

For (2), let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in G_{I}$. (a) is satisfied by the argument in (1). Fix $\alpha \in C_{I} \cap$ $\left(\kappa\left(t_{i}\right), \kappa\left(t_{i+1}\right)\right)$, there exists $p \leq_{I} p^{\prime}=\left\langle s_{1}, \ldots, s_{m}\right\rangle \in G_{I}$ such that $\alpha \in \kappa\left(p^{\prime}\right)$ thus $\alpha \in B\left(t_{i+1}\right)$ by definition. Moreover, if $I\left(\alpha, p^{\prime}\right) \in \operatorname{Succ}(I)$ with predecessor $j \in I$, then by definition 4.3 (2.a.ii), there is s_{k} such that $j=I\left(s_{k}, p^{\prime}\right)$ and by definition 4.4 (2.b)

$$
\left[\left(\kappa\left(s_{k-1}\right), \kappa\left(s_{k}\right)\right)\right]^{<\omega} \cap B\left(t_{i+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{i+1}, \gamma_{k-1}\right) \neq \emptyset
$$

From (a),

$$
\kappa\left(s_{k}\right)=C_{I}(j) \text { and } \kappa\left(s_{k+1}\right)=C_{I}(i)
$$

In the other direction, if $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$ satisfies (a)-(c). By (a), there exists some $p^{\prime \prime} \in G_{I}$ with $\kappa(p) \subseteq \kappa\left(p^{\prime \prime}\right)$. Set E to be

$$
\left\{\left\langle w_{1}, \ldots, w_{l+1}\right\rangle \in\left(\mathbb{M}_{I}[\vec{U}]\right)_{\geq_{I} p^{\prime \prime}} \mid \kappa\left(w_{j}\right) \in B\left(t_{i}\right) \cup\left\{\kappa\left(t_{i}\right)\right\} \rightarrow B\left(w_{j}\right) \subseteq B\left(t_{i}\right)\right\}
$$

E is dense in $\mathbb{M}_{I}[\vec{U}]$ above $p^{\prime \prime}$. Find $p^{\prime \prime} \leq_{I} p^{\prime}=\left\langle s_{1}, \ldots, s_{m+1}\right\rangle \in G_{I} \cap D$. Checking definition 4.4, Let us show that $p \leq_{I} p^{\prime}$: For (1), since $\kappa(p) \subseteq \kappa\left(p^{\prime}\right)$ there is a natural injection $1 \leq i_{1}<\ldots<i_{n} \leq m$ which satisfy $\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$. Since $p^{\prime} \in E, B\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$. (2a), follows from condition (b), (2b) follows from condition (c). Since $p^{\prime} \in E$, if $i_{r}<j<i_{r+1}$ then $\kappa\left(s_{j}\right) \in B\left(t_{r+1}\right)$, thus, (2c) holds.

Given a generic set G_{I} for $\mathbb{M}_{I}[\vec{U}]$, we have $V\left[C_{I}\right]=V\left[G_{I}\right]$. Once we will show that π_{I} is a projection, then for every $G \subseteq \mathbb{M}[\vec{U}]$ generic,

$$
\pi_{I *}(G):=\left\{p \in \mathbb{M}_{I}[\vec{U}] \mid \exists q \in \pi_{I}^{\prime \prime} G, p \leq_{I} q\right\}
$$

will be generic for $\mathbb{M}_{I}[\vec{U}]$ and by the definition of $\pi_{I} 4.2$, we conclude that the corresponding sequence to $\pi_{I}(G)$ is C^{*}, this is stated formally on corollary 4.11 . Let us turn to the proof that π_{I} is a projection.

Definition 4.8 Let D be the set of all

$$
p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}], \pi_{I}(p)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{m}}^{\prime}, t_{n+1}\right\rangle
$$

such that:

1. If $\gamma\left(t_{i_{j}}, p\right) \in \operatorname{Lim}(I)$ then $\gamma\left(t_{i_{j-1}}, p\right)=\gamma\left(t_{i_{j}-1}, p\right)$.
2. If $\gamma\left(t_{i_{j}}, p\right) \in \operatorname{Succ}(I)$ then $\gamma\left(t_{i_{j-1}}, p\right)$ is the predecessor of $\gamma\left(t_{i_{j}}, p\right)$ in I.

Condition (1) is to be compared with definition 4.3 (2.b.ii) and condition (2) with (2.a.ii). The following example justifies the necessity of D .

Example: Assume that

$$
\lambda_{0}=\omega^{2} \text { and } I=\{2 n \mid n \leq \omega\} \cup\{\omega+2, \omega+3\} \cup\{\omega \cdot n \mid n<\omega\}
$$

let p be the condition

$$
\langle\underbrace{\left\langle\left\langle\nu_{\omega}, B_{\omega}\right\rangle\right.}_{t_{1}}, \underbrace{\nu_{\omega+1}}_{t_{2}}, \underbrace{\left\langle\nu_{\omega \cdot 2}, B_{\omega \cdot 2}\right\rangle}_{t_{3}}, \underbrace{\langle\kappa, B\rangle}_{t_{4}}\rangle
$$

$$
\pi_{I}(p)=\langle\underbrace{\left\langle\nu_{\omega}, B_{\omega}\right\rangle}_{t_{1} \mapsto t_{i_{1}}^{\prime}}, \underbrace{\nu_{\omega \cdot 2}}_{t_{3} \mapsto t_{i_{2}}^{\prime}}, \underbrace{\langle\kappa, B\rangle\rangle}_{t_{4}}
$$

The $\omega+2, \omega+3$-th coordinates cannot be added. On one hand, they should be chosen below $\nu_{\omega \cdot 2}$, on the other hand, there is no large set associated to $\nu_{\omega \cdot 2}$. In D, this situation is impossible due to condition (2) of definition 4.8 , which p fails to satisfy:

$$
\omega \cdot 2 \in \operatorname{Succ}(I) \text { but } \omega+3 \in I \text { is the predecessor and } \gamma\left(t_{i_{2}}\right)=\omega \cdot 2
$$

Notice that we can extend p to

$$
\left\langle\left\langle\nu_{\omega}, B_{\omega}\right\rangle, \nu_{\omega+1}, \nu_{\omega+2}, \nu_{\omega+3},\left\langle\nu_{\omega \cdot 2}, B_{\omega \cdot 2}\right\rangle,\langle\kappa, B\rangle\right\rangle
$$

to fix this problem.
Next consider

$$
I=\{2 n \mid n \leq \omega\} \cup\{\omega+2, \omega+3\} \cup\{\omega \cdot n \mid n<\omega, n \neq 2\}
$$

and let p be the condition

$$
\begin{gathered}
\langle\underbrace{\left\langle\nu_{\omega}, B_{\omega}\right\rangle}_{t_{1}}, \underbrace{\left\langle\nu_{\omega \cdot 2}, B_{\omega \cdot 2}\right\rangle}_{t_{2}}, \underbrace{\left\langle\nu_{\omega \cdot 3}, B_{\omega \cdot 3}\right\rangle}_{t_{3}}, \underbrace{\langle\kappa, B\rangle}_{t_{4}}\rangle \\
\pi_{I}(p)=\langle\underbrace{\left\langle\left\langle\nu_{\omega}, B_{\omega}\right\rangle\right.}_{t_{1} \mapsto t_{i_{1}}^{\prime}}, \underbrace{\left\langle\nu_{\omega \cdot 3}, B_{\omega \cdot 3}\right\rangle}_{t_{3} \mapsto t_{i_{2}}^{\prime}}, \underbrace{\langle\kappa, B\rangle\rangle}_{t_{4}}
\end{gathered}
$$

Once again the coordinates $\omega+2, \omega+3$ cannot be added since $\min \left(B_{\omega \cdot 3}\right)>\nu_{\omega \cdot 2}$. This problem points out condition (1) of definition 4.8 , which p fails to satisfy:

$$
\gamma\left(t_{i_{1}}, p\right)=\omega<\omega \cdot 2=\gamma\left(t_{i_{2}-1}, p\right)
$$

As before, we can extend p to avoid this problem.
Proposition $4.9 D$ is dense in $\mathbb{M}[\vec{U}]$.

Proof. Fix $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}]$, define recursively $\left\langle p_{k} \mid k<\omega\right\rangle$ as follows:
First, $p_{0}=p$. Assume that $p_{k}=\left\langle t_{1}^{(k)}, \ldots, t_{n_{k}}^{(k)}, t_{n_{k}+1}^{(k)}\right\rangle$ is defined. If $p_{k} \in D$, define $p_{k+1}=p_{k}$. Otherwise, there exists a maximal $1 \leq i_{j}=: i_{j}(k) \leq n^{\prime}+1$ such that $\gamma\left(t_{i_{j}}^{(k)}, p_{k}\right) \in I$ which fails to satisfy (1) or fails to satisfy (2) of definition 4.8. Let us split into two cases accordingly:

1. Assume $\neg(1)$, Thus

$$
\gamma\left(t_{i_{j}}^{(k)}, p_{k}\right) \in \operatorname{Lim}(I) \text { and } \gamma\left(t_{i_{j-1}}^{(k)}, p_{k}\right)<\gamma\left(t_{i_{j}-1}^{(k)}, p_{k}\right)
$$

Since $\gamma\left(t_{i_{j}}^{(k)}, p_{k}\right) \in \operatorname{Lim}(I)$ there exists $\gamma \in I \cap\left(\gamma\left(t_{i_{j}-1}^{(k)}, p_{k}\right), \gamma\left(t_{i_{j}}^{(k)}, p_{k}\right)\right)$. Use proposition 3.2 to find $p_{k+1} \geq p_{k}$ with γ added and the only other coordinates added are below γ, thus if $t_{i_{j}}^{(k)}=t_{r}^{(k+1)}$ then $\gamma=\gamma\left(t_{r-1}^{(k+1)}, p_{k+1}\right)$. Thus, every $l \geq r$ satisfies (1) and 2). If $p_{k+1} \notin D$ then the problem must accrue below $\gamma\left(t_{i_{j}}^{(k)}, p_{k}\right)$.
2. Assume $\neg(2)$, thus

$$
\gamma\left(t_{i_{j}}^{(k)}, p\right) \in \operatorname{Succ}(I) \text { and } \gamma\left(t_{i_{j}-1}^{(k)}, p\right) \text { is not the predecessor of }\left(\gamma\left(t_{i_{j}}^{(k)}, p\right)\right)
$$

Let γ be the predecessor in I of $\gamma\left(t_{i_{j}}^{(k)}, p\right)$. By proposition 3.2, there exist $p_{k+1} \geq p_{k}$ with γ added and the only other coordinates added are below γ. As before, if $t_{i_{j}}^{(k)}=t_{r}^{(k+1)}$ then $\gamma=\gamma\left(t_{r-1}^{(k+1)}, p_{k+1}\right)$ and for every $l \geq r, \gamma\left(t_{l}^{(k+1)}, p_{k+1}\right)$ satisfies (1) and (2).

The sequence $\left\langle p_{k} \mid k<\omega\right\rangle$ is defined. It necessarily stabilizes, otherwise the sequence $\gamma\left(t_{i_{j}(k)}^{(k)}, p_{k}\right)$ form a strictly decreasing infinite sequence of ordinals. Let $p_{n^{*}}$ be the stabilized condition, it is an extension of p in D.

Lemma $4.10 \pi_{I} \upharpoonright D: D \rightarrow \mathbb{M}_{I}[\vec{U}]$ is a projection, i.e:

1. π_{I} is onto.
2. $p_{1} \leq p_{2} \Rightarrow \pi_{I}\left(p_{1}\right) \leq_{I} \pi_{I}\left(p_{2}\right)$ (also \leq^{*} is preserved).
3. $\forall p \in \mathbb{M}[\vec{U}] \forall q \in \mathbb{M}_{I}[\vec{U}]\left(\pi_{I}(p) \leq_{I} q \rightarrow \exists p^{\prime} \geq p \quad\left(q=\pi_{I}\left(p^{\prime}\right)\right)\right.$.

Proof. Let $p \in D$, such that $\pi_{I}(p)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{n^{\prime}}}^{\prime}, t_{n+1}\right\rangle$
Claim: $\pi_{I}(p)$ computes I correctly i.e. for every $0 \leq j \leq n^{\prime}$, we have the equality $\gamma\left(t_{i_{j}}, p\right)=$ $I\left(t_{i, j}^{\prime}, \pi_{I}(p)\right)$.

Proof of claim: By induction on j, for $j=0, \gamma(0, p)=0=I\left(0, \pi_{I}(p)\right)$. For $j>0$, assume $\gamma\left(t_{i_{j-1}}, p\right)=I\left(t_{i_{j-1}}^{\prime}, \pi_{I}(p)\right)$ and $\gamma\left(t_{i_{j}}, p\right) \in \operatorname{Succ}(I)$. Since $p \in D, \gamma\left(t_{i_{j-1}}, p\right)$ is the predecessor of $\gamma\left(t_{i_{j}}, p\right)$ in I. Use the induction hypothesis to see that

$$
I\left(t_{i_{j}}^{\prime}, \pi_{I}(p)\right)=\min \left(\beta \in I \backslash \gamma\left(t_{i_{j-1}}, p\right)+1 \mid o_{L}(\beta)=o^{\vec{U}}\left(t_{i_{j}}\right)\right)=\gamma\left(t_{i_{j}}, p\right)
$$

For $\gamma\left(t_{i_{j}}, p\right) \in \operatorname{Lim}(I)$, use condition (1) of definition 4.8. to conclude that $\gamma\left(t_{i_{j-1}}, p\right)+\omega^{\overrightarrow{o^{u}}\left(t_{i_{j}}\right)}=$ $\gamma\left(t_{i_{j}}, p\right)$. Thus

$$
\forall r \in I \cap\left(\gamma\left(t_{i_{j-1}}, p\right), \gamma\left(t_{i_{j}}, p\right)\right)\left(o_{L}(r)<o^{\vec{U}}\left(t_{i_{j}}\right)\right)
$$

In Particular,

$$
I\left(t_{i_{j}}^{\prime}, \pi_{I}(p)\right)=\min \left(\beta \in I \backslash \gamma\left(t_{i_{j-1}}, p\right)+1 \mid o_{L}(\beta)=o^{\vec{U}}\left(t_{i_{j}}\right)\right)=\gamma\left(t_{i_{j}}, p\right)
$$

Checking definition 4.3, show that $\pi_{I}(p) \in \mathbb{M}_{I}[\vec{U}]:$ (1), (2.a.i), (2.b.i), (2.b.iii) are immediate from the definition of π_{I}. Use the claim to verify that (2.a.ii), (2.b.ii) follows from (1),(2) in D respectively. For (2.a.iii), let $1 \leq j \leq n^{\prime}$, write

$$
\gamma\left(t_{i_{j-1}}, p\right)+\sum_{i_{j-1}<l \leq i_{j}} \omega^{o^{\vec{U}}\left(t_{l}\right)}=\gamma\left(t_{i_{j}}, p\right)
$$

This equation induces a C.N.F equation

$$
I\left(t_{i_{j-1}}, \pi_{I}(p)\right)+\sum_{k=1}^{n_{0}} \omega^{\vec{U}\left(t_{l_{k}}\right)}=I\left(t_{i_{j}}, \pi_{I}(p)\right) \quad \text { (C.N.F) }
$$

Thus

$$
\left\langle\kappa\left(t_{l_{1}}\right), \ldots, \kappa\left(t_{l_{n_{0}-1}}\right)\right\rangle \in Y\left(o^{\vec{U}}\left(t_{l_{1}}\right)\right) \times \ldots \times Y\left(o^{\vec{U}}\left(t_{l_{n_{0}-1}}\right)\right) \bigcap\left[\left(\kappa\left(t_{i_{j-1}}\right), \kappa\left(t_{i_{j}}\right)\right)\right]^{<\omega}
$$

For (1), let $q=\left\langle t_{1}^{\prime}, \ldots, t_{n+1}^{\prime}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$. For every t_{j}^{\prime} such that $I\left(t_{j}^{\prime}, q\right) \in \operatorname{Succ}(I)$, use definition 4.3 (2.a.iii) to find $\vec{s}_{j}=\left\langle s_{j, 1}, \ldots, s_{j, m_{j}}\right\rangle$ such that

$$
\left\langle\kappa\left(s_{j, 1}\right), \ldots, \kappa\left(s_{j, m_{j}}\right)\right\rangle \in Y\left(\gamma_{1}\right) \times \ldots \times Y\left(\gamma_{m-1}\right) \bigcap\left[\left(\kappa\left(t_{i_{r}-1}^{\prime}\right), \kappa\left(t_{i_{r}}^{\prime}\right)\right)\right]^{<\omega}
$$

where $I\left(t_{i_{r}-1}^{\prime}, q\right)+\sum_{i=1}^{m} \omega^{\gamma_{i}}=I\left(t_{i_{r}}^{\prime}, q\right)$ (C.N.F).
For each $i=1, \ldots, n$ such that $o^{\vec{U}}\left(t_{i}^{\prime}\right)>0$ and $\kappa\left(t_{i}^{\prime}\right) \in \operatorname{Succ}(I)$ pick some $B\left(t_{i}^{\prime}\right) \in \bigcap_{\xi<o^{\vec{U}\left(t_{i}^{\prime}\right)}} U\left(t_{i}, \xi\right)$.
Define $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \subset\left\langle\vec{s}_{r} \mid I\left(t_{r}, q\right) \in \operatorname{Succ}(I)\right\rangle$

$$
t_{i}= \begin{cases}\left\langle\kappa\left(t_{i}^{\prime}\right), B\left(t_{i}^{\prime}\right) \backslash \kappa\left(s_{i, m_{i}}\right)+1\right\rangle & o^{\vec{U}}\left(t_{i}^{\prime}\right)>0 \\ \kappa\left(t_{i}^{\prime}\right) & \text { otherwise }\end{cases}
$$

Once we prove that $\gamma\left(s_{r, j}, p\right) \notin I$ and that p computes I correctly i.e. $\gamma\left(t_{i}, p\right)=I\left(t_{i}^{\prime}, q\right)$, it will follow that $\pi_{I}(p)=\left\langle t_{i}^{\prime} \mid \gamma\left(t_{i}, p\right) \in I\right\rangle=q$. By induction on i, for $i=0$ it is trivial. Let $0<i$ and assume the statement holds for i. If $I\left(t_{i+1}^{\prime}, q\right) \in \operatorname{Lim}(I)$, then by 4.3 (b.ii)

$$
I\left(t_{i+1}^{\prime}, q\right)=I\left(t_{i}^{\prime}, q\right)+\omega^{o^{\vec{U}}\left(t_{i+1}^{\prime}\right)}=\gamma\left(t_{i}, p\right)+\omega^{o^{\vec{U}}\left(t_{i+1}\right)}=\gamma\left(t_{i+1}, p\right)
$$

If $I\left(t_{i+1}^{\prime}, q\right) \in \operatorname{Succ}(I)$, then from 4.3 (a.ii) it follows that $I\left(t_{i}^{\prime}, q\right)$ is the predecessor of $I\left(t_{i+1}^{\prime}, q\right)$. By the choice of \vec{s}_{i+1},

$$
\begin{aligned}
& \gamma\left(t_{i+1}, p\right)=\gamma\left(t_{i}, p\right)+\sum_{i=1}^{m-1} \omega^{\gamma_{1}} n_{i}+\omega^{\gamma_{m}}\left(n_{m}-1\right)+\omega^{\vec{U}\left(t_{i+1}\right)}= \\
& =I\left(t_{i}^{\prime}, q\right)+\sum_{i=1}^{m-1} \omega^{\gamma_{1}} n_{i}+\omega^{m_{1}}\left(n_{m_{1}}-1\right)+\omega^{\vec{o}\left(t_{i+1}^{\prime}\right)}=I\left(t_{i+1}^{\prime}, q\right)
\end{aligned}
$$

Also, for all $1 \leq r \leq m_{i+1}, \gamma\left(s_{i+1, r}, p\right)$ is between two successor ordinals in I, hence $\gamma\left(s_{i+1, r}, p\right) \notin I$. Finally, $p \in D$ follows from 4.4 (a.ii) and 4.8 condition (1). If $\gamma\left(t_{i}, p\right) \in \operatorname{Lim}(I)$ we did not add \vec{s}_{i}. Thus $i_{j-1}=i_{j}-1$.

For (2), assume that $p, q \in D, p \leq q$. Using the claim, the verification of definition 4.4 it similar to (1).

As for (3), let us prove it for a simpler case to ease the notation. Nevertheless, the general statement if very similar and only require suitable notation. Let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}]$. Assume that

$$
\pi_{I}(p)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{n^{\prime}}}^{\prime}\right\rangle \leq_{I}\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{j-1}}^{\prime}, s_{1}, . ., s_{m}, t_{i_{j}}^{\prime}, \ldots, t_{i_{n}}^{\prime}\right\rangle=q^{\prime} \in \mathbb{M}_{I}[\vec{U}]
$$

For every $l=1, \ldots, m$ such that $I\left(s_{l}, \pi_{I}(p)\right) \in \operatorname{Succ}(I)$ use definition $4.4(2 \mathrm{~b})$ to find $\overrightarrow{s_{l}}=\left\langle s_{l, 1}, \ldots, s_{l, m_{l}}\right\rangle$ such that

$$
\left\langle\kappa\left(s_{l, 1}\right), \ldots, \kappa\left(s_{l, m_{l}}\right)\right\rangle \in B\left(t_{i_{j}}, \gamma_{1}\right) \times \ldots \times B\left(t_{i_{j}}, \gamma_{m-1}\right) \bigcap\left[\left(\kappa\left(s_{l-1}\right), \kappa\left(s_{l}\right)\right)\right]^{<\omega}
$$

where $I\left(s_{l-1}, \pi_{I}(p)\right)+\sum_{i=1}^{m} \omega^{\gamma_{i}}=I\left(s_{l}, \pi_{I}(p)\right)$ (C.N.F). Define $p \leq p^{\prime}$ to be the extension $p^{\prime}=$ $p \frown\left\langle s_{1}^{\prime}, \ldots,, s_{m}^{\prime}\right\rangle \frown\left\langle\vec{s}_{l} \mid I\left(s_{l}, \pi_{I}(p)\right) \in \operatorname{Succ}(I)\right\rangle$ where

$$
s_{i}^{\prime}= \begin{cases}\left\langle\kappa\left(s_{i}\right), B_{i} \backslash \kappa\left(s_{i, m_{i}}\right)+1\right\rangle & o^{\vec{U}}\left(s_{i}\right)>0 \\ s_{i} & \text { otherwise }\end{cases}
$$

As in (1), $\pi_{I}\left(p^{\prime}\right)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{j-1}}^{\prime},\left(s_{1}^{\prime}\right)^{\prime}, \ldots,\left(s_{m}^{\prime}\right)^{\prime}, \ldots t_{i_{n^{\prime}}}\right\rangle$. Notice that since we only change s_{l} such that $I\left(s_{l}, \pi_{I}(p)\right) \in \operatorname{Succ}(I),\left(s_{l}^{\prime}\right)^{\prime}=s_{l}$. Thus $\pi_{I}\left(p^{\prime}\right)=q$ and $p^{\prime} \in D$ follows.

From the discussion previous to 4.8 , we have to following corollary:
Corollary 4.11 Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic filter, and let $C^{\prime} \subseteq C_{G}$ be a closed subset, then there is $G_{I} \subseteq \mathbb{M}_{I}[\vec{U}]$ such that $V\left[C^{\prime}\right]=V\left[G_{I}\right]$ and $C_{I}=C^{\prime}$, where $I=\operatorname{Index}\left(C^{\prime}, C_{G}\right)$.

4.2 The Quotient forcing $\mathbb{M}[\vec{U}] / G_{I}$

Definition 4.12 Let G_{I} be $\mathbb{M}_{I}[\vec{U}]$ generic, the quotient forcing is

$$
\mathbb{M}[\vec{U}] / G_{I}=\pi_{I}^{-1^{\prime \prime}} G_{I}=\left\{p \in \mathbb{M}[\vec{U}] \mid \pi_{I}(p) \in G_{I}\right\}
$$

The forcing $\mathbb{M}[\vec{U}] / G_{I}$ completes $V\left[G_{I}\right]$ to $V[G]$ in the sense that if $G \subseteq \mathbb{M}[\vec{U}]$ is V-generic, and $\pi_{I}^{*}(G)=G_{I}$, then $G \subseteq \mathbb{M}[\vec{U}] / G_{I}$ is $V\left[G_{I}\right]$-generic. Moreover, if $G \subseteq \mathbb{M}[\vec{U}] / G_{I}$ is $V\left[G_{I}\right]$-generic, then $G \subseteq \mathbb{M}[\vec{U}]$ is V-generic, and $\pi_{I}^{*}(G)=G_{I}$.

Corollary 4.13 Let $G_{I} \subseteq \mathbb{M}_{I}[\vec{U}]$ be V-generic, then there is $G \subseteq \mathbb{M}[\vec{U}]$ such that $C_{G} \upharpoonright I=C_{I}$.

The following proposition is straightforward:
Proposition 4.14 Let $x, p \in \mathbb{M}[\vec{U}]$ and $q \in \mathbb{M}_{I}[\vec{U}]$, then

1. $\pi_{I}(p) \leq_{I} q \Rightarrow q \Vdash_{\mathbb{M}_{I}[\vec{U}]} \stackrel{\vee}{p} \in \mathbb{M}[\vec{U}] / G_{I}$.
2. $q \Vdash_{\mathbb{M}_{I}[\vec{U}]} \stackrel{\vee}{p} \in \mathbb{M}[\vec{U}] / G_{I} \Rightarrow \pi_{I}(p), q$ are compatible.
3. $x \vdash^{\mathbb{M}[\vec{U}]} \stackrel{\vee}{p} \in \mathbb{M}[\vec{U}] / G_{I} \Rightarrow \pi_{I}(p), \pi_{I}(x)$ are compatible.

Lemma 4.15 Let $G_{I} \subseteq \mathbb{M}_{I}[\vec{U}]$ be V-generic. Then the forcing $\mathbb{M}[\vec{U}] / G_{I}$ satisfies $\kappa^{+}-$c.c. in $V\left[G_{I}\right]$.

Proof. Fix $\left\{p_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq \mathbb{M}[\vec{U}] / G_{I}$ and let

$$
r \in G_{I}, r \Vdash_{\mathbb{M}_{I}[\vec{U}]} \forall \alpha<\kappa^{+} \underset{\sim}{p_{\alpha}} \in \mathbb{M}[\vec{U}] / G_{I}
$$

Let us argue that

$$
E=\left\{q \in \mathbb{M}_{I}[\vec{U}] \mid(q \perp r) \bigvee\left(q \Vdash_{\mathbb{M}_{I}[\vec{U}]} \exists \alpha, \beta<\kappa^{+}\left({\underset{\sim}{p}}_{\alpha}, \underset{\sim}{p_{\beta}} \text { are compatible }\right)\right\}\right.
$$

is a dense subset of $\mathbb{M}_{I}[\vec{U}]$. Assume $r \leq_{I} r^{\prime}$, for every $\alpha<\kappa^{+}$pick some $r^{\prime} \leq_{I} q_{\alpha}^{*} \in \mathbb{M}_{I}[\vec{U}], p_{\alpha}^{*} \in$ $\mathbb{M}[\vec{U}]$ such that:

1. $\pi_{I}\left(p_{\alpha}^{*}\right)=q_{\alpha}^{*}$.
2. $q_{\alpha}^{*} \Vdash \underset{\sim}{p}{ }_{\alpha} \leq \stackrel{p_{\alpha}^{*}}{\vee} \in \mathbb{M}[\vec{U}] / G_{I}$.

There exists such $q_{\alpha}^{*}, p_{\alpha}^{*}$: Find $r^{\prime} \leq_{I} q_{\alpha}^{\prime}$ and p_{α}^{\prime} such that $q_{\alpha}^{\prime} \Vdash \underset{p_{\alpha}^{\prime}}{\vee}={\underset{\sim}{\alpha}}_{\alpha}$ then by the proposition 4.14 (2), there is $q_{\alpha}^{*} \geq_{I} \pi_{I}\left(p_{\alpha}^{\prime}\right), q_{\alpha}^{\prime}$. By lemma 4.10 (3) there is $p_{\alpha}^{*} \geq p_{\alpha}^{\prime}$ such that $q_{\alpha}^{*}:=\pi_{I}\left(p_{\alpha}^{*}\right)$. It follows from proposition 4.14 (1) that

$$
q_{\alpha}^{*} \Vdash{\underset{\sim}{p}}_{\alpha} \leq p_{\alpha}^{*} \in \mathbb{M}[\vec{U}] / G_{I}
$$

Denote $p_{\alpha}^{*}=\left\langle t_{1, \alpha}, \ldots, t_{n_{\alpha}, \alpha}, t_{n_{\alpha}+1, \alpha}\right\rangle, q_{\alpha}^{*}=\left\langle t_{i_{1}, \alpha}, \ldots, t_{i_{m_{\alpha}, \alpha}}, t_{n_{\alpha}+1, \alpha}\right\rangle$. Find $S \subseteq \kappa^{+}, n<\omega$ and $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle$ such that $|S|=\kappa^{+}$and for any $\alpha \in S, n_{\alpha}=n$ and

$$
\left\langle\kappa\left(t_{1, \alpha}\right), \ldots, \kappa\left(t_{n_{\alpha}, \alpha}\right)\right\rangle=\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle .
$$

Since $\pi_{I}\left(p_{\alpha}^{*}\right)=q_{\alpha}^{*}$ it follows that

$$
\left\langle\kappa\left(t_{i_{1}, \alpha}\right), \ldots, \kappa\left(t_{i_{m_{\alpha}}, \alpha}\right)\right\rangle=\left\langle\kappa_{i_{1}}, \ldots, \kappa_{i_{m}}\right\rangle
$$

for some $m<\omega$ and $1 \leq i_{1}<\ldots<i_{m} \leq n$.
Fix any $\alpha, \beta \in S$ and let $p^{*}=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$ where

$$
t_{i}= \begin{cases}\left\langle\kappa_{i}, B\left(t_{i, \alpha}\right) \cap B\left(t_{i, \beta}\right)\right\rangle & o^{\vec{U}}\left(t_{i, \alpha}\right)>0 \\ \kappa_{i} & \text { otherwise }\end{cases}
$$

Denote $p_{\alpha}^{*} \cap p_{\beta}^{*}=p^{*}$. Set

$$
q^{*}=\pi_{I}\left(p^{*}\right)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{m}}^{\prime}\right\rangle
$$

Then $r^{\prime} \leq_{I} q_{\alpha}^{*} \cap q_{\beta}^{*}=\pi_{I}\left(p_{\alpha}^{*}\right) \cap \pi_{I}\left(p_{\beta}^{*}\right)=\pi_{I}\left(p_{\alpha}^{*} \cap p_{\beta}^{*}\right)=\pi_{I}\left(p^{*}\right)=q^{*}$. It follows that $q^{*} \in E$ since by proposition 4.14 (1) $q^{*} \Vdash_{\mathbb{M}_{I}[\vec{U}]} p^{\vee} \in \mathbb{M}[\vec{U}] / G_{I}$ and

$$
q^{*} \vdash_{\mathbb{M}_{I}[\vec{U}]}{\underset{\sim}{p}}^{p_{\alpha}} \leq \stackrel{p_{\alpha}^{*}}{\vee} \leq^{*}{\underset{p}{ }}_{\vee}^{\vee} \wedge \underset{\sim}{p_{\beta}} \leq \stackrel{\vee}{p_{\beta}^{*}} \leq^{*} \stackrel{\vee}{p^{*}}
$$

The rest is routine.

Lemma 4.16 Let $G \subseteq \mathbb{M}[\vec{U}]$ be V-generic. Then the forcing $\mathbb{M}[\vec{U}] / G_{I}$ satisfies $\kappa^{+}-$c.c. in $V[G]$.

Proof. Fix $\left\{p_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq \mathbb{M}[\vec{U}] / G_{I}$ in $V[G]$ and let

$$
r \in G, r \Vdash_{\mathbb{M}[\vec{U}]} \forall \alpha<\kappa^{+}{\underset{\sim}{p}}_{\alpha} \in \mathbb{M}[\vec{U}] / G_{\sim}
$$

Similar to lemma 4.15 let us argue that

$$
E=\left\{x \in \mathbb{M}[\vec{U}] \mid(q \perp r) \bigvee\left(q \Vdash_{\mathbb{M}[\vec{U}]} \exists \alpha, \beta<\kappa^{+}(\underset{\sim}{p} \alpha, \underset{\sim}{p}) \text { are compatible }\right)\right\}
$$

is a dense subset of $\mathbb{M}[\vec{U}]$. Assume $r \leq r^{\prime}$, for every $\alpha<\kappa^{+}$pick some $r^{\prime} \leq x_{\alpha}^{\prime} \in \mathbb{M}[\vec{U}], p_{\alpha}^{\prime} \in \mathbb{M}[\vec{U}]$ such that $x_{\alpha}^{\prime} \Vdash_{\mathbb{M}[\vec{U}]}{\underset{\sim}{\alpha}}^{p_{\alpha}}=\stackrel{\vee}{p_{\alpha}^{\prime}}$. By proposition 4.14 (3), we can find $\pi_{I}\left(x_{\alpha}^{\prime}\right), \pi_{I}\left(p_{\alpha}^{\prime}\right) \leq_{I} y_{\alpha}$. By lemma 4.10 (3), There is $x_{\alpha}^{\prime} \leq x_{\alpha}^{*}, p_{\alpha}^{\prime} \leq p_{\alpha}^{*}$ such that

$$
\pi_{I}\left(x_{\alpha}^{\prime}\right), \pi_{I}\left(p_{\alpha}^{\prime \prime}\right) \leq_{I} y_{\alpha}=\pi_{I}\left(p_{\alpha}^{*}\right)=\pi_{I}\left(x_{\alpha}^{*}\right)
$$

Denote by

$$
x_{\alpha}^{*}=\left\langle s_{1_{\alpha}}, \ldots, s_{k_{\alpha}, \alpha}, s_{k_{\alpha}+1, \alpha}\right\rangle . p_{\alpha}^{*}=\left\langle t_{1, \alpha}, \ldots, t_{n_{\alpha}, \alpha}, t_{n_{\alpha}+1, \alpha}\right\rangle
$$

and

$$
\pi_{I}\left(x_{\alpha}^{*}\right)=\left\langle t_{i_{1}, \alpha}^{\prime}, \ldots, t_{i_{k_{\alpha}^{\prime}}^{\prime}, \alpha}^{\prime} t_{k_{\alpha}+1}^{\prime}\right\rangle=\pi_{I}\left(p_{\alpha}\right)
$$

Find $S \subseteq \kappa^{+}|S|=\kappa^{+}$and $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle,\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle$ such that for any $\alpha \in S$,

$$
\left\langle\kappa\left(t_{1, \alpha}\right), \ldots, \kappa\left(t_{n_{\alpha}, \alpha}\right)\right\rangle=\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle,\left\langle\kappa\left(s_{1, \alpha}\right), \ldots, \kappa\left(s_{k, \alpha}\right)\right\rangle=\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle
$$

Fix any $\alpha, \beta \in S$ and let $p^{*}=p_{\alpha}^{*} \cap p_{\beta}^{*}, x^{*}=x_{\alpha}^{*} \cap x_{\beta}^{*}$. Then $p_{\alpha}^{\prime}, p_{\beta}^{\prime} \leq^{*} p^{*}$ and $x_{\alpha}, x_{\beta} \leq_{I}^{*} x^{*}$. Finally claim that $x^{*} \in E$:

$$
\pi_{I}\left(p^{*}\right)=\pi_{I}\left(p_{\alpha}^{*}\right) \cap \pi_{I}\left(p_{\beta}^{*}\right)=\pi_{I}\left(x_{\alpha}^{*}\right) \cap \pi_{I}\left(x_{\beta}^{*}\right)=\pi_{I}\left(x^{*}\right)
$$

thus $x^{*} \Vdash_{\mathbb{M}[\vec{U}]} p^{\vee} \in \mathbb{M}[\vec{U}] / G_{I}$. Moreover, $x_{\alpha} \leq^{*} x^{*}$ which implies that $x^{*} \Vdash_{\mathbb{M}[\vec{U}]}{\underset{p}{*}}^{\vee} \geq \underset{\sim}{p}{\underset{\sim}{x}}_{\alpha}^{p_{\alpha}}$.

4.3 The Argument for General Sets

Let us conclude first the main result for subsets of κ^{+}.
Lemma 4.17 If $A \in V[G], A \subseteq \kappa^{+}$then there exists $C^{*} \subseteq C_{G}$ such that $V[A]=V\left[C^{*}\right]$.

Proof. Work in $V[G]$, for every $\alpha<\kappa^{+}$find subsequences $C_{\alpha} \subseteq C_{G}$ such that $V\left[C_{\alpha}\right]=V[A \cap \alpha]$ using the induction hypothesis. The function $\alpha \mapsto C_{\alpha}$ has range $P\left(C_{G}\right)$ and domain κ^{+}which is regular in $V[G]$. Therefore there exist $E \subseteq \kappa^{+}$unbounded in κ^{+}and $\alpha^{*}<\kappa^{+}$such that for every $\alpha \in E, C_{\alpha}=C_{\alpha^{*}}$. Set $C^{*}=C_{\alpha^{*}}$, then

1. $C^{*} \subseteq C_{G}$.
2. $C^{*} \in V\left[A \cap \alpha^{*}\right] \subseteq V[A]$.
3. $\forall \alpha<\kappa^{+} . A \cap \alpha \in V\left[C^{*}\right]$.

Assume that C^{*} is a club ${ }^{8}$. Unlike A^{\prime} 's that were subsets of κ, for which we added another piece of C_{G} to C^{*} to obtain C^{\prime} such that $V[A]=V\left[C^{\prime}\right]$, here we argue that $V[A]=V\left[C^{*}\right]$.

By (2), $C^{*} \in V[A]$. For the other direction, denote by I the indexes of C^{*} in C and consider the forcings $\mathbb{M}_{I}[\vec{U}], \mathbb{M}[\vec{U}] / G_{I}$. Toward a contradiction, assume that $A \notin V\left[C^{*}\right]$, and let $\underset{\sim}{A} \in V\left[C^{*}\right]$ be a $\mathbb{M}[\vec{U}] / G_{I}$-name for A, where $\pi_{I}^{\prime \prime} G=G_{I}$. Work in $V\left[G_{I}\right]$, by lemma 4.7 (2), $V\left[G_{I}\right]=V\left[C^{*}\right]$. For every $\alpha<\kappa^{+}$define

$$
X_{\alpha}=\{B \subseteq \alpha \mid\|\underset{\sim}{A} \cap \alpha=B\| \neq 0\}
$$

where the truth value is taken in $R O\left(\mathbb{M}[\vec{U}] / G_{I}\right)^{9}$. By lemma 4.15,

$$
\forall \alpha<\kappa^{+}\left|X_{\alpha}\right| \leq \kappa
$$

For every $B \in X_{\alpha}$ define $b(B)=\|A \cap \alpha\|$. Assume that $B^{\prime} \in X_{\beta}$ and $\alpha \leq \beta$ then $B=B^{\prime} \cap \alpha \in X_{\alpha}$. Switching to boolean algebra notation ($p \leq_{B} q$ means p extends q) b($\left.B^{\prime}\right) \leq_{B} b(B)$. Note that for such B, B^{\prime} if $b\left(B^{\prime}\right)<_{B} b(B)$, then there is

$$
0<p \leq_{B}\left(b(B) \backslash b\left(B^{\prime}\right)\right) \leq_{B} b(B)
$$

Therefore,

$$
p \cap b\left(B^{\prime}\right) \leq_{B}\left(b(B) \backslash b\left(B^{\prime}\right)\right) \cap b\left(B^{\prime}\right)=0
$$

[^7]Hence $p \perp b\left(B^{\prime}\right)$. Work in $\mathrm{V}[\mathrm{G}]$, denote $A_{\alpha}=A \cap \alpha$. Recall that

$$
\forall \alpha<\kappa^{+} A_{\alpha} \in V\left[C^{*}\right]
$$

thus $A_{\alpha} \in X_{\alpha}$. Consider the \leq_{B}-non-increasing sequence $\left\langle b\left(A_{\alpha}\right) \mid \alpha<\kappa^{+}\right\rangle$. If there exists some $\gamma^{*}<\kappa^{+}$on which the sequence stabilizes, define

$$
A^{\prime}=\bigcup\left\{B \subseteq \kappa^{+} \mid \exists \alpha b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \alpha=B\right\} \in V\left[C^{*}\right]
$$

To see that $A^{\prime}=A$, notice that if $B, B^{\prime}, \alpha, \alpha^{\prime}$ are such that $\alpha \leq \alpha^{\prime}$, and

$$
b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \alpha=B, b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \alpha^{\prime}=B^{\prime}
$$

then $B^{\prime} \cap \alpha=B$ otherwise, the non zero condition $b\left(A_{\gamma^{*}}\right)$ would force contradictory information. Consequently, for every $\xi<\kappa^{+}$there exists $\xi<\gamma<\kappa^{+}$such that $b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \gamma=A \cap \gamma$, hence $A^{\prime} \cap \gamma=A \cap \gamma$. This is a contradiction to $A \notin V\left[C^{*}\right]$.
Therefore, the sequence $\left\langle b\left(A_{\alpha}\right) \mid \alpha<\kappa^{+}\right\rangle$does not stabilize. By regularity of κ^{+}, there exists a subsequence $\left\langle b\left(A_{i_{\alpha}}\right) \mid \alpha<\kappa^{+}\right\rangle$which is strictly decreasing. By the observation we made in the last paragraph, find $p_{\alpha} \leq_{B} b\left(A_{i_{\alpha}}\right)$ such that $p_{\alpha} \perp b\left(A_{i_{\alpha+1}}\right)$. Since $b\left(A_{i_{\alpha}}\right)$ are decreasing, for any $\beta>\alpha$ $p_{\alpha} \perp b\left(A_{i_{\beta}}\right)$ and in turn $p_{\alpha} \perp p_{\beta}$. This shows that $\left\langle p_{\alpha} \mid \alpha<\kappa^{+}\right\rangle \in V[G]$ is an anti chain of size κ^{+} which contradicts Lemma 4.16. Thus $V[A]=V\left[C^{*}\right]$.

End of the proof of Theorem 3.3: By induction on $\sup (A)=\lambda>\kappa^{+}$. It suffices to assume that λ is a cardinal.
case1: Assume $c f^{V[G]}(\lambda)>\kappa$, then the arguments of lemma 4.17 works.
case2: Assume $c f^{V[G]}(\lambda) \leq \kappa$, since $\mathbb{M}[\vec{U}]$ satisfies $\kappa^{+}-c . c$. we must have that $\nu:=c f^{V}(\lambda) \leq \kappa$. Fix $\left\langle\gamma_{i} \mid i<\nu\right\rangle \in V$ cofinal in λ. Work in $V[A]$, for every $i<\nu$ find $d_{i} \subseteq \kappa$ such that $V\left[d_{i}\right]=V\left[A \cap \gamma_{i}\right]$. By induction, there exists $C^{*} \subseteq C_{G}$ such that $V\left[\left\langle d_{i} \mid i<\nu\right\rangle\right]=V\left[C^{*}\right]$, therefore

1. $\forall i<\nu A \cap \gamma_{i} \in V\left[C^{*}\right]$.
2. $C^{*} \in V[A]$.

Work in $V\left[C^{*}\right]$, for $i<\nu$ define $X_{i}=\left\{B \subseteq \alpha \mid\left\|A \cap \gamma_{i}=B\right\| \neq 0\right\}$. By lemma 4.15, $\left|X_{i}\right| \leq \kappa$. For every $i<\nu$ fix an enumeration

$$
X_{i}=\langle X(i, \xi) \mid \xi<\kappa\rangle \in V\left[C^{*}\right]
$$

There exists $\xi_{i}<\kappa$ such that $A \cap \gamma_{i}=X\left(i, \xi_{i}\right)$. Moreover, since $\nu \leq \kappa$ the sequence $\left\langle A \cap \gamma_{i}\right| i<$ $\nu\rangle=\left\langle X\left(i, \xi_{i}\right) \mid i<\nu\right\rangle$ can be coded in $V\left[C^{*}\right]$ as a sequence of ordinals below κ. By induction there exists $C^{\prime \prime} \subseteq C_{G}$ such that $V\left[C^{\prime \prime}\right]=V\left[\left\langle\xi_{i} \mid i<\nu\right\rangle\right]$. It follows that,

$$
V\left[C^{\prime \prime}, C^{*}\right]=\left(V\left[C^{*}\right]\right)\left[\left\langle\xi_{i} \mid i<\nu\right\rangle\right]=V[A]
$$

Finally, we can take for example, $C^{\prime}=C^{\prime \prime} \cup C^{*} \subseteq C_{G}$ to obtain $V[A]=V\left[C^{\prime}\right]$

5 Classification of subforcing of Magidor

Now that we have Classified models of the form $V[A]$, we can conclude the following:
Corollary 5.1 Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic filter, and let M be a transitive model of $Z F C$ such that $V \subseteq M \subseteq V[G]$. Then there is $C_{M} \subseteq C_{G}$ such that $V\left[C_{M}\right]=M$.

Proof. By [7, Thm. 15.43], there is $D \in V[G]$ such that $M=V[D]$. By theorem 3.3, there is $C_{M} \subseteq C_{G}$ such that $V\left[C_{M}\right]=V[D]=M$.

As we have seen in the previous section, the models $V\left[C_{M}\right]$ are generic extensions for the forcings $\mathbb{M}_{I}[\vec{U}]$ which in turn are projection of $\mathbb{M}[\vec{U}]$, this yield the classification of subforcings. Although the classification can naturally be extended to a the class of forcings $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$, we present here only the classification of subforcings of $\mathbb{M}[\vec{U}]$.

Definition 5.2 Recall definition 4.3 of $\mathbb{M}_{I}[\vec{U}]$. The forcings

$$
\left\{\mathbb{M}_{I}[\vec{U}] \mid I \in P\left(\omega^{o^{\vec{U}}(\kappa)}\right), I \text { is closed }\right\}
$$

is the family of Magidor-type forcings with the coherent sequence \vec{U}.

In practice, Magidor-type forcings are just Magidor forcing with a subsequence of \vec{U}; If I is any closed subset of indices, we can read the measures of \vec{U} from which the elements of the final sequence are chosen from, using the sequence $\left\langle o_{L}(i) \mid i \in I\right\rangle$ (recall that $o_{L}(i)=\gamma_{n}$ where $i=\omega^{\gamma_{1}}+\ldots+\omega^{\gamma_{n}}$ C.N.F).

Example: Assume that $o^{\vec{U}}(\kappa)=2$ and let a

$$
I=\{1, \omega, \omega+1\} \cup(\omega \cdot 3 \backslash \omega \cdot 2) \cup\{\omega \cdot 3, \omega \cdot 4, \ldots\} \in P\left(\omega^{2}\right)
$$

Then $\left\langle o_{L}(i) \mid i \in I\right\rangle=\langle 0,1, \underbrace{0,0,0 \ldots}_{\omega}, \underbrace{1,1,1 \ldots}_{\omega}\rangle$. Therefore $\mathbb{M}_{I}[\vec{U}]$ is just Prikry foricing with $U\left(\kappa_{1}, 0\right)$ for some measurable $\kappa_{1}<\kappa$ followed by Prikry forcing with $U(\kappa, 1)$.
Although in this example the noise at the beginning can be neglected, there are I 's for which we do not get "pure" Magidor forcing which uses one measure at a time and combine several measure. For example we can obtain the Tree-Prikry forcing- let $I=\left\langle\omega^{n}\right| n\langle\omega\rangle$ then $\left\langle o_{L}(i) \mid i \in I\right\rangle=$ $\langle n| n<\omega$, conditions in the forcing are of the form $\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$ the extensions is from the measures $U(\kappa, m), m>n$ which is essentially $P_{T}(\langle U(\kappa, n) \mid n<\omega\rangle)$ the tree Prikry forcing such that at level n the tree splits on a large set in $U(\kappa, n)$.

For the definition of complete subforcing see [11].

Theorem 5.3 Let $\mathbb{P} \subseteq \mathbb{M}[\vec{U}]$ be a complete subforcing of $\mathbb{M}[\vec{U}]$ then there exists a maximal antichain $Z \subseteq \mathbb{P}$ and $\left\langle I_{p} \mid p \in Z\right\rangle$ such that $\mathbb{P}_{\geq p}$ (the forcing \mathbb{P} above p) is forcing equivalent to the Magidor-type forcing $\mathbb{M}_{I_{p}}[\vec{U}]_{\geq q_{p}}$ for some condition $q_{p} \in R O\left(\mathbb{M}_{I_{p}}[\vec{U}]\right)$.

Proof. Let $H \subseteq \mathbb{P}$ be generic, then there exists $G \subseteq \mathbb{M}[\vec{U}]$ generic such that $H=G \cap \mathbb{P}$, in particular $V \subseteq V[H] \subseteq V[G]$. By Theorem 3.3, there is a closed $C^{\prime} \subseteq C_{G}$ such that $V\left[C^{\prime}\right]=V[H]$, and let $I=\operatorname{Index}\left(C^{\prime}, C_{G}\right)$. The assumption $o^{\vec{U}}(\kappa)$ is crucial to claim that $I \in V$. By corollary 4.11, there is $G_{I} \subseteq \mathbb{M}_{I}[\vec{U}]$ such that $C_{I}=C^{\prime}$. Let ${\underset{\sim}{c}}_{0}^{\prime},{\underset{\sim}{*}}_{0}$ be a \mathbb{P}-name of C^{\prime}, H. Let $p \in \mathbb{P}$ such that

$$
p \Vdash{\underset{\sim}{C}}^{\prime} \text { is generic sequence for } \mathbb{M}_{I}[\vec{U}] \text { and } V[\underset{\sim}{H}]=V\left[C_{\sim}^{\prime}\right] .{ }^{10}
$$

Denote by $I_{p}:=I$. For the other direction, let ${\underset{\sim}{C}}^{\prime}{ }_{1}, \underset{\sim}{H}{ }_{1}$ be $\mathbb{M}_{I_{p}}[\vec{U}]$-names for C^{\prime}, H and let $q_{p} \in$ $R O\left(\mathbb{M}_{I_{p}}[\vec{U}]\right)$ be the truth value:

$$
\underset{\sim}{\underset{\sim}{H}} \subseteq \mathbb{P} \text { is } V \text { - generic , } p \in \underset{\sim}{\underset{1}{H}} \text { and } V[\underset{\sim}{\underset{1}{H}}]=V\left[{\underset{\sim}{C}}_{\prime}^{\prime}\right]
$$

Clearly, $\mathbb{M}_{I_{p}}[\vec{U}]_{\geq q_{p}}$ and $\mathbb{P}_{\geq p}$ have the same generic extensions and therefore forcing equivalent.

[^8]
6 Prikry forcings with non-normal ultrafilters.

Let κ be a measurable cardinal and let $\mathbb{U}=\left\langle U_{a} \mid a \in[\kappa]^{<\omega}\right\rangle$ be a tree consisting of κ-complete non-trivial ultrafilter over κ.

Recall the definition due to Prikry of the tree Prikry forcing with \mathbb{U}.
Definition 6.1 The Tree Prikry forcing $P(\mathbb{U})$, consist of all pairs $\langle p, T\rangle$ such that:

1. p is a finite increasing sequence of ordinals below κ.
2. $T \subseteq[\kappa]^{<\omega}$ is a tree with trunk p such that
for every $q \in T$ with $q \geq_{T} p$, the set of the immediate successors of q in T, i.e. $S u c_{T}(q)$ is in U_{q}.

The orders \leq, \leq^{*} are defined in the usual fashion.
For every $a \in[\kappa]^{<\omega}$, let π_{a} be a projection of U_{a} to a normal ultrafilter. Namely, let $\pi_{a}: \kappa \rightarrow \kappa$ be a function which represents κ in the ultrapower by U_{a}, i.e. $\left[\pi_{a}\right]_{U_{a}}=\kappa$. Once U_{a} is a normal ultrafilter, then let π_{a} be the identity.

By passing to a dense subset of $P(\mathbb{U})$, we can assume that for each $\langle p, T\rangle \in P(\mathbb{U})$, for every $\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle \in T$ we have

$$
\nu_{1}<\pi_{\left\langle\nu_{1}\right\rangle}\left(\nu_{2}\right) \leq \nu_{2}<\ldots \leq \nu_{n-1}<\pi_{\left\langle\nu_{1}, \ldots, \nu_{n-1}\right\rangle}\left(\nu_{n}\right)
$$

and for every $\nu \in \operatorname{Suc}_{T}\left(\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle\right), \pi_{\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle}(\nu)>\nu_{n}$.
Note that once the measures over a certain level (or certain levels) are the same - say for some $n<\omega$ and U, for every $a \in[\kappa]^{n}, U_{a}=U$, then a modified diagonal intersection

$$
\Delta_{\alpha<\kappa}^{*} A_{\alpha}:=\left\{\nu<\kappa \mid \forall \alpha<\pi_{k}(\nu)\left(\nu \in A_{\alpha}\right)\right\} \in U,
$$

once $\left\{A_{\alpha} \mid \alpha<\kappa\right\} \subseteq U$, can be used to avoid or to simplify the tree structure.
For example, if $\left\langle\mathcal{V}_{n} \mid n<\omega\right\rangle$ is a sequence of κ-complete ultrafilters over κ, then the Prikry forcing with it $P\left(\left\langle\mathcal{V}_{n} \mid n<\omega\right\rangle\right)$ is defined as follows:

Definition 6.2 The tree Prikry forcing with an ω-sequence of ultrafilters, $P\left(\left\langle\mathcal{V}_{n} \mid n<\omega\right\rangle\right)$, is the set of all pairs $\left.\left\langle p,\left\langle A_{n}\right|\right| p|<n<\omega\rangle\right\rangle$ such that:

1. $p=\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle$ is a finite sequence of ordinals below κ, such that
$\nu_{j}<\pi_{i}\left(\nu_{i}\right)$, whenever $1 \leq j<i \leq k$.
2. $A_{n} \in \mathcal{V}_{n}$, for every $n,|p|<n<\omega$.
3. $\pi_{k+1}\left(\min \left(A_{k+1}\right)\right)>\max (p)$, where $\pi_{n}: \kappa \rightarrow \kappa$ is a projection of \mathcal{V}_{n} to a normal ultrafilter, i.e. π_{n} is a function which represents κ in the ultrapower by $\mathcal{V}_{n},[\pi]_{\mathcal{V}_{n}}=\kappa$.

A simpler case is once all \mathcal{V}_{n} are the same, say all of them are U. Then we will have the Prikry forcing with U :

Definition 6.3 The Prikry forcing with general ultrafilter $P(U)$ is the set of all pairs $\langle p, A\rangle$ such that

1. $p=\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle$ is a finite sequence of ordinals below κ, such that $\nu_{j}<\pi\left(\nu_{i}\right)$, whenever $1 \leq j<i \leq k$.
2. $A \in U$.
3. $\pi(\min (A))>\max (p)$, where π is a projection of U to a normal ultrafilter.

Let G be a generic for $\langle P(\mathbb{U}), \leq\rangle$. Set

$$
C=\bigcup\{p \mid \exists T \quad\langle p, T\rangle \in G\} .
$$

It is called a Prikry sequence for \mathbb{U}.
For every natural $n \geq 1$ we would like to define a κ-complete ultrafilter U_{n} over $[\kappa]^{n}$ which correspond to the first n-levels of trees in $P(\mathbb{U})$.
If $n=1$, set $U_{1}=U_{\langle \rangle}$.
Deal with the next step $n=2$. Here for each $\nu<\kappa$ we have U_{ν}.
Consider the ultrapower by U_{1} :

$$
i_{1}:=i_{\langle \rangle}: V \rightarrow M_{\langle \rangle} .
$$

Then the sequence $i_{\langle \rangle}\left(\left\langle U_{\langle\nu\rangle}\right| \nu\langle\kappa\rangle\right)$ will have the length $i_{\langle \rangle}(\kappa)$.
Let $U_{\left\langle[i d]_{U_{\langle \rangle}}\right\rangle}$be its $[i d]_{U_{\langle \rangle}}$ultrafilter in $M_{\langle \rangle}$over $i_{\langle \rangle}(\kappa)$. Consider its ultrapower

$$
i_{U_{\left.\langle[i d]]_{U\rangle}\right\rangle}}: M_{\langle \rangle} \rightarrow M_{\left\langle[i d]_{U_{\curlywedge}}\right\rangle}
$$

Set

$$
i_{2}=i_{\left.U_{\left\langle[i d]_{U}\right.}\right\rangle} \circ i_{\langle \rangle} .
$$

Then

$$
\left.i_{2}: V \rightarrow M_{\left\langle[i d]_{U_{\curlywedge}}\right\rangle}\right\rangle
$$

Note that if all of $U_{\langle\nu\rangle}$'s are the same or just for a set of ν 's in $U_{\langle \rangle}$they are the same, then this is just an ultrapower by the product of $U_{\langle \rangle}$with this ultrafilter. In general it is an ultrapower by

$$
U_{\langle \rangle}-\operatorname{Lim}\left\langle U_{\langle\nu\rangle} \mid \nu<\kappa\right\rangle,
$$

where

$$
X \in U_{\langle \rangle}-\operatorname{Lim}\left\langle U_{\langle\nu\rangle} \mid \nu<\kappa\right\rangle \text { iff }[i d]_{\left.U_{\left\langle[i d]_{U}\right.}\right\rangle} \in i_{2}(X)
$$

Note that once most of $U_{\langle\nu\rangle}$'s are normal, then $U_{\left\langle[i d]_{\left.U_{\langle \rangle}\right\rangle}\right\rangle}$is normal as well, and so, $[i d]_{\left.U_{\left\langle[i d]_{U(\rangle}\right\rangle}\right\rangle}=$ $i_{\langle \rangle}(\kappa)$.

Define an ultrafilter U_{2} on $[\kappa]^{2}$ as follows:

$$
X \in U_{2} \text { iff }\left\langle[i d]_{U_{\langle \rangle}},[i d]_{U_{\left\langle[i d]_{U_{\langle \rangle}}\right\rangle}}\right\rangle \in i_{2}(X)
$$

Define also for $k=1,2$, ultrafilters U_{2}^{k} over κ as follows:

$$
\begin{gathered}
X \in U_{2}^{1} \text { iff }[i d]_{U_{\langle \rangle}} \in i_{2}(X), \\
X \in U_{2}^{2} \text { iff }[i d]_{U_{\left\langle[i d]_{\left.U_{\ell\rangle}\right\rangle}\right.}} \in i_{2}(X) .
\end{gathered}
$$

Clearly, then $U_{2}^{1}=U_{1}$ and $U_{2}^{2}=U_{1}-\operatorname{Lim}\left\langle U_{\langle\nu\rangle}\right| \nu\langle\kappa\rangle$. Also U_{2}^{1} is the projection of U_{2} to the first coordinate and U_{2}^{2} to the second.

Let $\left\langle\rangle, T\rangle \in P(\mathbb{U})\right.$. It is not hard to see that $T \upharpoonright 2 \in U_{2}$.
Continue and define in the similar fashion the ultrafilter U_{n} over $[\kappa]^{n}$ and its projections to the coordinates U_{n}^{k} for every $n>2,1 \leq k \leq n$. We will have that for any $\left\langle\rangle, T\rangle \in P(\mathbb{U}), T \upharpoonright n \in U_{n}\right.$. Also, if $1 \leq n \leq m<\omega$, then the natural projection of U_{m} to $[\kappa]^{n}$ will be U_{n}.

It is easy to see that C is a Prikry sequence for $\left\langle U_{n}^{n} \mid 1 \leq n<\omega\right\rangle$, in a sense that for every sequence $\left\langle A_{n} \mid n<\omega\right\rangle \in V$, with $A_{n} \in U_{n}^{n}$, there is $n_{0}<\omega$ such that for every $n>n_{0}, C(n) \in U_{n}^{n}$. However, it does not mean that C is generic for the forcing $P\left(\left\langle U_{n}^{n} \mid 1 \leq n<\omega\right\rangle\right)$ defined above (Definition 6.2). The problem is with projection to normal. All U_{n}^{n} 's have the same normal U_{1}.

Suppose now that we have an ultrafilter W over $[\kappa]^{\ell}$ which is Rudin-Keisler below some \mathfrak{V} over $[k]^{k}\left(W \leq_{R K} \mathfrak{V}\right)$, for some $k, \ell, 1 \leq \ell, k<\omega$. This means that there is a function $F:[\kappa]^{k} \rightarrow[k]^{\ell}$ such that

$$
X \in W \text { iff } F^{-1 \prime \prime} X \in \mathfrak{V} .
$$

So F projects \mathfrak{V} to W. Let us denote this by $W=F_{*} \mathfrak{V}$.
The next statement characterizes ω-sequences in $V[C]$.
Theorem 6.4 Let $\left\langle\alpha_{k} \mid k<\omega\right\rangle \in V[C]$ be an increasing cofinal in κ sequence. Then $\left\langle\alpha_{k} \mid k<\omega\right\rangle$ is a Prikry sequence for a sequence in V of κ-complete ultrafilters which are Rudin-Keisler below
$\left\langle U_{n} \mid n<\omega\right\rangle .{ }^{11}$
Moreover, there exist a non-decreasing sequence of natural numbers $\left\langle n_{k} \mid k<\omega\right\rangle$ and a sequence of functions $\left\langle F_{k} \mid k<\omega\right\rangle$ in $V, F_{k}:[\kappa]^{n_{k}} \rightarrow \kappa,(k<\omega)$, such that

1. $\alpha_{k}=F_{k}\left(C \upharpoonright n_{k}\right)$, for every $k<\omega$.
2. Let $\left\langle n_{k_{i}} \mid i<\omega\right\rangle$ be the increasing subsequence of $\left\langle n_{k} \mid k<\omega\right\rangle$ such that:
(a) $\left\{n_{k_{i}} \mid i<\omega\right\}=\left\{n_{k} \mid k<\omega\right\}$.
(b) $k_{i}=\min \left\{k \mid n_{k}=n_{k_{i}}\right\}$.

Set $\ell_{i}=\left|\left\{k \mid n_{k}=n_{k_{i}}\right\}\right|$. Then $\left\langle F_{k}\left(C \mid n_{k_{i}}\right) \mid i<\omega, n_{k}=n_{k_{i}}\right\rangle$ will be a Prikry sequence for $\left\langle W_{i} \mid i<\omega\right\rangle$, i.e. for every sequence $\left\langle A_{i} \mid i<\omega\right\rangle \in V$, with $A_{i} \in W_{i}$, there is $i_{0}<\omega$ such that for every $i>i_{0},\left\langle F_{k}\left(C \upharpoonright n_{k_{i}}\right) \mid i<\omega, n_{k}=n_{k_{i}}\right\rangle \in A_{i}$, where each W_{i} is an ultrafilter over $[k]^{\ell_{i}}$ which is the projection of $U_{n_{k_{i}}}$ by $\left\langle F_{k_{i}}, \ldots, F_{k_{i}+\ell_{i}-1}\right\rangle$.

Proof. Work in V. Given a condition $\langle q, S\rangle$, we will construct by induction, using the Prikry property of the forcing $P(\mathbb{U})$, a stronger condition $\langle p, T\rangle$ which decides ${\underset{\sim}{\alpha}}_{k}$ once going up to a certain level n_{k} of T. Let us assume for simplicity that q is the empty sequence.

Build by induction $\left\langle\rangle, T\rangle \geq^{*}\langle\langle \rangle, S\rangle\right.$ and a non-decreasing sequence of natural numbers $\left\langle n_{k}\right|$ $k<\omega\rangle$ such that for every $k<\omega$

1. for every $\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle \in T$ there is $\rho_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle}<\kappa$ such that:
(a) $\left\langle\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle, T_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle} \Vdash \underset{\sim}{\alpha}{ }_{k}=\rho_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right.}\right\rangle$.
(b) $\rho_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle} \geq \pi_{\left\langle\eta_{1}, \ldots, \eta_{n_{k-1}}\right\rangle}\left(\eta_{n_{k}}\right)$.
2. there is no $n, n_{k} \leq n<n_{k+1}$ such that for some $\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle \in T$ and E, the condition $\left\langle\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle, E\right\rangle$ decides the value of α_{k+1},

Now, using the density argument and making finitely many changes, if necessary, we can assume that such $\langle\rangle, T\rangle$ in the generic set.

For every $k<\omega$, define a function $F_{k}: \operatorname{Lev}_{n_{k}}(T) \rightarrow \kappa$ by setting

$$
F_{k}\left(\eta_{1}, \ldots, \eta_{n_{k}}\right)=\nu \text { if }\left\langle\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle, T_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle}\right\rangle \Vdash \underset{\sim}{\alpha}{ }_{k}=\nu .
$$

[^9]We restrict now our attention to ultrafilters U which are P-points. This will allow us to deal with arbitrary sets of ordinals in $V[C]$.
Recall the definition.
Definition 6.5 U is called a P-point iff every non-constant $(\bmod U)$ function $f: \kappa \rightarrow \kappa$ is almost one to one $(\bmod U)$, i.e. there is $A \in U$ such that for every $\delta<\kappa$,

$$
|\{\nu \in A \mid f(\nu)=\delta\}|<\kappa .
$$

Note that, in particular, the projection to the normal ultrafilter π is almost one to one. Namely,

$$
|\{\nu<\kappa \mid \pi(\nu)=\alpha\}|<\kappa,
$$

for any $\alpha<\kappa$.
Denote by $U^{n o r}$ the projection of U to the normal ultrafilter.
Lemma 6.6 Assume that $\mathbb{U}=\left\langle U_{a} \mid 1 \leq a \in[\kappa]^{<\omega}\right\rangle$ consists of P-point ultrafilters. Suppose that $A \in V[C] \backslash V$ is an unbounded subset of κ. Then κ has cofinality ω in $V[A]$.

Proof. Work in V. Let $\underset{\sim}{A}$ be a name of A and $\langle s, S\rangle \in P(\mathbb{U})$. Suppose for simplicity that s is the empty sequence. Define by induction a subtree T of S. For each $\nu \in \operatorname{Lev}_{1}(S)$ pick some subtree S_{ν}^{\prime} of $S_{\langle\nu\rangle}$ and $a_{\nu} \subseteq \pi_{\langle \rangle}(\nu)$ such that

$$
\left\langle\langle\nu\rangle, S_{\nu}^{\prime}\right\rangle \| \underset{\sim}{A} \cap \pi_{\langle \rangle}(\nu)=a_{\nu} .
$$

Let $S(0)^{\prime}$ be a subtree of S obtained by replacing $S_{\langle\nu\rangle}$ by S_{ν}^{\prime}, for every $\nu \in \operatorname{Lev}_{1}(S)$.
Consider the function $\nu \rightarrow a_{\nu}$, where $\nu \in \operatorname{Suc} c_{S}(\langle \rangle)$. By normality of $\pi_{\langle \rangle *} U_{\langle \rangle}$it is easy to find $A(0) \subseteq \kappa$ and $T(0) \subseteq \operatorname{Lev}_{1}\left(S(0)^{\prime}\right), T(0) \in U_{\langle \rangle}$such that $A(0) \cap \pi_{\langle \rangle}(\nu)=a_{\nu}$, for every $\nu \in T(0)$. Set the first level of T to be $T(0)$. Set $S(0)$ to be a subtree of $S(0)^{\prime}$ obtained by shrinking the first level to $T(0)$.
Let now $\left\langle\nu_{1}, \nu_{2}\right\rangle \in \operatorname{Lev}_{2}(S(0))$. So, $\pi_{\left\langle\nu_{1}\right\rangle}\left(\nu_{2}\right)>\nu_{1}$. Find a subtree $S_{\nu_{1}, \nu_{2}}^{\prime}$ of $S(1)_{\left\langle\nu_{1}, \nu_{2}\right\rangle}$, and $a_{\nu_{0}, \nu_{1}} \subseteq$ $\pi_{\left\langle\nu_{1}\right\rangle}\left(\nu_{2}\right)$ such that

$$
\left\langle\left\langle\nu_{1}, \nu_{2}\right\rangle, S_{\nu_{0}, \nu_{1}}^{\prime}\right\rangle \mid \Vdash \underset{\sim}{A} \cap \pi_{\left\langle\nu_{1}\right\rangle}\left(\nu_{2}\right)=a_{\nu_{1}, \nu_{2}} .
$$

Let $S(1)^{\prime}$ be a subtree of $S(0)$ obtained be replacing $S_{\left\langle\nu_{1}, \nu_{2}\right\rangle}$ by $S_{\nu_{1}, \nu_{2}}^{\prime}$, for every $\left\langle\nu_{1}, \nu_{2}\right\rangle \in \operatorname{Lev}_{2}(S(0))$.
Again, we 'consider the function $\nu \rightarrow a_{\nu}$, where $\nu \in \operatorname{Suc}_{S(1)}\left(\left\langle\nu_{1}\right\rangle\right)$. By normality of $\pi_{\left\langle\nu_{1}\right\rangle *} U_{\left\langle\nu_{1}\right\rangle}$, it is easy to find $A\left(\nu_{1}\right) \subseteq \kappa$ and $T\left(\nu_{1}\right) \subseteq \operatorname{Suc}_{S^{\prime}(1)}\left(\left\langle\nu_{1}\right\rangle\right), T\left(\nu_{1}\right) \in U_{\left\langle\nu_{1}\right\rangle}$ such that $A\left(\nu_{1}\right) \cap \pi_{\left\langle\nu_{1}\right\rangle}(\nu)=a_{\nu_{1}, \nu}$, for every $\nu \in T\left(\nu_{1}\right)$.

Define the set of the immediate successors of ν_{1} to be $T\left(\nu_{1}\right)$, i.e. $S u c_{T}\left(\nu_{1}\right)=T\left(\nu_{1}\right)$. Let $S(1)$ be a subtree of $S(1)^{\prime}$ obtained this way.
This defines the second level of T. Continue similar to define further levels of T.
We will have the following property:
$\left.{ }^{*}\right)$ for every $\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle \in T$,

$$
\left\langle\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle, T_{\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle}\right\rangle \| \underset{\sim}{A} \cap \pi_{\left\langle\eta_{1}, \ldots, \eta_{n-1}\right\rangle}\left(\eta_{n}\right)=A\left(\eta_{1}, \ldots, \eta_{n-1}\right) \cap \pi_{\left\langle\eta_{1}, \ldots, \eta_{n-1}\right\rangle}\left(\eta_{n}\right) .
$$

A simple density argument implies that there is a condition which satisfies $\left(^{*}\right)$ in the generic set. Assume for simplicity that already $\langle\rangle, T\rangle$ is such a condition. Then, C is a branch through T^{*}. Let $\left\langle\kappa_{n} \mid n<\omega\right\rangle=C$. So, for every $n<\omega$,

$$
A \cap \pi_{\left\langle\kappa_{0}, \ldots, \kappa_{n-1}\right\rangle}\left(\kappa_{n}\right)=A\left(\kappa_{0}, \ldots, \kappa_{n-1}\right) \cap \pi_{\left\langle\kappa_{0}, \ldots, \kappa_{n-1}\right\rangle}\left(\kappa_{n}\right) .
$$

Let us work now in $V[A]$ and define by induction a sequence $\left\langle\eta_{n}\right| n\langle\omega\rangle$ as follows. Consider $A(0)$. It is a set in V, hence $A(0) \neq A$. So there is η such that for every $\nu \in \operatorname{Lev}_{1}(T)$ with $\pi_{\langle \rangle}(\nu) \geq \eta$ we have $A \cap \pi_{\langle \rangle}(\nu) \neq A(0) \cap \pi_{\langle \rangle}(\nu)$. Set η_{0} to be the least such η.
Turn to η_{1}. Let $\xi \in \operatorname{Lev}_{1}(T)$ be such that $\pi_{\langle \rangle}(\xi)<\eta_{0}$. Consider $A(\xi)$. It is a set in V, hence $A(\xi) \neq A$. So there is η such that for every $\nu \in \operatorname{Lev}_{2}\left(T_{\langle\xi\rangle}\right)$ with $\pi_{\langle\xi\rangle}(\nu) \geq \eta$ we have $A \cap \pi_{\langle\xi\rangle}(\nu) \neq$ $A(\xi) \cap \pi_{\langle\xi\rangle}(\nu)$. Set $\eta(\xi)$ to be the least such η. Now define η_{1} to be $\sup \left(\left\{\eta(\xi) \mid \pi_{1}(\xi)<\eta_{0}\right\}\right)$. The crucial point now is that the number of ξ 's with $\pi_{\langle \rangle}(\xi)<\eta_{0}$ is less than κ, since $U_{\langle \rangle}$is a P-point. If $\eta_{1}=\kappa$, then the cofinality of κ (in $V[A]$) is at most η_{0}. So it must be ω since the Prikry forcing used does not add new bounded subsets to κ, and we are done.
Let us argue however that this cannot happen and always $\eta_{1}<\kappa$.
Claim $2 \eta_{1}<\kappa$.

Proof. Suppose otherwise. Then

$$
\sup \left(\left\{\eta(\xi) \mid \pi_{\langle \rangle}(\xi)<\eta_{0}\right\}\right)=\kappa
$$

Hence for every $\alpha<\kappa$ there will be ξ with $\pi_{\langle \rangle}(\xi)<\eta_{0}$ such that

$$
A \cap \alpha=A(\xi) \cap \alpha
$$

Then, for every $\alpha<\kappa$ there will be ξ, ξ^{\prime} with $\pi_{\langle \rangle}(\xi), \pi_{\langle \rangle}\left(\xi^{\prime}\right)<\eta_{0}$ such that

$$
A(\xi) \cap \alpha=A\left(\xi^{\prime}\right) \cap \alpha
$$

Now, in V, set $\rho_{\xi, \xi^{\prime}}$ to be the least $\rho<\kappa$ such that

$$
A(\xi) \cap \rho \neq A\left(\xi^{\prime}\right) \cap \rho,
$$

if it exists and 0 otherwise, i.e. if $A(\xi)=A\left(\xi^{\prime}\right)$. Let

$$
Z=\left\{\rho_{\xi, \xi^{\prime}} \mid \pi_{\langle \rangle}(\xi), \pi_{\langle \rangle}\left(\xi^{\prime}\right)<\eta_{0}\right\} .
$$

Then $|Z|^{V}<\kappa$, since the number of possible ξ, ξ^{\prime} is less than κ. But Z should be unbounded in κ due to the fact that for every $\alpha<\kappa$ there will be ξ with $\pi_{\langle \rangle}(\xi)<\eta_{0}$ such that $A \cap \alpha=A(\xi) \cap \alpha$ and $A \neq A(\xi)$. Contradiction.

Suppose that $\eta_{0}, \ldots, \eta_{n}<\kappa$ are defined. Define η_{n+1}. Let $\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle$ be in T. Consider $A\left(\xi_{0}, \ldots, \xi_{n}\right)$. It is a set in V, hence $A\left(\xi_{0}, \ldots, \xi_{n}\right) \neq A$. So there is η such that for every $\nu \in$ $\operatorname{Lev}_{n+2}\left(T_{\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle}\right)$ with $\pi_{\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle}(\nu) \geq \eta$ we have $A \cap \pi_{\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle}(\nu) \neq A\left(\xi_{0}, \ldots \xi_{n}\right) \cap \pi_{\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle}(\nu)$. Set $\eta\left(\xi_{0}, \ldots \xi_{n}\right)$ to be the least such η. Now define η_{n+1} to be $\sup \left(\left\{\eta\left(\xi_{0}, \ldots \xi_{n}\right) \mid \pi_{\langle \rangle}\left(\xi_{0}\right)<\eta_{0}, \ldots, \pi_{\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle}\left(\xi_{n}\right)<\right.\right.$ $\left.\left.\eta_{n}\right\}\right)$.
Each relevant ultrafilter is a P-point, and so, the number of relevant $\xi_{0}, \ldots \xi_{n}$ is bounded in κ. So, $\eta_{n+1}<\kappa$, as in the claim above.

This completes the definition of the sequence $\left\langle\eta_{n} \mid n<\omega\right\rangle$.
Let us argue that it is cofinal in κ.
Suppose otherwise.
Note that the sequence $\left\langle\pi_{\left\langle\kappa_{0}, \ldots, \kappa_{n-1}\right\rangle}\left(\kappa_{n}\right) \mid n<\omega\right\rangle$ is unbounded in κ.
Let k be the least such that $\pi_{\left\langle\kappa_{0}, \ldots, \kappa_{k-1}\right\rangle}\left(\kappa_{k}\right)>\sup \left(\left\{\eta_{n} \mid n<\omega\right\}\right)$. Then

$$
A \cap \pi_{\left\langle\kappa_{0}, \ldots, \kappa_{k-1}\right\rangle}\left(\kappa_{k}\right)=A\left(\kappa_{0}, \ldots, \kappa_{k-1}\right) \cap \pi_{\left\langle\kappa_{0}, \ldots, \kappa_{k-1}\right\rangle}\left(\kappa_{k}\right)
$$

This is impossible, since $\eta_{k}<\pi_{\left\langle\kappa_{0}, \ldots, \kappa_{k-1}\right\rangle}\left(\kappa_{k}\right)$.

Theorem 6.7 Let $\mathbb{U}=\left\langle U_{a} \mid a \in[\kappa]^{<\omega}\right\rangle$ consists of P-point ultrafilters over κ. Then for every new set of ordinals A in $V^{P(\mathbb{U})}$, κ has cofinality ω in $V[A]$.

Proof. Let A be a new set of ordinals in $V[G]$, where $G \subseteq P(\mathbb{U})$ is generic. By Lemma 6.6, it is enough to find a new subset of A of size κ.
Suppose that every subset of A of size κ is in V. Let us argue that then A is in V as well. Let $\lambda=\sup (A)$.
The argument is similar to [5](Lemma 0.7).
Note that $\left(\mathcal{P}_{\kappa^{+}}(\lambda)\right)^{V}$ remains stationary in $V[G]$, since $P(\mathbb{U})$ satisfies κ^{+}-c.c. For each $x \in$ $\left(\mathcal{P}_{\kappa^{+}}(\lambda)\right)^{V}$ pick $\left\langle s_{x}, S_{x}\right\rangle \in G$ such that

$$
\left\langle s_{x}, S_{x}\right\rangle \| \sim A \cap x=A \cap x .
$$

There are a stationary $E \subseteq\left(\mathcal{P}_{\kappa^{+}}(\lambda)\right)^{V}$ and $s \in[\kappa]^{<\omega}$ such that for each $x \in E$ we have $s=s_{x}$. Now, in V, we consider

$$
H=\left\{\langle s, T\rangle \in P(U)\left|\exists x \in \mathcal{P}_{\kappa^{+}}(\lambda) \exists a \subseteq x \quad\langle s, T\rangle\right|+\underset{\sim}{A} \cap x=a\right\} .
$$

Note that if $\langle s, T\rangle,\left\langle s, T^{\prime}\right\rangle \in P(U)$ and for some $x \subseteq y$ in $\mathcal{P}_{\kappa^{+}}(\lambda), a \subseteq x, b \subseteq y$ we have

$$
\langle s, T\rangle \|-A \cap x=a \text { and }\left\langle s, T^{\prime}\right\rangle \| \underset{\sim}{A} \cap y=b,
$$

then $b \cap x=a$. Just conditions of this form are compatible, and so they cannot force contradictory information.
Apply this observation to H. Let

$$
X=\left\{a \subseteq \lambda \mid \exists\langle s, S\rangle \in H \quad \exists x \in \mathcal{P}_{\kappa^{+}}(\lambda)\langle s, T\rangle \| \underset{\sim}{A} \cap x=a\right\} .
$$

Then necessarily, $\bigcup X=A$.

We do not know wether $V[A]$ for $A \in V[C] \backslash V$ is equivalent to a single ω-sequence even for $A \subseteq \kappa^{+}$. The problematic case is once U_{n} 's have κ^{+}-many different ultrafilters below in the Rudin-Keisler order.

Theorem 6.8 Assume that there is no inner model with $o(\alpha)=\alpha^{++}$. Let U be κ-complete ultrafilter over κ and $V=L[\vec{E}]$, for a coherent sequence of measures \vec{E}. Force with the Prikry forcing with U. Suppose that A is a new set of ordinals in a generic extension. Then the cofinality of κ is ω in $V[A]$.

Proof. Consider

$$
i_{U}: V \rightarrow M \simeq V^{\kappa} / U .
$$

By Mitchell [9], i_{U} is an iterated ultrapower using measures from \vec{E} and images of \vec{E}. In addition we have that ${ }^{\kappa} M \subseteq M$. Hence it should be a finite iteration using measures from \vec{E}. Since κ is the critical point, no measures below κ are involved and the first one applied is a measure on κ in \vec{E}. Denote it by E_{0} and let

$$
i_{0}: V \rightarrow M_{1}
$$

be the corresponding embedding. Let $\kappa_{1}=i_{0}(\kappa)$. Rearranging, if necessary, we can assume that the next step was to use a measure E_{1} over κ_{1} from $i_{0}(\vec{E})$. So, it is either the image of one of the measures of \vec{E} or $E_{0}-\operatorname{Lim}\left\langle E^{\xi} \mid \xi<\kappa\right\rangle$, where $\left\langle E^{\xi} \mid \xi<\kappa\right\rangle$ is a sequence of measures over κ from \vec{E} which represents in M_{1} the measure used over κ_{1}.
Let

$$
i_{1}: M_{1} \rightarrow M_{2}
$$

be the corresponding embedding and $\kappa_{2}=i_{1}\left(\kappa_{1}\right)$.
κ_{2} can be moved further in our iteration, but only finitely many times. Suppose for simplicity that it does not move.
If nothing else is moved then U is equivalent to $E_{0}-\operatorname{Lim}\left\langle E^{\xi} \mid \xi<\kappa\right\rangle$ and theorem 6.7 easily provides the desired conclusion.
Suppose $i_{1} \circ i_{0}$ is not i_{U}. Then some measures from $i_{1} \circ i_{0}(\vec{E})$ with critical points in the intervals $\left(\kappa, \kappa_{1}\right),\left(\kappa_{1}, \kappa_{2}\right)$ are applied. Again, only finitely many can be used.
Thus suppose for simplicity that only one is used in each interval. The treatment of a general case is more complicated only due to notation.
So suppose that a measure E_{2} with a critical point $\delta \in\left(\kappa, \kappa_{1}\right)$ is used on the third step of the iteration.
Let

$$
i_{2}: M_{2} \rightarrow M_{3}
$$

be the corresponding embedding. Note that the ultrafilter \mathcal{V} defined by

$$
X \in \mathcal{V} \text { iff } i_{2}(\delta) \in i_{2} \circ i_{1} \circ i_{0}(X)
$$

is P-point. Thus, a function $f: \kappa \rightarrow \kappa$ which represents δ in M_{1}, i.e. $\delta=i_{0}(f)(\kappa)$, will witness this.

Similar an ultrafilter used in the interval $\left(\kappa_{1}, \kappa_{2}\right)$ will be P-point in M_{1}, and so, in V, it will be equivalent to a limit of P-points.
So such situation is covered by 6.7.

$7 \quad$ Prikry forcing may add a Cohen subset.

Our aim here will be to show the following:
Theorem 7.1 Suppose that V satisfies $G C H$ and κ is a measurable cardinal. Then in a generic cofinality preserving extension there is a κ-complete ultrafilter U over κ such that the Prikry forcing with U adds a Cohen subset to κ over V. In particular, this forcing has a non-trivial subforcing which preserves regularity of κ.

By [5] such F cannot by normal and by 6.6 F cannot be a P-point ultrafilter, since in any Cohen extension, κ stays regular.

Note that the above situation is impossible in $L[\mu]$. Just every κ-complete ultrafilter over the measurable κ is Rudin-Kiesler equivalent to μ^{n}, for some $n, 1 \leq n<\omega$ (see [7, Lemma 19.21]). But the Prikry forcing with μ^{n} is the same as the Prikry forcing with μ which is a normal measure.

We start with a GCH model with a measurable. Let κ be a measurable and U a normal measure on κ.
Denote by $j_{U}: V \rightarrow N \simeq U l t(V, U)$ the corresponding elementary embedding.
Define an iteration $\left\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta<\kappa\right\rangle$ with Easton support as follows. Set $P_{0}=0$. Assume that P_{α} is defined. Set Q_{α} to be the trivial forcing unless α is an inaccessible cardinal.
If α is an inaccessible cardinal, then let $Q_{\alpha}=Q_{\alpha 0} * Q_{\alpha 1}$, where $Q_{\alpha 0}$ is an atomic forcing consisting of three elements $0_{Q_{\alpha 0}}, x_{\alpha}, y_{\alpha}$, such that x_{α}, y_{α} are two incompatible elements which are stronger than $0_{Q_{\alpha 0}}$.
Let $\underset{\sim}{Q_{\alpha 1}}$ be trivial once y_{α} is picked and let it be the Cohen forcing at α, i.e.

$$
\text { Cohen }(\alpha, 2)=\{f: \alpha \rightarrow 2| | f \mid<\alpha\}
$$

once x_{α} was chosen.
Let $G_{\kappa} \subseteq P_{\kappa}$ be a generic. We extend now the embedding

$$
j_{U}: V \rightarrow N,
$$

in $V\left[G_{\kappa}\right]$, to

$$
j_{U}^{*}: V\left[G_{\kappa}\right] \rightarrow N\left[G_{\kappa} * G_{\left.\left[\kappa, j_{U}(\kappa)\right)\right]}\right],
$$

for some $G_{\left[\kappa, j_{U}(\kappa)\right)} \subseteq P_{\left[\kappa, j_{U}(\kappa)\right)}$ which is $N\left[G_{\kappa}\right]$ - generic for $P_{j_{U}(\kappa)} / G_{\kappa}$. This can be done easily, once over κ itself in $Q_{\kappa 0}$, we pick y_{κ}, which makes the forcing Q_{κ} a trivial one.
This shows, in particular, that κ is still a measurable in $V\left[G_{\kappa}\right]$, as witnessed by an extension of U.
Consider now the second ultrapower $N_{2} \simeq \operatorname{Ult}\left(N, j_{U}(U)\right)$.
Denote j_{U} by j_{1}, N by N_{1}. Let

$$
j_{12}: N_{1} \rightarrow N_{2}
$$

denotes the ultrapower embedding of N_{1} by $j_{1}(U)$. Let $j_{2}=j_{12} \circ j_{1}$. Then

$$
j_{2}: V \rightarrow N_{2} .
$$

Let us extend, in $V\left[G_{\kappa}\right]$, the embedding

$$
j_{12}: N_{1} \rightarrow N_{2}
$$

to

$$
j_{12}^{*}: N_{1}\left[G_{\kappa} * G_{\left[\kappa, j_{1}(\kappa)\right)}\right] \rightarrow N_{2}\left[G_{\kappa} * G_{\left[\kappa, j_{1}(\kappa)\right)} * G_{\left.\left[j_{1}(\kappa), j_{2}(\kappa)\right)\right]}\right.
$$

in a standard fashion, only this time we pick $x_{j_{1}(\kappa)}$ at stage $j_{1}(\kappa)$ of the iteration. Then a Cohen function should be constructed over $j_{1}(\kappa)$, which is not at all problematic to find in $V\left[G_{\kappa}\right]$.

Now we will have

$$
j_{2} \subseteq j_{2}^{*}: V\left[G_{\kappa}\right] \rightarrow N_{2}\left[G_{\kappa} * G_{\left[\kappa, j_{1}(\kappa)\right)} * G_{\left[j_{1}(\kappa), j_{2}(\kappa)\right)}\right]
$$

which is the composition of j_{1}^{*} with j_{12}^{*}.
Define a κ-complete ultrafilter W over κ as follows:

$$
X \in W \text { iff } X \subseteq \kappa \text { and } j_{1}(\kappa) \in j_{2}^{*}(X) .
$$

Proposition 7.2 W has the following basic properties:

1. $W \cap V=U$.
2. $\left\{\alpha<\kappa \mid x_{\alpha}\right.$ was picked at the stage α of the iteration $\} \in W$.
3. if $C \subseteq \kappa$ is a club, then $C \in W$. Moreover

$$
\{\nu \in C \mid \nu \text { is an inaccessible }\} \in W
$$

Proof. (1) and (2) are standard. Let us show only (3). Let $C \subseteq \kappa$ be a club. Then, in $N_{2}, j_{2}(C)$ is a club at $j_{2}(\kappa)$. In addition, $j_{2}(C) \cap \kappa_{1}=j_{1}(C)$. Now, $j_{1}(C)$ is a club in $j_{1}(\kappa)$. It follows that $j_{1}(\kappa) \in j_{2}(C)$.
In order to show that

$$
\{\nu \in C \mid \nu \text { is an inaccessible }\} \in W,
$$

just note that $j_{1}(\kappa)$ is an inaccessible in N_{2}, and so W concentrates on inaccessibles.

Force with $\operatorname{Prikry}(W)$ over $V\left[G_{\kappa}\right]$.
Let

$$
C=\left\langle\eta_{n} \mid n<\omega\right\rangle
$$

be a generic Prikry sequence.
By (2) in the previous proposition, there is $n^{*}<\omega$ such that for every $m \geq n^{*}$, at the stage η_{m} of the forcing $P_{\kappa}, x_{\eta_{m}}$ was picked, and, hence, a Cohen function $f_{\eta_{m}}: \eta_{m} \rightarrow 2$ was added.

Define now $H: \kappa \rightarrow 2$ in $V\left[G_{\kappa}, C\right]$ as follows:

$$
H=f_{\eta_{n^{*}}} \cup \bigcup_{n^{*} \leq m<\omega} f_{\eta_{m+1}} \upharpoonright\left[\eta_{m}, \eta_{m+1}\right) .
$$

Proposition 7.3 H is a Cohen generic function for κ over $V\left[G_{\kappa}\right]$.

Proof. Work in $V\left[G_{\kappa}\right]$. Let $D \in V\left[G_{\kappa}\right]$ be a dense open subset of Cohen (κ). Consider a set $C=\left\{\alpha<\kappa \mid\right.$ if α is an inaccessible, then $D \cap V_{\alpha}\left[G_{\alpha}\right]$ is a dense open subset of Cohen (α) in $\left.V\left[G_{\alpha}\right]\right\}$.
claim $1 C$ is a club.
Proof. Suppose otherwise. Then $S=\kappa \backslash C$ is stationary. It consists of inaccessible cardinals by the definition of C.
Pick a cardinal χ large enough and consider an elementary submodel X of $\left\langle H_{\chi}, \in\right\rangle$ such that

1. $X \cap\left(V_{\kappa}\right)^{V\left[G_{\kappa}\right]}=\left(V_{\delta}\right)^{V\left[G_{k}\right]}$, for some $\delta \in S$.
2. $\kappa, P_{\kappa}, D \in X$.

Note that it is possible to find such X due to stationarity of S. Note also that $\left(V_{\kappa}\right)^{V\left[G_{\kappa}\right]}=V_{\kappa}\left[G_{\kappa}\right]$ and $\left(V_{\delta}\right)^{V\left[G_{\kappa}\right]}=V_{\delta}\left[G_{\delta}\right]$, since the iteration P_{κ} splits nicely at inaccessibles.

Let us argue that $D \cap V_{\delta}\left[G_{\delta}\right]$ is a dense open subset of Cohen (δ) in $V\left[G_{\delta}\right]$. Just note that

$$
D \cap X=D \cap X \cap\left(V_{\kappa}\right)^{V\left[G_{\kappa}\right]}=D \cap\left(V_{\delta}\right)^{V\left[G_{\kappa}\right]}=D \cap V_{\delta}\left[G_{\delta}\right] .
$$

So let $q \in(\operatorname{Cohen}(\delta))^{V_{\delta}\left[G_{\delta}\right]}$. Then $q \in X$. Remember $X \preceq H_{\chi}$. So,

$$
X \models D \text { is dense open },
$$

hence there is $p \geq q, p \in D \cap X$. But then, $p \in D \cap V_{\delta}\left[G_{\delta}\right]$, and we are done. Contradiction.

It follows now that $C \in W$. Hence there is $n^{* *} \geq n^{*}$ such that for every $m, n^{* *} \leq m<\omega$,

$$
\eta_{m} \in C
$$

So, for every $m, n^{* *} \leq m<\omega$,

$$
f_{\eta_{m}} \in D
$$

since D is open.
It is almost what we need, however $H \upharpoonright \eta_{m}$ need not be $f_{\eta_{m}}$, since an initial segment may was changed.
In order to overcome this, let us note the following basic property of the Cohen forcing:
Claim 2 Let E be a dense open subset of $\operatorname{Cohen}(\kappa, 2)$, then there is a dense subset E^{*} of E such that for every $p \in E^{*}$ and every inaccessible cardinal $\tau \in \operatorname{dom}(p)$ for every $q: \delta \rightarrow 2, p \upharpoonright[\delta, \kappa) \cup q \in E^{*}$.

The proof is an easy use of κ-completeness of the forcing.
Now we can finish just replacing D by its dense subset which satisfies the conclusion of the claim. Then, $H \upharpoonright \eta_{m}$ will belong to it as a bounded change of $f_{\eta_{m}}$. So we are done.

8 Further directions.

One of possible further directions is to extend our results from the Magidor forcing to the Radin forcing. Note that we cannot claim that every subforcing of the Radin forcing is equivalent to Radin forcing. Thus, the negation of $o^{\vec{U}}\left(\kappa_{i}\right)<\min \left(\nu \mid 0<o^{\vec{U}}(\nu)\right)$ provides a counterexample. However, it is still reasonable that every set in a Radin extension is equivalent to a subsequence of the Radin sequence. We conjecture that this is the case.

An other direction is to proceed further with the Prikry forcing with P-points ultrafilters and to prove that every subforcing of it is equivalent to a Prikry forcing. The complications starts once a P-point has more than κ many generators. In such situations it is easy to construct a subset of κ^{+}which is not equivalent to any of its initial segments. The opposite was crucial for the arguments of [5] with a normal ultrafilter. We conjecture that it is possible to overcome this problem and that every subforcing of the Prikry forcing with P-points ultrafilters is indeed equivalent to Prikry forcing.

Let us conclude with few questions.
Question 1. Is every set in a Radin extension equivalent to a subsequence of the Radin sequence?

Question 2. Is every subforcing of the Prikry forcing with P-points ultrafilters equivalent to a Prikry forcing?

Question 3. Characterize all κ-complete ultrafilters U over κ such that κ changes its cofinality in $V[A]$, for any new set A in the Prikry extension with U.

In section 6 a rather large class of such ultrafilters was presented. It includes P-points, their products and limits. But are there other ultrafilters like this?

References

[1] J.Cummings, Iterated Forcing and Elementary Embeddings, Chapter in Handbook of set theory, Springer, vol.1, pp. 776-847 (2009)
[2] G.Fuchs, On sequences generic in the sense of Magidor, Journal of Symbolic Logic, vol. 79, pp. 1286-1314 (2014)
[3] M.Gitik, Prikry Type Forcings, Chapter in Handbook of set theory, Springer, vol.2, pp. 1351-1448 (2010)
[4] M.Gitik,On compact cardinals,, pre-print, http://www.math.tau.ac.il/~gitik/copactcard.pdf (to appear)
[5] M.Gitik, V.Kanovei, P.Koepke, A Remark on Subforcing of the Prikry Forcing, pre-print, http://www.math.tau.ac.il/~gitik/spr.pdf (to appear)
[6] M.Gitik, V.Kanovei, P.Koepke, Intermediate Models of Prikry Generic Extensions, pre-print, http://www.math.tau.ac.il/~gitik/spr-kn.pdf (to appear)
[7] T.Jech Set Theory, Third millennium edition, Springer (2002)
[8] M.Magidor, Changing the Cofinality of Cardinals, Fundamenta Mathematicae, vol. 99, pp. 61-71 (1978)
[9] W.Mitchell, Sets constructible from sequences of ultrafilters, Journal of Symbolic Logic, vol. 39, pp. 57-66 (1974)
[10] K.Prikry, Changing Measurable into Accessible Cardinals, Dissertationes Mathematicae, vol. 68, pp. 5-52 (1970)
[11] S.Shelah, Proper and Improper Forcing, Second edition, Springer (1998)

[^0]: *The work of the second author was partially supported by ISF grant No.58/14.
 $\left.\left.{ }^{1} \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}\right\rangle \vec{U}\right]$ is Magidor forcing with the coherent sequence \vec{U} above a condition which has $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle$ as its ordinal sequence.

[^1]: ${ }^{2}$ In general, the number of possibilities to arrange two counter examples into one increasing sequence depends on I. Nevertheless, there is an upper bound: Think of x_{i} 's as balls we would like to divide into $n+1$ cells. The cells are represented by the intervals $\left(x_{i-1}^{\prime}, x_{i}^{\prime}\right]$ plus the cell for elements above x_{n}^{\prime}. There are $\binom{2 n}{n}$ such divisions. For any such division, we decide either the cell is $\left(x_{i-1}^{\prime}, x_{i}^{\prime}\right]$ or $\left(x_{i-1}^{\prime}, x_{i}^{\prime}\right)$. Hence, there are at most $\binom{2 n}{n} \cdot 2^{n}$ such arrangements.

[^2]: ${ }^{3}$ Magidor's original formulation of $\mathbb{M}[\vec{U}]$ in $[8]$ gives such a family

[^3]: ${ }^{4} R O(\mathbb{Q})$ is the complete boolean algebra of regular open subsets of \mathbb{Q}

[^4]: ${ }^{5}$ Actually, after proving Theorem 3.3, we can conclude that this phenomena cannot hold.

[^5]: ${ }^{6}$ Note that for any $C \subseteq C_{G}$, we can take $C l(C)=\{\alpha<\sup (C) \mid \alpha=\sup (C \cap \alpha)\} \cup C$, and $V[C l(C)]=$ $V[C]$, since $\operatorname{Index}(C, C l(C)) \in V$.

[^6]: ${ }^{7}$ Recall that $Y(\gamma)=\left\{\alpha<\kappa \mid o^{\vec{U}}(\alpha)=\gamma\right\}$

[^7]: ${ }^{8} C l\left(C^{*}\right)$ clearly satisfy (1) - (3)
 ${ }^{9} R O(\mathbb{Q})$ denotes the complete boolean algebra of regular open subsets of \mathbb{Q}

[^8]: ${ }^{10}$ This is indeed a formula in the forcing language since for any set $A, V[A]=\underset{z \subseteq \text { ord, } z \in V}{ } L[z, A]$ where $L[z, A]$ is the class of all constructible sets relative to z, A.

[^9]: ${ }^{11}$ Let $\left\langle\mathcal{V}_{k} \mid k<\omega\right\rangle$ be such sequence of ultrafilters over κ. We do not claim that $\left\langle\alpha_{k} \mid k<\omega\right\rangle$ is Prikry generic for the forcing $P\left(\left\langle\mathcal{V}_{k} \mid k<\omega\right\rangle\right)$, but rather that for every sequence $\left\langle A_{k} \mid k<\omega\right\rangle \in V$, with $A_{k} \in \mathcal{V}_{k}$, there is $k_{0}<\omega$ such that for every $k>k_{0}, \alpha_{k} \in \mathcal{V}_{k}$.

